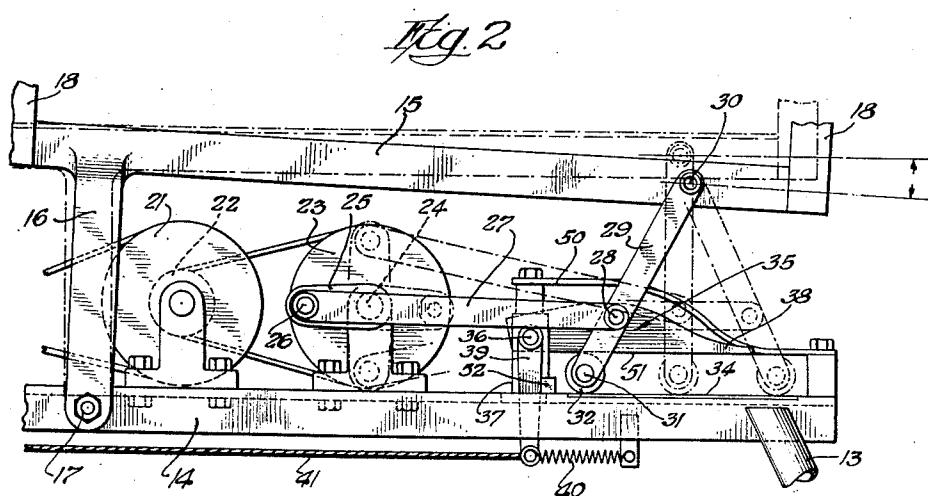
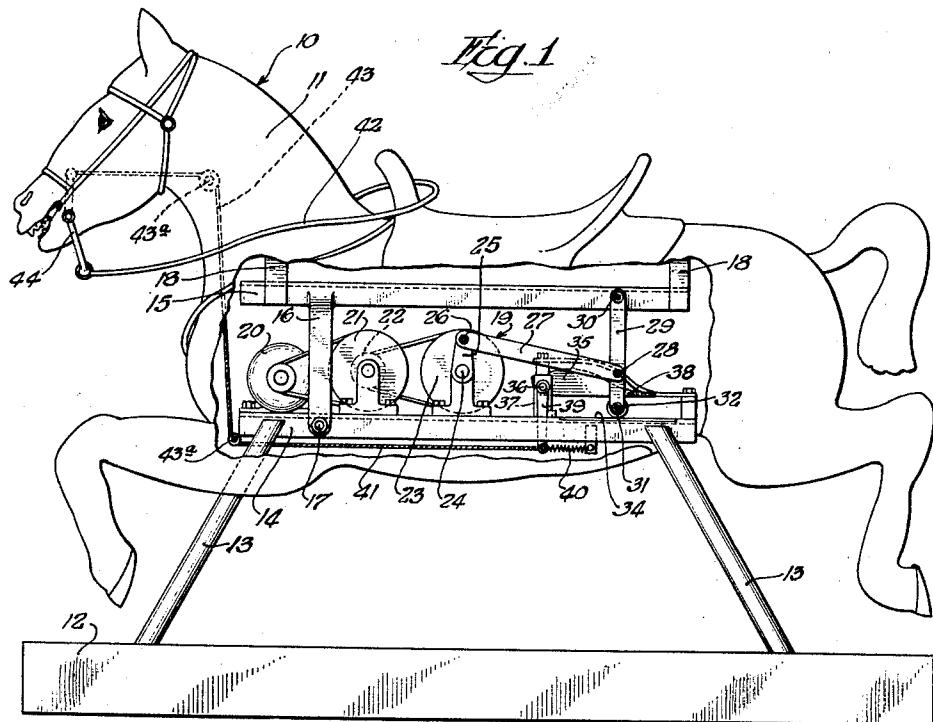


Dec. 1, 1959



C. N. DELANO

2,915,311

OPERATING MECHANISM FOR AMUSEMENT DEVICES

Filed Jan. 23, 1956

2 Sheets-Sheet 1

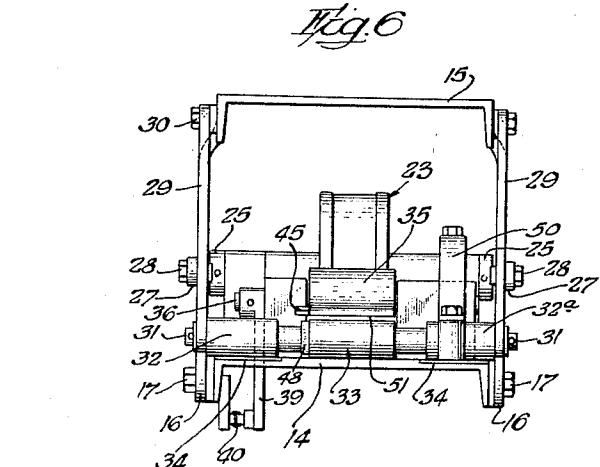
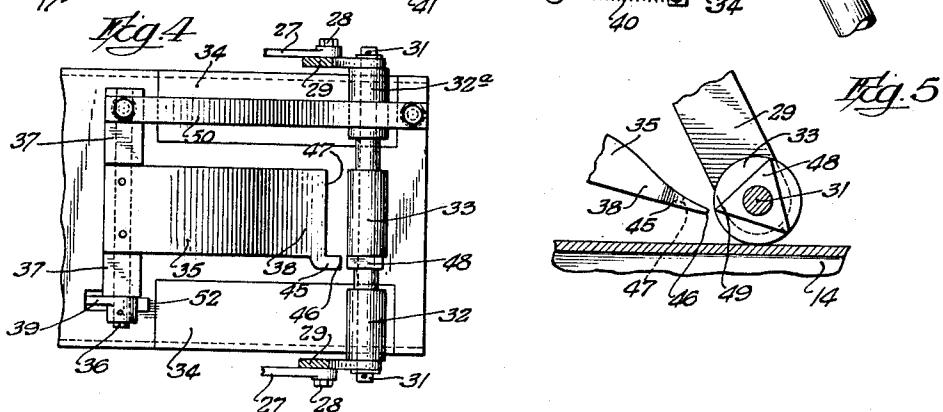
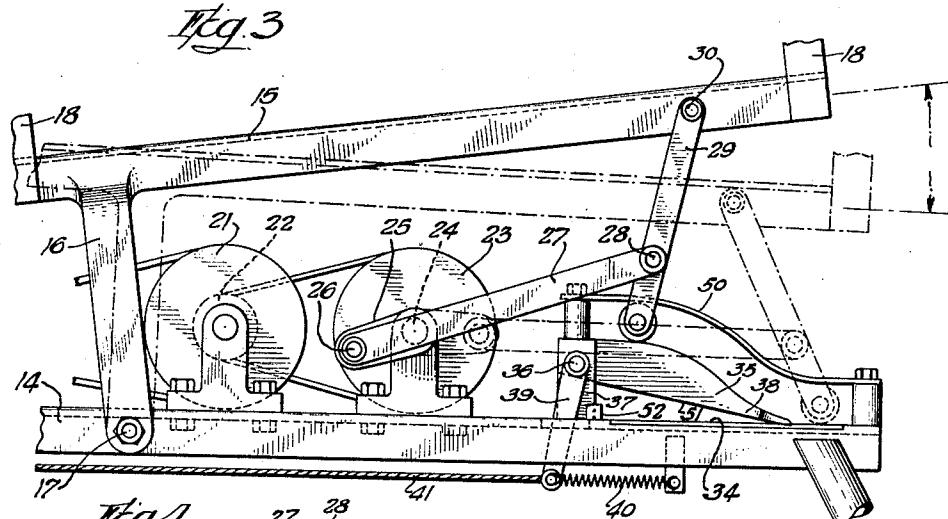
INVENTOR.

INVENTOR.
CLYDE N. DELANO

BY

Fulwider, Mattingly & Huntley
ATTORNEYS.

Dec. 1, 1959




C. N. DELANO

2,915,311

OPERATING MECHANISM FOR AMUSEMENT DEVICES

Filed Jan. 23, 1956

2 Sheets-Sheet 2

INVENTOR.
CLYDE N. DELANO
BY
Fulwider, Mattingly & Huntley
ATTORNEYS.

ing the horse body 11 with respect to its supporting base 12.

Since the maximum upward movement of the connections 30 is reached when the outer rollers 32 are at the center point of their back and forth travel, and maximum downward movement takes place at the forward and rearward end of this travel, the horse body 11 makes two rocking cycles per revolution of the crank arm 25. This movement simulates a trotting gait.

If the reins 42 are pulled back, the distal end 38 of the ramp 35 is lowered as previously described (see Figure 3). This positions the ramp for engagement by the center roller 33 upon its next forward movement. When the actuating arms 29 are drawn forward beginning a new cycle of operation, the center roller 33 rolls up the ramp 35, lifting the outer rollers 32 off of the track surfaces 34. The ramp 35 is constructed to give the rearward pivotal connections 30 greater upward movement than effected by the trotting action, and to give the maximum upward movement at the forwardmost point of travel of the center roller. Thus, the movement of the center roller 33 on the ramp 35 gives a greater magnitude to the rocking action of the body 11 and reduces its frequency one-half; that is, one rocking cycle per revolution of the crank arm 25. By this movement, the horse simulates a gallop.

When the reins are released, the ramp 35 is returned to its normal raised position out of engagement with the center roller 33 by the tension of spring 40 and the mechanism again causes the horse to simulate a trot.

As will be apparent from the above description of my mechanism, the contours of the ramp 35 and the track surfaces 34 may be modified to give a great variety of different actions to the horse. In this particular embodiment, the ramp 35 is inclined forwardly upward and reaches its highest point a short distance before the center roller 33 reaches its forwardmost point of travel. This gives a dwell effect to the gallop action at its point of maximum rise. Even small variations of this contour will bring about significant differences in the resulting action. It has been found however, that this particular contour gives a good simulation of a horse's gallop.

To prevent the ramp 35 from jamming on center with the center roller 33, should the distal end 38 of the ramp be only partially lowered at the instant the center roller 33 engages it, a guide and cam arrangement is provided (see Figures 4 and 5). A blade-like guide 45 is attached to one side of the ramp at its distal end 38 with a sharp edge 46 of the guide extending beyond the leading edge 47 of the ramp. A triangular wedge-shaped cam 48 is attached to the axle 31 adjacent the center roller 33 with a sharp edge 49 directed toward the guide. The axle 31 does not rotate so that the cam 48 and its sharp edge 49 are held in the same position regardless of the movement of the actuating arms 29. Since the guide 45 and the cam 48 present sharp edges to each other, it is impossible for them to jam when they meet. If the ramp is in a partially lowered position when the center roller 33 starts its forward movement, the guide 45 engages the cam 48 before the roller strikes the leading edge 47 of the ramp, and the ramp's distal end 38 is directed either upward or downward depending on which of the two cam surfaces joined at edge 49 is contacted by the guide edge 46. Since the ramp 35 follows the guide 45, it is positively positioned either upward or downward before the center roller 33 engages its leading edge 47. If the ramp is down, the horse gallops, if up, he trots.

Means are also provided to insure that the rollers do not raise off of the track surfaces 34 or the ramp 35. To keep the center roller 33 from raising off of the ramp during the galloping movement, a limiter 50 is provided over one outer roller 32a (see Figures 3 and 4). This limiter 50 is positioned to engage the outer roller 32a

if the center roller 33 is raised from the ramp, thus restricting the upward movement of the rollers.

During the trotting movement, the under surface 51 of the ramp 35 is positioned just above the center roller 33 when the ramp is in its raised position, by a stop 52 which engages the lever arm 39. Any upward movement of the outer rollers 32 from the track surfaces 34 is therefore restricted by the center roller's engagement of this under surface 51.

Although the usual purpose of the mechanical horse such as this is for use as an amusement device, it will be readily apparent from the above description that this horse can also be used for exercising or for learning to ride horseback. The realistic trotting and galloping actions produced by my operating mechanism provide the same muscular workout as an actual horseback ride and serve as an excellent means for instructing someone to ride these gaits without the hazards presented by a live horse.

While the particular embodiment of my invention herein shown and described is fully capable of attaining the objects and providing the advantages hereinbefore stated, it is to be understood that it is merely illustrative of a presently preferred form of my invention and that I do not mean to limit myself to the construction and design herein shown, other than as defined in the appended claims.

I claim:

1. An operating mechanism for a mechanical horse comprising: a body member pivotally mounted on a base member; an actuating arm attached to said body member for imparting pivotal movement thereto with respect to said base member, said actuating arm having a track roller and a ramp roller rotatably connected to a free end thereof; driving means for moving said free end and rollers to and fro along a first path when unconstrained; a track mounted on one of said members, and defining a second path different from said first path, said track being disposed to engage said track roller and constrain said free end to said second path whereby to translate said to and fro action into a first oscillating motion of said actuating arm to move said body pivotally about said base; a ramp positioned and mounted on one of said members for movement into and out of engagement with said ramp roller; reins mounted on said body for controlling said ramp movement; said ramp, defining a third path different from said first and second paths and when disposed in engagement with said ramp roller constraining said free end to said third path whereby to translate said to and fro action into a second oscillating motion of said actuating arm to move said body pivotally about said base which supplants said first oscillating motion and has a different magnitude and frequency than said first oscillating motion; and limiting means for preventing disengagement of said rollers from said track and ramp.

2. An operating mechanism for a mechanical horse comprising: a body pivotally mounted on a base; reins mounted on said body; a pivotally mounted actuating arm having a track roller and a ramp roller rotatably connected thereto; means connecting said actuating arm to said body; driving means connected to said actuating arm for imparting a pendulous motion to a free end thereof; a generally horizontal track on said base defining a substantially linear path and disposed to engage said track roller and thereby through said actuating arm translate said pendulous motion of said free end into a first rocking action of said actuating arm to move said body pivotally about said base; an inclined ramp positioned and mounted on said base for movement into and out of engagement with said ramp roller, said movement being controllable by manipulation of said reins and operable during operation of said mechanism; said ramp defining a path so contoured that when engaging said ramp roller said ramp disengages said track roller from said track and translates said pendulous motion into a second rocking

action of said actuating arm to move said body pivotally about said base, which second rocking action supplants said first rocking action and has greater magnitude but less frequency than said first rocking action; and means for positively positioning said ramp into and out of engagement with said ramp roller.

3. An operating mechanism for a mechanical horse comprising: a horse-shaped body pivotally mounted on a supporting base; a pivotally mounted elongated actuator for moving said body with respect to said base, said actuator having a track roller and a ramp roller rotatably connected to a free end thereof; means connecting said actuator to said body; a track disposed for engagement by said track roller; a ramp positioned and mounted for movement into and out of engagement with said ramp roller; reins mounted on said body and linkage connected to said ramp for controlling the movement of said ramp into and out of engagement with said ramp roller; driving means connected to said actuator for imparting a to and fro motion to said free end, said to and fro motion causing said track roller to travel on said track, when said ramp is positioned out of engagement with said ramp roller, thereby imparting to said body, through said actuator and connecting means, a first reciprocating action for moving said body with respect to said base, and when said ramp is positioned in engagement with said ramp roller, said to and fro motion causing said ramp roller to travel on said ramp thereby imparting to said body in like manner, instead of said first action, a second reciprocating action for moving said body with respect to said base, having greater magnitude than said first action, but only half the frequency; limiting means for restricting the movement of said rollers away from said track and ramp; a wedge-shaped cam connected to said free end of said actuator adjacent said ramp roller having a sharp leading edge directed toward said ramp; and a guide mounted on said ramp, having a sharp edge directed toward said cam; said cam and guide being adapted to positively position said ramp into and out of engagement with said ramp roller when said ramp roller initially moves toward engagement with said ramp, thus preventing said ramp from being in a partially engaged position when initially contacted by said ramp roller and thereby jamming the mechanism.

4. An operating mechanism for a mechanical horse comprising: a horse-shaped body pivotally mounted on a supporting base; a frame pivotally supported about a platform on an upright connected forwardly on said platform; means connecting said frame and platform to said base and body in such a manner that said body is rocked about said base when said frame is rocked about said platform; an actuating arm secured, at a proximal end, rearwardly on said frame by a pivotal connection, for rocking said frame about said platform; a track roller rotatably connected at a distal end of said actuating arm; a track surface on said platform positioned for engagement by said track roller; a ramp roller rotatably connected to said distal end of said actuating arm adjacent said track roller; an incline ramp mounted and positioned for movement into and out of engagement with said ramp roller; reins mounted on said body and linkage connected to said ramp for controlling the movement of said ramp into and out of engagement with said ramp roller; driving means connected to a center portion of said actuating arm for imparting a pendulous motion to said actuating arm about said pivotal connection, said pendulous motion causing said track roller to travel back and forth on said track surface, when said ramp is positioned out of engagement with said ramp roller, thereby imparting to said frame, through said actuating arm and pivotal connection, a first reciprocating up and down action for rocking said frame about said platform, and when said ramp is positioned in engagement with said ramp roller, said pendulous motion causing said ramp roller to travel back and forth on said ramp thereby im-

parting to said frame, instead of said first action, a second reciprocating up and down action for rocking said frame about said platform, having greater magnitude than said first action but only half the frequency; said ramp having an under surface adapted to engage said ramp roller, when said ramp is positioned out of engagement with said ramp roller, for restricting the upward movement of said track roller from said track surface; a limiter positioned for engagement with said track roller when said

5 ramp is positioned in engagement with said ramp roller for restricting the upward movement of said ramp roller from said ramp; and means for positively positioning said ramp into and out of engagement with said ramp roller.

5. An operating mechanism for a mechanical horse having a body comprising: a frame secured to the inside of said body; a supporting base having a platform supported thereon and positioned inside of said body; said frame being pivotally supported above said platform on uprights connected forwardly on said platform; an actuating arm having a proximal end secured rearwardly on said frame by a pivotal connection, for rocking said frame about said platform; an outer roller rotatably connected at a distal end of said actuating arm; a track surface on said platform positioned for engagement by said

20 outer roller; a center roller rotatably connected at said distal end of said actuating arm adjacent said outer roller; an inclined ramp mounted and positioned for movement into and out of engagement with said center roller; reins mounted on said body and connected by linkage to said

25 ramp for controlling the movement of said ramp into and out of engagement with said center roller; driving means connected to a center portion of said actuating arm for imparting a pendulous motion to said actuating arm about said pivotal connection, said pendulous

30 motion causing said outer roller to travel back and forth on said track surface, when said ramp is positioned out of engagement with said center roller thereby imparting to said frame through said actuating arm and pivotal connection, a first reciprocating up and down action for rocking said frame about said platform, and, when said ramp is positioned in engagement with said center roller, said pendulous motion causing said center roller to travel back and forth on said ramp thereby imparting to said frame in a like manner, instead

35 of said first action, a second reciprocating up and down action, for rocking said frame about said platform, having greater magnitude than said first action but only half the frequency; said ramp having an under surface adapted to engage said center roller when said ramp is positioned out of engagement with said center roller, for restricting the upward movement of said outer roller from said track surface; a limiter positioned for engagement with said outer roller, when said ramp is positioned in engagement with said center roller, for restricting the

40 upward movement of said center roller from said ramp; a wedge-shaped cam connected at said distal end of said actuating arm adjacent said center roller having a sharp leading edge directed toward said ramp; and a guide mounted on said ramp and extending rearward of the

45 rearmost edge of said ramp, having a sharp edge directed towards said cam; said cam and guide being adapted to positively position said ramp into and out of engagement with said center roller when said center roller initially moves toward engagement with said ramp, thus preventing said ramp from being in a partially engaged position when initially contacted by said center roller, and thereby jamming the mechanism.

50 6. In a mechanical horse, an operating mechanism comprising: a base frame member; a body frame member movably mounted on said frame member; an actuating member movably mounted one of said frame members and disposed to engage the other of said frame members; said actuating member having at least a portion thereof capable of reciprocating movement in a generally horizontal direction along a certain fixed path when

55

60

65

unconstrained; drive means for moving said actuating member as aforesaid; a first surface mounted on one of said members and having a different vertical contour than said fixed path of said actuating member for engaging another of said members when said actuating member is moved as aforesaid and constraining said actuating member to translate said movement into a first up and down movement of said body frame member whereby to move said body frame member with respect to said base frame member; a second surface mounted on one of said members and having a different vertical contour than said fixed path of said actuating member and said contour of said first surface; and reversible control means moving said second surface into engagement with another of said members when said actuating member is moved as aforesaid to supplant said first surface and constrain said actuating member to translate said movement into a second up and down movement of said body frame member whereby to move said body frame member with respect to said base frame member, said second vertical movement having a different magnitude and frequency than said first vertical movement.

7. In an amusement device, an operating mechanism comprising: a first member; a second member movably mounted on said first member; an actuating arm pivotally connected to one of said members and having engaging means thereon; drive means for imparting a pendulous motion to said actuating arm; a first track means in said other member forming a path which departs from the path of said engaging means during normal unconstrained pendulous movement of said actuating arm, said first track means being engageable with said engaging means to constrain the pendulous movement of said actuating arm to conform the path of said engaging means to the path of said track whereby a first oscillating movement in a generally vertical direction is imparted to said actuating arm thereby moving said first member with respect to said second member; a second track means in said other member forming a path different from said first track means and said engaging means path during normal unconstrained movement; and reversible control means for moving said second track into engagement with said engaging means to supplant said first track means and constrain the pendulous movement of said actuating arm to the path of said second track means whereby a second oscillating movement in a generally vertical direction is imparted to said arm thereby moving said first member in a different manner.

8. An operating mechanism for a mechanical horse comprising: a base; a body movably mounted on said base; a pivotally mounted actuator for moving said body with respect to said base, said actuator having a roller rotatably mounted on a free end thereof; means connecting said actuator to said body; a track disposed for engagement by said roller; a ramp positioned and mounted for movement into and out of engagement with said roller; control means mounted on said body and connected to said ramp for moving said ramp as aforesaid; driving means connected to said actuator for imparting a to and fro motion to said free end, said to and fro motion causing said roller to travel on said track when said ramp is positioned out of engagement with said roller, thereby imparting to said actuator a first reciprocating action for moving said body with respect to said base, and when said ramp is positioned in engagement with said roller, said to and fro motion causing said roller to travel on said ramp, thereby imparting to said body in like manner, instead of said first action, a second reciprocating action for moving said body with respect to said base, said second reciprocating action differing from said first reciprocating action in both frequency and magnitude; and limiting means for prevent-

ing disengagement of said roller from said track and ramp.

9. An operating mechanism for a mechanical horse comprising: a base member; a body member pivotally connected to said base member and disposed thereabove; a pivotally mounted actuator disposed between said members and engaged therewith for pivoting said body with respect to said base, said actuator having engaging means mounted on a free end thereof; a track mounted on one of said members and disposed for engagement by said engaging means; a ramp having a different contour than said track mounted on one of said members and movable into and out of engagement with said engaging means; control means mounted on said body and connected to said ramp for moving said ramp as aforesaid; reciprocating driving means connected to said actuator for imparting a generally horizontal to and fro motion to said free end, said to and fro motion causing said engaging means to travel on said track when said ramp is positioned out of engagement with said engaging means, thereby imparting to said actuator a first generally vertical reciprocating action which pivots said body with respect to said base, and when said ramp is positioned in engagement with said engaging means, said to and fro motion causing said engaging means to travel on said ramp thereby imparting to said body, instead of said first action, a second generally vertical reciprocating action different from said first action for moving said body with respect to said base.

10. An operating mechanism for a mechanical horse comprising: a base frame member; a body frame member pivotally connected to said base frame member; an actuating member disposed between said frame members and in engagement therewith, said actuating member having at least a portion thereof capable of reciprocal movement along a first path which is fixed relative to one of said frame members; drive means connected to said actuating member for reciprocally moving said actuating member as aforesaid; first guide means on one of said members defining a second path different from said first path, said first guide means being disposed to engage said actuating member movable portion and constrain said portion to said second path whereby to translate said actuating member movement into a first pivotal movement of said body frame member with respect to said base frame member; a second guide means on one of said frame members movable into and out of engagement with said actuating member movable portion, said second guide means defining a third path different from said first and second paths and when disposed in engagement with said actuating member movable portion, constraining said portion to said third path whereby to translate said actuating member movement into a second pivotal member of said body frame member with respect to said base frame member, said second and third paths being so correlated that said second pivotal movement supplants said first pivotal movement and has a magnitude and frequency proportional thereto; and control means connected to said second guide means for moving said second guide means into and out of engagement with said actuating member movable portion.

References Cited in the file of this patent

UNITED STATES PATENTS

65	1,427,010	O'Neill et al. -----	Aug. 22, 1922
	1,674,616	Goodrich -----	Nov. 1, 1927
	1,863,012	Hahs -----	June 14, 1932
	1,888,763	Hahs -----	Nov. 22, 1932
	1,991,011	Carniol -----	Feb. 12, 1935
70	2,252,156	Bell -----	Aug. 12, 1941
	2,634,975	Hahs -----	Apr. 14, 1953
	2,722,418	Small -----	Nov. 1, 1955

UNITED STATES PATENT OFFICE
CERTIFICATE OF CORRECTION

Patent No. 2,915,311

December 1, 1959

Clyde N. Delano

It is hereby certified that error appears in the printed specification of the above numbered patent requiring correction and that the said Letters Patent should read as corrected below.

Column 5, line 59, for "incline dramp" read -- inclined ramp --; column 6, line 71, for "one one" read -- on one --.

Signed and sealed this 1st day of March 1960.

(SEAL)

Attest:

KARL H. AXLINE

Attesting Officer

ROBERT C. WATSON
Commissioner of Patents