磁阻器件、磁头、磁存储设备以及磁存储器

摘要

一种 CPP 型磁阻器件，包括：磁化被钉扎层；磁化自由层；以及非磁层，设置在所述磁化被钉扎层与所述磁化自由层之间。所述磁化自由层和所述磁化被钉扎层的至少其中一个由 CoFeGe 形成，所述 CoFeGe 的成分落入三元成分图中由连接坐标点 A、B、C、D 的线段所限定的范围内，其中点 A 为(42.5, 30, 27.5)，点 B 为(35, 52.5, 12.5)，点 C 为(57.5, 30.0, 12.5)，点 D 为(45.0, 27.5, 27.5)，并且其中各坐标点由原子百分比 (at. %) 表示的 (Co, Fe, Ge) 的含量百分比来表示。还提供包括上述磁阻器件的磁头、磁存储设备及磁存储器。能获得较高的 MR 比，并提高输出电平。
1、一种 CPP 型磁阻器件，包括:
磁化被钉扎层;
磁化自由层; 以及
非磁层，设置在所述磁化被钉扎层与所述磁化自由层之间;
其中，所述磁化自由层和所述磁化被钉扎层中的至少一个由 CoFeGe 形成，以及
其中，所述 CoFeGe 的成分落入三元成分图表中由连接坐标点 A、B、C、D 的线段所限定的范围内，其中点 A 为 (42.5，30，27.5)，点 B 为 (35，52.5，12.5)，点 C 为 (57.5，30.0，12.5)，点 D 为 (45.0，27.5，27.5)，并且其中各坐标点由用原子百分比 (at.%) 表示的 (Co，Fe，Ge) 的含量百分比来表示。
2、如权利要求 1 所述的磁阻器件，其中，当所述磁化自由层和所述磁化被钉扎层中的一个由 CoFeGe 形成时，另一个由 CoFeGe 或 CoFeAl 形成。
3、如权利要求 1 所述的磁阻器件，还包括:
界面磁层，插入在所述非磁层与用于所述磁化自由层和所述磁化被钉扎层中的至少一个的 CoFeGe 层之间。
4、如权利要求 1 所述的磁阻器件，还包括:
对称设置的磁化被钉扎层，所述对称设置的磁化被钉扎层与所述磁化被钉扎层关于所述磁化自由层对称; 以及
第二非磁层，插入在所述磁化自由层与所述对称设置的磁化被钉扎层之间;
其中，所述磁化自由层、所述磁化被钉扎层以及所述对称设置的磁化被钉扎层中的至少一个由具有所述成分的 CoFeGe 形成。
5、如权利要求 4 所述的磁阻器件，还包括:
第一界面磁层和第二界面磁层;
其中，所述磁化自由层位于所述非磁层与所述第二非磁层之间，以及
其中，所述第一界面磁层设置在所述磁化自由层与所述非磁层之间，而所述第二界面磁层设置在所述磁化自由层与所述第二非磁层之间。
6、如权利要求 3 所述的磁阻器件，其中，所述界面磁层由包括 CoFe(100-X)
（0 ≤ X ≤ 100 at.％）、Ni_{80}Fe 或者 CoFeAl 的磁合金形成。

7、如权利要求 5 所述的磁阻器件，其中，所述第一界面磁层和第二界面磁层由包括 Co_{X}Fe_{(100-X)} (0 ≤ X ≤ 100 at.％)、Ni_{80}Fe 或者 CoFeAl 的磁合金形成。

8、如权利要求 5 所述的磁阻器件，其中，所述磁阻器件的 MR 比在 5.6% 或以上。

9、如权利要求 1 所述的磁阻器件，其中，所述 CoFeGe 的电阻率（ρ）的范围从 50 μΩcm 到 300 μΩcm，自旋相关体散射系数（β）在 0.4 或以上。

10、如权利要求 1 所述的磁阻器件，其中，所述磁化被钉扎层包括第一磁化被钉扎膜、第二磁化被钉扎膜，以及设置在所述第一磁化被钉扎膜与所述第二磁化被钉扎膜之间的非磁耦合层。

11、如权利要求 10 所述的磁阻器件，还包括：
界面磁层，设置在所述第二磁化被钉扎膜与所述非磁层之间；
其中，所述磁化被钉扎层的所述第二磁化被钉扎膜位于靠近所述非磁层一侧。

12、一种磁头，包括：
衬底，形成磁头滑动器的基底；以及
如权利要求 1 所述的磁阻器件，形成在所述衬底上。

13、一种磁存储设备，包括：
磁记录介质；以及
磁头，配置为读取记录在所述磁记录介质中的信息，所述磁头包括如权利要求 1 所述的磁阻器件。

14、一种磁存储器器件，包括：
存储器元件，具有 CPP 型磁阻效应膜，所述磁阻效应膜包括磁化被钉扎层、磁化自由层以及设置在所述磁化被钉扎层与所述磁化自由层之间的非磁层；

写入单元，配置为通过向位线和字线提供电流以产生提供给所述磁阻效应膜的磁场，或者通过向所述磁阻效应膜提供自旋极化电流，来确定所述磁化自由层的磁化方向；以及

读取单元，配置为向所述磁阻器件提供感测电流，以感测电阻；
其中，所述磁化自由层和所述磁化被钉扎层中的至少一个由 CoFeGe 形成，以及

其中，所述 CoFeGe 的成分落入三元成分图表中由连接坐标点 A、B、C、
D 的线段所限定的范围内，其中点 A 为（42.5，30，27.5），点 B 为（35，
52.5，12.5），点 C 为（57.5，30.0，12.5），点 D 为（45.0，27.5，27.5），
并且其中各坐标点由用原子百分比（at.%）表示的（Co，Fe，Ge）的含量百分比来表示。

15、如权利要求 14 所述的磁存储器器件，还包括：
开关器件，连接到所述存储器元件的一端；
其中，所述位线连接到所述存储器元件的另一端。
磁阻器件、磁头、磁存储设备以及磁存储器

技术领域

本发明涉及一种用于再现磁记录介质或存储器件中的信息的磁阻器件，尤其涉及一种电流垂直于平面（CPP）的磁阻器件，其中感测电流在垂直通过多层平面的方向上流动。

背景技术

近年来，一直将巨磁阻（GMR）器件用作磁存储设备中磁头的信息再现器件，以再现磁记录介质中的信息。GMR 器件利用巨磁阻效应，即外部磁场引起电阻变化。当再现磁记录介质的信息时，通过 GMR 器件检测从磁记录介质泄露的磁场的方向变化并将其转换为电阻的变化。随着高密度记录技术的发展，使用自旋阀膜结构的磁阻器件成为主流。自旋阀膜结构是一种多层结构，包括：磁化被钉扎层（magnetization pinned layer），其磁化被钉扎或固定在预定方向上；非磁层；以及磁化自由层，其磁化可响应从磁记录介质泄露的磁场的方向或强度而旋转。自旋阀膜结构的电阻根据磁化被钉扎层与磁化自由层的磁化方向之间的角度而变化。通过向自旋阀膜结构提供感测电流，检测电阻变化作为电压变化，再现出记录在磁记录介质中的位值（bit value）。

传统上在磁阻器件中使用 CIP（电流在平面内）结构，其中感测电流在自旋阀的平面方向上流动。但是，为了实现更高的记录密度，当前要求增加磁记录介质的线性记录密度和轨道密度。为了满足这样的要求，对于磁阻器件必须降低由器件宽度（对应于磁记录介质的轨道宽度）与器件高度（对应于磁记录介质中的位长度）限定的横向面积。由于 CIP 结构中感测电流大，所以器件的性能会因为自旋阀膜结构中所用材料内的迁移（migration）而下降。

为了克服这个问题，提出了 CPP 结构，其中感测电流在垂直通过磁化被钉扎层、非磁层以及磁化自由层的方向上流动。实际上，因为 CPP 磁阻器件
有可能成为下一代信息再现器件，所以对它作了大量研究。因为即使降低磁心宽度（自旋阀与磁记录介质轨道宽度对应的宽度），输出电压也是恒定的，所以 CPP 自旋阀膜结构适合于高密度记录。

CPP 自旋阀的输出电平（level）由将外部磁场从一个方向向相反的方向扫过的方式提供给自旋阀时发生的每单位面积磁阻的变化量确定。每单位面积磁阻的变化量等于自旋阀磁阻的变化量与自旋阀的膜面积的乘积。为了增加每单位面积磁阻的变化量，必须对磁化自由层和磁化被钉扎层采用自旋相关体散射系数与电阻率的乘积数值大的材料。自旋相关体散射是这样一种现象，即在磁化自由层或者磁化被钉扎层中传导电子散射的程度根据传导电子的自旋方向而变化。磁阻的变化量随着自旋相关体散射系数的增加而增加。自旋相关体散射系数大的材料例如有(Co₂Fe)₁₀₀Ge_x (0\(\leq X \leq 30\) at.%）以及 Co-Fe-Al。例如参见 JP 2006-73688 A。

但是，如果在将来随着记录密度的提高进一步缩小读取间隙，那么即使在磁化自由层或者磁化被钉扎层中使用上述材料，对磁阻变化的灵敏度也会不足。

发明内容

在实施例的一个方案中，一种电流垂直平面（CPP）磁阻器件包括：磁化被钉扎层；磁化自由层；以及非磁层，插入在所述磁化被钉扎层与所述磁化自由层之间；并且所述磁化自由层和所述磁化被钉扎层的至少其中一个由 CoFeGe 形成，所述 CoFeGe 的成分落入三元成分图表中由连接坐标点 A、B、C、D 的线段所限定的范围内，三元成分图表的三个轴用原子百分比（at.%）表示钴（Co）成分，铁（Fe）成分和锗（Ge）成分，其中点 A 为（42.5, 30, 27.5），点 B 为（35, 52.5, 12.5），点 C 为（57.5, 30, 12.5），点 D 为（45.0, 27.5, 27.5）。

在实施例的另一方案中，一种磁头包括：衬底，形成磁头滑动器的基底；以及如上所述的磁阻器件，形成在所述衬底上。

在实施例的再一方案中，一种磁存储设备包括：磁记录介质；以及磁头，配置为读取记录在所述磁记录介质中的信息，所述磁头包括如上所述的磁阻器件。
在实施例的又一方案中，一种磁存储器件包括：存储器元件，具有 CPP 型磁阻效应膜，所述磁阻效应膜包括磁化被钉扎层、磁化自由层以及设置在所述磁化被钉扎层与所述磁化自由层之间的非磁层；写入单元，配置为通过向位线和字线提供电流以产生提供给所述磁阻效应膜的磁场，或者通过向所述磁阻效应膜提供自旋极化电流，来确定所述磁化自由层的磁化方向；以及读取单元，配置为向所述磁阻器件提供感测电流，以感测电阻；其中，所述磁化自由层和所述磁化被钉扎层中的至少一个由 CoFeGe 形成，以及其中，所述 CoFeGe 的成分落入三元成分图表中由连接坐标点 A、B、C、D 的线段所限定的范围内，其中点 A 为（42.5，30，27.5），点 B 为（35，52.5，12.5），点 C 为（57.5，30.0，12.5），点 D 为（45.0，27.5，27.5），并且其中各坐标点由原子百分比 (at.%) 表示的 (Co, Fe, Ge) 的含量百分比来表示。

利用本发明，能够获得较高的 MR 比，并提高磁阻器件的输出电平。

附图说明

图 1 示出根据本发明第一实施例的磁头朝向记录介质的功能表面的主要部分；

图 2 示出构成本发明第一实施例的磁阻器件的 GMR 膜的实例 1 的横截面结构；

图 3 示出构成本发明第一实施例的磁阻器件的 GMR 膜的实例 2 的横截面结构；

图 4 示出构成本发明第一实施例的磁阻器件的 GMR 膜的实例 3 的横截面结构；

图 5 示出构成本发明第一实施例的磁阻器件的 GMR 膜的实例 4 的横截面结构；

图 6 示出构成本发明第一实施例的磁阻器件的 GMR 膜的实例 5 的横截面结构；

图 7 示出构成本发明第一实施例的磁阻器件的 GMR 膜的实例 6 的横截面结构；

图 8 为示出实例 2 的 GMR 膜的磁化自由层的不同样品的成分和 MR 比的表格；
图 9 为显出用于磁化自由层的 CoFeGe 膜的成分的优选范围的三元成分图表；

图 10 显出构成本发明第二实施例的磁阻器件的 TMR 膜的实例 1 的横截面结构；

图 11 显出构成本发明第二实施例的磁阻器件的 TMR 膜的实例 2 的横截面结构；

图 12 显出构成本发明第二实施例的磁阻器件的 TMR 膜的实例 3 的横截面结构；

图 13 显出构成本发明第二实施例的磁阻器件的 TMR 膜的实例 4 的横截面结构；

图 14 显出构成本发明第二实施例的磁阻器件的 TMR 膜的实例 5 的横截面结构；

图 15 显出构成本发明第二实施例的磁阻器件的 TMR 膜的实例 6 的横截面结构；

图 16 为根据本发明第三实施例的磁存储设备的主要部分的示意性平面图；

图 17A 为根据本发明第四实施例的磁存储器的实例 1 的示意性横截面图；

图 17B 为示出图 17A 中所示磁存储器中使用的 GMR 膜的结构的示意图；

图 18 为图 17A 中所示的磁存储器的实例 1 的存储器单元的等效电路图；

图 19 示出图 17A 中所示的实例 1 的变型中使用的 TMR 膜的横截面结构；

以及

图 20 为根据本发明第四实施例的磁存储器的实例 2 的示意性横截面图。

具体实施方式

以下参照附图描述各优选实施例的细节。这些实施例提供的高输出、高灵敏度磁阻器件具有高 MR 比，使器件能够对磁阻的变化保持足够的灵敏度。这些实施例还提供所述磁阻器件的应用，包括磁头、磁存储设备以及磁存储器。为此，用具有特定成分范围的 CoFeGe 形成磁阻器件的磁化自由层和磁
化被钉扎层中的至少一个。在说明书中，“每单位面积磁阻的变化量△RA”可称为“磁阻变化△RA”或者简称为“△RA”。

<第一实施例>

图 1 为示出根据本发明第一实施例的混合磁头 10 的横截面结构的示意图。磁头 10 包括磁阻器件 20 和感应式写入器件 13。箭头 X 表示磁记录介质（未示出）朝向磁阻器件的运动方向。磁阻器件 20 形成在作磁头滑动器（未示出）的基底的平坦陶瓷（例如 Al₂O₃-TiC）衬底 11 上。感应式写入器件 13 形成在磁阻器件 20 上。

感应式写入器件 13 包括顶磁极 14、底磁极 16 以及写入间隙层 15，顶磁极 14 的宽度与相对的磁记录介质的轨道宽度相对应，底磁极 16 与顶磁极 14 平行地延伸，写入间隙层 15 由非磁材料形成，插入在顶磁极 14 与底磁极 16 之间。感应式写入器件 13 还包括与顶磁极 14、底磁极 16 磁连接的轮部（未示出）以及缠绕轮部的线圈（未示出）。流过线圈的写入电流感应出磁场以写入信息。顶磁极 14、底磁极 16 以及轮部由软磁材料形成。软磁材料优选从饱和磁通密度大的材料中选择，以保证要求的记录磁场，这样的材料例如有 Ni₈₀Fe、CoZrNb、FeN、FeSiN、FeCo、CoNiFe 等等。应注意，感应式写入器件 13 并不限于上述结构，而是可采用任意已知的结构。

磁阻器件 20 包括底电极 21、磁阻膜 30 （下面称为“GMR 膜 30”）、氧化铝膜 25 以及顶电极 22，它们依次层叠在形成于陶瓷衬底 11 上的氧化铝膜 12 上。GMR 膜 30 与底电极 21、顶电极 22 分别电连接。

磁畴控制膜 24 经由绝缘膜 23 形成在 GMR 膜 30 两侧。磁畴控制膜 24 为 Cr 膜、CoCrPt 以及 CoPt 膜的层叠物。设置磁畴控制膜 24 可使 GMR 膜 30 中的磁化自由层（如图 2 所示）具有单磁畴，并防止巴克豪森噪声。底电极 21 和顶电极 22 形成感测电流 Is 的电流通道，并用作磁屏蔽。因此，用例如 NiFe、CoFe、CoZrNb、FeN、FeSiN、CoNiFe 等软磁材料形成底电极 21 和顶电极 22。此外，在底电极 21 与 GMR 膜 30 之间的边界上可设置导电膜，例如 Cu 膜、Ta 膜、Ti 膜等等。磁阻器件 20 和感应式写入器件 13 用氧化铝膜、碳氢化物膜或其它合适的膜覆盖，以防止腐蚀。

感应电流 Is 例如从顶电极 22 以基本上垂直的方向流过 GMR 膜 30，到达底电极 21。GMR 膜 30 的磁阻（电阻）响应从磁记录介质泄漏的信号磁场
强度和方向而变化。通过提供预定量的感测电流 I_s，磁阻器件 20 检测 GMR 膜 30 的磁阻变化作为电压变化。基于检测到的数值，磁阻器件 20 再现出磁记录介质中的信息。应注意，感测电流 I_s 的流动方向不一定是图 1 所示的向下的方向，也可以是相反的方向。磁记录介质的运动方向也可以反过来。

图 2 为根据本发明第一实施例的磁阻器件中使用的第一实例（实例 1）的 GMR 膜的横截面图。实例 1 的 GMR 膜 30 具有所谓的单自旋阀结构，其中依次连续地沉积缓冲层 31、反铁磁层 32、磁化被钉扎层叠物 33、非磁金属层 37、磁化自由层 38 以及保护层 39。通过溅射方法或其它合适的方法在底电极 21（参见图 1）的表面上形成缓冲层 31。缓冲层 31 例如为 NiCr 膜、Ta 膜和 Ru 膜的层叠物、或 Ta 膜（例如厚 5 nm）和 NiFe 膜（例如厚 5 nm）的层叠物。对于后一种情况，NiFe 膜中的 Fe 含量优选在 17at.%到 25at.%的范围内。利用 NiFe 膜或者 Ru 膜，反铁磁层 32 在 (111) 晶面（即 NiFe 膜和 Ru 膜的晶体生长方向）以及晶体学（crystallographically）等价晶面上外延生长。因此，反铁磁层 32 的结晶度得到改善。

反铁磁层 32 例如由膜厚 4 nm 至 30 nm，优选为 4 nm 至 10 nm 的 Mn-TM 合金（TM 包括 Pt、Pd、Ni、Ir 和 Rh 中的至少其中一种）形成。Mn-TM 合金例如有 PtMn、PdMn、NiMn、IrMn 和 PtPdMn。反铁磁层 32 向磁化被钉扎层叠物 33 的第一磁化被钉扎层 34 施加交换相互作用，将第一磁化被钉扎层 34 的磁化固定在预定方向上。磁化被钉扎层叠物 33 包括所谓的合成铁被钉扎结构（synthetic Ferri pinned structure），其中在反铁磁层 32 上依次沉积第一磁化被钉扎层 34、非磁耦合层 35 以及第二磁化被钉扎层 36。在磁化被钉扎层叠物 33 中，第一磁化被钉扎层 34 的磁化和第二磁化被钉扎层 36 的磁化在反铁磁体中交换耦合，并且磁化方向相反。

第一磁化被钉扎层 34 和第二磁化被钉扎层 36 都由包含 Co、Ni 和 Fe 的至少其中一种元素的铁磁材料形成，厚 1 nm 至 30 nm。用于第一磁化被钉扎层 34 和第二磁化被钉扎层 36 的合适的铁磁材料例如有 CoFe、CoFeB、CoFeAl、NiFe、FeCoCu、CoNiFe 等等。第一磁化被钉扎层 34 和第二磁化被钉扎层 36 不一定是单层膜，它们都可以是两层或两层以上的膜的层叠物。在这种情况下，这些层叠物可以由同样的元素结合形成，但是元素的成分比例不同，或者也可以由不同的元素结合形成。
因为以下原因，优选用 CoFeAl 或 CoFeGe 形成第二磁化被钉扎层 36。CoFeAl 和 CoFeGe 的自旋相关体散射系数 β 与软磁材料 CoFe 的相似，而与其他软磁材料的自旋相关体散射系数相比，数值较大。例如 Co$_{90}$Fe$_{10}$ 的自旋相关体散射系数 β 为 0.55，而 Co$_{50}$Fe$_{20}$Al$_{30}$ 的自旋相关体散射系数 β 为 0.50。另外，CoFeAl 和 CoFeGe 的电阻率 ρ 远远大于 CoFe。例如，Co$_{90}$Fe$_{10}$ 的电阻率为 20 $\mu\Omega cm$，而 Co$_{50}$Fe$_{20}$Al$_{30}$ 的电阻率为 130 $\mu\Omega cm$，是 Co$_{90}$Fe$_{10}$ 的 6 倍，Co$_{50}$Fe$_{20}$Ge$_{30}$ 的电阻率为 236 $\mu\Omega cm$，比 Co$_{90}$Fe$_{10}$ 大 11 倍。因为磁阻变化 ΔRA 取决于自旋相关体散射系数 β 与电阻率 ρ 的乘积，所以 CoFeAl 和 CoFeGe 的 ΔRA 值远远大于 CoFe。因此，在第二磁化被钉扎层 36 中使用 CoFeAl 或 CoFeGe 能够大大增加 ΔRA 值。在这种情况下，CoFeGe 膜和 CoFeAl 膜的自旋相关体散射系数 β 优选为等于或大于 0.4 ($\beta \geq 0.4$)。

由于 CoFeAl 和 CoFeGe 的电阻率 ρ 与成分比例关系不大，所以在器件制造过程中能够容易地控制这些材料的成分，这是有利的。因为上述优点，磁化自由层 38 也可以使用 CoFeAl 和 CoFeGe。

如果用 CoFeGe 制成第二磁化被钉扎层 36，从增加 ΔRA 值（表示磁阻的变化）的角度来看，优选地，CoFeGe 成分存在于图 9 所示的三元成分图表中由连接坐标点 A、B、C、D 的线段所限定的区域内，其中，坐标点由原子百分比 (at.%) 表示的 (Co, Fe, Ge) 成分所限定，点 A 为 (42.5, 30, 27.5)，点 B 为 (35, 52.5, 12.5)，点 C 为 (57.5, 30, 12.5)，点 D 为 (45.0, 27.5, 27.5)。

用于第一磁化被钉扎层 34 的软磁材料例如有 Co$_{60}$Fe$_{40}$ 和 NiFe，这些材料在低电阻率方面是合适的。由于第一磁化被钉扎层 34 的磁化与第二磁化被钉扎层 36 的相反，所以第一磁化被钉扎层 34 用于减少 ΔRA 值。使用电阻率低的铁磁材料能够防止 ΔRA 值降低。

非磁耦合层 35 的厚度在一个范围内；第一磁化被钉扎层 34 与第二磁化被钉扎层 36 反铁磁地交换耦合。该范围为 0.4 nm 至 1.5 nm（优选 0.4 nm 至 0.9 nm）。非磁耦合层 35 由非磁材料例如 Ru、Rh、Ir、Ru 基合金、Rh 基合金、Ir 基合金等形成。Ru 基合金优选为 Ru 与从 Co、Cr、Fe、Ni 和 Mn 中选择的一种或多种材料的结合。

虽然在附图中没有特别示出，但是在反铁磁层 32 与第一磁化被钉扎层
之间可插入铁磁连接层，其饱和磁通密度比第一磁化被钉扎层 34 更高。这种配置能够增加第一磁化被钉扎层 34 与反铁磁层 32 之间的交换相互作用，防止第一磁化被钉扎层 34 的磁化偏离预定方向或者与预定方向相反这样的不希望的情况发生。

非磁金属层 37 由膜厚例如为 1.5 nm 至 10 nm 的导电、非磁材料形成。适用于非磁金属层 37 的导电材料例如有 Cu、Al 等等。

磁化自由层 38 设置在非磁金属层 37 上，由膜厚例如为 2 nm 至 12 nm 的 CoFeGe 形成。如上所述，CoFeGe 的自旋相关体散射系数与 CoFe 相似，而电阻率远远大于 CoFe。因此，与 CoFe 自由磁化层相比，磁化自由层 38 的△RA 值可增加。优选地，将 CoFeGe 的成分选择为处于图 9 所示的三元成分图表中由连接坐标点 A、B、C、D 的线段所限定的区域内，其中，点 A 为 (42.5, 30, 27.5)，点 B 为 (35, 52.5, 12.5)，点 C 为 (57.5, 30, 12.5)，点 D 为 (45.0, 27.5, 27.5)。在这种情况下，能够获得比一种已知的何士勒（Heusler）合金即 (Co2Fe)100-xGeX (0 ≤ X ≤ 30 at.%) 更高的△RA 值（磁场的变化），因此能够实现具有高输出电平的磁阻元件。

可通过使用具有预定成分的 CoFeGe 合金靶或者三个单独的 Co、Fe、Ge 靶的溅射工艺，形成应用于磁化被钉扎（铁磁）层和磁化自由层的至少其中一个的具有上述成分范围的 CoFeGe 层。对于后一种情况，可在联合溅射工艺中使用三个靶，或者轮流地使用它们以形成 CoFeGe 多层结构。在另一替代方案中，可将单靶结合双元素合金靶，并在同时放电过程中、或者在多层层叠过程中使用这些靶。例如，可在联合溅射或者多层层叠中使用 Co 靶和 FeGe 合金靶。

保护层 39 由非磁、导电材料（例如包含 Ru、Cu、Ta、Au、Al 和 W 中任意一种元素的金属）形成，可具有由这些材料形成的多层结构。保护层 39 防止进行热处理以获得下述的反铁磁层 32 的反铁磁性时磁化自由层 38 的氧化。

下面结合图 2 说明结构实例 1 的 GMR 膜 30 的形成。首先，用上述材料通过溅射方法、气相沉积方法、CVD 方法或者其它合适的方法形成从缓冲层 31 向上到保护层 39 的各个层，得到多层结构。

然后，在磁场中加热该多层结构。加热工艺的条件是通过提供 1592 KA/m
的磁场，在真空环境下以 250°C 至 320°C 加热大约 2 至 4 小时。在加热工艺中，一部分 Mn-TM 合金转化为有序合金（ordered alloy），从而出现反铁磁性。通过在加热工艺中以预定方向提供磁场，将反铁磁层 32 的磁化方向设定在预定方向，结果，利用反铁磁层 32 与磁化被钉扎层 33 之间的交换相互作用将被钉扎层 33 的磁化固定在所需的方向上。

然后，将从缓冲层 31 到保护层 39 的多层结构图案化为预定形状，以获得 GMR 膜 30，如图 1 所示。在上述的后续结构实例 1-6 中使用的 GMR 膜也采用与本实例的 GMR 膜 30 相同的方法形成。由于后续结构实例中的磁化自由层 38 像结构实例 1 一样也用 CoFeGe 形成，所以能够获得△RA 值大的 GMR 膜结构，因此能够获得高输出电平的磁阻器件。

图 3 为用于本发明第一实施例的磁阻器件 20 的结构实例 2 的 GMR 膜 40 的横截面图。图 3 中与图 2 中相同的元件用相同的附图标记表示，并省略对它们的描述。

结构实例 2 的 GMR 膜 40 包括从底部依次连续沉积的缓冲层 31、下反铁磁层 32、下磁化被钉扎层叠物 33、下非磁金属层 37、磁化自由层 38、上非磁金属层 47、上磁化被钉扎层叠物 43、上反铁磁层 42 以及保护层 39。GMR 膜 40 具有自旋的双自旋阀结构，其中在图 2 所示的结构实例 1 的 GMR 膜 30 的磁化自由层 38 与保护层 39 之间插入上非磁金属层 47、上磁化被钉扎层叠物 43 以及上反铁磁层 42。由于下反铁磁层 32、下磁化被钉扎层叠物 33 以及下非磁金属层 34 分别用与图 2 所示的结构实例 1 的 GMR 膜 30 的反铁磁层 32、磁化被钉扎层 33 以及非磁金属层 34 相同的材料形成，并且膜厚相同，所以它们用相同的附图标记表示。上非磁金属层 47 和上反铁磁层 42 可分别用与下非磁金属层 37 和下反铁磁层 32 相同的材料形成，并且膜厚也可设定在相同的范围内。上磁化被钉扎层叠物 43 具有自旋的合成铁被钉扎结构，其中在上反铁磁层 42 上依次连续层叠上第一磁化被钉扎层 44、上非磁连接层 45 以及第二磁化被钉扎层 46。上第一磁化被钉扎层 44、上非磁连接层 45 以及第二磁化被钉扎层 46 分别用与下第一磁化被钉扎层 34、下非磁连接层 35 以及下第二磁化被钉扎层 36 相同的材料形成，并且膜厚也设定在相同的范围内。

GMR 膜 40 的磁化自由层 38 由具有以与图 2 所示的 GMR 膜 30 的磁化
自由层 38 同样方式确定的合适的成分范围的 CoFeGe 制成，并且由于与结构实例 1 中同样的原因，具有 GMR 膜 40 的磁阻器件 20 的磁阻变化量△RA 大。此外，GMR 膜 40 具有包括上下自旋阀和上自旋阀的双自旋阀结构，下自旋阀包括下磁化被钉扎层叠物 33、下非磁金属层 37 和磁化自由层 38，上自旋阀包括磁化自由层 38、上非磁金属层 47 和上磁化被钉扎层叠物 43。因此，GMR 膜 40 的磁阻变化总量△RA 增加为结构实例 1 的 GMR 膜 30 的△RA 值的两倍。与使用结构实例 1 的 GMR 膜 30 相比，将 GMR 膜 40 用于磁阻器件时在磁阻器件中获得的输出电平更高。应注意，GMR 膜 40 的制造方法与结构实例 1 的 GMR 膜 30 相同，所以这里省略其说明。

图 4 为用于本发明第一实施例的磁阻器件 20 的结构实例 3 的 GMR 膜 50 的横截面图。结构实例 3 的 GMR 膜 50 是结构实例 2 的 GMR 膜 40 的改型，包括将磁化自由层 38 夹在中间的第一、第二界面磁层 52、53。第一、第二界面磁层 52、53 防止锗（Ge）原子从磁化自由层 38 向非磁层 37、47 扩散。

换而言之，GMR 膜 50 包括磁化自由层叠物 51，代替了图 3 中 GMR 膜 40 的磁化自由层 38（结构实例 2）。更确切地说，GMR 膜 50 包括从底部依次连续沉积的缓冲层 31、下反铁磁层 32、下磁化被钉扎层叠物 33、下非磁金属层 37、磁化自由层叠物 51、上非磁金属层 47、上磁化被钉扎层叠物 43、上反铁磁层 42 以及保护层 39。与图 3 中同样的元件用同样的附图标记表示，并省略对它们的说明。

磁化自由层叠物 51 包括依次配置在下非磁金属层 37 上的第一界面磁层 52、磁化自由层 38 以及第二界面磁层 53。磁化自由层 38 由具有与图 2 所示的结构实例 1 的 GMR 膜 30 同样成分范围的 CoFeGe 形成。第一、第二界面磁层 52、53 都由软磁材料制成，厚度例如为 0.2 nm 至 2.5 nm。优选地，第一、第二界面磁层 52、53 由自旋相关界面散射系数比 CoFeGe 大的材料形成。这样的材料例如有 CoFe、CoFe 合金、NiFe 以及 NiFe 合金。CoFe 合金包括 CoFeNi、CoFeCu、CoFeCr、CoFeAl 等等。NiFe 合金包括 NiFeCu、NiFeCr 等等。通过设置这对具有大的自旋相关界面散射系数值的软磁材料膜将磁化自由层 38 夹在中间，提高了磁化自由层叠物 51 的磁阻变化△RA。

第一、第二界面磁层 52、53 可由成分相同的同样材料形成，也可由包
含的元素相同但是成分不同的材料形成，或者由包含不同元素的不同材料形成。此外，第一、第二界面磁层 52、53 可由成分比例与磁化自由层 38 不同的 CoFeGe 制成。例如，可将矫顽磁性比磁化自由层 38 更高的 CoFeGe 用于第一、第二界面磁层 52、53。

结构实例 3 的 GMR 膜 50 与结构实例 2 的 GMR 膜 40 有同样的效应和优点，并且因为插入第一、第二界面磁层 52、53 将磁化自由层 38 夹在中间，所以磁阻变化△RA 增加。

图 5 为用于本发明第一实施例的磁阻器件 20 的结构实例 4 的 GMR 膜 60 的横截面图。结构实例 4 的 GMR 膜 60 是图 3 所示结构实例 2 的 GMR 膜 40 的改型。与图 3 中同样的元件用同样的附图标记表示，并省略对它们的说明。

在结构实例 4 的 GMR 膜 60 中，在第二下磁化被钉扎层 36 与下非磁金属层 37 之间插入第三界面磁层 63，在第二上磁化被钉扎层 46 与上非磁金属层 47 之间插入第四界面磁层 64。换而言之，GMR 膜 60 包括下磁化被钉扎层叠物 61 和上磁化被钉扎层叠物 62，代替了图 3 所示的结构实例 2 的 GMR 膜 40 的下磁化被钉扎层叠物 33 和上磁化被钉扎层叠物 43。因此，GMR 膜 60 包括从底部依次连续沉积的缓冲层 31、下反铁磁层 32、下磁化被钉扎层叠物 61、下非磁金属层 37、磁化自由层 38、上非磁金属层 47、上磁化被钉扎层叠物 62、上反铁磁层 42 以及保护层 39。

下磁化被钉扎层叠物 61 包括设置在下第二磁化层 36 与下非磁金属层 37 之间的第一界面磁层 63。上磁化被钉扎层叠物 62 包括设置在上非磁金属层 47 与上第二磁化层 46 之间的第二界面磁层 64。第一、第二界面磁层 63、64 都由铁磁材料形成，厚度范围从 0.2 nm 到 2.5 nm。优选地，第一、第二界面磁层 63、64 的自旋相关界面散射系数都比 CoFeGe 的大。这样的材料例如有 CoFe、CoFe 合金、NiFe 以及 NiFe 合金。CoFe 合金包括 CoFeNi、CoFeCu、CoFeCr、CoFeAl 等等。NiFe 合金包括 NiFeCu、NiFeCr 等等。通过这样的配置，可增加磁阻变化△RA。

第一、第二界面磁层 63、64 可由成分相同的同样材料形成，或者由包含的元素相同但是成分不同的材料形成。

结构实例 4 的 GMR 膜 60 与结构实例 2 的 GMR 膜 40 有同样的效应和
优点，并且因为具有第一、第二界面磁层 63、64，所以磁阻变化△RA 增加。

图 6 为用于本发明第一实施例的磁阻器件 20 的结构实例 5 的 GMR 膜 65A 的横截面图。本实例的 GMR 膜 65A 是结构实例 4 的 GMR 膜 60 的改型。在该结构中，将第二下磁化被封扎层 36 配置在第二界面磁层 63 与第一铁磁连接层 68 之间，将第二上磁化被封扎层 46 配置在第三界面磁层 64 与第四铁磁连接层 69 之间。

结构实例 5 的 GMR 膜 65A 包括从底部依次连续沉积的缓冲层 31、下反铁磁层 32、下磁化被封扎层叠物 66、下非磁金属层 37、磁化自由层 38、上非磁金属层 47、上磁化被封扎层叠物 67、上反铁磁层 42 以及保护层 39。下磁化被封扎层叠物 66 包括设置在下非磁耦合层 35 与第二下磁化被封扎层 36 之间的第一铁磁连接层 68，上磁化被封扎层叠物 67 包括设置在第二上磁化被封扎层 46 与上非磁耦合层 45 之间的第二铁磁连接层 69。

第一、第四铁磁连接层 68、69 的厚度范围都是从 0.2 nm 到 2.5 nm，并且都由包含 Co、Ni 和 Fe 的至少其中一种元素的铁磁材料制成。这样的材料例如有 CoFe、CoFeB 以及 CoNiFe。第一铁磁连接层 68 和第四铁磁连接层 69 分别由饱和磁化比第二下磁化被封扎层 36 和第二上磁化被封扎层 46 大的铁磁材料制成。这种配置增加了第一铁磁连接层 68 与第一下磁化被封扎层 34 之间、以及第四铁磁连接层 69 与第一上磁化被封扎层 44 之间的交换耦合。结果，稳定了第二下磁化被封扎层 36 和第二上磁化被封扎层 46 的磁化方向，并且磁阻变化△RA 变得可靠。

结构实例 5 的 GMR 膜 65A 与结构实例 4 的 GMR 膜 60 有同样的效应和优点。此外，因为插入第一、第四铁磁连接层 68、69，所以磁阻变化△RA 变稳定。

图 7 为用于本发明第一实施例的磁阻器件 20 的结构实例 6 的 GMR 膜 65B 的横截面图。本实例的 GMR 膜 65B 是结构实例 3 的 GMR 膜 50 与结构实例 5 的 GMR 膜 65A 的结合。GMR 膜 65B 包括从底部依次连续沉积的缓冲层 31、下反铁磁层 32、下磁化被封扎层叠物 66、下非磁金属层 37、磁化自由层叠物 51、上非磁金属层 47、上磁化被封扎层叠物 67、上反铁磁层 42 以及保护层 39。磁化自由层叠物 51 配置在下非磁金属层 37 上，包括从底部依次沉积的第一界面磁层 52、磁化自由层 38 以及第二界面磁层 53。
本实例中，如果磁化自由层 38、第二下磁化被钉扎层 36、第二上磁化被钉扎层 46 由 CoFeGe 形成，则在这些磁化被钉扎层与非磁金属层 37 和 47 之间的所有边界中以每条边界一个的方式插入界面磁层 52、53、63 和 64。此外，在下磁化被钉扎层叠物 66 中，在第二下磁化被钉扎层 36 与下非磁耦合层 35 之间插入第一铁磁连接层 68；在上磁化被钉扎层叠物 67 中，在第二上磁化被钉扎层 46 与上非磁耦合层 45 之间插入第二铁磁连接层 69。这种配置能够最有效地增加 GMR 膜 65B 的磁阻变化△RA 并使其稳定。

虽然在第一实施例中描述了结构实例 3 至结构实例 6 的 GMR 膜是结构实例 2 的双自旋阀 GMR 膜 40 的改型，但是结构实例 3-6 的配置也可以应用于图 2 所示的结构实例 1 的单自旋阀 GMR 膜 30 的磁化自由层 38 和第二磁化被钉扎层 36。

图 8 为示出用作图 3 所示结构实例 2 的 GMR 膜 40 的磁化自由层 38 的 CoFeGe 膜中，具有不同的 CoFeGe 成分的样品 No.1 至 No.20 的 MR 比（%）的测量结果的表格。

gg.5本样品以如下方式制造。在覆盖有热氧化膜的硅衬底上形成层叠膜 Cu （250 nm）/NiFe （50 nm）作为底电极 21（参见图 1）。然后，在不加热衬底的条件下用溅射设备在超真空环境（等量小于 2×10^{-6} Pa）中形成从缓冲层 31 开始向上到保护层 39 的层叠物。层叠物中各层的成分和膜厚在下面列出。沉积之后，进行热处理以获得反铁磁层的反铁磁性。热处理的条件是通过提供 1950 KA/m 的磁场，以 300℃加热 3 小时。然后，通过离子研磨和光刻来加工该多层结构以获得层叠物。在实际工艺中，制造六种连接区域尺寸不同（从 0.1μm^2 到 0.6μm^2）的层叠物，对于每一种连接区域尺寸制造四十（40）片层叠物。

然后，涂层上形成二氧化硅膜。干蚀刻二氧化硅膜以暴露出保护层，沉积 Au 膜形成与保护层接触的顶电极。各样品（No.1 至 No.20）中使用的 GMR 膜 40 中的各个层的材料和厚度（在括号中）在下面列出。

缓冲层 31：Ru （4 nm）
下反铁磁层 32：IrMn （7 nm）
第一下磁化被钉扎层 34：Co_{60}Fe_{40} （3.5 nm）
下非磁耦合层 35：Ru （0.7 nm）
下第二磁化被钉扎层 36: CoFeAl (5.0 nm)
下非磁金属层 37: Cu (3.5 nm)
磁化自由层 38: CoFeGe (4.5 nm)
上非磁金属层 47: Cu (3.5 nm)
第二上磁化被钉扎层 46: CoFeAl (3.0 nm)
上非磁耦合层 45: Ru (0.7 nm)
第一上磁化被钉扎层 44: Co_{60}Fe_{40} (3.5 nm)
上反铁磁层 42: IrMn (7 nm)
保护层 39: Ru (5 nm)

对各个样品 (No.1 至 No.20) 测量了磁阻变化 ΔR, 对各种连接区域尺寸计算了平均磁阻 (MR) 比 (用 ΔRA/RA 表示)。测量磁阻变化 ΔR 时, 感应电流为 2 mA, 外磁场平行于上、下第二磁化被钉扎层 36 和 36 的磁化方向, 从 -79 KA/m 扫描到 79 KA/m。用数字电压计测量底电极与顶电极之间的电压, 以获得磁阻曲线。然后, 根据磁阻曲线的最大值与最小值之间的差计算磁阻变化△R。根据在上述方向上从 -7.9 KA/m 到 7.9 KA/m 的范围内扫描外部磁场获得的磁阻曲线的磁滞现象, 也可估计磁化自由层 38 的矫顽力。

由图 8 的表格可知, 在样品 No.1 至 No.20 中 ΔRA 在 5 mΩμm² 或以上,或者说 MR 比在 5% 或以上。根据发明人的研究, 样品 No.1 至 No.20 的磁阻变化比包括 CoFe 磁化自由层的传统结构的磁阻变化大。将 CoFeGe 膜用于第二上磁化被钉扎层 46 和第二下磁化被钉扎层 36 的至少其中一个, 就能够获得这样令人满意的 MR 比。

图 9 为示出磁化自由层 38 的成分范围的 Co、Fe、Ge 三元成分图表, 其中将样品 (No.1 至 No.20) 的 MR 比 (%) 在与成分对应的坐标点处标出。为了比较, 将已知的 Heusler 合金的成分和对应的 MR 比也用粗虚线标出。

已知 Heusler 合金的 Co_{50}Fe_{25}Ge_{25} 的 MR 比最大值为 5.59%。相比而言,根据本实施例成分在区域 ABCD 限定的范围内的 CoFeGe 磁化自由层 38 可获得 5.6% 或以上的 MR 比。特别是那些 Fe 成分更高且 Ge 成分更低的样品表现出令人满意的高 MR 比。明显可知, 与传统合金 (CoFe)_{100-x}Ge_{x} (0 ≤ X ≤ 30 at.%) 相比, 成分范围限定在区域 ABCD 中的结构实例 2 的 GMR 膜 40
的 MR 比更高，因此更佳。

总之，用于磁化自由层 38 的 CoFeGe 的优选成分范围在连接坐标点 A、B、C、D 的区域内，设定各坐标点表示 (Co, Fe, Ge) 的含量百分比，其中点 A 为 (42.5, 30, 27.5)，点 B 为 (35, 52.5, 12.5)，点 C 为 (57.5, 30.0, 12.5)，点 D 为 (45.0, 27.5, 27.5)。该成分范围能获得比 Co₅Fe₂₅Ge₂₅ (即 Heusler 合金的成分) 高的 MR 比，并提高关于信号磁场的输出。

通过实验确定，当采用图 7 所示的实例 6 的多层结构，并将 Co₄₅Fe₃₅Ge₂₀ 用于下、上第二磁化被钉扎层 36 和 46 以及磁化自由层 38，并且在 CoFeGe 膜的所有边界配置 CoFe 界面磁层时，MR 比能够提高到最大值 8.39%。根据这个结果，可在任一个 CoFeGe 膜与各个非磁层 37, 47 之间插入界面磁层（例如 CoFe 层）时，防止了 Ge 原子的扩散并获得高 MR 比。

CoFeGe 的自旋相关体散射系数与 CoFe 的自旋相关体散射系数一样大，比其它软磁材料的自旋相关体散射系数的数值高。此外，CoFeGe 的电阻率是 CoFe 的八倍以上。与 CoFe 相比，将 CoFeGe 用于磁化自由层 38 以及接触非磁金属层 37 (或 47) 的磁化被钉扎层 36 (或 46) 的至少其中一个，则由自旋相关体散射系数与电阻率的乘积确定的磁阻变化变得较高。因此，能够提高磁阻器件 20 的输出电平。

这样，将具有由三元成分图表中的区域 ABCD 限定的成分范围的 CoFeGe 用于磁化自由层 38 以及接触非磁金属层 37 (或 47) 的磁化被钉扎层 36 (或 46) 的至少其中一个的磁阻器件 20 具有大的 △RA 值 (表示每单位面积的磁阻变化)，并实现了高输出电平。随着 Ge 成分的增加，电阻率也增加；但是，如果 Ge 成分超过 27.5%，则磁矩突然下降，结果 MR 比降低。另一方面，如果 Ge 成分低于 12.5%，则与 CoFe 相比电阻率不能令人满意，也不能提高 MR 比。因此，Ge 成分的优选范围为从 12.5%到 27.5%。

<第二实施例>

图 10 为用于根据本发明第二实施例的磁头的磁阻效应膜的示意性横截面图。在第二实施例中，将隧道磁阻膜（下面称为 TMR 膜）用于磁阻器件，代替第一实施例的 GMR 膜，其它结构和配置与第一实施例相同。因此，这里省略对磁头的说明。

图 10-15 示出在第二实施例的磁阻器件 20 中使用的 TMR 膜的结构实
例 1-6。除了用非磁绝缘层 37a 和 47a 分别替代第一实施例中的非磁金属层 37 和 47 之外，第二实施例的结构实例 1-6 的 TMR 膜 70、71、72、73、74A 和 74B 与图 2-图 7 中所示的 GMR 膜 30、40、50、60、65A 和 65B 具有相同的结构。

非磁绝缘层 37a 和 47a 都具有膜厚例如为 0.2 nm 至 2.0 nm，并且都由从 Mg、Al、Ti 和 Zr 组成的群组中选择的物质的氧化物形成。氧化物的实例包括 MgO、AlO_x、TiO_x 和 ZrO_x，其中下标 “X” 表示成分可偏离化合物成分（compound composition）。在这些氧化物材料中，结晶的 MgO 特别适合于非磁绝缘层 37a 和 47a。或者，非磁绝缘层 37a 和 47a 都由从 Al、Ti 和 Zr 组成的群组中选择的物质的氮化物或氮化物的混合物（nitride compound）形成。这样的氮化物包括 AlN、TiN 和 ZrN。

可通过溅射方法、CVD 方法或者气相沉积方法直接在底层上形成非磁绝缘层 37a 和 47a；或者，通过溅射方法、CVD 方法或者气相沉积方法在底层上形成金属层，然后通过氧化或氮化工艺将金属层转化为金属氧化物或金属氮化物。

用与第一实施例测量△RA（表示每单位面积的磁阻变化）相同的方式获得每单位面积隧道电阻的变化量。磁化自由层 38 和第二磁化被钉钴层 36 或 46 的极化率越大，每单位面积隧道电阻的变化量越大。在此，极化率为铁磁层（即磁化自由层 38 和第二磁化被钉钴层 36、46）经由绝缘层（即非磁绝缘层 37a 和 47a）的极化率。由于 CoFeGe 的自旋极化与传统使用的 NiFe 或 CoFe 相同，所以希望在第一实施例中一样，通过将 CoFeGe 用于磁化自由层 38 和第二磁化被钉钴层 36（或 47）的至少其中一个，增加每单位面积隧道电阻的变化。还希望用 CoFeAl 制成第二磁化被钉钴层 36（或 46），而将 CoFeGe 用于磁化自由层 38 时，也能够增加每单位面积隧道电阻的变化。

用于磁化自由层 38 的 CoFeGe 的成分范围与结合第一实施例说明的范围相同，该范围在图 9 所示连接坐标点 A、B、C、D 的线段所限定的区域内。将成分范围设定在该区域内，能够以 TMR 膜实现高输出磁阻器件。

在第二实施例中，结构实例 3-5 的 TMR 膜 72、73、74A 为图 11 所示结构实例 2 的 TMR 膜 71 的改型。这种双自旋仪 TMR 结构可用于图 10 所示的 TMR 膜 70 的磁化自由层 38 和/或第二磁化被钉钴层 36。此外，结构实例
3 的 TMR 膜 72 和结构实例 5 的 TMR 膜 74A 可结合起来获得图 15 所示的结构实例 6 的 TMR 膜 74B，这种结合能够获得最佳的输出电平。

<第三实施例>

图 16 为根据本发明第三实施例的磁存储设备的平面图。磁存储设备 90 的壳体 91 中安置了由心轴（未示出）驱动的中心轴（hub）92，固定在中心轴 92 上由心轴转动的磁记录介质 93、致动器单元 94、由致动器单元 94 支撑的且在磁记录介质 93 的径向上驱动的悬臂（suspension）96，以及由悬臂 96 支撑的磁头 98。

磁记录介质 93 可以是平面内磁记录型或者垂直磁记录型，可以是具有倾斜各向异性的记录介质。磁记录介质 93 不限于磁盘，也可以是磁带。

磁头 98 包括磁阻器件 20 和形成在陶瓷衬底 11 上的感应式写入器件 13，如图 1 所示。感应式写入器件 13 可以是用于平面内记录的环型、用于垂直记录的单磁极型、或者其它已知的类型。磁阻器件 20 具有第一实施例的结构实例 1-6 的任一种 GMR 膜，也可以具有第二实施例的结构实例 1-5 的任一种 TMR 膜。在每一种情况下，磁阻器件 20 都具有足够的每单位面积磁阻变化量（△RA），或者具有大的隧道电阻变化量，以获得高输出电平。磁存储设备 90 适合于高密度记录。应注意，第三实施例的磁存储设备的基本结构仅仅是实例，且不限于图 16 所示的实例。

<第四实施例>

图 17A 为第四实施例的结构实例 1 的磁存储器器件的横截面图。图 17B 为图 17A 中使用的 GMR 膜 30 的结构的示意图。图 18 为磁存储器器件的存储器单元的等效电路图。图 17A 中示出正交（?）坐标轴以指示方向。Y1 和 Y2 方向垂直于纸平面，Y1 方向进入纸平面，而 Y2 方向从纸平面出来。在下面的描述中，将某方向仅仅称为“X 方向”时，该方向可以是 X1 方向或者 X2 方向，对于“Y 方向”和“Z 方向”也是如此。在附图中，与前面已经描述的同样的元件用同样的附图标记表示，并省略对它们的说明。

本实例中磁存储器器件 100 包括多个排列成矩阵的存储器单元 101。各存储器单元 101 包括磁阻效应（GMR）膜 30 和金属氧化物半导体场效应晶体管（MOSFET）102。MOSFET 102 可使用 p 沟道 MOSFET 或者 n 沟道 MOSFET。这里，采用将电子用作载流子的 n 沟道 MOSFET 作为实例进行描
MOSFET 102 包括：在硅衬底 103 中形成的含有 p 型杂质的 p 阱区 104，
在 p 阱区 104 中的硅衬底 103 表面附近彼此独立地形成的杂质扩散区 105a
和 105b，在杂质扩散区 105a 和 105b 中已引入了 n 型杂质。这里，杂质扩散
区 105a 用作源极 S，另一个杂质扩散区 105b 用作漏极 D。MOSFET 102 的
栅电极 G 形成在两个杂质扩散区 105a 与 105b 之间硅衬底 103 表面上的栅极
绝缘膜 106 上。

MOSFET 102 的源极 S 通过垂直布线 114a 和层内布线 115 与 GMR 膜
30 的一侧（例如基层 31）电连接。此外，板线 108 通过垂直布线 114b 与漏
极 D 电连接。用于读取的字线 109 与栅电极 G 电连接。或者，栅电极 G 也
可以充当字线 109 用于读取。位线 110 与 GMR 膜 30 的另一侧（例如保护膜
39）电连接。用于写入的字线 111 设置在 GMR 膜 30 下面，并与其相隔离。
GMR 膜 30 的结构与图 2 所示的相同。在 GMR 膜 30 中，磁化自由层 38 的
易磁化轴和难磁化轴的取向分别沿着 X 轴和 Y 轴，如图 17A 所示。可通过
热处理或者根据形状各向异性形成易磁化轴的方向。在根据形状各向异性在
X 轴方向上形成易磁化轴的情况下，GMR 膜 30 的平行于其膜表面（或者平
行于 X-Y 平面）的横截面形状成为 X 方向上的边大于 Y 方向上的边的矩形。

在磁存储器器件 100 中，用层间绝缘膜 113（例如氮化硅膜或二氧化硅
膜）覆盖硅衬底 103 的表面和栅电极 G。除了上述电连接外，GMR 膜 30、
板线 108、用于读取的字线 109、位线 110、用于写入的字线 111、垂直互连
114 以及平面内互连 115 通过绝缘膜 113 互相电隔离。

磁存储器器件 100 将信息保留在 GMR 膜 30 中。根据磁化自由层 38 的
磁化是平行于还是反平行于第二磁化被钉扎层 36 的磁化，保留的信息表示
不同的值。

接着说明磁存储器器件 100 的读取和写入操作。将信息写入磁存储器器
件 100 的 GMR 膜 30 中时，使用分别在 GMR 膜 30 上、下延伸的位线 110
和用于写入的字线 111。位线 110 在 GMR 膜 30 上沿 X 方向延伸。通过向位
线 110 提供电流，则在 Y 方向上将磁场提供给 GMR 膜 30。用于写入的字线
111 在 GMR 膜 30 下沿 Y 方向延伸。通过向用于写入的字线 111 提供电流，
则在 X 方向上将磁场提供给 GMR 膜 30。当实质上没有提供磁场时，GMR
膜 30 的磁化自由层 38 的磁化沿着 X 方向（例如 X2 方向），并且这个磁化
方向是稳定的。

将信息写入 GMR 膜 30 中时，电流同时提供给位线 110 和用于写入的字线 111。例如，为了使磁化自由层 38 的磁化沿着 X1 方向，在 Y1 方向上将电流提供给写入字线 111。结果，GMR 膜 30 中的磁场取向为 X1 方向。此时，提供给位线 110 的电流方向可以是 X1 方向或者 X2 方向。流过位线 110 的电流在 GMR 膜 30 中产生的磁场沿着 Y1 方向或者 Y2 方向，并且充当一部分磁场用于磁化自由层 38 的磁化，以越过难磁化轴的屏障（barrier）。也就是说，作为同时向磁化自由层 38 的磁化提供 X1 方向上的磁场和 Y1 或 Y2 方向上的磁场的结果，磁化自由层 38 的磁化取向为 X2 方向的磁化反转到 X1 方向。去除磁场后，磁化自由层 38 的磁化保留 X1 方向的取向并保持稳定，除非提供下一次写入操作的磁场或者用于擦除的磁场。

这样，根据磁化自由层 38 的磁化方向，在 GMR 膜 30 中记录“1”或“0”。例如，当第二磁化被钉扎层 36 的磁化方向为 X1 方向时，如果磁化自由层 38 的磁化方向为 X1 方向（低隧道电阻状态），则记录“1”，如果磁化自由层 38 的磁化方向为 X2 方向（高隧道电阻状态），则记录“0”。

在写入操作中提供给位线 110 和写入字线 111 的电流的大小被选择为，使得单独提供给位线 110 和写入字线 111 的其中一个的电流不会反转磁化自由层 38 的磁化。结果，仅仅在提供了电流的位线 110 和提供了电流的用于写入的字线 111 的交叉点处的 GMR 膜 30 的磁化自由层 38 的磁化中进行记录。将源极 S 侧设定为高阻抗，以防止在写入操作中当使电流流过位线 110 时电流流过 GMR 膜 30。

在 GMR 膜 30 上进行磁存储器器件 100 的读取操作时，将关于源极 S 的负电压提供给位线 110，将比 MOSFET 102 的阈值电压（正电压）高的电压提供给读取字线 109，即栅电极 G。结果，MOSFET 102 导通，电子通过 GMR 膜 30、源极 S 以及漏极 D 从位线 110 流向板线 108。电流传感器 118 （例如安培计）与板线 108 电连接，以读取与磁化自由层 38 的磁化方向对应的第 II 磁化被钉扎层 36 的磁化的方向相对应的磁阻值。通过这种方式，能够读出 GMR 膜 30 保留的信息“1”或“0”。

在第四实施例的结构实例 1 的磁存储器器件 100 中，GMR 膜 30 的磁化自由层 38 由 CoFeGe 形成，以获得大的磁阻变化△RA。这意味着对应于保
留的“0”和“1”的磁阻值之间的差足够大，所以能确保准确的读出操作。由于GMR膜30的磁化自由层38中使用的CoFeGe的成分被选择在图9所示的区域ABCD所限定的范围内，所以MR比高于Co₈₀Fe₂₅Al₂₅（即Heusler合金的成分）的MR比。可用图3至图7中所示的结构实例2-6中GMR膜40、50、60、65A和65B中的任一个代替磁存储器器件100中使用的GMR膜30。

图19为示出TMR膜70的结构的示意图。TMR膜70用于代替图17所示的GMR膜30，作为结构实例1的磁存储器器件100的改型。TMR膜70的基本结构与第二实施例的磁阻器件中使用的结构实例1的TMR膜的结构相似。在TMR膜70中，缓冲层31与平面内互连115接触，保护膜与位线110接触。此外，磁化自由层38的易磁化轴以与上述GMR膜30相同的方式配置。采用TMR膜70的情况下，磁存储器器件110的写入操作和读取操作与采用GMR膜30的情况下相同，因此省略其描述。

如第二实施例所述，TMR膜70表现出隧道电阻效应。因为磁化自由层38由具有特定成分范围的CoFeGe形成，所以TMR膜70显示出大的隧道电阻变化量。因此，磁存储器器件100能够以对应于保留在TMR膜中的值“0”和“1”之间的差的足够大的隧道电阻变化量进行准确的读取操作。应注意，在磁存储器器件中可使用图13至图15中所示的结构实例2-6的TMR膜中的任一个。

除了磁化自由层38之外，或者取代磁化自由层38，将具有特定成分范围的CoFeGe用于第二磁化被钉扎层36和/或46，能够获得相似或更大的效应。

图20为磁存储器器件120的横截面图，磁存储器器件120为第四实施例的磁存储器器件的结构实例2。图20中，与前面实例中同样的元件用同样的附图标记表示，并省略对它们的说明。磁存储器器件120在GMR膜30中写入信息的机制和操作方面与结构实例1的磁存储器器件100不同。

除了不设置写入字线111之外，磁存储器器件120的存储器单元的结构与图17A、图17B所示的存储器单元101相同。下面参照图20以及图17B给出更详细的说明。

在磁存储器器件120的写入操作中，将自旋极化电流Iw注入GMR膜
30。根据电流的方向，磁化自由层 38 的磁化关于第二磁化被钉扎层 36 的磁化从平行反转为反平行或者从反平行反转为平行。自旋极化电流 Iw 为电子流，其自旋磁矩取向为电子可取的两个可能方向中的一个。通过在 GMR 膜 30 的 Z1 方向或 Z2 方向上将自旋极化电流 Iw 引入 GMR 膜 30，在磁化自由层 38 的磁化中产生转矩，导致所谓的自旋转换磁化反转。根据磁化自由层 38 的膜厚适当地选择自旋极化电流 Iw 的大小，从几个 mA 到 20 mA。自旋极化电流 Iw 小于在图 17A 所示的结构实例 1 的磁存储器器件的写入操作中流过位线 110 和写入字线 111 的电流，因此，采用结构实例 2 的磁存储器器件 120 能够降低功耗。

通过将电流垂直提供给用一对铁磁层将铜 (Cu) 膜夹在中间的多层实体（其结构与 GMR 膜 30 相似），能够产生自旋极化电流。通过将两个铁磁层的磁化设定为彼此平行或反平行，能够控制电子的自旋磁矩的方向。磁存储器器件 120 的读取操作与图 17A 所示的结构实例 1 的磁存储器器件 100 相同。

因为除了结构实例 1 的磁存储器器件 100 的效应之外还具有低功耗的效应，所以结构实例 2 的磁存储器器件 120 更有利。应注意，可用图 3 至图 7 中所示的结构实例 2-6 中 GMR 膜 40、50、60、65A 和 65B 中的任一个，或者用图 12 至图 15 中所示的结构实例 1-6 中 TMR 膜中的任一个代替磁存储器器件 120 中使用的 GMR 膜 30。虽然用第四实施例的结构实例 1 和 2 的磁存储器器件 100 和 120 中的 MOSFET 在读取和写入操作中控制电流的方向，但是也可以用其它适当的手段控制电流的流动。

通过在磁化自由层和磁化被钉扎层的至少其中一个中使用 CoFeGe，以及通过将 CoFeGe 层的成分选择在适当范围内，能够增加每单位面积磁阻的变化量 ΔRA。

虽然基于优选实例进行了描述，但是本发明不限于这些实例，而是包括落入由所附权利要求书限定的本发明的范围内的多个变型和替代。例如，第三实施例中描述的盘形磁记录介质可用磁带代替。在这种情况下，将本发明应用于磁带驱动器，即磁存储设备的另一个实例。虽然在本实施例中，对设置有磁阻器件和写入器件的磁头进行了描述，但是本发明也可应用于有一个以上磁阻器件而没有写入器件的磁头。

本申请基于 2007 年 2 月 19 日提出的日本在先申请 No. 2007-038198，通过参考将该申请的全部内容合并于此。
图1
图4
图6
<table>
<thead>
<tr>
<th>样本</th>
<th>Co</th>
<th>Fe</th>
<th>Ge</th>
<th>MR 比</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. 1</td>
<td>50</td>
<td>20</td>
<td>30</td>
<td>4.32</td>
</tr>
<tr>
<td>No. 2</td>
<td>45</td>
<td>25</td>
<td>30</td>
<td>4.36</td>
</tr>
<tr>
<td>No. 3</td>
<td>40</td>
<td>30</td>
<td>30</td>
<td>4.65</td>
</tr>
<tr>
<td>No. 4</td>
<td>55</td>
<td>20</td>
<td>25</td>
<td>5.14</td>
</tr>
<tr>
<td>No. 5</td>
<td>50</td>
<td>25</td>
<td>25</td>
<td>5.59</td>
</tr>
<tr>
<td>No. 6</td>
<td>45</td>
<td>30</td>
<td>25</td>
<td>6.30</td>
</tr>
<tr>
<td>No. 7</td>
<td>40</td>
<td>35</td>
<td>25</td>
<td>5.39</td>
</tr>
<tr>
<td>No. 8</td>
<td>60</td>
<td>20</td>
<td>20</td>
<td>5.17</td>
</tr>
<tr>
<td>No. 9</td>
<td>55</td>
<td>25</td>
<td>20</td>
<td>5.88</td>
</tr>
<tr>
<td>No. 10</td>
<td>50</td>
<td>30</td>
<td>20</td>
<td>6.41</td>
</tr>
<tr>
<td>No. 11</td>
<td>45</td>
<td>35</td>
<td>20</td>
<td>6.59</td>
</tr>
<tr>
<td>No. 12</td>
<td>40</td>
<td>40</td>
<td>20</td>
<td>5.66</td>
</tr>
<tr>
<td>No. 13</td>
<td>65</td>
<td>20</td>
<td>15</td>
<td>4.13</td>
</tr>
<tr>
<td>No. 14</td>
<td>60</td>
<td>25</td>
<td>15</td>
<td>5.43</td>
</tr>
<tr>
<td>No. 15</td>
<td>55</td>
<td>30</td>
<td>15</td>
<td>6.30</td>
</tr>
<tr>
<td>No. 16</td>
<td>50</td>
<td>35</td>
<td>15</td>
<td>6.36</td>
</tr>
<tr>
<td>No. 17</td>
<td>45</td>
<td>40</td>
<td>15</td>
<td>5.60</td>
</tr>
<tr>
<td>No. 18</td>
<td>40</td>
<td>45</td>
<td>15</td>
<td>5.87</td>
</tr>
<tr>
<td>No. 19</td>
<td>60</td>
<td>30</td>
<td>10</td>
<td>4.93</td>
</tr>
<tr>
<td>No. 20</td>
<td>50</td>
<td>40</td>
<td>10</td>
<td>5.20</td>
</tr>
</tbody>
</table>

图8
图10
图15
图20