3,750,328 [11]

Aug. 7, 1973 [45]

[54]	WINDING MECHANISM HAVING
	PLATFORM FOR SUPPORTING SPRING
	MOTOR DRIVEN VEHICLE

[75] Inventors: Edwin A. Nielsen, Oceanside: Benjamin Stopek, West Hempstead, both of N.Y.

[73] Assignee: Ideal Toy Corporation, Hollis, N.Y.

[22] Filed: Mar. 30, 1972

[21] Appl. No.: 239,606

Nielsen et al.

Related U.S. Application Data

[63] Continuation-in-part of Ser. No. 126,817, March 22,

[52] U.S. Cl...... 46/1 K, 46/39, 46/206, 185/39, 185/DIG. 1

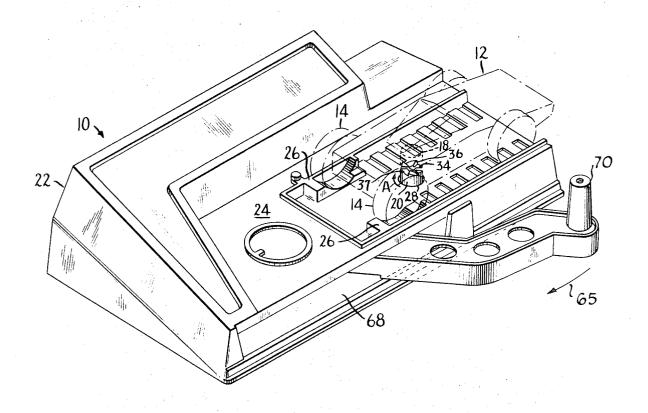
Int. Cl. A63h 33/00, A63h 17/26

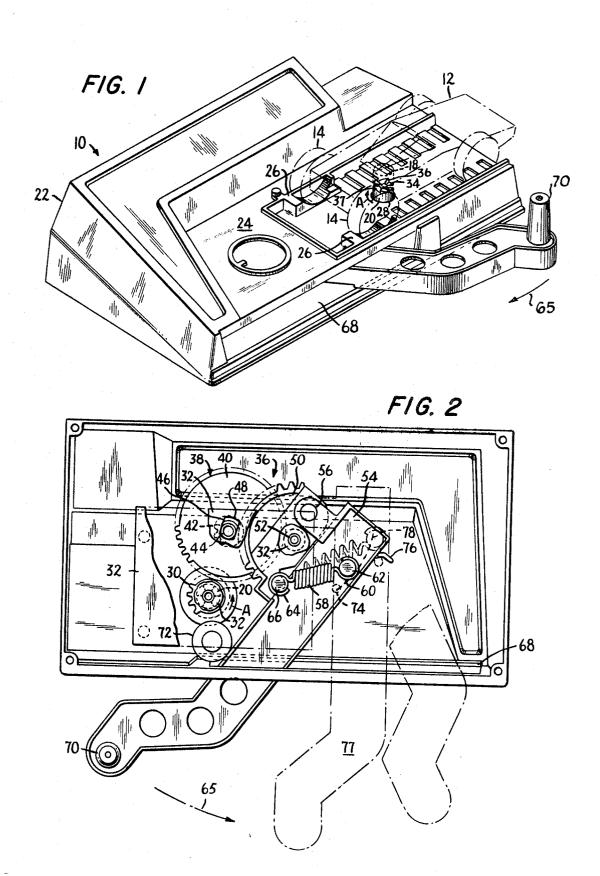
46/1 K; 185/DIG. 1, 10, 39, 40, 41

[56] **References Cited UNITED STATES PATENTS**

2,160,738 5/1939 Horn......46/39 3,621,607 11/1971 Morrison et al. 46/206

FOREIGN PATENTS OR APPLICATIONS


678,578 7/1939 Germany...... 46/1 K 678,577 7/1939 Germany...... 46/1 K


Primary Examiner-F. Barry Shay Attorney-Richard M. Rabkin

[57] **ABSTRACT**

A wind-up mechanism for a spring-driven toy vehicle includes a housing having a vehicle support platform and a drive clutch rotatably mounted therein for releasably engaging and winding a spring-driven toy vehicle positioned on the platform. The rotatable clutch is driven in a predetermined direction to wind-up the spring driven toy through a first gear rotatably mounted in the housing coaxially of the clutch and operatively connected thereto for transmitting rotational movement to the clutch. A gear segment rotatably mounted in the housing and operatively connected to the first gear is pivotally connected to a winding handle and held in a relatively fixed position with respect to the handle segment by a tension spring which is operatively connected therebetween. The tension spring means permits the handle to pivot with respect to the gear segment when rotation of the clutch in the predetermined winding direction is resisted with a predetermined force by the spring driven toy so that rotation of the gear segment by the handle is stopped to prevent overwinding of the toy vehicle.

18 Claims, 2 Drawing Figures

1

WINDING MECHANISM HAVING PLATFORM FOR SUPPORTING SPRING MOTOR DRIVEN VEHICLE

This application is a continuation-in-part of our copending patent application Ser. No. 126,817, filed Mar. 5 22, 1971, the disclosure of which is incorporated herein by reference.

The present invention relates to a spring wind-up device for use with toys and in particular relates to a clutch mechanism for winding up spring-driven toy velocles.

Spring drive mechanisms for toys, and in particular for toy vehicles, are well known and have been used for many years. Typically, the springs in such toys are wound up on an output drum which is rotated with a 15 key that fits into an extension of the output drum. These prior art arrangements have been substantially improved upon by the spring wound toy and wind-up mechanism disclosed and claimed in our abovementioned patent application.

The wind-up mechanism disclosed in our prior application has the advantageous feature that the wind-up mechanism provides for a quick engagement and release capability between the wind-up mechanism and the toy. This wind-up mechanism is particularly useful 25 as a "pit stop," in connection with toy race vehicles or games, such as are more particularly disclosed in U.S. Pat. application Ser. No. 126,818, filed Mar. 22, 1971, the disclosure of which is also incorporated herein by reference, in which the spring-driven toy vehicles must have their springs quickly rewound during the course of a competitive race.

The present invention represents an improvement on the wind-up mechanism disclosed in our prior application which assures the prevention of overwinding the 35 spring in the toy vehicle.

In accordance with one aspect of the present invention, the wind-up mechanism is utilized with a toy vehicle having a spring drive including a spring and a driven hub mounted in the toy for rotation about an axis and operatively connected to the spring to wind the spring upon rotation of the driven hub in a predetermined direction. The wind-up mechanism itself includes a housing having a driven hub rotatably mounted therein with both the drive and the driven hub having complementary teeth adapted to engage each other when the toy vehicle is placed on the housing. As a result, the rotation of the driven hub is transferred to the drive hub of the toy vehicle to wind-up the spring therein.

The housing of the wind-up mechanism includes a first gear rotatably mounted therein, coaxially of the driven hub, and operatively connected thereto for transmitting rotational movement to the driving hub. A rotatable swing gear is mounted in the housing for selective movement into and out of engagement with the first gear to selectively drive that gear and thus the hub in the desired predetermined direction. The swing gear is in turn, driven and controlled by a gear segment which is also rotatably mounted in the housing and pivotally connected to an operating handle which is utilized to rotate the gear segment.

A tension spring is operatively connected between the gear segment and the handle in order to hold the handle in a relatively fixed position with respect to the gear segment so that arcuate motion of the handle rotates the gear segment during the winding of the toy. This spring connection also permits the handle to pivot

2

with respect to the gear segment when rotation of the driving hub and thus the gears in the wind-up mechanism is resisted with a predetermined force by the toy. As a result, continued arcuate motion of the handle no longer rotates the gear segment and overwinding of the spring in the toy is prevented.

The above and other features and advantages of the invention will be apparent in the following detailed description of an illustrative embodiment thereof which is to be read in connection with the accompanying drawings, wherein:

FIG. 1 is a perspective view of a wind-up mechanism constructed in accordance with the present invention, illustrating in phantom lines, a spring driven toy vehicle seated on the wind-up mechanism; and

FIG. 2 is a bottom view, with parts broken away, illustrating the drive train of the wind-up mechanism.

Referring now to the drawing in detail, and initially to FIG. 1 thereof, it is seen that a spring wind-up mechanism 10, constructed in accordance with the present invention, is shown in conjunction with a spring wound toy vehicle 12 positioned thereon. The toy vehicle 12 may be constructed in accordance with the vehicles disclosed in the above-mentioned patent applications and includes a vehicle body which encloses a spring adapted to be wound on an output drum which is connected through a gear train to the drive axle of the vehicle's rear wheels 14. The output drum of the spring mechanism within vehicle 12 is provided with a driven clutch hub 18 that extends axially downwardly from the output drum for engagement with a driving clutch hub 20 in the windup mechanism 10.

In the present invention, wind-up mechanism 10 includes a housing 22 which may be of molded plastic construction and which is formed with a vehicle support platform 24 upon which toy vehicle 12 is positioned. Preferably, platform 12 is provided with a pair of wheel wells 26 which receive vehicle wheels 14 and locate the vehicle on platform 24 in a predetermined position such that its driven hub 18 will be engaged with driving hub 20 of the wind-up mechanism. Thus, during use of the wind-up mechanism, driven hub 18 and driving hub 20 are automatically aligned by the placement of the toy vehicle on the support platform 24. This is particularly advantageous when the wind-up mechanism is used as a "pit stop" in the racing type game described in the above-mentioned patent applications since a substantial amount of time thus is saved in aligning hubs 18 and 20.

Both driven clutch hub 18 and driving clutch hub 20 are provided with axially extending, coaxially distributed teeth 34 which are slanted circumferentially and raked at reentrant angles to form recesses 36. When presented to each other, as seen in FIG. 1, the teeth 34 are oriented in opposite angular directions so that upon engagement, the teeth of each clutch hub fit within the recesses of the opposite clutch hub for positive drive of the output drum of the spring mechanism contained within vehicle 12. Preferably, hubs 18 and 20 are molded of a plastic material, such as high impact polystyrene and the recesses 36 are bounded by re-entrant surfaces 37, preferably cut along radial lines by a cutting tool to form angles of about 53°.

Driving hub 20 is rotatably mounted in a recess 28 formed in platform 24 and is integrally formed with a coaxial pinion or first gear 30, located below support platform 24. Gear 30 includes a shaft (not shown)

which extends downwardly therefrom and is rotatably mounted in a support plate 32 secured in the underside of housing 22. It is also noted that plate 32 is located at the lowermost portion of the housing and therefore encloses gear 30 between it and platform 24. For clar- 5 ity in illustrating the invention, plate 32 has been broken away in parts in FIG. 2.

In order to rotate gear 30 and hub 20, in order to wind the spring within vehicle 12, a gear train 36, including a swing gear 38, is provided within housing 22. 10 Swing gear 38 comprises a pair of integrally molded gear members 40, 42, with the larger gear 40 adapted to be positioned in meshing engagement with pinion gear 30. Gears 40, 42 are integrally formed with a common shaft 44 which is rotatably mounted in an elon- 15 gated slot 46 formed in base plate 32. Slot 46 permits the gears to move from the position shown in FIG. 2, i.e., wherein gear 40 is in meshing engagement with gear 30, to a position at the opposite end of the slot wherein shaft 44 is in engagement with the edge 48 of 20 the slot, so that gear 40 is out of engagement with gear

The positioning of shaft 44 in slot 46, and thus the engagement or non-engagement of gear 40 with gear 30, is controlled, as more fully described hereinafter, by a 25 gear segment 50 which is rotatably mounted in housing 22 by a shaft or pin 52 secured in base 32. Gear segment 50 forms an arcuate segment of approximately 180° and is pivotally connected at one side of its pivot 52 to a rigid elongated handle 54 by a pivot pin 56. 30 Handle 54 is also connected to gear segment 50 by a tension spring 58 which is secured at one end 60 on a pin 62 formed on the handle and is similarly secured at its opposite end 64 to a pin 66 on gear segment 50. It gear 50 is on the side of its axis of rotation 52 which is opposite from the pivotal connection 56 between the gear segment and the handle. By this arrangement, handle 54 is normally maintained in a relatively fixed position with respect to gear segment 50 so that arcuate 40 motion of the handle causes rotation of gear 50 about axis 52.

To permit arcuate motion of the handle, that is, to permit the handle and gear segment 50 to pivot about pin 52, housing 22 is provided with an elongated slot 68 45 through which handle 54 extends. Thus, the handle is readily accessible for winding a vehicle placed on platform 24, and as a result, the platform need not be lifted to wind the vehicle. For convenience, a cylindrical handle 70 can be provided at the free end of handle 56 to facilitate movement of the latter in an arcuate path.

Slot 68 of of sufficient width to permit reciprocation of handle 56 between the solid line position and the dotted line position at the extreme right of FIG. 2. The arcuate path between these two positions is the normal path of motion of the handle during wind-up of the toy vehicle. In one embodiment of the invention a resilient or cushioned annular bumper 72 may be mounted on platform 32 to define the extreme limit of movement of handle 56, to the left, as seen in the drawing. This cushion will prevent engagement with the edge of the slot and damage to the handle in this direction.

The winding direction of rotation for hub 20 is illustrated in both FIGS. 1 and 2 by the arrow A. This direction is in the direction of the incline of the teeth 34 formed on hub 20 and assures engagement between the teeth of hub 20 with those of the driven hub 18. In

order to rotate hub 20 and thus gear 30 in the direction of arrow A, i.e., counterclockwise as seen in FIG. 2, handle 54 is rotated from the solid line position illustrated in FIG. 2 towards the right, i.e., in a counterclockwise direction, indicated by arrow 65. This motion of handle 54 causes gear segment 50 to rotate in a counterclockwise direction about its pivotal mounting 52. The torque applied to gear 42 by the rotation of gear 40, causes the gear to rotate in a clockwise direction and also causes its shaft 44 to move to its position in slot 46 as shown in FIG. 2. This causes gear 40 to be placed in meshing engagement with gear 30 to drive that gear and thus hub 20 for winding of vehicle

Upon reaching the extreme end of its motion towards the right in FIG. 2, handle 54 is returned to the left in order to repeat the winding motion. This return motion, from the extreme dotted line position shown in the right in FIG. 2 to the solid line position, causes gear 50 to rotate in a clockwise direction thereby rotating gears 40 and 42 in a counterclockwise direction. As a result, the torque now applied to gear 42 by gear 50 causes shaft 44 to move upwardly, towards edge 48 of slot 46. Thus, gear 40 is moved out of engagement with gear 30 so that the latter gear and hub 20 are no longer driven during this portion of the motion of handle 54. It is noted that slot 46 is formed to be substantially concentric with the gear 50 so that gear 42 and gear 50 are always maintained in engagement, irrespective of the position of shaft 44 in the slot.

In use, vehicle 12 is held with one hand against platform 24 and the frictional engagement between wheels 14 and platform 24 resists any tendency of the spring is noted that the point of connection of spring 58 to 35 within vehicle 12 to unwind during movement of handle 54 from the right to the left in the drawing.

> The above described procedure of oscillating handle 54 about pivot 52 is repeated until the spring in vehicle 12 is fully wound. At this point, as described in the above mentioned patent applications, an interference tooth and segment in a pair of gears in the gear train of the vehicle are engaged to limit further winding of the spring therein. As a result of the engagement of the interference tooth and segment and the gear train within vehicle 12, a force is applied through the gear train of the vehicle to driven hub 18 which resists further winding of the spring. This force is transmitted through the gear train 36 in wind-up mechanism 10 to stall the gears therein and prevent further rotation thereof.

> As a result of this stalling of gear train 36, i.e., as a result of the resistance to movement of the gears in the gear train, further force applied to handle 54 to move the handle it its counterclockwise winding direction causes the handle to pivot with respect to gear 50 about its pivotal connection 56. As a result of the pivotal motion of handle 54 with respect to gear 50, no force is applied to the gear which would tend to rotate it and overcome the resistance force applied by the gear train in the vehicle. Thus, overtorquing or winding of the motor and gear train in the vehicle is avoided.

> It is noted that spring 58 has a spring tension which is predetermined with respect to the resistance force applied by the spring drive mechanism of the vehicle, so that when that resistance force is reached, the tension force of spring 58 which normally holds the handle 54 in a relatively fixed position with respect to gear segment 50 is overcome and to permit the above described

pivotal motion of the handle with respect to the gear segment.

Normally, engagement of the interference tooth and segment in vehicle 12 can occur at any point during the motion of handle 54 towards the right in FIG. 2, de- 5 pending upon the relative position of the interference tooth and segment in the toy vehicle when the winding operation began. Should this resistive force occur at some point other than the solid line position of handle 54 illustrated in FIG. 2, the tendency of the operator of 10 the device would be to return the handle to the solid line position and again try to apply additional winding force to the handle. However, because of the resistive force applied by the vehicle, the gears 30, 40 and 50 cannot be rotated and handle 54 will again pivot about 15 axis 56 away from gear 50. The amount of permitted pivotal motion is limited, however, by the provision of a cylindrical stop member 74 on the uppermost side of handle 54 and a cooperating stop surface 76 formed on the lower surface of platform 24. These stops are posi- 20 tioned to engage each other when pivotal motion of handle 54 about pivot 56 begins at or near the solid line position of handle 54 so that the handle can move to an intermediate position 77 as shown in the drawing. This prevents overstretching of spring 58 which would ei- 25 ther damage the spring or increase the force applied to gear segment 50, forcing the gears in gear train 36 to rotate and thereby damaging the gear train in vehicle

It should be noted that during the normal operation 30of the wind-up mechanism, that is, when gear segment 50 is held against handle 54 by spring 58, stop member 74 will bypass stop wall 76 because of its arcuate motion with handle 54, along the path (indicated by a dotaxis of rotation of handle 54 changes from pivot 52 to pivot 56 so that the arcuate path of stop 74 changes and causes the stop to move into engagement with the sur-

In operation of the "pit stop" winding mechanism 10 40 ing from the scope or spirit of this invention. of the present invention, the wind-up mechanism remains flat on the floor and only vehicle 12 is moved, for the fastest possible winding operation. This is important in the racing type games described in the aboveidentified applications. Vehicle 12 is placed on platform 24 with its wheels 16 in wheel wells 26 so that its driven hub 18 is automatically placed in meshing engagement with the hub 20. The handle 54 is then operated from the side of the wind-up mechanism to rotate hub 20 and thus hub 18, in order to wind the spring mechanism within vehicle 12. Because of the configuration of teeth 34, on the respective hubs, the vehicle is retained against the platform 24 and the interaction between the re-entrant surfaces 37 of the hubs is effective to maintain engagement therebetween, especially during vigorous winding, when disengagement might otherwise be a problem.

Rotation of lever 54 in the direction of arrow 65 causes swing gear 40, as described above, to move into engagement with the driven pinion or gear 30 and rotate driving hub 20. A clockwise return movement of handle 54 is accompanied by disengaging movement of gear 40 whereby it is moved away from gear 30. In this manner, repeated arcuate movements of handle 54 back and forth between the two extreme positions illustrated in the drawing provides a desired plurality of consecutive one-way rotations of driving hub 20 to

wind toy vehicle 12. After winding, manual lifting of the vehicle causes a reaction between re-entrant surfaces 37 to produce a simple and effortless angular and axial displacement of hubs 18 and 20, with no special attention required.

After the spring in vehicle 12 has been wound to a point where the interference segments in its gear train have moved into contact with each other, further actuation of lever 56 results in movement of handle 54 with respect to gear segment 50 so that no further winding force is applied to the gears. In this manner, damage to the gears in the wind-up mechanism and to the spring drive mechanism of the vehicle is avoided.

Accordingly, it is seen that a wind-up mechanism constructed in accordance with the present invention has many advantages. The axially extending teeth in the clutch hubs engage and disengage with utmost speed and ease and without the need for any attention specifically directed thereto. The vertical toy retention feature is useful in precluding disengagement despite vigorous winding. Further, the gear trains in both the wind-up mechanism and the vehicle itself are protected against damage by overwinding by an accurate spring tensioned system provided in the wind-up mechanism which will be overcome when a predetermined resistance force is applied to the wind-up mechanism by the spring drive contained within the vehicle. The spring force can be accurately determined and therefore the tension spring 58 which controls the operation of the wind-up mechanism can be provided with the proper size and dimensions to produce the required force levels within the wind-up mechanism.

Although an illustrative embodiment of the present ted line in the drawing). When the device is stalled, the 35 invention has been described herein with reference to the accompanying drawings, it is to be understood that the invention is not limited to that precise embodiment and that various changes and modifications may be effected therein by one skilled in the art without depart-

What is claimed is:

1. A wind-up mechanism for a spring-driven toy vehicle comprising, a housing having a vehicle supporting platform, drive clutch means rotatably mounted in said 45 housing for releasably engaging and winding the springdriven toy vehicle when said vehicle is located on said platform and means for rotating said clutch in a predetermined direction to wind up said spring-driven toy vehicle, said rotating means including a first gear rotatably mounted in said housing coaxially of said clutch and operatively connected thereto for transmitting rotational movement to the clutch, a gear segment rotatably mounted in said housing and operatively connected to said first gear, a winding handle pivotally connected to said gear segment, and tension spring means operatively connected between said gear segment and said handle for holding said handle in a relatively fixed position with respect to said gear segment during wind-up of said vehicle and for permitting said handle to pivot with respect to said gear segment when rotation of said clutch in said predetermined direction is resisted with a predetermined force by said springdriven toy vehicle whereby arcuate movement of said handle normally rotates said gear segment to wind said toy vehicles and rotation of said gear segment by said handle is stopped to prevent overwinding of the springdriven toy vehicle when said vehicle is fully wound.

- 2. The wind-up mechanism as defined in claim 1 including an intermediate swing gear operatively connecting said first gear and said gear segment, said housing having a slot and said swing gear being rotatably mounted in said slot for movement into and out of engagement with said first gear in response to the direction of rotation of said gear segment whereby said clutch is rotated only in said predetermined direction upon actuation of said handle.
- 3. The wind-up mechanism as defined in claim 2 10 wherein said housing has a second elongated slot through which said handle extends for movement in a limited arc.
- 4. The wind-up mechanism as defined in claim 3 wherein said handle and said housing have cooperating 15 abutment members positioned in predetermined locations for limiting the pivotal movement of said handle with respect to said gear segment when rotation of said clutch in said predetermined direction is resisted with said predetermined force by said spring-driven toy velicle.
- 5. The wind-up mechanism as defined in claim 3 wherein said clutch comprises a generally cylindrical hub member having a plurality of concentrically arranged teeth formed thereon about the axis of rotation 25 of the hub for releasably engaging the spring driven toy vehicle during wind-up thereof.
- 6. The wind-up mechanism as defined in claim 5 wherein said toy vehicle includes a driven hub having teeth enaging said teeth of said clutch hub, said teeth 30 on said hubs having a complementary configuration and being releasably vertically interlocking to retain the toy vehicle vertically on said platform in response to winding torque.
- 7. The wind-up mechanism as defined in claim 3 in- 35 cluding cushioned stop means mounted in said housing adjacent one end of said elongated slot to limit the arcuate movement of said handle.
- 8. The wind-up mechanism as defined in claim 2 wherein said slot is substantially concentric with said 40 gear segment whereby said swing gear always remains in meshed engagement with said gear segment.
- 9. The wind-up mechanism as defined in claim 2 including means on said platform for locating a toy vehicle placed thereon in a predetermined position with respect to said clutch.
- 10. The wind-up mechanism as defined in claim 2 wherein said tension spring means is connected to said gear segment on the opposite side of its axis of rotation from its pivotal connection to said handle.
- 11. A toy and wind-up mechanism therefore comprising, in combination, a toy having a spring drive including a spring, a driven hub mounted in the toy for rotation about an axis and operatively connected to said spring to wind the spring upon rotation of the driven 55 hub in a first direction, said driven hub having a pluraity of concentrically arranged teeth extending therefrom about the axis of rotation of the driven hub; and a wind-up mechanism including a housing and a driving hub rotatably mounted in the housing, said driv- 60 ing hub having a plurality of concentrically arranged teeth extending therefrom about the axis of rotation of the driving hub, the teeth of each of said hubs being complementary to each other and located on the axial end of their respective hubs for axial engagement with 65 the teeth of the other hub upon placing the toy on the

housing with the driving and driven hubs axially aligned, and means for rotating said driving hub in a predetermined direction to wind said spring, including a first gear rotatably mounted in said housing coaxially of said driving hub and operatively connected thereto for transmitting rotational movement to said driving hub, a rotatable swing gear mounted in said housing for selective movement into and out of engagement with said first gear, a gear segment rotatably mounted on said housing and operatively engaged with said swing gear, a winding handle pivotally connected to said gear segment, and tension spring means operatively connected between said gear segment and said handle for holding said handle in a relatively fixed position with respect to the gear segment, whereby arcuate movement of said handle rotates said gear segment during winding of said toy, and for permitting said handle to pivot with respect to said gear segment when rotation of said driving hub in said predetermined direction is resisted with a predetermined force by said toy to prevent overwinding of said spring, said gear segment moving said swing gear into engagement with said first gear when said handle is moved from its first to its second position and moving said swing gear out of engagement with said first gear when said handle is returned from its second to its first position, whereby said driving hub is driven only in said predetermined direction during actuation of said handle.

12. The combination as defined in claim 11 wherein said housing has a slot formed therein, said swing gear being rotatably mounted in said slot for selective movement and said slot being substantially concentric with said gear segment whereby said swing gear always remains in meshed engagement with said gear segment.

13. The combination as defined in claim 12 wherein said housing has a second elongated slot through which said handle extends for movement in a limited arc.

- 14. The combination as defined in claim 13 wherein said handle and said housing have cooperating abutment members positioned in predetermined locations for limiting the pivotal movement of said handle with respect to said gear segment when rotation of said driving hub in said predetermined direction is resisted with said predetermined force by said spring-driven toy vehicle.
- 15. The combination as defined in claim 14 including cushioned stop means mounted in said housing adjacent one end of said elongated slot to limit the arcuate movement of said handle.
- 16. The combination as defined in claim 15 including means on said housing for locating said toy in a predetermined position wherein said driven and driving hubs are in meshed engagement.
- 17. The combination as defined in claim 16 wherein the teeth on each of said hubs slant in mutually complementary circumferential directions to form re-entrant capturing recesses for receiving the teeth of the other hub thereby to provide simultaneously both positive angular engagement between hubs and axial retention of the toy to the winding mechanism.
- 18. The combination as defined in claim 17 wherein said tension spring means is connected to said gear segment on the opposite side of its axis of rotation from its pivotal connection to said handle.