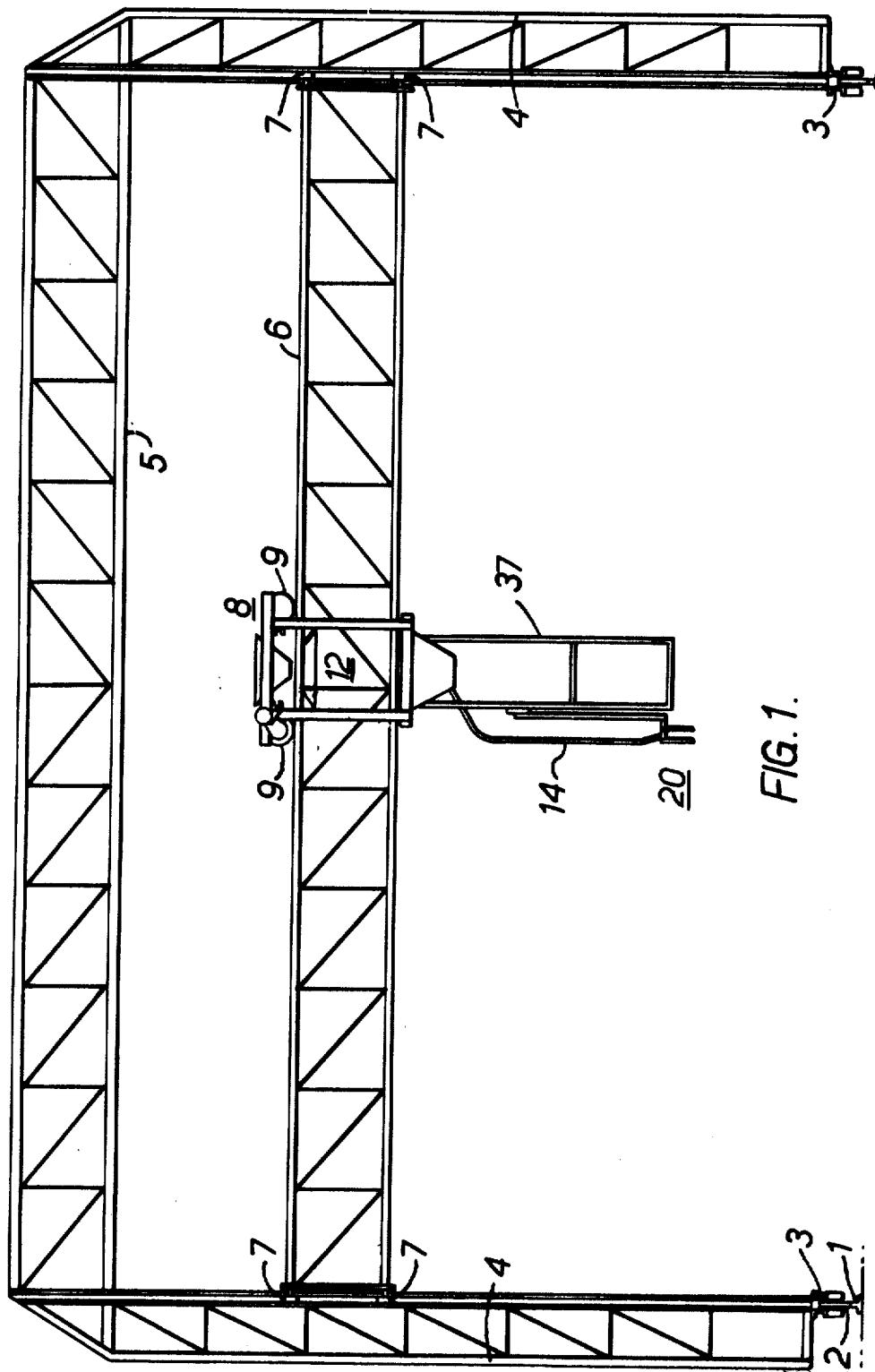


Oct. 12, 1971


N. F. LARSSON

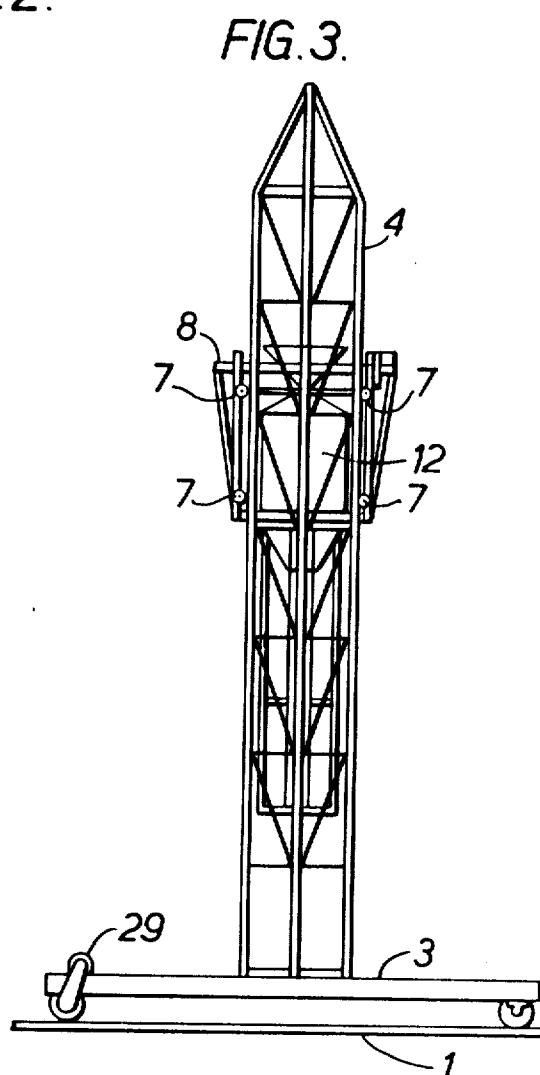
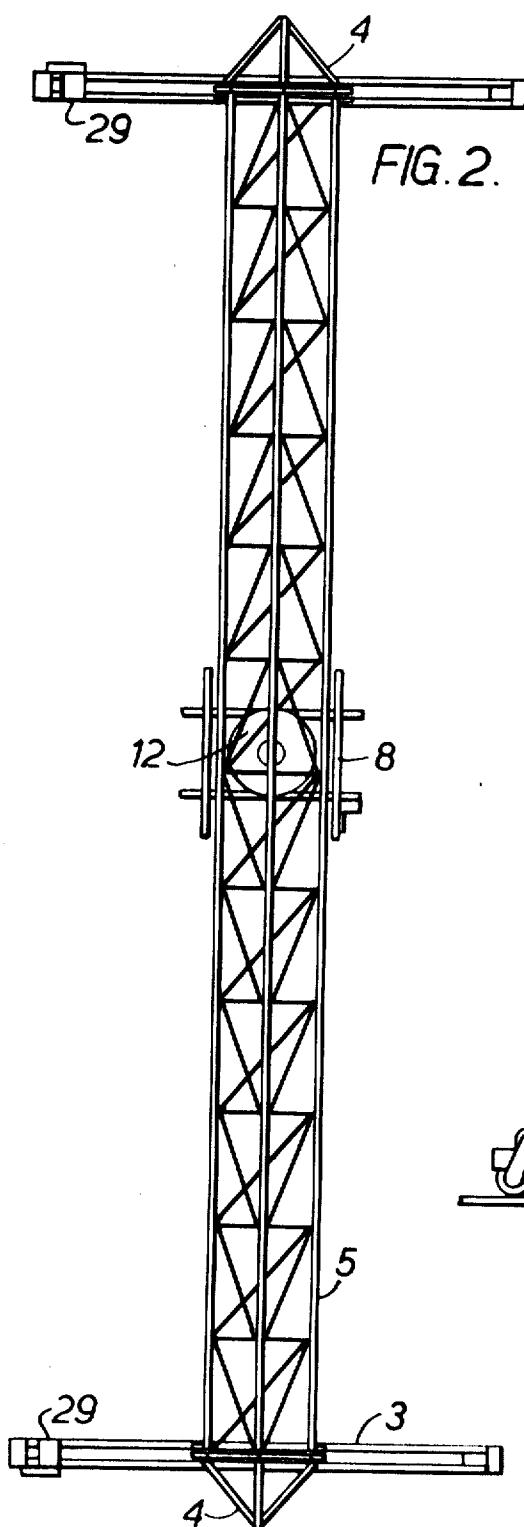
3,611,519

MACHINE FOR DIRECT AND CONTINUOUS CASTING OF CONCRETE WALLS

Filed June 6, 1969

9 Sheets-Sheet 1

Oct. 12, 1971



N. F. LARSSON

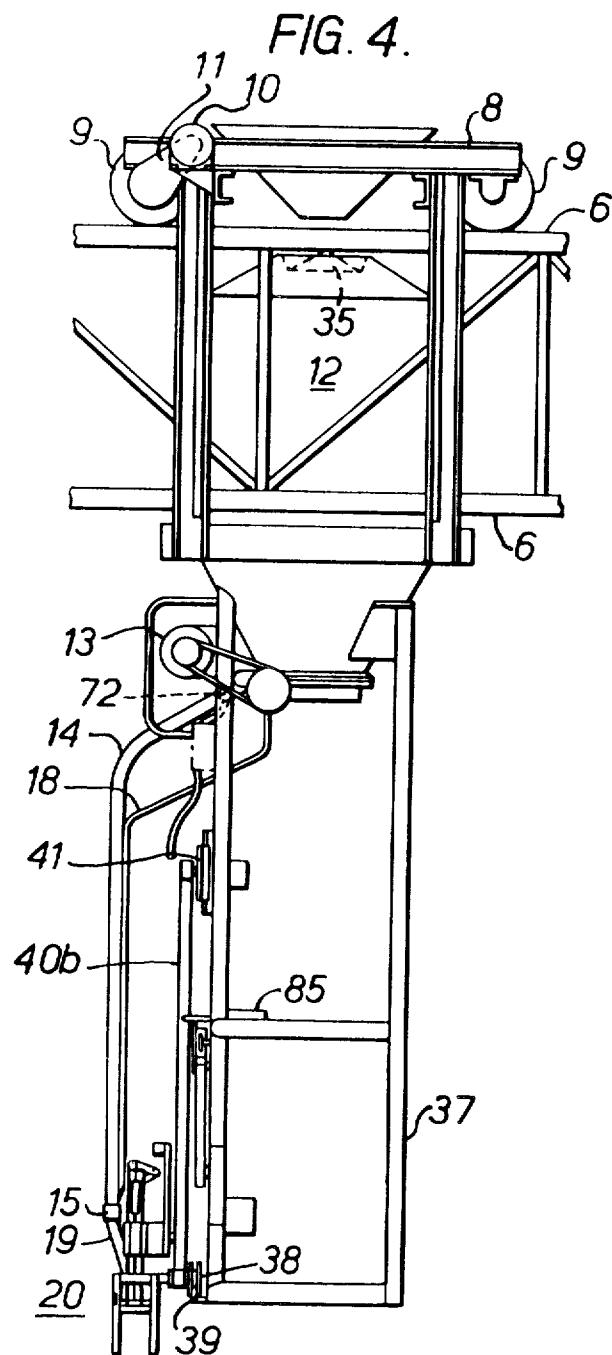
3,611,519

MACHINE FOR DIRECT AND CONTINUOUS CASTING OF CONCRETE WALLS

Filed June 6, 1969

9 Sheets-Sheet 2

Oct. 12, 1971


N. F. LARSSON

3,611,519

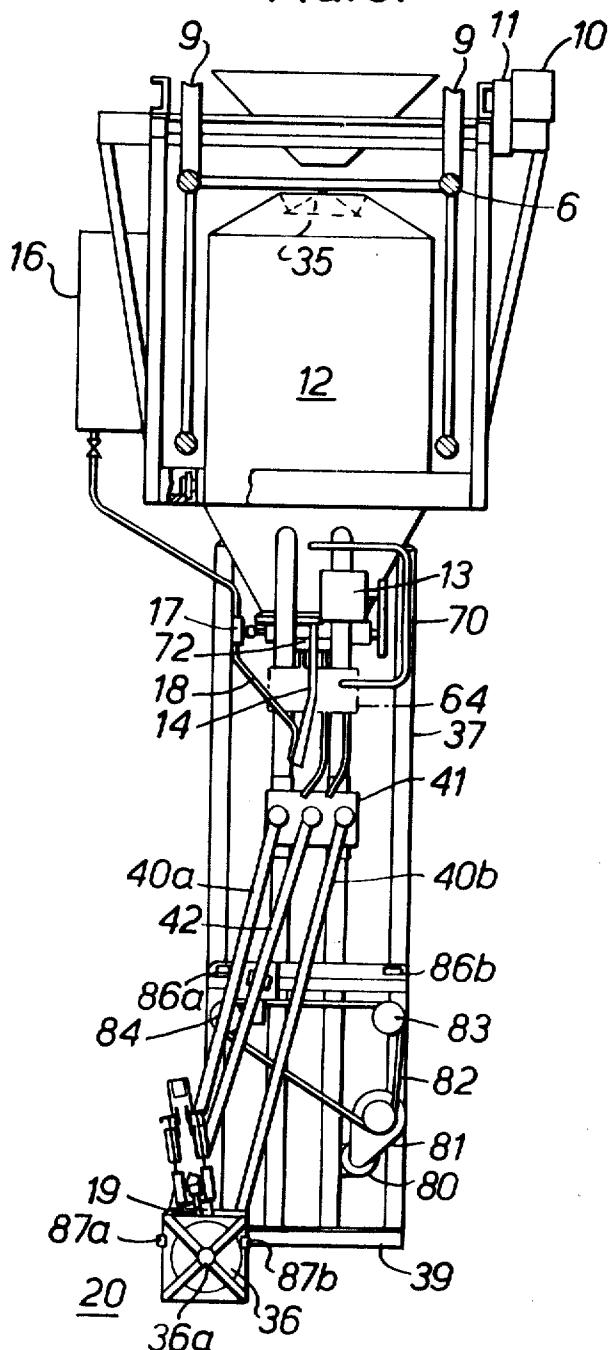
MACHINE FOR DIRECT AND CONTINUOUS CASTING OF CONCRETE WALLS

Filed June 6, 1969

9 Sheets-Sheet 5

Oct. 12, 1971

N. F. LARSSON


3,611,519

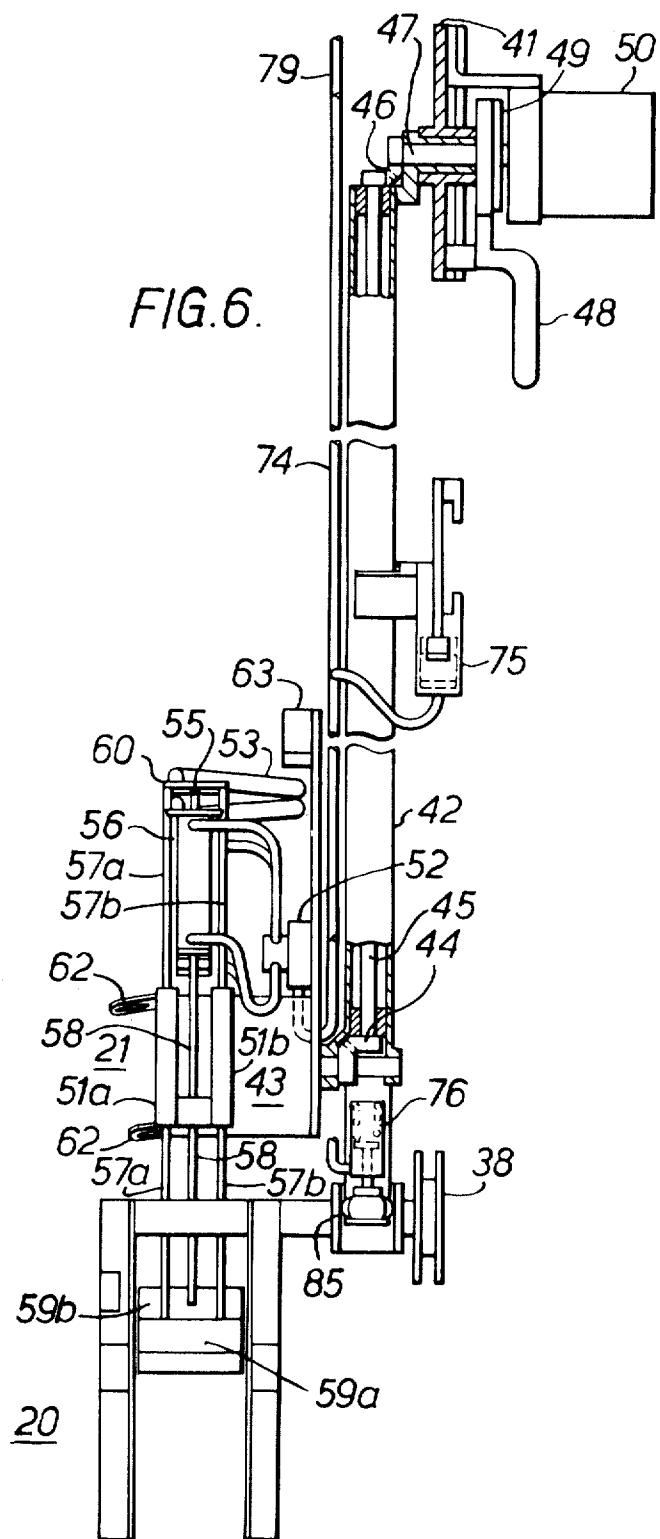
MACHINE FOR DIRECT AND CONTINUOUS CASTING OF CONCRETE WALLS

Filed June 6, 1969

9 Sheets-Sheet 4

FIG. 5.

Oct. 12, 1971


N. F. LARSSON

3,611,519

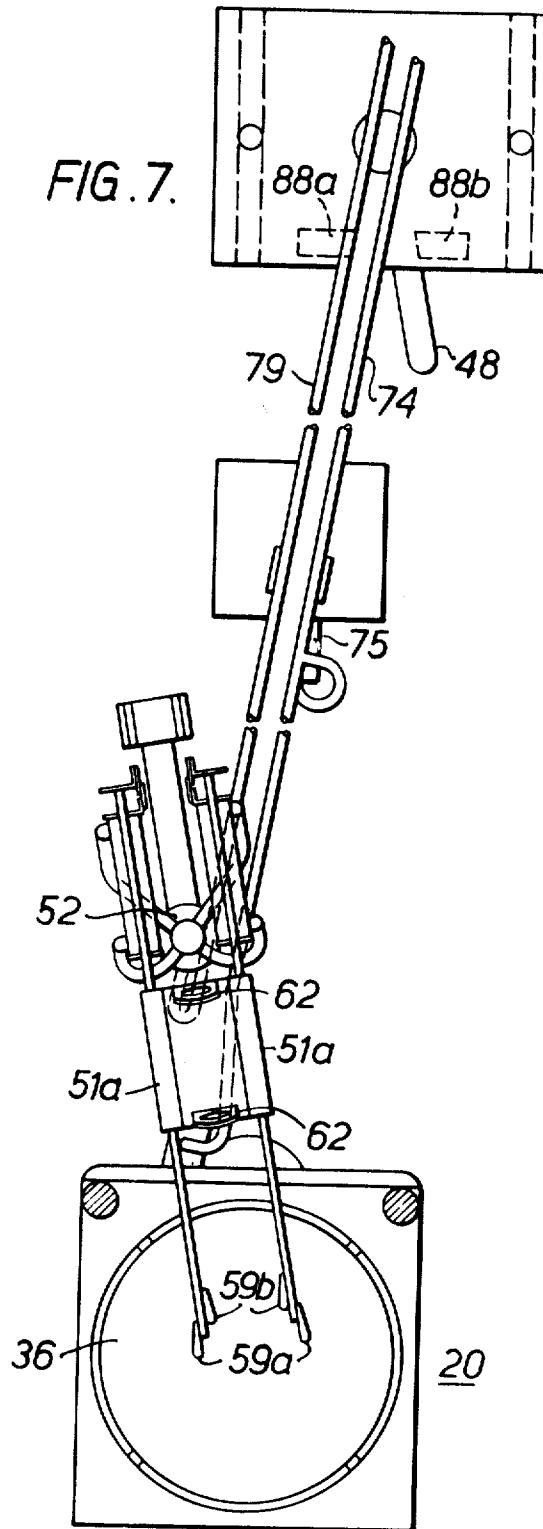
MACHINE FOR DIRECT AND CONTINUOUS CASTING OF CONCRETE WALLS

Filed June 6, 1969

9 Sheets-Sheet 5

Oct. 12, 1971

N. F. LARSSON


3,611,519

MACHINE FOR DIRECT AND CONTINUOUS CASTING OF CONCRETE WALLS

Filed June 6, 1969

9 Sheets-Sheet 6

FIG. 7.

Oct. 12, 1971

N. F. LARSSON

3,611,519

MACHINE FOR DIRECT AND CONTINUOUS CASTING OF CONCRETE WALLS

Filed June 6, 1969

9 Sheets-Sheet 7

FIG. 8.

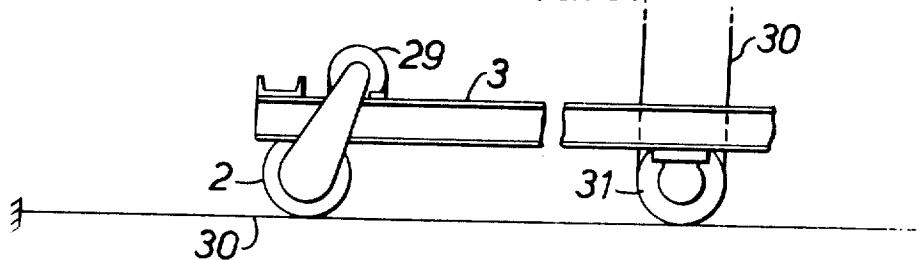


FIG. 9.

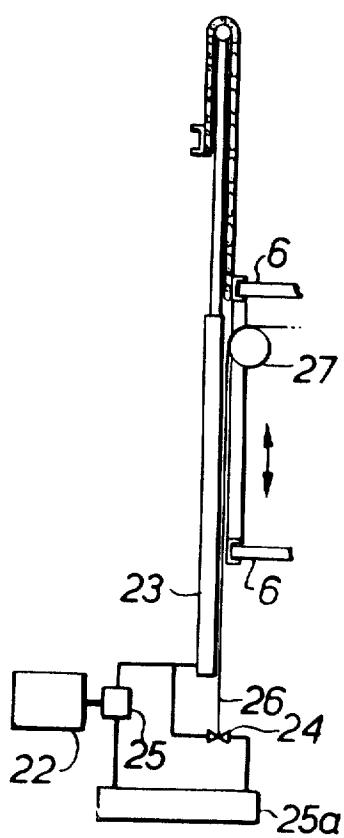
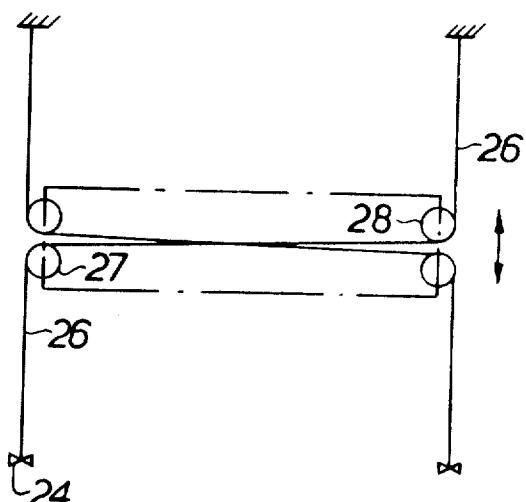



FIG. 10.

Oct. 12, 1971

N. F. LARSSON

3,611,519

MACHINE FOR DIRECT AND CONTINUOUS CASTING OF CONCRETE WALLS

Filed June 6, 1969

9 Sheets-Sheet 8

FIG.12.

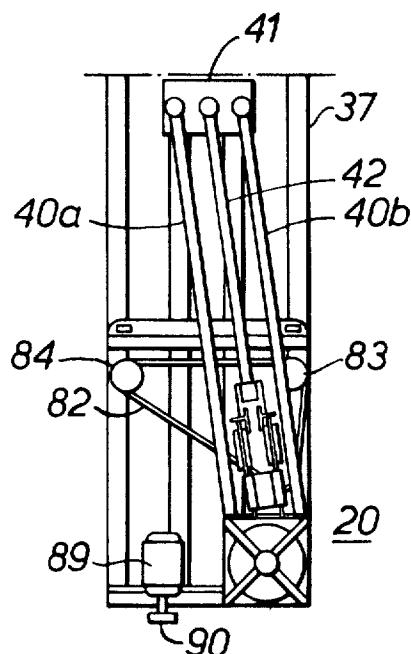
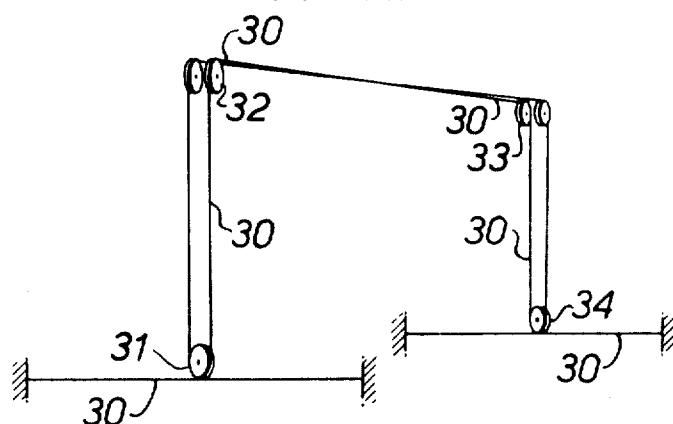



FIG.11.

Oct. 12, 1971

N. F. LARSSON

3,611,519

MACHINE FOR DIRECT AND CONTINUOUS CASTING OF CONCRETE WALLS

Filed June 6, 1969

9 Sheets-Sheet 9

FIG.13

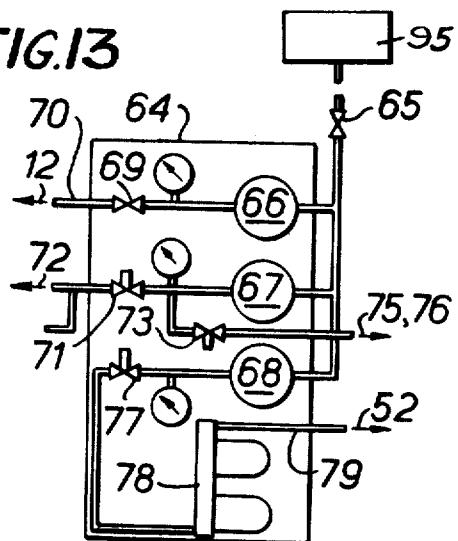


FIG. 15.

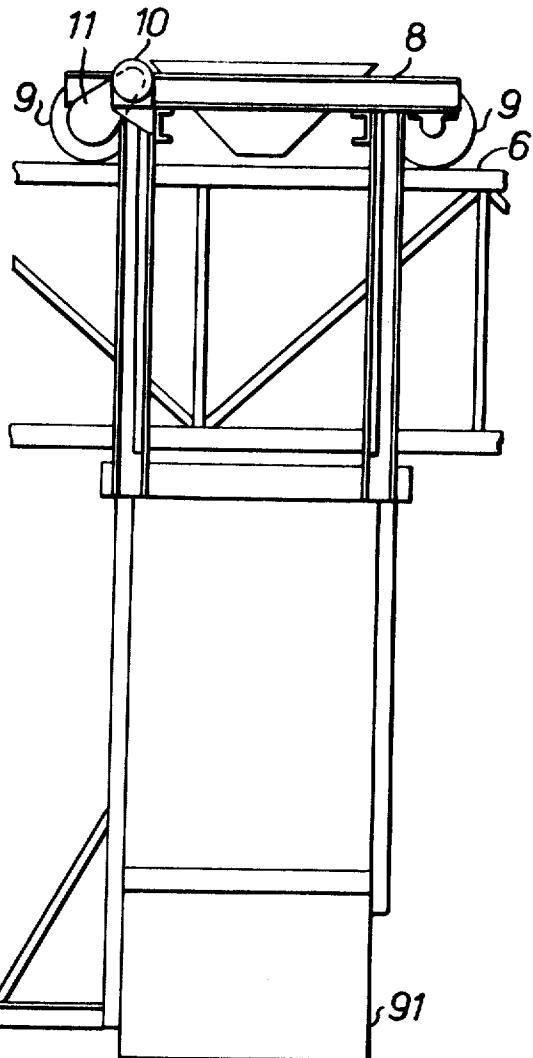
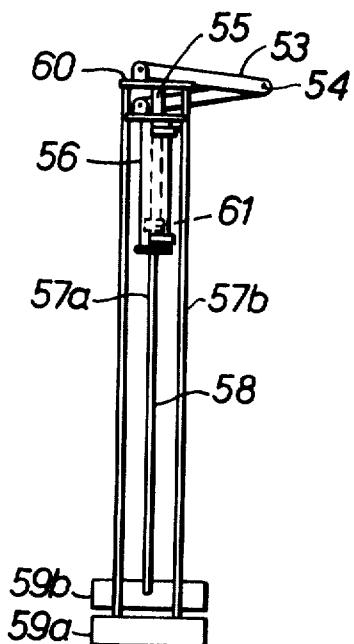



FIG. 14.

1

3,611,519
MACHINE FOR DIRECT AND CONTINUOUS
CASTING OF CONCRETE WALLS
Nils Folke Larsson, 27 Saterivagen,
161 70 Bromma, Sweden
Filed June 6, 1969, Ser. No. 830,976
Claims priority, application Sweden, June 17, 1968,
8,150/68
Int. Cl. E04g 11/34
U.S. CL. 25—131 SC

8 Claims

ABSTRACT OF THE DISCLOSURE

A method and a machine for casting concrete walls by introducing concrete into a mold comprising two parallel discs having comparatively small dimensions and being continuously reciprocated along the wall being cast by means of a traveling crane so as to deposit a thin strip of concrete each time it passes along the wall, with said deposited strip of concrete simultaneously being rammed to compactedness.

BACKGROUND OF THE INVENTION

Field of the invention

This invention refers to a method for direct and continuous casting of concrete walls by means of introducing concrete between two parallel, continuously movable, positively controlled discs and ramming the concrete to compactedness, as well as to a machine for applying the method.

Description of the prior art

In the field of construction of buildings investigations are continuously being made with regard to new methods and means intended to make it possible to erect buildings faster and preferably also at lower cost than is possible at present. Various suggestions for casting concrete while utilizing molds have been made, but according to these suggestions the molds are usually required to remain in one and the same position until the concrete has hardened.

SUMMARY OF THE INVENTION

The instant invention discloses an entirely new method of erecting buildings as well as a machine for applying said method, and the advantages achieved hereby in comparison to known technology are both economical, namely lower construction costs, and technical, namely a higher construction rate. The means that are necessary for achieving these advantages will become apparent from the following description and claims.

Generally speaking, in the method for direct and continuous casting of concrete walls disclosed by the invention, concrete is introduced between two parallel, continuously movable, positively controlled discs, whereupon the concrete is rammed until it becomes compact. For example a machine for applying the method might be utilized for erecting small houses of the size of family homes in concrete cast in one process. The machine has the form of a bridge structure straddling the entire contemplated house and running on two horizontal rails laid out on either side of the house and parallel to the latter

2

and to each other. The machine may preferably be designed in the following manner. A wheeled support provided with two wheels runs on each rail, and each wheeled support carries a tower. The two towers are interconnected at their upper portions by a transverse member in such manner that the device forms a rigid bridge structure. Between the towers there is an additional transverse member which is mounted and guided on the towers. This transverse member is displaceable vertically and is supported by hydraulic cylinders positioned in each tower. A carriage runs on the last-mentioned transverse member, forming a yoke over said transverse member and carrying a container for material, with said container being housed within the transverse member to a greater extent, as the result of the member having the shape of an inverted U. A cabin is affixed to the container and both serves as an operator's cabin for the operator of the machine and also carries the actual casting mold or molding head. The container and consequently the operator's cabin and the molding head as well are rotatable and may be clamped in four individual positions at angles of 90° with respect to each other, and hence the molding head may be positioned parallel to the wall to be erected.

BRIEF DESCRIPTION OF THE DRAWING

The invention will be disclosed more specifically below with reference to the accompanying drawings, which illustrate an embodiment of the invention, wherein FIG. 1 shows an elevational view of the machine as viewed longitudinally, FIG. 2 shows the machine in a plan view, FIG. 3 shows the machine in a transverse view, FIG. 4 shows the transversely displaceable carriage, the material container and the operator's cabin with the molding head as viewed in the longitudinal direction of the machine, FIG. 5 shows the transversely displaceable carriage, the material container and the operator's cabin with the molding head as viewed in the transverse direction of the machine, FIG. 6 shows an elevational view, partly in section, of the ramming device, FIG. 7 shows another elevational view of the ramming device, with the view of FIG. 7 being taken at 90° with respect to the elevational view of FIG. 6, FIG. 8 shows a portion of the wheeled support of the machine, FIG. 9 shows a hydraulic cylinder unit including a piston, a chain, a pump, a valve and a motor for elevating the overhead crane member, FIG. 10 illustrates the principle of maintaining the overhead crane member horizontal by means of two hydraulic cylinder units of the type illustrated in FIG. 9, FIG. 11 shows a device for maintaining the entire machine parallel when displacing the same longitudinally, FIG. 12 shows a device for flat face milling window openings and the top portions of the walls, FIG. 13 schematically illustrates a control panel for compressed air, FIG. 14 shows a ram, and FIG. 15 shows a device for coating floors. Similar designations have been utilized for identical portions in the figures. Furthermore, certain portions have been omitted from the figures so as to avoid complicating the latter unnecessarily.

DESCRIPTION OF THE PREFERRED EMBODIMENT

FIGS. 1, 2, and 3, respectively, illustrate the machine schematically and without any great number of parts.

Wheels 2 that are mounted in beam units 3 run on rails 1 and are designed in such manner as to be guided laterally on each rail. A tower 4 is erected on each beam unit 3, and a transverse member 5 is secured to the top portions of the two towers 4 for instance by means of nuts and bolts. A traveling crane member 6 is mounted to the towers 4 at its two ends by means of rollers 7 designed for guided engagement with the towers 4 without play, and the traveling crane member 6 is displaceable vertically. Said traveling crane member may be displaced upwards or downwards, respectively, by means of two hydraulic devices, one of which is illustrated in FIG. 9, with one hydraulic device of this type being mounted in each of the two towers 4. When the traveling crane member 6 is to be elevated, motors 22 (one of which is illustrated in FIG. 9) are started simultaneously in each of the two hydraulic devices so as to pump oil by means of an oil pump 25 from an oil tank 25a into a hydraulic cylinder 23 in each of the hydraulic devices, thereby elevating the crane member 6. When the traveling crane member 6 is to be lowered, the direction of rotation of the motors 22 is reversed so that oil is expelled from the cylinders 23, resulting in crane member 6 descending. The traveling crane member 6 may for instance be maintained horizontal in the manner indicated in FIG. 10, namely by a valve 24 being connected to each cylinder 23, with said valve being opened and providing a leak between the oil pump 25 and the cylinder 23 at any end where the crane member may be positioned at too high a level. Valve 24 is actuated by means of a belt or a wire 26 (FIGS. 9 and 10, respectively) that extends from valve 24 up to crane member 6 over a pulley wheel 27, further on over to the other tower, over a pulley wheel 28 and up to the top of this tower, with said wire being secured there. As each tower is provided with a device of this type complete symmetry and hence full balance with respect to the horizontal position of the traveling crane member 6 is achieved.

As is illustrated by FIGS. 2, 3 and 8, respectively, motors 29 for propelling the machine along the rails 1 are disposed on each of the two beam units 3, with each of said motors being connected to an individual wheel 2 over an appropriate transmission. The two motors 29 are started simultaneously when the machine is to be moved along the rails 1. In order to ensure that the towers 4 are maintained exactly parallel to one another the machine is provided with an arrangement that is schematically illustrated in FIG. 11. A wire 30 is secured at one end of one of the rails (on the left side in FIG. 11). The wire 30 follows the rail to the middle of the tower 4 and then turns off over a pulley wheel 31 (also illustrated in FIG. 8, which shows one of the beam units 3 from one end and forward to slightly past the tower) and runs up into the tower 4 to the upper transverse member 5, turning off there over a pulley wheel 32 and continuing along the transverse member 5 to the other tower 4, then turning off over a pulley wheel 33 and going down into the tower to the wheeled support that runs on the other rail, turning off over a pulley wheel 34 and finally running along the last-mentioned rail towards the opposite end as compared to the end of the first rail where said wire has started, with said wire being secured to the end of the second rail. In the same manner a wire runs from the other end of the second rail to the opposite end of the first rail and is secured there.

As may be seen from FIG. 1, a carriage 8 runs on wheels 9 on the traveling crane member 6. This is illustrated more specifically in FIG. 4, which shows that the wheels 9 are adapted to be guided on the traveling crane member 6 and are driven by a motor 10 over an appropriate transmission 11. The transmission is dimensioned in such manner that carriage 8 will move at the same rate along the traveling crane member 6 as that at which the entire machine in accordance with FIGS. 1, 2, and 3, respectively, will move along the rails.

FIGS. 4 and 5, respectively, are elevational views taken at 90° from each other, and these figures show that carriage 8 carries a pressurized container 12, which is intended for dry concrete and which at its top has a sealing cover 35 that may be opened inwardly into the container. At its bottom, container 12 is provided with a feed-out wheel which is driven by a motor 13. Said feed-out wheel continuously feeds dry concrete to an output opening having a hose 14 connected thereto, through which dry concrete is blown out by means of compressed air.

A pump 17, for example an adjustable displacement pump, is driven by the same shaft as said feed-out wheel and urges water from a container 16 through a hose 18 out into an annular nozzle 15 which opens into said hose 14. At the nozzle 15 the water is mixed with the dry concrete so as to provide the latter with desired consistency, whereafter the completed concrete is blown out through a nozzle 19 down into a molding head 20 comprising two parallel sides that are connected at the top but are open at the bottom. Simultaneously with the concrete flowing down into the molding head 20, the concrete is packed by a ramming device which is illustrated more specifically in FIGS. 6 and 7, respectively. For example, the machine may be provided with two rams, each comprising a two-way operative compressed air cylinder having two hammers being alternately displaced upwards and downwards, respectively, between the two sides of the molding head 20 so as to pack the concrete. The ramming device will be disclosed more specifically below.

As said molding head 20 moves forwardly, it leaves behind a strip of packed concrete having a rectangular cross-section. In order to decrease the friction between the concrete and the sides of molding head 20, the latter sides are designed such, that the greater part of their area is composed of a round disc 36 (FIGS. 5 and 7, respectively), which may rotate around a shaft 36a. As may be seen from FIGS. 4 and 5 the molding head 20 is adapted to be displaced in a horizontal and straight path along the lower edge of an operator's cabin 37 positioned below container 12 by means of a wheel 38 running along a track 39, with said wheel 38 being mounted on molding head 20. In addition, molding head 20 is guided by linkage arms 40a and 40b, respectively, which are connected to said molding head 20 and to a plate 41, which latter is displaceable vertically on guides in the operator's cabin 37. A pivot arm 42 is also connected to plate 41. Said pivot arm may pivot between the linkage arms 40a and 40b and in the same plane as the latter. The pivot arm 42 is shown on an enlarged scale in FIG. 6, in which it may be seen that a support 43 for the above-mentioned ramming device 21 is rotatably mounted at the lower portion of pivot arm 42. A rotational movement of a handle 48 may be transferred to support 43 over a bevel gear 44, a shaft 45, a gear 46 and a shaft 47. The handle 48 is prevented from moving freely as the result of friction against a disc 49, which over a transmission is connected to a motor 50 provided with a magnetic brake. As the result of said handle 48 being clamped to motor 50 and the latter being secured to plate 41, pivot arm 42 may pivot without the angle of the support 43 being altered with respect to plate 41. Support 43 is provided with guides 51a and 51b, respectively, for the hammers of the ramming device, which latter thus may move upwards and downwards in consequence of said guides. A rotatable distribution valve 52 for supplying compressed air to the ramming device 21 alternately flows compressed air into a cylinder (FIGS. 6 and 14, respectively) through upper and lower leads so as to make a piston 61 in said cylinder move back and forth (upwards and downwards, respectively) in said cylinder. Piston 61 draws along a piston rod 55, a crosspiece 60, parallel rods 57a and 57b, respectively, and one hammer 59a in its motion. Cylinder rod 58 and the other hammer 59b accompany cylinder 56 in its motion. As the respective masses of the two hammers are approximately equal, the two hammers 59a and 59b,

respectively, will be displaced equal distances but in different directions. One arm in a linkage 53 is mounted to the crosspiece 60, whereas the other arm is mounted to the cylinder top. As the result of the two arms of said linkage 53 moving the same distances, the pivot point 54 will only move horizontally with respect to the center of gravity of the ram. Support 43 also carries a switch 63 (FIG. 6) as well as mounts 62 for nozzle 19 (FIG. 5).

Compressed air means 95 supplies air in appropriate manner to a control panel 64 illustrated more specifically in FIG. 13 and is introduced through a valve 65. Three relief valves 66, 67, and 68, respectively, are connected in parallel behind valve 65. From relief valve 66 the compressed air flows through a valve 60 and a tube 70 to the container 12 (FIG. 5) for material. From relief valve 67 the air flows through a magnetic valve 71 to a shut-off device 72 for hose 14 (FIG. 4) and over a magnetic valve 73 through a tube 74 to cylinders 75 and 76 in FIGS. 6 and 7, respectively. From relief valve 68 the air flows through a magnetic valve 77 and an oil mist lubricating device 78 through a tube 79 to valve 52 and from there onto ramming device 21 (compare FIGS. 6 and 7, respectively).

An additional motor 80 is provided at the lower portion of the operator's cabin 37 (FIG. 5) and runs a belt or a band 82 over rollers 83 and 84 by means of a transmission 81.

A control panel 85 indicated in FIG. 4 is provided with a control for longitudinal movement forwards and backwards, a control for transverse movement forwards and backwards, a control for elevation and descent, and a main control for enabling a plurality of functions to be carried out simultaneously.

In FIG. 5 the operator's cabin 37 is illustrated with the molding head 20 in position for moving leftwards in the figure. The device is in the same position when starting for operation rightwards with the exception that the ramming device then slants in the other direction, i.e. towards the direction of motion.

When utilizing the pertinent machine for molding and ramming, the extent of a wall may be defined by another wall or an upright plank or similar, and the mode of operation of the machine will now be described.

When the machine is to be started to the right, the ramming device is rotated to the right from its position as illustrated in FIG. 5 by means of the handle 48 of FIG. 7. Container 12 (FIG. 5) should then be filled with a dry mixture of sand and cement. However, the sand should be slightly moist so as to avoid raising dust. Container 16 should be provided with water. Container 12 is placed under pressure (approximately 28 p.s.i.g.). When the main control of control panel 85 (FIG. 4) is displaced to the right (all directional indications refer to FIG. 5) the following will occur: (a) motor 13 starts and operates the feed-out wheel in the bottom of container 12 as well as pump 17 (FIG. 5); (b) magnetic valve 71 (FIG. 13) opens and passes compressed air to shut-off device 72 (FIG. 4), thereby opening hose 14 for flow-through so as to eject concrete into molding head 20 through nozzle 19; (c) magnetic valve 73 (FIG. 13) opens and passes compressed air through tube 74 (FIGS. 13 and 7, respectively) so as to make the piston of cylinder 75 (FIGS. 6 and 7, respectively) urge belt 82 (FIG. 5) into engagement, and furthermore the piston of cylinder 75 (FIG. 6) releases a catch 85 (FIG. 6) which clamps the pivot arm 42 to the molding head 20; (d) magnetic valve 77 (FIG. 3) opens and passes compressed air through valve 52 to ramming device 21 (FIGS. 6 and 7, respectively); (e) motor 80 starts and makes pivot arm 42 move rightwards until it is stopped by the right linkage arm 40b, with the entire molding head following along until said linkage arm 40b strikes a limit switch 86b that stops motor 80 and starts motors 29 (FIG. 8) so as to make the entire machine move forward. As the result of motor 80 being provided with a magnetic

brake, the molding head will be maintained in its set position until either the main control is reset or the molding head 20 strikes a wall or some other limitation, resulting in a limit switch 87b stopping motors 29 and starting motor 50 (FIG. 6), which in turn results in the ramming device beginning to be rotated in the other direction and being stopped by a limit switch 88b cutting off the current to motor 50, motor 13, magnetic valve 71, and magnetic valve 77, respectively. Simultaneously with limit switch 87b stopping motors 29, the current to magnetic valve 73 is also cut off, thereby releasing pivot arm 42 from belt 82 as well as making catch 85 lock pivot arm 42 to molding head 20. However, said pivot arm is displaceable in its longitudinal direction with respect to the molding head. As the external position of said molding head lies outside of the outer edge of the operator's cabin to some extent and the molding head is released completely from the cabin, the molding head may stop immediately, whereas the machine will have ample time to be retarded by the magnetic brakes of motors 29 before the operator's cabin reaches the wall. The machine will now be in position for starting leftwards. After the machine has run back and forth a few times the concrete strip will have reached approximately half the height of the molding head. The ramming device floats on top of the packed concrete during the entire process and now begins to actuate switch 63 (FIG. 6) so as to start motors 22 and elevate traveling crane member 6, thereby raising the molding head and stopping motors 22. When the operator's cabin is rotated for transverse operation limit switches 86a and 86b, respectively, actuate motor 10 instead of motors 29.

A motor 89 operating a milling disc 90 for flat face milling window openings and the tops of walls may be mounted on the operator's cabin as illustrated in FIG. 12. The motor is rotatable for slanting or vertical planes. Molding head 20 is raised in this case.

In FIG. 15 material container 12 and operator's cabin 37 have been removed and replaced by a concrete container 191 having a vibrating device for coating floors.

The invention is not limited to the embodiment described above and illustrated in the drawings, and this embodiment only comprises an example of the invention and its application.

What is claimed is:

1. Apparatus for casting concrete walls from concrete mix comprising a pair of movable towers; a crane member connecting the two towers; hydraulic means attached to the crane member and the towers for providing relative vertical displacement; carriage means supported by the crane member and including an operator's cabin; means for generating compressed gas; pressurized container means for feeding a relatively dry concrete mix pressurized by compressed gas and supported by the carriage means; means for receiving the relatively dry concrete mix from the pressurized container means and mixing it with water; means for compacting the damp concrete mix and a molding head controlled from the operator's cabin.

2. Apparatus as in claim 1 where the means for compacting the damp concrete include a pair of alternatively activated rams.

3. Apparatus as in claim 2 further including control means in the operator's cabin, for controlling the molding head including pivot arms, a magnetic valve and magnetic brake.

4. Apparatus as in claim 3 including a motor on each tower.

5. Apparatus as in claim 3 including switch means for raising the support member activated by the molding head means.

6. Apparatus as in claim 3 where the means for compacting the damp concrete is rotatable, and lockable in four positions 90° apart.

7. Apparatus as in claim 3 wherein the molding head means includes a pair of rotatable round discs.

3,611,519

7

8. Apparatus as in claim 5 wherein the molding head means is displaceable in a straight and horizontal path along the lower edge of the operator's cabin.

8

3,195,208 7/1965 Winn ----- 25—131
3,497,579 2/1970 Barron ----- 249—20 X

FOREIGN PATENTS

References Cited

5 1,199,605 2/1959 France ----- 25—131(SC)

UNITED STATES PATENTS

J. SPENCER OVERHOLSER, Primary Examiner

B. D. TOBOR, Assistant Examiner

1,642,393	9/1927	Westphal -----	25—131 SCX
2,536,377	1/1951	Lachaise -----	25—2 X
3,032,851	5/1962	Gibbs -----	25—2
2,339,892	1/1944	Urschel -----	25—41 X
2,979,798	4/1961	Price -----	25—131 X

10 U.S. Cl. X.R.

25—41 J; 249—20; 264—33