04/029792 A1 I 0K .0 R KO0

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

8 April 2004 (08.04.2004)

(10) International Publication Number

WO 2004/029792 A1l

(51) International Patent Classification’: GOG6F 7/00
(21) International Application Number:
PCT/US2003/030446

(22) International Filing Date:
25 September 2003 (25.09.2003)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/256,902 27 September 2002 (27.09.2002) US

(71) Applicant: INTERWOVEN [—/US]; 803 11th Avenue,

Sunnyvale, CA 94089 (US).

(72) Inventors: NAKANO, Russell, T.; 1326 Alridge Drive,
Sunnyvale, CA 94087 (US). YEE, Terrence, T., W.; 18681
Maude Avenue, Saratoga, CA 95070 (US). PARK, Britt,
H.; 2933 Granite Creek Road, Scotts Valley, CA 95066
(US). BARR, Sanford, L.; 1063 Morse Avenue, #3-304,
Sunnyvale, CA 94089 (US). JIA, Jack, S.; 6102 Royal
Acorn Place, San Jose, CA 95120 (US). HEGDE, Ga-
janana; 1325 Crossgates Lane, San Jose, CA 95120 (US).
COCHRANE, Kevin; 1342 Green Street, #2, San Fran-

cisco, CA 94109 (US).

(74) Agents: GLENN, Michael, A. et al.; Glenn Patent Group,
3475 Edison Way, Ste. L., Menlo Park, CA 94025 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE,
GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR,
K7, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK,
MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, 7ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO,
SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM AND METHOD FOR WEBSITE DEVELOPMENT

(57) Abstract: A system and method for file management is comprised of hierarchical files systems, referred to as "areas." There are
three types of areas: work areas, staging areas, and edition areas. A work area is a modifiable file system, and, in a work area a user
can create, edit, and delete files and directories. A staging area is a read-only file system that supports select versioning operations.
Various users of work areas can integrate their work by submitting the contents of their work area to the staging area. In the staging
area, developers can compare their work and see how their changes fit together. An edition is a read-only file system, and the contents
of a staging area are virtually copied into an edition to create a frozen, read-only snapshot of the contents of the staging area. One
use of the system and method for file management is as a website development tool.

10

]

20

WO 2004/029792 PCT/US2003/030446

SYSTEM AND METHOD FOR WEBSITE DEVELOPMENT

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates generally to hierarchical file systems and, more

specifically, to a system and method for file management which can be used as a

website development fool.

2. Description of the Background Art

The Internet is playing a large role in commerce, and most companies tend to
have a website. Many websites need to be frequently modified, and they are usually
modified in an ad hoc process by scores of contributors. Consequently, the on-going
process of keeping website content up to date, accurafe, and well-integrated is often a
greater challenge than the initial planning and development Phése. Internet sites may
be updated by the day, hour, or minute, by teams numbering in the hundreds.

Similarly, intranet content contributors constantly submit new content or make changes

10

15

20

WO 2004/029792 PCT/US2003/030446

to existing content, and, unless new content is quickly integrated, the intranet’s
usefulness as a fundamental commuriications resources is limited.

Large websites face many problems as the number of web contributors increase
exponentially. Tﬁe volume and content of these sites is increasing rapidly, and sites
must be upciated more frequently as site traffic and Internet commerce grows. With the
increasing number of contributors, volume, and complexity of content, it has becomes
increasingly more difficult for the manager of the website (“the webmaster”) to oversee
every change and perform quality control.

Because of the complexity of website deyelopment, there is a need for a central
system to manage and control website development. Known systems for managing and
controlling website development include software configuration management systems,
document managerﬁent sy"stems, and database publishing systems.

There are several disadvapta'gés associated with such known website
development systems. For instance, because maintaining a website often requires the
efforts of tens or hundreds of people, it is desirable to have website contributors work
in parallel. Software configuration managemént systems do not allow contributors to
simultaneously make changes to the same area of a website. Moreover, none of the
known systems allo;»v contributors working in parallel to separately test their own work
without actually making a change to the website. Thus, conﬂicting‘changes may be
posted to a website causing fhe website to be corrupted.

Since contributors cannot forgéee on an individual level the effects of their work

when combined with other’s contributions, known systems rely on a webmaster to

10

15

20

WO 2004/029792 PCT/US2003/030446

integrate all changes posted to a website and check the changes for errors. A
webmaster also ensures that contributors only change content they are authorized to,
change. However, the webmaster often becomes a bottleneck for the website
development process because the webmaster must do all the integration and testing of

changes to a website. Integrating the work of multiple users is manual and time

- consuming, and a great deal of time is wasted on bug fixing and resolving conflicts,

while too little time is invested in design, innovation, and strategy. Moreover, a
webmaster cannot easily oversee a contributors pfogress on a change until the
contributor is ready to submit the change to the webmaster. Thus, the webmaster
cannot correct errors eé?ly on and cannot determine how contributors are progressing.
Another disadvantage of known website development systems is that they do
not track file version histories. Since ngsite files are continually added, removed,
changed, moved, and renamed, it is useful to know who made what version of a file
and when the version was made. With full access to prior versions, users can easily find
the changes that caused a bug, revert to prévious versions, and identify new bugs.
Additionally, known website developments systems do not allow_ immediate access to
any previous version of a site subsection or the entire site. The ability to immediately
roll back to any previous version of a website can be a vital disaster recovery tool in the
event of site corruption or the distribution of inappropriate or inaccurate information.
Therefore, it is desirab}e to have a web development system that allows
contributors to determine how their changes fit into the entire website without actually

posting the changes to the website. Additionally, it is desirable to have a web

WO 2004/029792 PCT/US2003/030446

development system that allows contributors to access an earlier version of a file, -
website subsection, or website and that allows a webmaster to check on the progress of

contributors, as well as more easily post changes to a website.

SUMMARY OF THE INVENTION
5 The present invention provides a system and method for file management. One
use of such a system is as a website development tool.

The system of the present invention is comprised of hierarchical file systems,
which are referred to herein as “areas.” There are three types of areas: work areas,
staging areas, and edition areas. A work area is a modifiable file system, and, in a work

10 area a user can create, edit, delete, add, and ﬁodﬁy files and directories. In one
embodiment, a work area is a virtual copy of an existing website and a user’s 'personal
view of the website.

A staging area is a read-only file system that supports select versioning
operations. Various users of work areas can integrate their work by submitting the

15 contents of their work areas to the staging area. In the staging area, developers can
compare their work and see how their changes fit together.

An edition area is a read-only file system. Contents of a staging area are
virtually copied into an edition area to create a frozen, read-only snapshot of the
contents of the staging area. In one embodiment the contents of an edition area

20 représent the contents of an edition of a website.

10

5

20

WO 2004/029792 PCT/US2003/030446

Inone embociiment, ar‘eas share directory trees so that directories and files do
not have to be physically copied each time an area is created. This allows areas to be
created quickly and provides for efficient use of system resources. Associated with each
file and directory is a history object that stores information on the contents of that file or
directory in each area in which that file or directory exists.

In another embodiment, the present invention tracks the history of the contents .
of each file and directory. This allows the system to easily compare one file with
another file or one directory with another dirgctory and identify whether they are
identical or related.

In yet another embodiment, the system of the present invention includes an
HTTP protocol virtualization module v&hich enables one web server to operate as if it
vwere multiple web servers. This allows each area to be a complete website at the HTTP
protocol level without having a separate web server for each area.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates a computer network for website development according to
one embodiment of the present invention..

Figure 2 illustrates the development flow (from the perspective of a developer)
for develoéing website content according to one embodiment of the present invention.

Figure 3 illustrates an example of a branch according to one embodiment of the
present invention.

Figure 4 illustrates an example of the initial contents of a main branch according

to one embodiment of the present invention.

10

15

20

WO 2004/029792 PCT/US2003/030446

Figure 5 illustrates an example of a main branch according to one embodiment
of the present invention.

Figure 6 illustrates another example of a main branch according to one
embodiment of the present invention.

Figure 7 illustrates an example of a main branch and a sub-branch according to
one embodiment of the present invention.

Figure 8 illustrates an example of a directory tree of an area according to one
embodiment of the present invention.

Figure 9 is a pictorial representation of a work area object according to one
embodiment of the present invention.

Figure 10 illustrates a method for deriving a generation ID dccording to one

embodimerit of the present invention.

Figure 11 illustrates an example of a genealogy tree according to one

embodiment of the present invention.

Figure 12 is a pictorial representation of a directory according to one
embodiment of the present invention.

Figure 13 illustrates a website development module acc‘ording to one
embodiment of the present invention.

Figure 14 illustrates an operation of a work area creation module according to
one embodiment of the present invention.

Figure 15 illustrates an operation of a staging area creation module according to

one embodjment of the present invention.

10

15

20

WO 2004/029792 PCT/US2003/030446

Figures 16a-b illustrate an operation of an edition creation module according to
one embodiment of the present invention.

Figures 17a-c illustrate an operation of a branch creation module according to
one embodiment of the present invention.

Figures 18a-d illustrate an opération of an add item module according to one
embodiment of the present invention.

Figure 19 illustrates an operation of an add direct referepce module according to
one embodiment of the present invention.

Figure 20 illustrates an operation of a remove direct reference module according
to one embodiment of the present invention.

Figures 2}a-b illustrate an operation of a reference count module according to
one embodiment of the present invention.

Figure 22 illustrates an operation of a read directory module according to one
embodiment of the present invention.

Figures 23a-b illustrate an operation of a remove item module according to one
embodiment of the present invention.

Figures 24a-b illustrate an operation of an edit file module according to one
embodiment of the present invention. |

Figure 25 illustrates an operation of the rename module acecording to one
embodiment of the présent invention.

Figures 26a-b illustrate an operation of the generate directory path module

according to one embodiment of the present invention,

10

15

20

WO 2004/029792 PCT/US2003/030446

Figure 27 illustrates the operation of a generate base name module according to
one embodiment of the present invention.

Figures 28a-c illustrate the operation of a submit module according to one
embodiment of the present invention.

Figure 29 illustrates the operation of a conflict checking module according to one
embodiment of the present invention.

Figures 30a-b illustrate the operation of a compare directory module according
to one embodiment of the present invention.

Figures 31a-b illustrate the operation of a compare file module according to one
embodiment of the present invention.

Figure 32 illustrates the operation of an area deletion module according to one
embodiment of the present invention.

Figures 33a-b illustrate an operation of a lock module according to one
embodiment of the présent invention.

Figure 34 illustrates another operation of the lock medule according to one
embodiment of the present invention.

Figure 35 illustrates a communication path between a web browser, a HTTP
protocol virtualization module, and a web server, according to one embodiment of the
present invention. |

Figures 36a-b illustrate an operation of the HTTP protocol virtualization module

according to one embodiment of the present invention.

10

15

20

WO 2004/029792 PCT/US2003/030446

Figures 37 illustrates another operation of the HTTP protoco! virtualization
module according to one embodiment of the present invention.
- Figure 38 illustrates yet another operation of the HTTP protocol virtualization

module according to one embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention(s) will be described with respect to website development,
but as will be understood by those familiar with the art, the invention(s) may be
eﬁbodied in other specific forms.

Figure 1 illustrates a computer network 100 for website development. On
development workstations 110, which may be conventional personal computers,
website developers add, remove, edit, and examine files for a website. ‘ The
developmént workstations 110 are connected to a deve‘loprﬁent server 130 via a
computer network 120, such as the Internet.

The development server includes a web server 145, which processes HTTP
requests from the development stations 110 for website content. The development
server 130 also includes a conventional backing storage 160, such as the WIN DOWS NT
file system commercially available from Microéoft Corporation, in which website files
are physically stored.

The development server i30 also includes a conventional memory 150 (e.g.,
RAM) and a conveﬁtional processor 140, which implements the website development

methods of the present invention by executing a website development software module

10

15

20

WO 2004/029792 PCT/US2003/030446

135. The website development module, which is described below, is stored in the
memory 150. - Also storéd in the memory 150 is a HITP protocol virtualization module
137 which, as discussed below, the processor 140 executes to allow web server 145 to
operate as if it were multiple web servers.

The development server 130 is coupled to a production webserver 170 via a
network 165. NetWork 165 may be the same network as network 120 or it may be a.
different network. The website produéﬁon web server 170 is coupled to the Internet or
an intranet 175, and when a website is ready to be posted on the World Wide Web or ot
an intranet, the development server 130 sends the website to the production webserver
170, which provides Internet or intranet access to the website.

A website is comprised of the contents of an arbitrary file system. The website
development system of the present invention is comprised of a collection of hierarchical
file syétems. Each of these file systems is an environment that manages individual files
and provides means to manipulate them. When executed, the website dev‘elopment
software module 135 is the part of the file system that enables most of the management
and manipulation of files. The backing storage 160 is where the files and corresponding
metadqta (e.g., owner identification, group identification, access control file name,
modification times, creation times, etc.) are physically stored. In one embodiment, the
files can appear to be stored on drives other than the backing storage 160 (even though

they are physically stored in the backing storage 160).

10

10

15

20

WO 2004/029792 PCT/US2003/030446

A hierarchical file system comprises a tree of directories, populated With< files
and symbolic links. At the top of the directory tree is a root directory, from which all
other directories directly or indirectly stem.

A file system may be modifiable or read-only. A hodﬁiable file system is a file
system that supports read operations (e.g., get root directory, read directory, look up
directory, read file, get attributes, read symbolic link, and etc.) and modify operations
(e.g., create directory, create file, create symbolic link, sét attributes, remove file, remove
directory, rename file, rename directory, write file,4 and etc.) on the files. A typical hard
drive volume js an example of a modifiable file system.

A read-only file system supports only read operations. Two examples of a read
only file system are a CD ROM volume and a floppy disk volume that has the write-tab
flipped to the write-protected position.

As stated above, the website development system of the present invention is
comprised of hierarchical file systems. Some of the hierarchical files systems are
modifiable to enable the creation of the files that make up the content of a website.
Others enable files from other files systems to bé compared to coordinate the website
development, and‘yet others include the finished files that make up the content‘ of the
website.

One way in which the hierarchical files systems of the presént invention are
distinct from conventional file systems is that, in addition to read and/or modify
operations, some of the file systems in the present invention suﬁport select versioning

operations, which will be discussed below, that enable manipulations of two or more

1

10

15

20

WO 2004/029792 PCT/US2003/030446

- related file systems. The contents of a website are created by performing read, modify,

and versioning | operations on a collection qf related file systems in the present
invention.

A hierarchical file system of the present invention is referred to as an “area”, and
there are three tsrpes of areas: work areas, staging areas, and edition areas. A work area
is a modifiable file system, whereas staging and edition areas are read-only file systems.

A work area starts out as a virtual copy of an existing website (unless there is no

- existing website, in which case the work area starts out empty). In other words, a work

area starts out having the same contents as the file system designated as the website. A
work area is a developer’s personal view of a website, and every developer contributing
to a website does so in a work area. In a work area, developers can freely add, delete,
or modify website content and see how their changes -fit into’ the context of the entire
website. Details of add, delete, and modify operations are discussed below. Changes
made by a contributor in one work area do not affect the website or the work of other
contributors in other work areas. This is because, as stated below, each area is a
separate file system.

Developers integrate their work in a staging area by submitting the contents of
their work areas into a staging area. The submit operation is one of the select versioning
operations referenced above and discussed in more detail below. The staging area is a

shared view of the website available to all users on a branch (branches are discussed

&l
s

a branch. A staging area holds the collective work of several developers” work areas

12

10

15

20

WO 2004/029792 PCT/US2003/030446

and allows the developers to share and intégrate their changes. In a staging area, the
developers can compare their work and see how their changes fit together. The
compare operation is another one of the select versioning operations discussed in more
detail below.

The collective work in a staging area can be virtually copied back to the private A
work areas to keep the work areas up-to-date with the current state of the staging areas,
which changes as different conl:ributbrs submit new content from work areas. The
copying is “virtual” because areas share directory trees so that the directory trees do not
have to be physically copied. Mien the collective work in a staging area is deemed
final, its contents can be published to create an edition of the website. Creating a work
area from an edijtion and publishing a staging area are additional ones of the select
versioning operations discussed below.

The contents of a staging area are virtually copied into an edition area to create an
edition of a websif:e. Again, virtually copying means that the edition references the
same directory tree as the st'aging area. Because an edition is a read-only file system, it
is a frozen snapshot of the content of the entire website at a particular point along a
single branch. Each edition is archived a1.1d accessible to all developers.

The contents of editions can be virtually copied back into work areas and used as
the basis for further development of the website. Editions also serve as archives,

allowing users to instantly recall files, entire directories, or reconstruct entire past

versions of the website.

13

10

15

20

WO 2004/029792 PCT/US2003/030446

Figure 2 summarizes the development flow from a work area to an edition from
the perspective of a developer. A developer edits, adds, or deletes 210 files in a work
area. The developer then submits 220 the contents of his work area to the staging area.
In the staging area, the contents of the contributor’s work area is integrated 230 with the
contents of other contributors” work areas. If all the contents submitted to the staging
area integrate well and are approved 240, the contents of the staging area are published
250 into an edition. Otherwise, the contributors continue to edit 210 their files until
they are appro-ved.

According to one embodiment, V\/"ebsite development can be divided along
several branches of development. | Froma developer’s perspectivg, a branch is a path of
development for a single website. As illustrated in Figure 3, a single brémch 300
includes work areas 310, a staging area 320, and one or more archived website editions
330. Branches can include sub-branches, so that development teams may keep alternate
paths of development separate from each other. Content can be shared across branches
and sub-branches.

An example of dividing website development along branches is to have one
branch for the current website and have another branch for a new version of the
website. Another example is to have a clifferént branch of development for different
regions or for different clients in ;)rdet to have websites tailored to particular regions or
clients. |

A main branch is created when the website development software module is

installed on the development server. As illustrated in Figure 4, a main branch 400

14

10

15

20

WO 2004/029792 PCT/US2003/030446

initially include an empty staging are.;:l 420 and empty edition 430. A main branch may
also initially include an empty work area 410. A work area can be created at the time
the main branch is created or at a later time, as a user may desire to delaﬁf creating the
work area until the user is ready to define the attributes of the work area (e.g., the
people that can access the work area).

If a website existed before the website development software module is installed,
then an empty work area 410 is created if it does not already exist. As shown in Figure
5, the contents 510 of the original website are copied into the empty work area 410, then
the empty staging area 420, and then are published into an initial edition 440.

Additional work areas can be created off the main branch by virtually copying
the contents of the most recent edition into the new work areas. Figure 6 illustrates the
creation of three work areas 600 on the main branch from edition 440. The contents of
work areas 600 are submitted to a staging area 610, and the contents of staging area 610.
are published into a new edition 620.

. Sub-branches can also be created off a main or other branch. Figure 7 illustrate;
the creation of a sub-branch off a main branch. An edition 710 from the parent brancft
720 is used as the initial edition 725 for the sub-branch 730. The contents of the initial
edition 725 are then virtually copied into work areas 740, staging area 750, and new
edition 760 in the sub-branch 730. Note that sub-branches can be created off of other 4
sub-branches in the same manner. Work done on a sub-branch occurs independently

from and in parallel to work done on a higher branch.

15

10

15

20

WO 2004/029792 PCT/US2003/030446

Work created on a sub-branch can be incorporated into a higher level branch by
virtually copying the contents of an edition on the sub-branch back into a work area on
the higﬁer branch. Content from the sub-branch will be integrated with the content .
from other work area;s and publ‘ished as a new edition on the higher branch.

Now that an overview and typical usage of the website development system has ..
been described, the specific implementation of the system, according to one
embodiment, will be described.

Each separate work area, staging area, and edition area is comprised of one or
more files and directories organized in a tree structure. Figure 8 illustrates an example
of a directory tree for an area, where directory 1 is the root directory. Areas can share
the samé directory tree. In fact, when an existing area is copied to make a new area, the
new area merely references the same root directory as the existing area.

Each separate work area, staging area, and edition area is created by creating an
object that represents the area and that has a name field, an object ID field, a generation
ID field, a directory field, and a branch field. The name field iﬁcludes the name of the
work area. The directory field identifies the root directory of the directory tree of the
particular work area; staging area or ediﬁon area. The branch field indicates the branch
along which the work area lies. Figure 9 illustrates a pictorial representation of a work
area object. Note that in creating a work area a virtual copy of the directory tree ‘is

made, as opposed to a real copy, because the work area object points to the existing

directory tree.

16

10

15

20

WO 2004/029792 PCT/US2003/030446

Each work area, staging area, and edition area has two unique identifiers, one of
which is referred to in this application as a “ tt.;enerrcltion ID,” and the other of which is
referred to as an “object ID.” The'object ID identifies the object that represents the area,
and, once an object ID is assigned to an object, that object ID is not changed. Each area
is also identified by a unique generation ID, which indicates how an area is related to
otﬁer areas. The generation ID for a particular area can be changed, as will be discussed
beiow (e.g., when a staginé area is published into an edition). The generation ID is
placed in the generatioﬁ ID field. The object ID is placed in the object ID field.

Note that directories, files, history objects (discussed below), and other objects
are also assigned object IDs which remain unchanged once assigned.

A generation ID is comprised of a unique sequence or set of 'nur.nbers. A
generation ID not only urﬁquely identifies an area, but, as stated above, glso indicates
how an area is related to other areas.

An area is related to another area if one of the areas is deriyed, directly or
indirectly, from the other area. For example, in Figure 7 the initial edition in the sub-
branch is directly derived from edition 2 in the parent branch. The work areas in the
sub-branch are directly derived from the initial edition in the sub-branch and indirectly
derived from edition 2 in the parent branch.

A generation ID . includes a number unique to it and the numbers of the
generation IDs from which the generation ID is derived. For instance, if the number 1 is

the unique number assigned to one area and if the number 0 is the unique number

17

10

15

20

WO 2004/029792 PCT/US2003/030446

assigned to another area; then the generation ID of an area de_rived’from these areas is
its own unique number, say 4, as well as the nqmbers 0 and 1.

Figure 10 ﬂlustrai:és the method for deriving a generation ID, which is to be
assigned to a new area, from a parent generation ID, wheré the parent generation ID is
assigned to the ciirett parent of the new area. A uniq\.le' number is obtained 1000 using
a conventional algorithm for sequentially (e.g., 1, 2, 3, 4) or randomly generating unique
numbers. The set or sequence of unique numbers associated with the parent generation
ID is then retrieved 1010. Subsequently, a set or sequence of numbers that is the
concatenation of the parent generation ID and the just issued unique number is created
1020.

The relationship between the areas is also represented by a genealogy tree. A
genealogy tree is a data structure, where each node of the tree 'represents a different
generation (i.e., area. Note that throughou.t this application areas are often referred to
as generations).

Figure 11 illustrates an éxample of a genealogy tree. The generation GO
represents the initial edition. Generation G2 répr;asents one work area (“work area 1),
generation G3 represents another work area (“work area 2”), generation G1 represents
an edition (“edition 17), and generation G4 represents a staging area. The genealogy
tree illustrates that G1, G2, G3 are directly deriwfed from GO, which means that G1, G2,
and G3 have the same root directory as GO. G4 is 'ir-ldirectly derived from GO and

directly derived from G1 and, therefore, also has the same root directory as GO.

18

10

15

20

WO 2004/029792 PCT/US2003/030446

Figure 12 illustrates a pictorial representation of a directory 1200. For each
generation in which the directory has been altered, the dirgctory includes a generation
page 1280, which is an object that lists the contents of the directory in the generation
corresponding to the generation page 1280. Thus, a directory effectively includes a
snapshot of the contents of the directory at each generation in which the directory has
been altered. Generaﬁon pages 1280 allow different areas to reference the same
directory, even though the c-lirectory may have different contents in different areas.

In the directory 1200 illustrated in Figure 12, the directory pages 1280 indicate
that item “m” was added to the directory 1200 in generation GO, that item “n” was
added to the directory 1200 in generation G2, and that “p” was added to the directory .
1200 in generation G3. Note that, assuming nothiné has been removed from the
directory 1200, the directory pages 1280 include not only the contents that were added
in a particular generation, but also the contents that were added in the generations from
which the particular generation was derived. For instance, assume that the genealogy
tree illustrated in Figure 10 applies to this example. In generation GO, directory d1

’i

contains item “m.” In generation G2, item “n” is added to directory 1200, and,
therefore, since G2 was derived from GO, directory 1200 contains itefns “m"” and “n” in

generation G2 (assuming “m” was not removed). In generation G3, item “p” is added

to directory d1, and, therefore directory 1200 includes‘ the items }’p” and “m.” Note that

-G3 was not derived from G2, and, consequently, directory 1200 does not include item

”__rr

n” in generation G3.

19

10

15

20

WO 2004/029792 PCT/US2003/030446

In one embodiment, if a directory has 10t been altered in a particular generation,
the directory will not include a generation page for that generation. Once a directory is
altered in a generation, a generation page for the generation is added to the directory.

ﬁach item in a directory is associated with a history object. A history object
indic;':xtes the generation in which the contents of a file or directory were edited or .
modified. Inother words, a history object indicates the history of an item in a directory.
A history object includes a field 1225 for a generation ID and a contents field 1230 for a
pointer to a file or a directory. In'the example illustrated in Figure 12, history object h0
indicates that in genefaﬁon g0, item n contains the contents associated with file f1.
History object h0 also indicates that in generation G2 item n contains the contents
associated with file f2 (and not file f1). The items listed in the contents field 1230 point
to the actual contents 1235 of file £2. If £2 were a directory, it would point to another
directory like directory 1200. The contents include a “previous field” 1240 that has a
pointer to the preceding file or directory associated with the item listed in the directory.
For iﬁstanée, f2 points to a file hav'ing contents, “B,” as well as a pointer 1240 td f1,
meaning that prior to generation 92, item “m” had the contents of f1.

Figure 13 illustrates the website development software module 135 according to

one embodiment of the present invention, which enables the creation and manipulation

* of the work, staging, and edition areas. The website development software module 135

includes a workflow subsystem 1300, a versioning subsystem 1305, and an object
subsystem 1310. The workflow subsystem creates and manages work areas, staging

areas, edition areas, and branches. The versioning subsystem manages and controls

20

10

15

20

WO 2004/029792 PCT/US2003/030446

functions such as modifying and editing files and directories, comparing files,
comparing directories, submitting the contents‘of a work area to a staging area, and
checking files and directories for conflict. The object subsystem manages the
distribution of objects in the main memory of the server and in the disk. The object
subsystem may be implemented as a conventional persistent object storing and caching
subsystem.

The work flow subsystem includes a work area creation module 1312, a staging
area creation 1314 module, an edition area creatibn module‘ 1316, a branch creation
module 1346, and an area deletion module 1342. The versioning subsystem 130
includes a submit module 1336, a conflicts cﬁecking module 1338, a compare module
1340, an add item module 1318, reference count module 1320, add direct reference
module 1322,' remove direct reference module 1324, read directory module 1326,
remove item module 1328, edit file module 1330, rename module 1332, generate
directory path module 1334, locking module 1344, generation ID module 1348. These
modules in f:he workflow subsystem and the versioning subsystem enable the creation
and manipulation of areas, files, directories, and other objects .used to. develop a
website.

The workflow and versioning subsystems are implemented in the C++
programming language. The operation of the modules in the workflow subsystem and
the versibning subsystem are described below.

As discussed above, a work area is created by virtually copying the contents of a -

previous edition into the work area (with'the exception of the first work area on the

21

10

15

20

WO 2004/029792 PCT/US2003/030446

main branch which is initially empty). Figure 14 illustrates the operation of work area
creation module 1312 for creating a work area from an edition, which will ‘be arbitrarily
named “édition e.” The module 1312 obtains 1410 the root directory and the generation
ID of edition e. The module 1312 then obtains 1420 from the generation ID module 1348
a new generation ID, which is derived from the genération ID of | edition e. The
generation ID module 1348 derives the new generation ID by performing the process
illustrated in Figure 11. The module 1312 also obtains a new object ID (which is a
unique, randomly or sequentially generated number) for the Wofk area:

- The module 1312 creates 1430 an object representing the work afea and having a
name field, a root directory field, an object ID field, a generation ID field,.and a branch
field. The module fills 1440 in‘ the name of the work area in the name field, the root
directory of edition e in the directory field, the generation ID derived in step 1420 in the
generation ID field, the object ID in the object ID field, and the identification of the
branch along which the work area lies in the branch field. Thus, the object indicates
that the work area is a data structure having the same root directory of edition e and
having the derived generation ID. Note that the contents of edition e were not
physically copied to create the work area. Rather, an object was created indicaﬁné that
the newly created work area initially has the same data structure as editi;)n e.

Figure 15 jllustrates the operation of the staging area creation module 1314 for
creating a staging area from an edition, which will be referred to as edition e. To create
a staging area, the module 1314 obtains 1510 the, generation ID of ediﬁon e and then

obtains 1520 from the generation ID module 1348 a new generation ID derived from the

" 10

15

20

WO 2004/029792 PCT/US2003/030446

generation ID of edition e. The module 1314 also obtains a new object ID (a unique,
randomly or sequentially generated number) for the staging area.

The module 1314 creates 1530 an object that represents the staging area and that
has a name field, a root directory field, a generation ID -ﬁeld, an object ID field, and a
branch field. The module 1314 fills ‘1540 in the name of the staging area in the name
field, the root directory of edition e in the root directory field, the generation ID
obtained in step 1520 in the generation ID field, the object ID obtained in step 1525 in
the object ID field, and the identification of the branch along which the staging area lies
in the branch field.

It is sometimes desirable to have multiple staging areas.. For instance, in addition
to a public staging area it may be desirable to have a few private staging areas to which
only select users can submit content. Multiple staging areas can be created by
performing the above-described staging area creation method multiple times.

Figures 16a-b illustrate the operation of the edition cteation module 1316 for
creating an edition from the contents of a staging are.a, arbitrarily labeled 5 The
module 1316 obtains 1610 the generation ID and the root directory of staging area s.
The module also obtains 1615 a unique object ID for edition e. The module 1316 creates
1620 an object that represents the new edition and that has a name field, a'rool: directory
field, a generation ID field, an object ID field, and a branch field. The module 1316 fills
1630 in the name field with the name of the new edition, the generationi ID field with

the generation ID of staging area s, the root directory field with the root directory of

10

15

20

WO 2004/029792 PCT/US2003/030446

staging area s, the object ID field with the object ID obtained in step 1625, and the
branch field with the identification of the branch along which the edition lies.

By taking the generation ID of the staging area, module 1316 essentially converts.
staging area s into the new edition. Consequently, when the editioh is created, the
edition creation module 1316 obtains 1640 a new generation ID and assigns 1650 it to
the staging area.

Figures 17a-17¢ illustrate the operation of the branch creation module 1346. To
create a branch, the module 1346 determine;; 1705 whether the branch being created is a
main branch. If the branch is not a main branch, the module 1346 obtains 1710 the
generation ID of the base editioﬁ, call it “edition b,” from the parent branch from which
the new branch stems. Edition “b” can be any edition on the parent branch. The
module 1346 then obtains 1715 from generation ID module 1348 a new generation ID
derived from the generation ID of edition b. An initial edition, call it “edition e,” is then
created 1720 with the same root directory as edition b and with the generation ID
obtained in steﬁ 1715. Additionally, zero or more work areas may be created 1730, each
having the same root directory as edition e and a different generation Ilj derived from
the generation ID of edition e. The work areas may be created at the time of branch
creation or at a later time. A staging area is created 1740 having the same root directory
as edition e and having a generation ID derived from the generation ID of edition e. |

Edition e, the work areas, and the staging areas are created in accordance with the

methods discussed with respect to Figures 14-16.

24

10

15 .

20

WO 2004/029792 PCT/US2003/030446

Referring back to step 1705, if the branch being created is a main branch, ﬂle
module 1346 obtains 1750 a root generation ID, call it g0. A root generation ID is a
number generated using a conventional program for generating unique numbers, and it
is not derived from another generation ID. The module 1346 then creates 1755, 1760 an
empty directory, call it d0, and a history object, call it h0, for the directory. The module
1346 adds 1765 an entry to the history object indicating that the history object is
associated with directory d0 in generation g0. This entry can be represented by the
notation (g0,d0). |

After creating the lﬁstéry- object, the module 1346 creates 1770 an initial edition
having root directory d0 and root generation g0. The module also cieates 1775 a
staging area and one or more work areas, each having the. same root directory as the
initial edition (i.e., empty) and a different generation Ib derived from the root
generation. Note that the work areas do not have to be created at the time of branch
creation; they may i)e created at a later time.

The add item module 1318 enables the addition of objects, such as files and
directories, to a work area or a staging area. Figures 18a-d illustrate the operation of the
add item module 1318 for adding an item “n” having the contents “f” to a directory “d”
inan area “a.” Area a can be a work area or a staging area, and i‘tem ncanbeafileora
directory. Item f can also be a fﬂg or a directory. To add the item, the module 1318
identifies 1805 the generatior} ID for area a, call it “ g.” The module 1318 then reads 1810

directory d and determines 1815 whether there is a generation page for generation g If

. there is not a generation page for directory d, the module 1318 creates 1820 a generation

25.

10

15

20

WO 2004/029792 PCT/US2003/030446

page for directory d by copying the generation page of the most ﬂos‘ely related parent
generation (“best match generation”) that has a generation page. After either finding a
generation page for generation g or creating it, the module 1318 scans 1825 the contents
of the generation page for an item with the name “n,” to determine 1835 whether item n
exists in directory d in generation g. If an item named “n” is not found in directory d in
generation g, the module 1318 créadtes 1840 a hiétory object with an entry in the history
object indicating that contents “f" are associated ‘with' item n in generation g. The

notation (f,g) will be used to represent such an entry. The module 1318 subsequently

rz

adds 1845 an entry, represented by the notation (nh), to the generation page “g,”
indicating that file “n” is associated with history object “h.” Note that to add item n to
directory d, item n is neither virtually copied nor physically copied into directory d.
Directory d merely references item n.

The answer to the question in step ‘1835 will bg affirmative when item n has
already been added to the directory, but an updated version of item n is replacing the
existing version (i.e. new contents are now being associated with item n). If this is the
case, the module 1318 will scan 1850 the contents of the history object associated with
file “n” for the most recent generation in which itém,”n" was altered. , The module 1318 -
then determines 1855 if item n was altered in generation g (i.e., the module 1318
determines 1f item n was altered in area a because area a has generation ID g). If item n
was not altered in generation g, then the module 1318 adds 1860 an entry to the history

object indicating that content f was associated with file n in generation g. Item f has a

field that indicates the previous contents of item n (e.g,, item f includes a pointer to the

26

10

15

20

WO 2004/029792 PCT/US2003/030446

previous contents of item n). The module 1318 Seés 1865 the previous field of item f to
point to the contents of “n” in the best match generation.

Referring to step 1855, if item n was altered in generation g, then module 1318
alters 1870 the history item entry associated with generation g to reflect that, in
generation g, the content of item n is item f.. Then the module 1318 sets 1875 the
previous field of item f to point to the previous contents of n in generation g,

To reclaim resources, an object (e.g. a directory, a file, a history object) is
physically deleted from storage if it cannot be accessed from any area. Adding and
deleting an object from an area can be .Virtual because often only one physical copy of
the object is stored. Therefore, in order to determine whether the physical copy of an
c;bject should be deleted, it is necessary to know whether the object can be accessed
from any one area. If an object can be accessed from an area, it is “referenced” in that
area. To determine whether an object can be accessed from any one area, a reference
count is maintained for each object, where the reference count indicatés the number of
areas from which an object can b;a accessed. An object can be deleted if the reference
count for the object is zero.

To enable the calculation of a reference count, each object is associated with a
“reference list” and an “anti-reference list.” A reference lists indicates the directories to
which an object was added and, for each referenced directory, the generation (i.e., area)
in which the object was added to the directory. Spegifically, each time an object is
added to a directory, an entry is added to the reference list indicating the generation in -

which the object was added to the directory.

27

10

15

20

WO 2004/029792 PCT/US2003/030446

An anti-reference list indicates the directories from which the object was
removed and, for each referenced directory, the generation in which the object was
removed from the directory. Specifically, each time an object is removed from a
directory, an entry is added to the anti-reference list indicating the directory and the
generation in which the object was removed from the directory.

The add direct reference module 1322 adds entries to reference lists. Figure 19
illustrates the operation of the add direct reference module 1322 when an object (e.g., a
file, or a directory, or a history object)‘ is added to a directory “d” in area “a.” When
object c is added to directory d, a diréct reference of d to c is added. In other words, the
reference list of ¢ indicated that ¢ was added to directory d. To add a direct reference,
the add direct reference module 1322 first obtains 1910 the generation of area a, which
will be called “g” for convenience. The add direct reference module 1322 then
determines 1920 whether there .is an entry in the reference list of object c that indicates
that object c was added to directory d in generation g. For convenience, such‘ an entry is
represented by the notation (g,d). If (g,d) is not in the reference list of object c, then the
entry is added 1930 to the reference list.

After (g,d) is added to the reference lisf, or if (g,d) was already in the reference
list, the add direct reference module 1322 determines 1940 whether the entry (g, d) is in
the anti-reference list. The entry (g,d) would be in the anti-reference list if the object ¢
was previously removed from directory p in generation g.. If the entry (g,d) is not in the
anti-reference list of object ¢, then tﬁe process of adding a direct reference is complete.

If the entry (g,d) is in the anti-reference list, the entry is removed 1950 from the anti-

28

10

15

20

WO 2004/029792 PCT/US2003/030446

reference list. Additionally, for each generation, call it g directly derived from
generation g, the entry (gi d) is added 1960 to the antireference list. The reason for this
last step is that a derived generation starts out with the same contents as its parent
generation. Therefore, if an object can be accessed in one generation, it can be accessed
from all child generations derived from that generation, unless the object was added to
the parent directory after thg derivation of the child generations or unless the object has
been specifically remc?ved from the child generations. Consequently, if an object is
added to a diréctory in a generation having existing child generations, the anti-
reference list must indicate that the object cannot be accessed from the existing child
generations because the object was not part of the parent genefation at the time the
existing child generations were derix)ed. Of course, the object can also be added to the
child generations using the method illustrated in and described with respect to Figures
18a-d.

The remove direct reference module 1324 adds entries to the anti-reference list.
Figure 20 illustrates the operation of the remove direct reference module 1324 when dn
object “c” is removed from a directory “d” in an area “a”. The remove direct reference -
ﬁ\odule 1324 ascertains 2010 the generation ID of area a., which will be called “g" for
convenience. The remove direct reference module 1324 then determines 2020 whether. ,
there is an entry in the reference list of object that indicates that object c was previously
added to directory d in generation g. Such an entry will be represented by the notation

(g.d). If (g,d) is not in the reference list, then the process is complete because object ¢

29

10

15

20

WO 2004/029792 PCT/US2003/030446

never had a direct reference to diréctory d in generation g. Therefore, no reference needA
be removed.

If (g,d) is in the reference list, it is removed 2030 from the reference list of object
c. Additionally, for each chjid generation, call it g;, derived from g, if the entry (g, d) is

not in the anti-reference list, the entry is added 2040 to the reference list. The reason for

 this step is 50 that the reference list indicates that, if object ¢ was accessible from existing

child generations, it is still accessible from existing child generations, despite the fact it
has been removed from‘a parent generation.

,Afte‘r step 2040, the remove direct reference module 1324 determines 2050
whether the eﬁtry (g/d) is in the anti-reference list. If the entry ié not already in the anti-
reference list, it is added 2060 to the anti-reference list. Othérwise, the process of
removing a direct reference is complete. Although the entryA (g,d) should not already be -

in the anti-reference list, the remove direct reference module 1324 makes this

‘determination in case the entry was erroneously added to the anti-reference list at an

earlier time.

The reference count module 1320 calculates the number of references to an item.
To dé so, the reference count module 1320 maintains list p of two tuples, which is
initially empl:y.‘ The reference count module 1320 also uses an integer n, which is
initially set to zero, to represent the number of references made to item f.

Figures 21a-b illustrate the operation of the reference count module 1320 for

calculating the reference count of an item f. The reference count module 1320 retrieves

2110, 2120 the reference and anti-reference lists for item f. The reference count module

30

10

15

20

WO 2004/029792 PCT/US2003/030446

1 1

obtains 2525 the generation ID, which will be called “g” for convenience, of the root
node of the genealogy tree (recall that all the areas in the present invention can by
organized into a genealogy). The reference count module 1320 finds 2130 all entries in
the reference list with generation g. For instance, if item f was added to directory d1 in
generation g, there would be entry (g, d1) in the refereﬁce list, and the reference count
module 1320 would locate this entry. For each of fhe entries with generation g, the
reference count module 1320 adds 2130 an entry (item name, +) to list p, where “item
name” is the name of the item referenced in generation g. The “+” means the item was
referenced in the reference list (as opposed to the anti-reference list). For insgance, if the
en&y (g,d1) was found in the reference list of item f, the entry (d1, +) wopld be added to
list p. If list p already includes an-entry with the same item name (e.g., dl, -), the
reference count module ensures that the entry is set to (item name, +).

The reference count module 1320 also searches the anti-reference list to find 2140
all entries in the anti-reference list with generation g. For each of the entries in the ant-
reference list with generation g, the reference count module 1320 adds 2140 an entry
(item name, -) to list p, where the “-" means that the item was referenced in the anti-
reference list. If list p already includes an entry with the same item name, the reference
count module ensures that the entry is set to (item néme, -).

The reference count module 1320 then sets 2050 n=n+1 for each entry in list p
with a “+.” Recall that n is initially set to zero. The reference count module 1320 then
determines 2160 whether generation g has any child generations (i.e., generations

derived from genération g)- lf not, the reference count is complete 2170, and n is the

31

10

15

20

WO 2004/029792 PCT/US2003/030446

number of references to item f. If generation g has child generations, for each child
generation the reference count‘module 1320 sets 2180 g equal to the generation ID of the
child generation and returns to step 2130.

Figure 22 illustrates the operatioh of the read directory module 1326 for reading
the contents of a directory “d” in an area “a.” Tlie read directory module 1326 obtains
2210 the generation of area a, Which will be referred to as “g.” The read directory
module 1326 parses through the directory to determine 2220 whether there is a
generation page for generation g. There will be a generation page for generation g if
directory d has already been modified in area a. If there is a generation page for
generation g, the read directory module 1326 returns 2230 a list of the entries on the

”

generation page “g.” Otherwise, the directory returns 2240 a list the entries on the

generation page of the closest related parent generation page (“best match generation

page”).

An example of the operation of the read directory module will be described
using the directory iﬂusﬁ’ated in Figure 12. To read the contents of the directory in an
area having ‘generation G3, the read directory module 1326 returns a list of the
entry(ies) on generation page G3, which is the entry (m, h0) in this example.

Assume the generations in Figure 12 are related in the manner as illustrated in
Figure 10. To read the contents of directory d in generation G4, the read directory
module 1326 determines whetﬁer there is a generation page for G4. Since there is not a
generation page for G4, the read directory module 1326 searches for the best match.

generation page. Gl is the closest parent generation to G4, but there is no generation

32

10

15

20

WO 2004/029792 PCT/US2003/030446

page for G1. GO is the next closest parent generation, and since there is a generation
page for GO, a list of the entries in the G0 generation page is returned as the contents of
the directory in G4.

Figures 23a-b illustrate the operation of the remove item module 1328 when an
item “n"” is removed from a directory “d” in area “a” having a generation ID “g.” Item
ncan be any object in a directory, such as a file or another directory. To remove an item
from a direétory d, directory d is 2310 read in accordance with the method described
with respect to Figure 22. The remove item module- 1328 determines 2320 whether

there is a generation page for generation g in directory d. If not, a generation page is

created 2330 for generation g by copying the generation page from the closest pafent

generation (“best match generation”).

The remove item module 1328 determines 2330 if there is an entry for item n in

7

the generation page “g.” If not, the remove item module 1328 indicates 2330 that an
error has occurred becausé item n is not in directory d in generation g and, therefore,
cannot be removed from the directory in generation g.

Returning to StEiJ 2330, if there is an entry for item n in generation page g, the
remove item module 1328 obtains 2350 the history object corresponding to n. The
remove item module 1328 determines 2355 Whethef the history object indicates that
item n was modified in generation g. In other words, the remove item module 1328
determines whether the history object includes an entry with “ g" as the generation.

If item n was not altered in generation g, the remove item module 1328 adds 2370

an entry to the history object indicating that item n was removed from directory d in

33

10

15

20

WO 2004/029792 PCT/US2003/030446

generation g. Since the deletion of item n is virtual in this process, adding this entry
effectively deletes item n from directory d in generation g. This entry is represented by
the notation (g,z), where “z” represents an object that indicates that an item has been

removed. If a z object has not been created for item n, the remove item module 1328

‘createsa z object.

Referring to step 2355, if item n has been altered in generation g, the remove item
module 1328 alters 2360 the en.try in the history object corresponding to generation g to
indicate thét n was removeAd from directory d in generation g (i.e., the entry becomes
(&.2)). | The remove item module 1328 creates a z object for item n if one does not
already exist.

Like the file contents 1235 illustrated in Figure 12, a z object also has a field that
indicates the previous contents of an item. This field is referred to as the “previous
field”. After steps 2360 or 2370, the previous fieid in the z object is set 2380 to point to
the previous contents of n in generation g.

Figures 24a-b illustrate the operation of the edit file module 1320 for editing a file
“n"ina diréctory “d” in a work area “a” having a generation ID “g.” The edit file
module 1320 receives 2405 a write command for file “n.” The edit file module 1320 then
obtains 2410 the history object for file n, and determines 2420 whether the file n has

been altered in generation g (i.e., is there an entry with generation g?). If so, the edit file

module 1320 writes 2430 all changes to file “n” to the contents associated with file n in

generation g.

34

10

15

20

WO 2004/029792 PCT/US2003/030446

It the history object does not have an enfry with generation g, the edit file
module 1320 finds 2440 an entry with the best match generation. The edit file module
1320 then copies 2450 the file, call it f1, associated with| the entry in step 2440, and it
writes 2460 all changes to the new copy of file f1, which is referred to as £2.. An entry is
added 2470 to the history object indication that, in generation g, the contents of file n are
those of file £2. In other words, the edit file module 1320 adds the entry represented by
the notation (g, £2) to the history object.

Figure 25 illustrates the operation of the rename modt;le 1332 for renaming an
item nl, which may be é file or a directory, in directory d1 in area a to itern n2 in
directory d2 in area a. The rename module'1332 obtains 2510 the history objéct, which
will be called hi, of item nl in directory d1. Note that if no such history object exists,
the ren«;:tme module 1332 reports to the user that an error has occurred. After obtaining
the history object, the rename module 1332 determines 2520 whether an item with the
name n?2 exists in directory d2. If s0, the rename module determines 2523 whether there
is any overwrite protection for item n2. In one embodiment, there is O\/;erwrite
protection for directories, but not for files. If overwrite protection exists, the rename
module reports 2527 that an item n2 already exists in directory d2. If there is no
overwrite protection, the rename module 1332 removes 2830 the existing item n2 from
directory d2 in accordance with the method illustrated in and described with respect to
Figures 23a-b.

Once the existing item n2 has been rémoved from directory d2 or if item n2 did

not exist in directory d2, the rename module 1332 adds 2540 a new item with the name

35

10

15

20

WO 2004/029792 PCT/US2003/030446

n2 to directory d2. The rename moduleA 1332 associates history object hl with item n2 in
directory d2. In the previous field” of the COHﬁEl.’ltS of item n2, the rename module 1332
indicates that nl is the “rename from ancestor” (as defined below) of n2. Note that the
rename process is the same if d1 = d2.

Figures 26a-b illus trate‘ the operation of the generate directory path module 1334
for generating a full name path for directory d in area a. The generate directory path
module 1334 reads‘direct;)ry d in area a and identifies the parent directory, call it Py, to
directory d. According to one embodiment of the present invention, a parent directory
is associated with the entry “.” in a directory. In this embodiment, the generate
directory path module 1334 identifies the directory corresponding to the entry “..".

The module 1334 reads direétory Psin area a, and finds the entry for directorjr d.
The module 1334 then identifies directory d as a name in the directory path.

This algorithm is repeated until the root' directory is reached. Specifically, the
method described above with respect to directory d is repeated for directory Pd and
then the parent of directory Pd, and so on until the root directory is rea;hed. The
names that are found are the names in the directory path. The names are found in order
of last to first in th.e directory path name.

Figure 27 illustrates the operation of the generate base name module 1335 for
generating the base name of a history object “h” in directory “d” in area ”a.”. The
generate base name module 1335 reads 2710 the generation page corresponding to area

a in directory d. The generate base name module 1335 identifies 2720 the enfry with.

history object h. The name of the item corresponding to history object h in the entry is

36

10

15

20

WO 2004/029792 PCT/US2003/030446

the base name sought. For instance, if the entry (n,h) was found in directory d in area a,
“n” would be the base name of history object h.
Figures 28a-¢ illustrate the operation of the submit module 1336 for submitting

" Il

an item with history object h and contents f to a dlrectory din staging area a having
generation ID g. The submit operation is used to submit the contents of a work area to
a staging area. Since the contents of a file are defined by its history object, the history
object of a file is what is actually submitted to the staging area. The submit module
1336 obtains 2805 the full path of the history object h by computing the full path name
of directory d and the base name history object h in area a, in accordance with the
methods illustrated in and described with respect to Figures 26 and 27. The submit
module 1336 determines 2816 if there a corresponding item with the same full path
name in the staging area. This is done by repeatedly reading directory d (with read
directory module 1326) to determine whether another object in the stagmg area has the
same full path name as history object h.

If there is not a corresponding item in the staging area, the submit module 1336
ascertains 2830 whether the directory path computed in step 28d5 exists in the staging
area. If it does not, the directory path is created 2835, and file f is marked 2840 frozen.
After step 2830 or step 2840, the submit module 1336 calls the add item module 1318 to
add 2845 item n with contents f to directory d in staging area a. The submit module
1336 adds 2840 entry (g.f) to history object.

The subnﬁt module 1336 then dete;mines 2855 if item f is a directory. If not, the

submit process is complete. If item f is a directory, then for each child directory d;, the

37

10

15

20

WO 2004/029792 PCT/US2003/030446

submit module 1336, adds an entry (g,d;) to the history object associated with d; in the
work area. This step ensures that, when a directly is submitted to a staging area, i.'ts
child directofies are also submitted.

Returning to‘ step 2810, if there is a corresponding item in the staging area, the
submit module 1336 calls the conflict checking module 1338 (described below) to
determine 2815 whether there is a conflict between the corresponding history object, call

it hs, and history object h. History objects h and hs are not in conflict if a) h and hs are

“the same or b) h derives from h; or ¢) hs derives from h. If there is not a conflict

between h and the corresponding history object hs, the submit module 1336 proceéds to
step 2840. Otherwise the submit module 1336 determines 2820 whether the overwrite
mode, which allows an existing file to be overwritten, is in effect. ' Is so, the submit
module 1336 proceeds to step 2840. If not, the submit fails because of the conflict.

Figure 29 illustrétes the operation'. of the conflict checking module 1338 for
checking a file fuarget against a file freference for conﬁicg in area amrget in branch b. The
conflict checking modulé 1338 determines 2910 whether fiarget is locked in branch b. A
file is locked in a branch if only one work area on the branch can submit the file to the
staging-area. Locking a file provides a means to avoid conﬂicgs. If frarget is locked in
branch b, the conflict checking module 1338 determines 2920 whether the lock for frarget
is owned by a different area than arge. If s0, there is a conflict and frarget cannot be
submitted to area atarget.

If frarget is not locked in branch b or if the lock for fiarget is owned by atarget, the

conflict checking module ascertains 2930 whether fuarget and freference point to the same

38

10

15

20

WO 2004/029792 PCT/US2003/030446

content (i.e., are frarger and freference the same?). If they point to the same content, the
conflict checking module 1338 finds that there is no conflict. If the two files do not have
the same content, the conflict checking module 1338 determines 2940 whether freference is
an ancestor (i.e, a same-name-ancestor, a copy-from-ancestor, or a rename-from-
ancestor as defined below) of fiarget. If freference i5 an ancestor, there is no conflict because
frarget is likely a desired modification of freference. Otherwise, there is a conflict.

Figures 30a-b illustrates the operation of the compare directory module 1340 for

COlnpaIin.g a dirECtOI‘y dtarget i_n. area ata_[get agail’lst directory dreference i.n. area Areference. TO

do the comparison, the compare directory module 1340 reads 3005 the contents of
directory drarget in area agrget in accordance with the method illustrated in and described
with respect to Figure 22. The conflict checking module .also reads 3010 the contents of
directory dreference iN area areference in accordance with the method illustrated in and
described with respect to Figure 22.

The compare directory module 1340 identifies 3015 the first item in directory -
dtarger, and determines 3020 whether there is an item in directdry dreference With the same
name as the first item in directory deget. If not, the compare directory module'1340
reports 3045 that there is no item in dtefere:;ce that matches the identified item in diarget
and proceeds to step 3050. Otherwise, the compare directory module 1340 determines
3025 whether the two items with the same name have the same contents. Such a
comparison is done by looking at the history object of each item, and if the histo?y
object of dreference i area areference points to the same contents as the history object of

dtarget in area awrger, the contents of the directories are the same. If the contents are the

39

10

15

20

WO 2004/029792 PCT/US2003/030446

same,. the compare directory module 1340 reports 3030 that the items have the same
name and contents, and the compare directory module 1340 proceeds to step 3050. If
the contents are not the same, the compare directory module 1340 reports 3035 that the
names are the same, but not the contents, and the compare directory module 1340
proceeds to step 3050.

In step 3050, the compare directory module 1340 ascertains 3050 whether there is
another item in drarger. If there is another item in drarget, the compare directory module
1340 identifies 3053 the next item and reﬁms to step 3020. If there is not another item
in dearget, the compare directory module 1340 identifies 3055 the first item in dreference.
The compare directory module 1340 determines 3060 whether the identified item has
the same name as an item in duarget. If not, the compare directory module 1340 reports
3065 that the identified item in dirget does not match any item in dreference and proceeds
to step 3067. If the identified item has the same name as an item in diaget, the identified
item was already found in step 3020, and, thus, the compare directory ﬁodule 1340
proceeds to step 3067.

In step 306'.7,. the corﬁpare directory module 1340 determines whether there is
another item in directory deference. In response to there being no more items in dreference,
the process for comparing deurget t0 dreference i5 complete. Otherwise, the compare
directory module 1340 obtﬁns 3070 the next item in dreference and returns to step 3060.

The compare file module 1341.compares files (as opposed to the compare

directory module 1340 which compares directories). Files are compared when they are

40

10

15

20

WO 2004/029792 PCT/US2003/030446

submitted to a staging area. Additionally, website developers may wish to compare
files in their respective work areas.

Comparing files includes looking at the ancestors of a file. Three types of
ancestors a file may have are a same-name-ancestor, a copy-from-ancestor, and a
rename-from-ancestor.

A same-name-ancestor is a previous version of a file, call it f, having the same
néme as file f (i.e., “f”), where the same-name-ancestor was previously submitted to the
same area as file f. The “previous field” (e.g., field 1240 in Figure 12) of a file points to
the same-name-ancestor of the file.

A copy from ancestor of a file, call it f, is a file whose contents were copied into
file f. A copy to or revert operation on a file may produce a file in a work area with a

copy-from-ancestor. This occurs if the operation overwrites an existing file. For

' instance, let file e2 be a file in a staging area. Let file u be a file in.a work area that is in

conflict with file e2. If file u is updated by replacing the contents of file u with a copy of
the contents of file e2, the old file u is the s%ne—nme-mcestor of the updated file. u, and
file e2 is the copy-from-ancestor of the updated file u. File e2 can be a file from another
area or another branch. File e2 can also be a file in ghe version history of file u or a file
in a version history of another file on another branch. If a fiie hasa éopy-from—ancestor,
the ”pre{rious field” (e.g., field 1240 in Figure 12) of that file points to the copy-from-

ancestor, as well as to the same-name-ancestor.

41

10

15

20

WO 2004/029792 PCT/US2003/030446

A rename-from-ancestor of a Afil'e, call it £, is the is the file from which file f is
renamed. If a file has a rename-from-ancestor, the “previous field” of the file points to
the rename-from-ances tor, as well as the same-name-ancestor. A

Figures 3la-b illustrate the oéeration of the compare file module 1341 for
comparing a file Fuge in directory dege to a file Frme in directory d,efmm: The compare

file module 1341 looks up 3110 the file, call f, that contains the contents of Fuager i~

4directory Qe Note the difference between Fruge and f; is that Fuge is the name of the

file in the directory, whereas, ft is the actual conténts Of Frager in directory dige. The
difference between Fug. and fiis like the difference between the file named “m” in the
directory illustrated in Figure 12 and the contents, A", of file “m” in generation GO0.
The compare file module 1341 looks 3120 up the file, call it f,, that the contains
the contents of Freference N dicterence The compare module then determines 3130 whether f,
and f, are identigél. If so, then the compare file module 1341 reports 3140 that F,.iecence

and Feye are identical.

If f. and f, are not identical, the compare file module 1341 determines 3145
whether Frree i5 an ancestor of Frge. Recall thaf the contents of each file contain a
poinfer (in the “previous field") to the same—namé—ancestor of the file (e.g., the previous
contents) and, if the file has a copy-from-ancestor or a rename-from-ancestor, to such
ancestor. The compare module traverses back through the “previous field” of £ and its
ancestors in search of f. If f, appears in one of the “previous fields” traversed, then

Fretererce is an ancestor of Fiuge, and the compare file module 1341 reports 3050 that Fyg. is

a modification of Freerence-

42

10

15

20

WO 2004/029792 PCT/US2003/030446

If Froference is N0t an ancestor of Fuge, the compare file module 1341 determines 3155
whether Fuga is an ancestor of Fgeece. Specifically, the compare module fraverses back
through the “previous field” of £ and its ancestor in search of f,. If f, appears in one of
the “previous fields” traversed, the compare filé module 1341 reports 3160 that Freerence is
a modification of Fuga. Otherwise, the cofnpare file module 1341 determines 3165
whether there is some file that is an ancestor of both Fuage and Fregerence. If there is some
common file, the compare file module 1341 reports 3170 Feence and Fuge have a
common ancestor, and, if there is not a common file, it reports 3175 that Fge is
unrelated to Freterence.

The area deletion module 1342 deletes areas that are no longer desired by a user
or system administrator. Figure 32 illustrates the operation of the area deletion module
1342 for dele;ting anarea “a.” The area deletion module retrieves 3210 the directory tree
for area a, and finds 3230 any childless node (ie., directory), which will be called the “c
node” fof convenience. The area deletion module 1342 calls the remove item module
1328 to remove 3240 the c node from its parent directory(ies). The area deletion module
1342 also calls the remove direct reference module 1324 to remove 3240 the reference to
the parent directory from the reference list of the ¢ node. The area deletion module
1342 then calls the reference count module 1320 to determine 3260 whether the
reference count is zero, and, if it is zero, the physical object assoc:mtedwith the c node is
deleted 3270 from 4storage. Otherwise, the physical object associated with the ¢ node is
not deleted from storage because, although the ¢ node has been removed from area a, it

still exists in other areas. After deteérmining the reference count, the delete area module

10

15

20

WO 2004/029792 PCT/US2003/030446

1342 determines 380 whether there are any nodes left in the area. If so, the modulg 1342
returns to step 3230. If not, the éu‘ea deletion process is complete.

Figures 33a-b and 34 illustrate the operation of the lock module 1346. Figures
33a-b illustrate the operation of the lock module 1346 for creating a lock on item f in
directory d in area a along branch b. To create such a lock, the lock module 1346
determines 3310 the full path name of item f in directory d in area a and then ascertains
3320 whether any other lock has the same full path name. If so, the lock module 1346
reports 3250 that the lock creation operation failed because of a conflicting lock. If no
other lock has the same full path name, the lock module 1346 c.reates 3230 a lock that
includes the full path name identified in step 3310 and 1ﬁarks 3240 the lock with area a
as the owner of the lock.

Figure 34 illustrates the operation of the lock module 1346 for determining

whether an itém in directory d inareaa is locked. The lock module 1346 ascertains 3410

 the full path name of item f in directory d in area a and then determines 3420 whether

branch b has a lock with the same full path name. If not, the lock module reports 3430
that item £ is not locked. Otherwise, the lock module reports 3440 that item f is locked.

Now that the website development software has been described, the HTTP

protocol virtualization module 137 (“the virtualization module 137"), according to one

embodiment, will be described.
Bach area appears to be a complete website at the HTTP protocol level. To
accomplish this without having a separate web server for each area, virtualization

module 137 enables a single web server to appear as multiple web servers. This ‘greatly

10

15

20

WO 2004/029792 PCT/US2003/030446

reduces deployment and maintenance costs while allowing each area to be a complete
website at the HTTP protocol level.

Figure 35 illustrates the communication path between a web browser on one of
the development workstations 110, the virtualization module 137, and the web server
145. The web browsers on the developmentiworkstations 110 are directed to route all or

select (depending on the type of links as discussed below) HTTP requests for website

| content to the virtualization module 137. If needed, the ﬁrtualiiation module 137%.alters

the directory path of the request so that the directory path corresponds to the area from

which the request originated (this area is referred to as the “viewing area”) or another

‘desired location (as discussed below). In other words, HTTP requests sent to

virtualization module 137 are redirected, if needed, to the file system correspdnding to
the viewing area or another desired location.

After pfocessing an HITP request, the virtualization module 137 forwards the
HTTP request to the web server 145, which retrieves the requested document from the
location specified by the request. The web server 145 then sends the requested
document (or-an error signal if it is not foun&) back to the virtualization module 137,
which forwards the requested document (or errox.: signal) back to the web browser.

The virtualization modﬁle 137 uses‘mapping rules fo determine Whether and
how to alter an HTTP request. A mapping rule maps one expression to another
expression. A mapping rule is broken down into two sides'separated by an equal sign.
The left hand side of a mapping rule is a regular expression, which.defines the parts of a

variable pattern to be matched. The regulai' expressions of the mapping rules follow

45

10

15

20

WO 2004/029792 PCT/US2003/030446

well defined rules of regular expressions in the fields of mathematics and computer
science, and, in one embodiment, the regular expressions used in the mapping rules are
applied the same way that regular expressions are applied in the UNIX operating
system (e.g., regex(5) extended regular expressions).

The right hand side- of the mapping rule is the substitute expression (ie., the
expression substituted for the regular expression on the left hand side). In the
substitute exPression, the symbol $N, where N is “17, “2”,..”9”, represents the first ten
parts of a pattern on the left hand side that are represented by the regular expression
parentheses operator () (e.g., $1 represents the first pattém on the left side, $2 represents
the second pattern on the left sidé, and so on).

A HTTP request can be d.ivided up into three parts in the following order:

area prefix/document root prefix/name of requested file

The module 137 redirects HTTP requests by altering the document root prefix
and the area prefix of the request. The document root prefix is the path name bf the
“document root,” where the document root is the sour(_;e directory for the web server,
The document root is the directory in the file system under which the web server
searches for requested documents (unless othefwise specified). The document root can
be thought of as the webserver’s notion of its root directory.

The top level directory’ of an area is not necessarily the document root. A
developer may set up an area such thatlthe top level directory of an é.rea does not
correspond to the document root of the web server. The actual document root for the

web server may live any number of directories beneath the top area directory.

46

10

15

20

WO 2004/029792 PCT/US2003/030446

The document root for an area is specified by a special mapping rule. In one
embodiment, each branch haé a set of mapping rules, and, in this embodiment, each
area along a particular branch has the same document root as specified by the special

_docroot” mapping rule.

An example of a mapping rule for the document root of a particular branch is as
follows:

_docroot=/directory A/ directoryB

If the original URL request is GET /documents/idex.htinl, the document root
prefix will be appended directly in front of the first “/” of the original request. In other
words, the prefix “/directoryA/directoryB” will be appended to the front of
“/documents/ index.htm[". |
| There are situations where it is desirable to use another prefix instead of the
documellt root prefix. Such situations include where a developer configures content
directories outside the document root directory, aliases the name of a content directory,
or applies an arbitrary transformation at the area level. There are mapping rules for
these speciai situations, and, if the request matches one of these special mapping rules,
the substitute expression (right hand side) of the mapping rule is the prefix appended to
the request instead of the document root prefix. For instance, assume the following is a
mapping rule for a particular branch: |

/Special(.*)=/Foo$1
If the original request is GET /special/index.html, the prefix “/Foo” is

added to “/index.html.”

47

10

15

20

WO 2004/029792 PCT/US2003/030446

The area prefix is appended fo the front of the document root prefix or, if
applicable, the special prefix that replaces the dqcument root prefix. The area prefix is
derived by decoding the “cookie” transmitted with the original request. A cookie is a
small amount of persistent data stored by the web browser and passed to the
virtualization module 137. A cookie can include various types of information (e.g., the
identity of the user, the identity of a user’s session (“session IE""), port number, etc.),
and one such type may be an indication of the path of the viewing area. In one
embodiment, the cookie includes the actual area p;éfix. In another embodiment, the
virtualization module extracts another type Aof information, such as a session ID or a
éort number, from the cookie and looks up the area prefix in an external look up table
that maps the type of information extracted to area prefixes.

To continue the document root prefix example, if the afea ‘prefix derived from
the cookie tansmitted with the original request is = “/jw-
mount/default/ main/ workarea/joe”, the transformed request will look as follows:

GET /iw-mount/default/ main/ workarea/ joe/directory A/ directoryB
/ documents/ index.html.

Whether a web browser routés all HTTP fequests to the virtualization module
137 or just some depends on the types of link contained within the HTML documents in
the system. There are at least three different types of links which may be contained
within an HTML document na.mely a relative link, an absolute link, and a fully
qualified link. A fully qualified link is a link- that includes an explicit protocol

specification and an explicit hostname followed by the full pathname to a document.

43

10

15

20 .

WO 2004/029792 PCT/US2003/030446

An absolute link is a link that contains neither a protocol specification nor a hostname,
but does contain a full pathname to a document. An absolute link usually starts with an
initial slash character ('/"). A relative link is similar to an absolute link, but is instead
characterized by the leading slash character (/") which indicates that the path is
relative to the c":urrent document’s link. In other words, a relative link has the same full
paih name of the current document except for the actual name of the document
requested.

The virtualization module 137 can process all three types of links‘.' If the HTML
content stored within the system 100 requires virtﬁalization of fully qualified links, the

web browser is configured to send all requests to the virtualization module 137. Many

. comunon web browsers support this feature with a configuration setting. According to

one erﬁbodirnent, if the website does not require management of fully qualified links,
the web browser passes just absolute and relative HTML links to the virtualization
module 137. A web server usually requires no special configuration for absolute and
relative links to be automatically sént to the virtualization module 137.

Figures 36a-b illustrate the operation of virtualization module 137 for handling
absolute and relative requests. The virtualization tioduls 137 receives 3610 an HTTP
request from a web browser on one of the development workstations 110, and extracts
3620 the Uniform Resource Locator (URL) address from the request. The virtualization
module 137 also extracts 3630 the cookie that has been sent with the URL address.

The virtualization module 137 then determines 3640 whether the request is an

absolute request or a relative request. In one request embodiment, these requests are

- 49

10

15

20

WO 2004/029792 PCT/US2003/030446

distinguished by the fact that a relative HTML request will already have an area prefix
appended to it before it is processed by the virtualization module 137 (this is done
automatically by the web browser), but an ébsolute request will not have an area prefix
appended to it before it is processed by the virtualization module 137. If the request is
relative, the request is already directed to the correct file system and directories (i.e., the
file system and directories from Whic'h the viewing document was accessed), and the
virtualization module 137 passes 3690 the request to the web server.

If the request is an absolute request, the virtualization module 137 searches 3650
the mapping rules corresponding to the branch along which the viewing area resides
and selects 3660 the appropriate prefix (either a document root prefix or a special prefix
based on the mapping rules (as discussed above)). The virtualization module 137
attaches 3670 the selected prefix to the original request or a part thereof in acﬁordance
with the appropriate mapping rule.

The virtualization module 137 extracts or derives (as discussed above) 3680 the
area prefix from the cookie and attaches it in front of the prefix attached in step 3670.
The path of the request, or a portion thereof, is now complete, and, therefore, the
module 137 routes 3690 the modified request to web server 145.

Figure 37 illustrates the method of the virtualization module 137 for processing
fully qualified links. The virtualization module 137 receives 3710 an HTTP request from

one of the web browsers on one of the develdpment workstations 110, and extracts 3720

the URL and the cookie from the request.

50

10

IS5

20

WO 2004/029792 PCT/US2003/030446

The virtualization module 137 then searches 3730 through mapping rules for
fully qualified requests, and determines whether the request matches the’ regular
expression of a mapping rule. If not, the request is forwardeéd 3780 to the web server as
is. If so, the Virh;alizgtioﬁ module 137 attaches 3756 the prefix tresulting from the
mapping rule to the request, or a portion thereof, in accordance with the mapping rule.

The virtualization module 137 extracts or derives (as discussed above) 3760 the
area prefix from the cookie and attaches 3770 it to the front of the prefix attax;hed in step
3750. The path of the request is now complete, and the virtualization module 137 routes
3780 the modified 'request to web server 145

‘The virtualization module 137 allows dynamic splicing of content from an
external web server. In some cases, a website ﬁay include content that is not managed
by system 100. In these cases, the virtualization mociule 137 enables a document
request to be dynamically redirected to an external web server if the document does not
réside at the location originally searched (e.g., the viewing area). If a document request
returns with fhe HTTP error code ‘404 File not found’, the x.ri.rtualization module 137
searches the mapping rules, and, if a match is found, it alters‘the request in accordance
with the, maféching rules. The altered request is then sent to the specified external
destination web server.

The virtualization module 137 also provides for dynamic splicing of content from
different branches. In some cases, website content may be segregated into different
branches of development. In these instances, if the virtualization module 137 receives

an error code "404 File not found,” the virtualization module 137 replaces the existing

51

10

15

20

WO 2004/029792 PCT/US2003/030446

document root prefix with the document root prefix of another branch. The altered
request is then sent to the ;/Veb sever 145.

Figure 38 illustrates the operation of the virtualization module for performing
dynamic site-based or branch-based splicing. The virtualization module 137 receives
the results of an HTTP fequest from the web server 145. The virtualization module
determines from the résults whether the requested document was found. If so, the
virtualiza_tic.)n module forwards 3825 the requested document to the web browser that
originally sent the request to the virtualization module 137. If .the document is not
found, the virtualization module searches 3830 the mapping rules to determine 3840
whether the HTTP request or a portion thereof, sent to the web server matches the left

hand side of any of the rules. If 50, the request 3850 is altered in accordance with the.

- mapping rules and forwarded 3860 to the appropriate web server.

As will be understood by those familiar with the art, the invention may be
embodied in other specific forms without departing from the spirit or essential
characteristics théreof. Website development is just one of many practical applications
for the inventions disclosed herein. Other appli;:aticns for the inventions disclosed
herein include developing source code, media files (-8, for CD-ROM multimedia), a
media engine, and etc. Accordingly, the disclosure of the present invention is intended
to be illustrative, but not limiting, of the scbpe of the invention, which is set fdrth in the

following claims.

52

WO 2004/029792 PCT/US2003/030446

CLAIMS

1. A method of developing and maintaining website content for use in a system
having at least one work area for developing and modifying website content, a
staging area for integrating content from a work area and a webserver:
comprising:

receiving a request from a web browser;

extracting a URL from the request;

extracting a cookie from the request;

sélecting a prefix according to a predetermined set of mapping rules;

re-mapping the URL by associating the selected prefix with at least a
Pportion of the original request according to the mapping rules, wherein the
resulting URL corresponds to a user’s work area; and

routing the request to the web server.

2. A method according to Claim 1, further comprising determining whether the
request is a fully qualified request;

searching the mapping rules to find a prefix that maiches the fully qualified
request;

if there is a match with a prefix in the mapping rules,

attaching a prefix to at least a portion of the request according to
the mapping rule;

extracting an area prefix from the cookie;

WO 2004/029792 PCT/US2003/030446

attaching the area prefix from the cookie to the prefix matched with
the mapping rules wherein the resulting URL corresponds to a user's work area;

routing the request to the webserver: and

if there is not a match,

routing the request to the webserver.

PCT/US2003/030446

WO 2004/029792

1/30

aupIju
1 gow I

jousz)ur

G/l

VEYVELS
U0 2npPoJy
2)SqapM

oc1-]

0/13

SIOM)ON
G9l

¢~

uil

1 _
| [999404d dLIH |

18A48S Juawudojonag

obo.o)g
buryoog

I
I
I
_
*

8/NPpow _
uonozionydy, |

a[nNpoyy
8IDM)JOS
Jjuswdolera(g

|
_
|
211SqaM !

10553820

or1-

JAISS Gap

cp1d

YIOM)BN

0z

b OIH

UOI)D]S IO
Juswdojana g

R

UOI]D])SYIOH
jusLudojsnag

0117

UOI)D)SHIOM
juswdoanag

011

PCT/US2003/030446

WO 2004/029792

2/30

00¢

uonIp3

0ce

g Old

Doy
buibo}s SDSIDXION

0z¢

HONV&E

01&

¢ 9l

'UoIIpe UD o)ul
SJUSJUOD YSIIqnf

05z ‘
OF NH S
é9/qp1da2oD Ssjusjuoy
ON
»
'SD8ID YIOM

,5401NqIIU0D 4d3Yy)0 JO
Sjusjuoa/m pajpibajur si
D3ID XIOM JO S)Ud]UO?)

t

'0a.p buibp)s 0}
p31Wqns 8ip DoID
}IOM JO SQudU0H

4

'DIID YIOM D Ul S3)l
$8A0WaI 10,/pUD ‘SppD

‘syps usdojens(g

WO 2004/029792 PCT/US2003/030446

3/30

Main Branch

AN /7
SN —)
N /" Initial Edition
Workarea Staging Edition
Area -
400

_________________ A Edition 1

Workarea Staging Edition
Area '

510

Fia. 6

PCT/US2003/030446

WO 2004/029792

4/30

9 9Old

uonipy Doy
MEN buibo)s

g uonip3

suonip4
SDBIDIOH SNONS1

[ouonip4 uonipq [oniuy

ovy

youpag Uy

PCT/US2003/030446

WO 2004/029792

5/30

QMN.\

uonip3 Doy
MON buboys ____spaioyioy

g // N .
| uonip3 _\ uonip3 [eriuy 2L

It

/

by

b

L

]

|

P /

s ‘
09/ { {

\ 08¢ \\ Gzl

Y

uonip3 Doy SD3IDXIOH uonIpg
mMaN SNOINS o

/

Z uonip3 [uonipy uonip3 [oniuf

£ uonip3

——— e —

OlL

=

WO 2004/029792 PCT/US2003/030446

6/30

e N name: WA7

e AN generation ID: (1,0)
// . \\ root dfr: dl

/ directory 1 \ object ID: 123
/ / \ - branch: p

[di 7 \
{ directory 2 directory 3 } Work Area Object
‘\ directory 4 directory 5 ,’

\ / F/G 9

\ /
\ /
N // :
AN 7 Work Area

TS ——— —

Deriving a Generation ID from a parent Generation ID.

Obtain a unique, randomly or
sequentially generated number

Y 1010
Retrieve the set of unique
numbers associated with
the parent generation ID

Y 1020
Create a set of numbers
that is the union of the
number obtained in step
1000 and the set of
numbers obtained in step 1010

Ve 1000

End
FIG. 10

WO 2004/029792

PCT/US2003/030446

7/30

Edition "INITIAL" Work area 2

derived from

m

Edition 1

@ derived fro

»
-

derived from

Edition 2| (4

FIG. 11

G2

Work area 1

Creating a Work Area from Edition e.

Determine the generation
ID and the root directory
of edition e.

/"7470

Y

Obtain a new generation
ID derived from the
generation ID of edition e.

/"7420

Y

Obtain a new object ID.

/-7425

t

Create an object having a
name field, object ID field,
a root directory field, a
generation ID field, and a
branch field.

f7430

'

Fill in name of work area in

name field; fill in root directory

of edition e in root directory
fietd, fill in object ID (from
step 1425) in object ID field,
fill in derived generation ID in
generation ID field, fill in
branch in branch field.

/-7440

End

FiG. 14

PCT/US2003/030446

WO 2004/029792

8/30

(4 Ren

TN

|
~ :m: h

cl OId

0ccl

oy

s 11240 4/ -,
0tc! /
TN
— |
S Ly z4 29
4 09
ovzi—1 @.Smga.x
oscl gccl
Aq/ 8o I YEDED)

002 A403090.417

NQ “° Q:
oYy L
jo9fqo Auojsiy | ewpu
£9 P
0, o 081
o4 L
103lqo Auo)siy awpu
9 L
F———— Qﬁ\ B P~\= Q%NN
josfqo Auo)siy SLID
09
/KQ%N /

WO 2004/029792

To/From
main
memory

-

PCT/US2003/030446
9/30
1312 1314 1316 1342
Work Staging Edition Area
area area area Deletion
creation creation creation module
module module module
f7346
Branch
creation
module
WORKFLOW SUBSYSTEM
L7500
1336 1338 1340 1318
Submit Conflict Compare -Add item module
module checking module. 1320
module
Reference count module
1328 1344 1922
Remove item Tagging Add direct reference
module module module
1334 1348 1524
Generate directory|| Generation ID Remove direct reference
path module module module
r7 326

Read directory
memory module

VERSIONING SUBSYSTEM

L1305

-<

To/From
disk

-

OBJECT SUBSYSTEM 1310

. WEBSITE DEVELOPMENT SOFTWARE MODULE

FiGa. 18

L755

WO 2004/029792

PCT/US2003/030446

10/30

Creating a Staging Area from Edition e.

Obtain the generation
ID of edition e.

//‘7570

Y

Obtain a new generation
ID that is derived from
the generation ID of edition e.

| 1520

Y

Obtain a new object ID.

s 1525

1

Create an object having a name field,
an object ID field, a root directory
field, a generation ID field, and
a branch field.

f7530

'

Fill in the name of the staging area in
the name field; fill in root directory
of edition e in root directory
field; fill in object ID (from
step 1525) in object ID field:
fill in derived generation ID in
generation ID field: fill in
branch in branch field.

/—7540

End

FIG. 15

WO 2004/029792 PCT/US2003/030446

11/30

Creating an Edition from the Contents of Staging Area S

Obtain the generation ID & 1610
root directory of staging area s.
: 1615
Obtain a unique object ID for the edition. |/~
Y

Create object having a name field, a |/~ 1620
root directory field, a generation
ID field, an object ID field, and

a branch field.

'

Fill in the name field with the name |/~ 1030
of the edition; Fill in the root directory
field with the root directory of
staging area s; Fill in the generation

ID field with the generation ID of
staging area s; Fill in the object ID
(from step 1615) in the object ID field:
Fill in branch identification in branch field.

®

FIG. 16A

%

Obtaining a new generation ID. 1640

1

Assigning the new generation ID 1650
to staging area s.

nd
FIG. 168

PCT/US2003/030446

WO 2004/029792

12/30

024!

g1 Old

puj

9
uonipe Jjo (gj uonpisusb
QY] Wod] PoAIISp
gJ uonoisusb b pup
o uonpe sp A1ojosuip
Joo4 swps ay) bumpy
Da4p buibpjs b 9)pal)

4

'@ uonips jo
gl uonoisusb ay) woly
paALIep (] uoljpiousb D
pup o uonips So Au0)osuip
joos swips say) bunpy
YoDd ‘SDSID XIOM
oJ0Ul 1O 0J3Z 3)D3I)

0ss1-

ﬁ VL B+

G/l dejs u
pauIp}qo (] uonpisush
oY} yim puo q uonips
SD A10)234jp 1004 SUIDS

oy} yum (8 uonIps,) youniq
104 UORIPS (DRI 91DILY)

{

'q uonips jo
(] ucipisusb wol peAiisp
gl vonoisusb o umw)qo

i

(,9 uonyps,) uonips osoq
Yim palpioosSso (Jf
uonoisusb uip)lqE

Jyoupaq
umw o

younig o buijpsiy

PCT/US2003/030446

WO 2004/029792

O n

13/30

Vel ©ild

68l

6C8l

&

;b 2bpd uonpisusb ur)sixs u wa) $30(]

!

l'su .@

‘u wayr J0) b sbod
uonpisusb Jo S)us)uod 8Yy) UDIS

§

uorjpissusb juaipd psjojed Ajesoro jsow
sy} jo abod uonpisusb sy) buAdos Aq

b uonpisusb 4oj sbod uonpisusb 9)pai)

A

0zg1

ON

¢b uonoususb uoj sbod
uonpsausb b aApy p Au0}o84ip S90(]

cig1”

I

p Ai0)084p pDSY

0181~

1

6 1 jipo> ‘0 DaID jo uonDIBUSD By} Ayuspr

S3A

G081

LD, Dao ur p Ai0)osiip D

o) J, Slusjuod yyum u wajl up Buppy

e 4

941 OId

pu3

uonipa [pniul ayy Jo Ai0129.4ip joos syj
bummpy pup uonpisusb joos ay)

wou peAlsp (] uonpiausb jusiapjip
D bumpy yobs ‘paup buibp)s b

puo paip bupiom siow 1o suo 910319

Grs1)

t

0b gy uonoisusb joos pup gp Ai0)2541p
bumpy uvonipe [oriul up 2191

0s21”

i

06 uonpasusb ur op
A10)004ip oY) ylm po)DIOSSD s1 joslqo
- A10)s1y ay) oy buypoipuy 198/qo
Aiojs1y syy oy (op'ob) Anus uo ppy

G9/1-)

1

A1010921p 3y o)
0Y) [Ip> 03/qo Au0)siy D 9)pauy

09717

1

oP 3! [Ip2 Ai0josup Ajduws up 8)psu)

Gos1

1

06 1 |po> ‘gr uonpisusb LSS D uI}qp

06/1

PCT/US2003/030446

WO 2004/029792

14/30

o081 Ol

puz

‘uonpiousb yo)ow
}seq oyy ur Yy, JO S)USJUOD By} 0}
jurod 03 J jo pay snoinsid ay) }9S

G9g1" 5
6 uonpiousb ur u 3jj] 0) POPPD SIoM
4 Sjusjuoo a8y} oy bunpaipur 1os/qo
Aiopsiy syy o) (3'6) Anyus up ppy
Q@%T\ ON 3
;6 uonpisusb ur psis)p u B SO
@Aﬂwﬂ é 1} .h* 1o U 3y SOM
G681

'POIB}D SDM U)i}

Yorym ur uonjoseusb Jusoss jsow ay) Joj |
U aflj ayj Y)M paj)DIo20SSD

109/qo Auojsiy ayy jo sjusjuod oy) upsg

0581

Gz a8t ol

b uonpiausb
ur u jo sjus)uoo snomeid ayy o) juod
0} 4 wejl jo pey snomeid, sy 195

c/81

4

6 uonoieusb ur u wey 0) peppo suom
Sjusjuod oy} Josjes 0) b uonpisush yim
Pa}DI20SSD Anpus oafqo Aioysiy ay) uoyy

0s81-

() 88t DId

'y 1oafqo Aiojsty yym
pa}pIo0sSsp sI u wa)l Joyy bunpoipur
6 ebod uonpisusb o] (y‘u) Anus uo ppy

Grel

:

b uonpisusb ur pappp sism J
Sjusjuoo Joyy bunooipur (64) Anyue

bumoy y jo8/qo Ai03s1y mou s1ps.sy

0rg1

WO 2004/029792 PCT/US2003/030446

15/30

Adding Direct Reference of d to ¢ in area a.

(Start)

Y f7970
Obtain generation ID of area a, call it g.
| 1920
Is (9,d) in the reference list of c.
NO
Y IIQJO
Add (g,d) to the reference list of c.
| [—‘7940
Is (g9,d) in the anti-reference list of c? | NO o
YES
[1950
Remove (g,d) from the anti—reference list of c.
y 1960
For each derived child generation, gi, of -
g, if (gi,d) is not in the anti-reference
list of ¢, then add (gid) to the anti-
reference list.

End

FlG. 19

PCT/US2003/030446

WO 2004/029792

16/30

Vic Old

(— ‘swpu waji) o) Anus
JDY}]88 ‘swDu Wa)l dWDS dY)
yum Anue uo supjuoo Aposspp d JJ
'd o) (- ‘swou ws)i) Aus up ppo ‘sslyus
8say] jo yooa Joq ‘b uonpisusb yym
1Sl 8oUBIBjeI—[UD Y} Ul SBLJUS D pUI{

or17”

$

(+ ‘swpu wsa)) o) Anus oy} }8s
(— ‘swpu woa); “69) swpu wWa)] SUDS dy]
yym Anus up suipjuod Aposio d sy JT
'd sy 0] (+‘swpu wa)) Anyus uo ppo
‘Sgriyue 9sey) Jo yooe Joy b6 uonossushb yum
1SI] 8ousI3jed By} Ul SSLJUS ||ID pUl{

> pPUT)=
w : ﬂQmQN

stz I
b)1 o ‘991) Abojosush sy
A JO 8pou Joos 9y} jo I uonpisusb ay) 139
(YAYA ¥
A 4 WOJl)SI] 82U819)9I—UD Y] 199
ocic ¥
4 WO 1Sl 90us18)a1 B} 199
0112

ON

Jsi] eousssye—nup oy} o) (p'b) ppy
ON |
¢I8I| doussgyei~nuo ayy ur (pb) sy ST
) i 7 /rQMQN
1s1) 8ousugyes ay) o) (p'ib) ppo uay)
sy 90UDIRJ2I=1UD BY) Ul JOU S| (p*'6)
41 6 jo 6 uonpisusb ppyo yops io
F < Nopoz
S Jo)si| @oudusjes oy} woly (pb) srowwsy
N
<l 0£0c
¢S JO s eoudisjes ay) ur (p'6) sy
I -0c0C
b 1 o ‘v paup jo gr uonossush suiLIB)I(
Lotoz

D Daly Ul 2 O} P JO 90UsIgY3Y 1284i(] AOWSY

WO 2004/029792 PCT/US2003/030446
17/30
2150 i
For each entry in list p that has an
entry with a "+", set n=n+1
72170
2160 L ;
. . NO End is the # of
? >
Does generation g have any children? references to ftem f
YES
2180+ Y
For each child generation g;, set g to
the generation ID of the child generation

22307

\ 4

Go to step 2130

FIG. 21B

Reading directory d in area a

(Start)

\

A

£2210

Obtain the generation ID
of area a, call it g.

)

y

2220

YES|Is there a generation page for [NO

generation g in directory d?

\

Return list of the entries

on generation page g

—~{ £nd)=

! f2240

Return

on the generation page of
the closest related parent

list of the entries

generation

C g)

FIG. 22

WO 2004/029792 PCT/US2003/030446

18/30

Remove item "n” from directory "d” in area "a”

n.-”n

having generation ID "g”

(Start)

! 2310
Read directory
| 2520 2330
Is there generation Create generation
page for generation |V 0, page for generation
g In directory d? g from best match
YES generation
~ |
23307 '
Is there an entry Error. Item n does
corresponding to = not exist in director
item n in generation d in area a.
page g°* L2340
YES
Y 2350

Obtain history object
corresponding to item n.

Y 2355
Does history object

No| Indicate that item n YES
e was modified in
generation g (ie, is
there en entry with "g”
as the generation?)

FIG. 23A

WO 2004/029792

2360] @

19/30

PCT/US2003/030446

(2370

Alter history object to
indicate that n was
removed in generation g

Add an entry (g,z,) to
the history object, where
"z" represents that item n

(change entry w/"q", to (g,z)). was removed from directory d

l

! 2380

Change

zZ object so that it points
to the previous content
of n i generation g

‘previous” field of

FiG. 23B

Y

End

Editing a file 'n” in work area a (generation g)

in

directory d

object

Receive write command 2405
for file 'n”
Y
7
Obtain history object 24710
for file n
1 2420

Does the history NO
have an entry -’@
with

generation g?

IS

Write changes to the
file associated with
generation g

2430

FIG. 24A

End

WO 2004/029792

PCT/US2003/030446

20/30

; 2440

Find entry with the best
match generation

Y

Copy file, call it f1, associatedl 2450

with entry in step 2440.
Call new file 2

Y 2460
Write changes to f2
Y 2470

Add entry (g,f2) to history
object. This indicates that
in generation g the contents
of file n are those of file f2.

FIG. 24B £nd

25277

Report that item
nZ2 already exists
in director d2

Renaming item N1 in Directory df in area a

to name n2 in directory d2 in area a

NO

End

FiG.

2570\
Obtain the history object, call it
hi, of file ni1 in directory di
2520, Y
Does an item n2 exist in directory d2
YES
\4
1S Any overwrite protection?
2523 +NO
A Remove item n2 from directory d2
2530 7
/1 Add item n2 to directory d2 and
2540

associate history object h! with item
nZ2 in directory d2

A

25

End

WO 2004/029792 PCT/US2003/030446

21/30
Generating a full name directory path for
directory d in area a

2610

Read directory d
in area a

Y

Obtain the directory
corresponding to the

name "7 This is the
parent directory to

directory d. Call this

parent directory Fy

'

Read the directory Ry

in area a. Find the

entry in dir Fy that
contains dir d.

!

d is @ name in the
directory Path

Y
Set d to Pd

FIG. 264 (4)
2660 @

Is dir d the root directory? NO e
'YES
Names found are names in the

directory path. Names found in
order of last to first.

2620

2630

2640

2650

2670,

FiG. 268

WO 2004/029792 PCT/US2003/030446

22/30

Generating a base name for a history object h in
directory d in area a

2710

Read directory

v
, 2720
Identify the entry (nh)]

having history object h.
The base name of the
history object is "n”.

FiG 27 End

Submitting an item 'n” w/history object "h”
and contents "f" directory "d” in staging Area "a”

L.

having generation ID "g'.

28057

Obtain the full path name of
h by computing the full path
name of d and the base name
of h in area a.

2810~ Y
Is there a corresponding full |{NO ()
path name in the staging area?

2815 "YES
N Is there a conflict between h

and the corresponding history |NO
object, call it hg

V)’E S
2820 In YES
Overwrite mode?
INO
2825+ A

Submit fails —(End)
FiG. 28A

WO 2004/029792 PCT/US2003/030446

R3/30

@ r2850

Does directory path computed in step 2805 exist
in the staging area?

Y 2835
Create the directory path in the staging area
; 2840
Mark file f as frozen
Y 2845

Call add item module to add item n with contents
f and history object h to staging area a

! 2850
Add (g,f) entry to
‘ .
Is f a directory? NO, End
i 2855
FIG. 28B

@ g‘2850

For each child d rectory d;,
add an entry (g,d;) to the
history object associated with
d; in the work area

End

FiG. 28C

PCT/US2003/030446

WO 2004/029792

24/30

vog Old

<4
GE0L~
SJUJUOD JUBISYIIP
L0808 ‘wDU BWDS Ji0dsy
Sjusjuo2
 own | 5206~ on |
swos | SOWDS Y] SWa) OM]
jio0dsy |7 Sk 8y} JO Sjudjuod ayj] a1y
A
oot 0208~ SU
ou G8oUsL8}21p ur swpu sWDS B}
L] 10day e 5 yum wis)l up 319y} Sy
crog i
croes] 19040ip ur wayr sy 10 yoo7
}
9oUBIBJS1p Yy
0105/ 2°U84894p jo sjusjuoo ppay

SUBII91p pap ur bUQ@k@k@kﬁ \ﬂko_?ubk.\b

*

190.0) ur 19b40)p JO Sjusjuoo ppay

G005

6c Did

191 U0
101 toobvmw./ ON ﬁ
.wz ~s3r 196101 10 sojsaoup up 80USISJ91) of
A
ON
191§U0D (éouwps oy 9UBIBJ91; 2 J9b.D),
.02 ~T|e/0 91) giusjuoo swps sy o3 juiod

N%kawb QM:@.N\L

8ouIBjely pup 19001 o

4

ON

0] pajjiwqns
oG jJouupd
j9buo}; S3A

196.0)p upy; pap JusisyJip
D Aq paumo 1900}y so; yoo; st

PIU0Y 0262

S3A

69 Younuq uj paxyooy 196401 g

0162

€5

'q youpig ur 19001p D3ty Ul JoIjuoy
d0j BIUBIBISL) o)1y 1sUIDBD 196IDY; oy bunyoayn

1supbp 1960)p pap w 19010} p Au0)00.41p buripdwion

PCT/US2003/030446

WO 2004/029792

c& Old

R5/30

q08& Old

SoUs.13jo. D ur

S
pud ON D840 Ul buiuipwisl sapou ayjo Auy
08z¢- ;
9bp10)s 092t~ ON
wody o5 spou M| . spou
pajoioossp 95l go [T 4048z BPOUs oy jo yunos sousisjes sy sy
[pasAyd e8)ar2q)
07263 SINPOW 82UBI9J8. JOS4P SAOUISL
oy} bulpo Aq SPOUy sy woy spou
Jusipd Yy} 0] 82U8I8J8 JI9IID BAOLISY
[AY ¥
enpow wa)l arowss ay) buiypo
Aq sjusipd sy woy BPOUY o) snowsy
orzeS ¥
8POUS ay) 1 Do ‘spou ssapjiyo Aup puiy
0£zsS T
D DaID 10j 394) AI0JO8Uip 8A81I)9Y
oice

D paJy up bunsjeg

ococ-"| wejr jxau o9
2908 \ S
puy ON goouaisjalp
> W) J3yJOUD 9s9Y) ST
090£- S|
Yo)0W—UoU %m?&b ur Wi
SD - UD SD SLIDU 3WDS 3y
Jioday ON SADY Wa) 8y} S80(]
590¢ !
Gcoe doUBIB)SIp
| weyr psay ayy 199
0z0s deys i
oy 0b 3 way| $19b0Ip yy
Ixsu Mnuepy | S7A| wey ssyjoun susyy sp
6o 050¢3

WO 2004/029792

26/30

PCT/US2003/030446

Comparing Frargetn directory dtarget {0 freference
in directory dreference

(Start)

Y 3140
. _ . 3110
Look up file, call it fp, that contains \\
the contents of F target N d target 3120 Report that
T j . ftargetond
Look up file, call it fr, that contains freference
the contents of froference M reference are identical
' 3130 End
Is f th 7 S
¢t the same as fr! (3150
WNO 3145 o FReport .
Is F an ancestor of F ? . target 1S d
reference target modification
‘,NO 3155 of freference
Is F target an ancestor of Freference? Yes
End
NO
\‘3750

FlG. 31A

@ : r3765

Is there some file that is an ancestor | YES _

Report that

| freference is
a modification

of Ftarget

(3170

of both Fz‘argef and feference’
NO r5775

Y

Report Frorget is unrelated to fgference

-

Report Freference
and Figrget

have a common
ancestor.

Y

> £nd

FiG. 31B

n

WO 2004/029792 PCT/US2003/030446
27/30

Creating a lock on item f in Directory d
in Area a in Branch b

3310

Obtain full path name of item f in
directory d in area a

Y 3320

Does any other lock include YES

a full path name that matches
the name computed in step 33107

MO 3330

Create a lock that includes the full
path name created in step 3310

Y 3340
Mark the lock with area a as @
the owner of the lock. 73250

Report lock creation
End failed because of

conflicting lock
FIG. 33A

End

FIG. 33B

Determining whether an item f in
Directory d in Area a is locked

: : 3410
Obtain the full name of item
fin directory d in area a
7 (3430
Does branch b have a lock NO Report
having the full path name >item f not
computed in step 3410 locked
YES Y3420
Report that item f is locked 9440

FiG. 34

PCT/US2003/030446

WO 2004/029792

28/30

g Old

JONISS

a/nNpow
uonpzipndip

dllH osuodsay djfJ Iv

[
-

diLH

- wmm:um&. p3ZIjpn} i/

“senbay i H

L8

19SMO.g

WO 2004/029792

R9/30

r.36 10

Y

PCT/US2003/030446

Receive HTTP request from web

browser
! 3620
Extract URL from request
Y 3630
Extract the cookie sent with the
request
. NO
Is the request an absolute request? = Step 3650
¥ 3640
Search the mapping rules 3650
corresponding to the branch along
which the view area resides.
v 3660
Select the appropriate prefix as
dictated by the mapping rules.
v 3670

Attach the selected prefix to the
original request, or portion thereof
in accordance with the mapping
rules

®
&

FIG. 36A

Extract or derive prefix from cookie

3680

Y

Route request to web server

3690

v
End

FiG. 368

WO 2004/029792

30/30

PCT/US2003/030446

‘ 3710 .
Receive HTTP request d
P S 3720
Extract URL and cookie from request
— ¥ —— 13730
Search thé mapping rules corresponding
to fully qualified request
v
N
Match found? 0
YES \-3740
Y

Attach prefix resulting from mapping | ~3750
rule to the request or portion thereof.

—t — 3760
Extract or derive area prefix from cookie
.* 3770
Attach to prefix from step 3750 ‘
: Y 3780
Route request to web server -
End
FiG. 37
: 3810
Receive results of an HTIP request from web server|” =
+ .
3825
Document found? s > Forward document to d
: web server
NO Uszg99
Search mapping rules to find match |/3830
for HTTP request.
I 3835
Match found? NO Forward error message -
VES 3840 to web Browser
\ 4

Alter request in accordance with mapping rules | J850

!

Forward altered request to appropriate web server | J860

FiG. 38

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US03/30446

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) GO6F 7/00
US CL 707/001,000

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S. : 707/001,000

Minimum documentation searched (classification system followed by classification symbols)

EAST;USPAT;JPO;DERWENT;IBM-TDB

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

PREFIX,COOKIE,SAME MAP&4,URL LAPD

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y US 6,209,036 B1 (ALDRED ET AL) 27 MARCH 20001 - Col. 11, lines 6-11; 22-24, 64; 1
Col. 12 line 5; Col. 9. lines 22; Col. 10 line 25

Y US 6,189,000 BI (GWERTZMAN ET AL) 13 FEBRUARY 20001 - Col. 5, lines 9-12 1

A | us 5,870,552 (DOZIER ET AL) 09 FEBRUARY 1999 - SEE ENTIRE DOCUMENT 1AND2

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered to be
of particular relevance

“E” earlier application or patent published on or after the international filing date

“L"™ document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as
specified) '

“O" document referring to an oral disclosure, use, exhibition or other means

“P” document published prior to the international filing date but later than the
priority date claimed

“T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

& document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

19 December 2003 (19.12.2003)

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US
Commissioner for Patents
P.O. Box 1450
Alexandria, Virginia 22313-1450

Facsimile No. (703) 305-3230

Date o%nglin% c_f_t.@ iﬁ@@t&nﬂl search report
Authorized officer () ‘k& ('
VINCENT TRANS ' COFBA T cONOT

Telephone No. 703-305-3900

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

