

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

ESPAÑA

11) Número de publicación: 2 925 747

61 Int. Cl.:

C07K 14/81 (2006.01)

(12)

TRADUCCIÓN DE PATENTE EUROPEA

T3

(86) Fecha de presentación y número de la solicitud internacional: 27.12.2013 PCT/EP2013/078073

(87) Fecha y número de publicación internacional: 02.07.2015 WO15096873

96) Fecha de presentación y número de la solicitud europea: 27.12.2013 E 13815527 (0)

(97) Fecha y número de publicación de la concesión europea: 01.06.2022 EP 3087094

(54) Título: Peptidomiméticos de horquilla beta como inhibidores selectivos de elastasa

(45) Fecha de publicación y mención en BOPI de la traducción de la patente: 19.10.2022

73) Titular/es:

SPEXIS AG (100.0%) Hegenheimermattweg 125 4123 Allschwil, CH

(72) Inventor/es:

GOMBERT, FRANK OTTO; OBRECHT, DANIEL; SELLIER-KESSLER, ODILE; LEDERER, ALEXANDER; LUDIN, CHRISTIAN; SCHMITT-BILLET, MANUELLA y WEINBRENNER, STEFFEN

(74) Agente/Representante:

DURAN-CORRETJER, S.L.P

Observaciones:

Véase nota informativa (Remarks, Remarques o Bemerkungen) en el folleto original publicado por la Oficina Europea de Patentes

DESCRIPCIÓN

Peptidomiméticos de horquilla beta como inhibidores selectivos de elastasa

5 La presente invención se establece en el juego de reivindicaciones adjunto.

10

20

25

30

35

40

45

50

55

60

65

Los peptidomiméticos de horquilla β de la presente invención son compuestos de fórmula general ciclo(Xaa¹-Xaa²-Thr³-Xaa⁴-Ser⁵-Xaa⁶-Xaa³-Xaað-Xaað-Xaa¹-Xaa¹¹-Xaa¹²-Xaa¹³-) y sales aceptables farmacéuticamente de los mismos, siendo Xaa¹, Xaa², Xaa⁴, Xaa⁶, Xaaˀ, Xaað, Xaað, Xaað, Xaað, Xaa¹ð, Xaa¹¹, Xaa¹² y Xaa¹³ residuos de aminoácidos de ciertos tipos que se definen en la descripción y las reivindicaciones.

Estos peptidomiméticos de horquilla β son útiles como inhibidores de enzimas proteasas y son especialmente valiosos como inhibidores de ciertas serina proteasas, tales como elastasa.

Además, la presente invención da a conocer un proceso eficaz mediante el cual estos compuestos pueden, si se desea, prepararse en formato de biblioteca.

Los peptidomiméticos de horquilla β de la presente invención muestran una actividad inhibidora elevada frente a la elastasa de neutrófilos humana, a la vez que tienen una actividad inhibidora baja frente a la proteinasa 3 y una actividad inhibidora baja inesperada frente a la elastasa pancreática porcina (PPE, *porcine pancreatic elastase*). Estos perfiles de actividad/selectividad favorables dependen de la elección adecuada de ciertos tipos de residuos de aminoácidos α, β ο γ y sus posiciones en el peptidomimético monocíclico.

Están surgiendo inhibidores de proteasas con usos terapéuticos prometedores en el tratamiento de enfermedades, tales como cánceres (R. P. Beckett, A. Davidson, A. H. Drummond, M. Whittaker, Drug Disc. Today 1996, 1, 16-26; L. L. Johnson, R. Dyer, D. J. Hupe, Curr. Opin. Chem. Biol. 1998, 2, 466-71; D. Leung, G. Abbenante y D. P. Fairlie, J. Med. Chem. 2000, 43, 305-341, T. Rockway, Expert Opin. Ther. Patents 2003, 13, 773-786), infecciones parasitarias, fúngicas y víricas [por ejemplo, esquistosomiasis (M. M. Becker, S. A. Harrop, J. P. Dalton, B. H. Kalinna, D. P. McManus, D. P. Brindley, J. Biol. Chem. 1995, 270, 24496-501); C. albicans (C. Abad-Zapetero, R. Goldman, S. W. Muchmore, C. Hutchins, K. Stewart, J. Navaza, C. D. Payne, T. L. Ray, Protein Sci. 1996, 5, 640-52), VIH (A. Wlodawer, J. W. Erickson, Annu. Rev. Biochem. 1993, 62, 543-85; P. L. Darke, J. R. Huff, Adv. Pharmacol. 1994, 5, 399-454), hepatitis (J. L. Kim, K. A. Morgenstern, C. Lin, T. Fox, M. D. Dwyer, J. A. Landro, S. P. Chambers, W. Markland, C. A. Lepre, E. T. O'Malley, S. L. Harbeson, C. M. Rice, M. A. Murcko, P. R. Caron, J. A. Thomson, Cell, 1996, 87, 343-55; R. A. Love, H. E. Parge, J. A. Wickersham, Z. Hostomsky, N. Habuka, E. W. Moomaw, T. Adachi, Z. Hostomska, Cell, 1996, 87, 331-342), herpes (W. Gibson, M. R. Hall, Drug. Des. Discov. 1997, 15, 39-47)] y defectos inflamatorios, inmunológicos, respiratorios (P. R. Bernstein, P. D. Edwards, J. C. Williams, Prog. Med. Chem. 1994, 31, 59-120; T. E. Hugli, Trends Biotechnol. 1996, 14, 409-12), cardiovasculares (M. T. Stubbs, W. A. Bode, Thromb. Res. 1993, 69, 1-58; H. Fukami et al, Current Pharmaceutical Design 1998, 4, 439-453) y neurodegenerativos, que incluyen la enfermedad de Alzheimer (R. Vassar, B. D. Bennett, S. Babu-Kahn, S. Kahn, E. A. Mendiaz, Science, 1999, 286, 735-41), angiogénesis (M. Kaatinen et al, Atherosklerosis 1996, 123 1-2, 123-131) y esclerosis múltiple (M. Z. Ibrahim et al, J. Neuroimmunol 1996, 70, 131-138).

Como la mayoría de las proteasas se unen a sus sustratos en conformaciones extendidas o de cadena β , de este modo, los buenos inhibidores deben ser capaces de imitar dicha conformación. Los miméticos de horquilla β son, por tanto, idealmente adecuados para bloquear secuencias peptídicas en una conformación extendida.

Entre las proteasas, las serina proteasas constituyen dianas terapéuticas importantes. Las serina proteasas se clasifican por su especificidad de sustrato, en particular, por el tipo de residuo que se encuentra en P1, ya sea como similar a la tripsina (los residuos cargados positivamente Lys/Arg son preferentes en P1), similar a la elastasa (residuos hidrófobos pequeños Ala/Val en P1) o similar a la quimotripsina (residuos hidrófobos grandes Phe/Tyr/Leu en P1). Entre las serina proteasas para las que están disponibles datos de cristales de rayos X de inhibidores de proteasa en la base de datos PDB (PDB: www.rcsb.org/pdb) se incluyen tripsina, α-quimotripsina, γ-quimotripsina, elastasa de neutrófilos humana, elastasa pancreática porcina, trombina, subtilisina, proteasa A del citomegalovirus humano, proteasa 1 de acromobacter, catepsina G humana, proteasa específica del ácido glutámico, carbopeptidasa D, factor VIIa de coagulación sanguínea, factor porcino 1XA, mesentericopeptidasa, proteasa del VHC y termitasa. Entre otras serina proteasas que son de interés terapéutico se incluyen triptasa, complemento convertasa, proteasa NS3 de la hepatitis C. Los inhibidores de la trombina (por ejemplo, J. L. Metha, L. Y. Chen, W. W. Nichols, C. Mattsson, D. Gustaffson, T. G. P. Saldeen, J. Cardiovasc. Pharmacol. 1998, 31, 345-51; C. Lila, P. Gloanec, L. Cadet, Y. Herve, J. Fournier, F. Leborgne, T. J. Verbeuren, G. DeNanteuil, Synth. Comm. 1998, 28, 4419-29) y el factor Xa (por ejemplo, J. P. Vacca, Annu. Rep. Med. Chem. 1998, 33, 81-90) están en evaluación clínica como antitrombóticos, los inhibidores de la elastasa (J. R. Williams, R. C. Falcone, C. Knee, R. L. Stein, A. M. Strimpler, B. Reaves, R. E. Giles, R. D. Krell, Am. Rev. Respir. Dis. 1991, 144, 875-83) estaban en ensayos clínicos para enfisema y otras enfermedades pulmonares, mientras que los inhibidores de triptasa estaban en ensayos clínicos de fase II para asma (C. Seife, Science 1997, 277, 1602-3), los inhibidores de urocinasa para cáncer de mama y los inhibidores de quimasa para enfermedades relacionadas con el corazón. Finalmente, la catepsina G, la elastasa y la proteinasa 3 están íntimamente implicadas en la modulación de las actividades de las citocinas y sus receptores. En

particular, en los sitios de inflamación, se liberan altas concentraciones de estas tres serina proteasas de neutrófilos (NSP) de las células polimorfonucleares infiltrantes en estrecha correlación temporal con niveles elevados de citocinas inflamatorias, lo que indica firmemente que estas proteasas están implicadas en el control de la bioactividad y disponibilidad de citocinas. (U. Bank, S. Ansorge, J. Leukoc. Biol. 2001, 69, 177-90). Por tanto, los inhibidores altamente selectivos de la elastasa constituyen dianas valiosas para nuevos fármacos candidatos para enfermedades inflamatorias infecciosas, que incluyen enfermedades pulmonares, tales como la enfermedad pulmonar obstructiva crónica, el síndrome de dificultad respiratoria aguda, la fibrosis quística y la lesión por reperfusión isquémica, y en procesos no infecciosos, tales como la glomerulonefritis, la artritis y penfigoide ampolloso (H. Ohbayashi, Epert Opin. Investig. Drugs 2002, 11, 965-980; B. Korkmaz, T. Moreau, F. Gauthier, Biochimie 2008, 90, 227).

De los muchos inhibidores de serina proteasas proteínicos existentes, uno es un péptido cíclico de 14 aminoácidos de semillas de girasol, denominado inhibidor de tripsina de girasol (**SFTI-1**) (S. Luckett, R. Santiago Garcia, J. J. Barker, A. V. Konarev, P. R. Shewry, A. R. Clarke, R. L. Brady, J. Mol. Biol. 1999, 290, 525-533; Y.-Q. Long, S.-L. Lee, C.-Y. Lin, I. J. Enyedy, S. Wang, P. Li, R. B. Dickson, P. P. Roller, Biorg. & Med. Chem. Lett. 2001, 11, 2515-2519), que muestra una similitud conformacional y de secuencia con el bucle reactivo con tripsina de la familia Bowman-Birk de inhibidores de serina proteasa. El inhibidor adopta una conformación de horquilla β cuando se une al sitio activo de la β-tripsina bovina. **SFTI-1** inhibió β-tripsina ($K_i < 0.1$ nM), catepsina G ($K_i < 0.15$ nM), elastasa ($K_i < 1.05$ μM), quimotripsina ($K_i < 7.4$ μM) y trombina ($K_i < 1.36$ mM).

La conformación de horquilla β de los compuestos ciclo(-Xaa¹-Xaa²-Thr³-Xaa⁴-Ser⁵-Xaa⁶-Xaa³-Xaað-Xaað-Xaa¹-Xaa¹-Xaa¹²-Xaa¹³-) se basa en el bucle de horquilla β del péptido de origen natural combinado con un residuo de D-aminoácido en la posición 12 y fomentado por los residuos de aminoácido conservados Thr y Ser en las posiciones 3 y 5, respectivamente.

Además, se ha realizado la incorporación de elementos estructurales derivados de β -aminoácidos y γ -aminoácidos, un nuevo enfoque que no ha sido evaluado previamente para el desarrollo de peptidomiméticos de horquilla β de ese tamaño de anillo, que son útiles como inhibidores de enzimas proteasas. De manera sorprendente, se ha descubierto que, a pesar de los grados adicionales de libertad conformacional después de la inserción de uno o dos grupos metileno adicionales según los β -aminoácidos o γ -aminoácidos en el esqueleto de los peptidomiméticos de horquilla β de la presente invención, el perfil de actividad/selectividad favorecido mencionado anteriormente podría mantenerse.

Dado que las peptidasas humanas, en general, no reconocen los péptidos que contienen β-aminoácidos o γ-aminoácidos, estos péptidos deberían ser más resistentes a la degradación proteolítica (M. -l. Aguilar, A. W. Purcell, R. Devi, R. Lew, J. Rossjohn, A. I. Smith, P. Perlmutter, Org. Biomol. Chem. 2007, 5, 2884; D. F. Hook, P. Bindschaedler, Y. R. Mahayan, R. Sebesta, P. Kast, D. Seebach, Chem. Biodivers. 2005, 2, 591; P. Zubrzak, H. Williams, G. M. Coast, R. E. Isaac, G. Reyes-Rangel, E. Juaristi, J. Zabrocki, R. J. Nachman, Biopolymers 2007, 88, 76; S. Sagan, Th. Milcent, R. Ponsinet, O. Convert, O. Tasseau, G. Chassaing, S. Lavielle, O. Lequin, Eur. J. Biochem. 2003, 270, 939).

Los péptidos miméticos de horquilla unidos a plantilla se han descrito en la bibliografía (D. Obrecht, M. Altorfer, J. A. Robinson, Adv. Med. Chem. 1999, 4, 1-68; J. A. Robinson, Syn. Lett. 2000, 4, 429-441) y se han descrito peptidomiméticos fijados a plantilla que inhiben serina proteasas y procedimientos para su síntesis en las Patentes WO2003/054000 A1, WO2006/087001 A1 y en A. Descours, K. Moehle, A. Renard, J. A. Robinson, ChemBioChem 2002, 3, 318-323, pero las moléculas dadas a conocer anteriormente no muestran perfiles de actividad/selectividad tan favorables, ni tienen elementos estructurales incorporados derivados de residuos de β -aminoácidos o γ -aminoácidos.

Se ha establecido la capacidad de generar peptidomiméticos de horquilla β utilizando procedimientos de síntesis combinatorios y paralelos (L. Jiang, K. Moehle, B. Dhanapal, D. Obrecht, J. A. Robinson, Helv. Chim. Acta. 2000, 83, 3097-3112). La incorporación adicional de elementos estructurales derivados de β-aminoácidos y γ-aminoácidos en miméticos de horquilla β mediante la aplicación y alteración de estos procedimientos se ha evaluado previamente para el desarrollo de péptidos antagonistas de CXCR4 (Patente WO2010/127704 A1). Sin embargo, estos péptidos ciclados en el esqueleto tienen un tamaño de anillo más grande y están adicionalmente estabilizados por un puente disulfuro. Los procedimientos descritos en el presente documento permiten la síntesis y el cribado de grandes bibliotecas de miméticos de horquilla. Esto facilita considerablemente los estudios de estructura-actividad y, por lo tanto, el descubrimiento de nuevas moléculas con actividad inhibidora de serina proteasa muy potente y selectiva, en particular, con perfiles de actividad/selectividad tan favorables como los descritos en el presente documento, que tienen propiedades de compuestos adecuadas para nuevos fármacos.

Los peptidomiméticos de horquilla β de la presente divulgación son compuestos de fórmula general

65

10

15

20

25

30

45

y sales aceptables farmacéuticamente de los mismos, en la que

Xaa1 es OctGly; Arg; hArg; Cha; un residuo de aminoácido dipeptídico de tipo O; o de tipo P; o un residuo de aminoácido con longitud de cadena lateral delimitada de tipo Q; o de tipo R;

Xaa² es Glu; Val; Leu; Nle; Phe; hPhe; DiHPhe; Tyr; hTyr; Trp; o un residuo de aminoácido dipeptídico de tipo O; o de tipo P:

Xaa⁴ es Ala; AlilGly; Abu; o Val;

Xaa6 es Ile; u OctGly;

Xaa⁷ es Pro; o una glicina sustituida en el N de tipo I; 10

Xaa8 es -B-CO-; o una glicina sustituida en el N de tipo I;

Xaa⁹ es Gln; Tyr; o un residuo de β-aminoácido de tipo N;

Xaa 10 es Lys; Asn; Gly; un residuo de β-aminoácido de tipo N; o un residuo de γ -aminoácido de tipo M;

Xaa¹¹ es hLeu; Ser; hSer; hSer(Me); Thr; alloThr; Asn; Gln; hGln; Dap; Tyr; His; o un residuo de γ-aminoácido de tipo M; Xaa¹² es Gly; -A-CO-; una glicina sustituida en el N de tipo I; o el isómero D de un residuo de aminoácido de tipo C; 15 o de tipo D; o de tipo E; o de tipo F; y

Xaa¹³ es -B-CO-; una glicina sustituida en el N de tipo I; un residuo de β-aminoácido de tipo N; un residuo de γ-aminoácido de tipo M; -A-CO-; o el isómero D de un residuo de aminoácido de tipo C; o de tipo D; o de tipo E; o de tipo F;

- 20 con la condición de que
 - Xaa1 es un residuo de aminoácido dipeptídico de tipo O; o de tipo P;
 - Xaa² es un residuo de aminoácido dipeptídico de tipo O; o de tipo P; y/o
- 25 - Xaa⁷ es una glicina sustituida en el N de tipo I;

y/o

- Xaa8 es Oic; 2Ind; Pip; Azt; o una glicina sustituida en el N de tipo I; y/o
- Xaa⁹ es un residuo de β-aminoácido de tipo N;
- 30 y/o

5

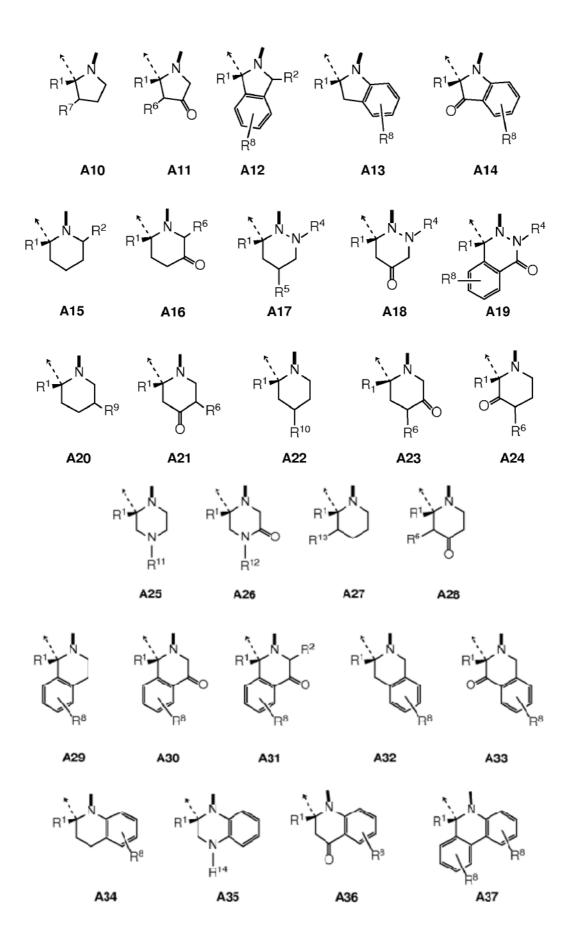
- Xaa¹⁰ es un residuo de β-aminoácido de tipo N; o un residuo de γ-aminoácido de tipo M;

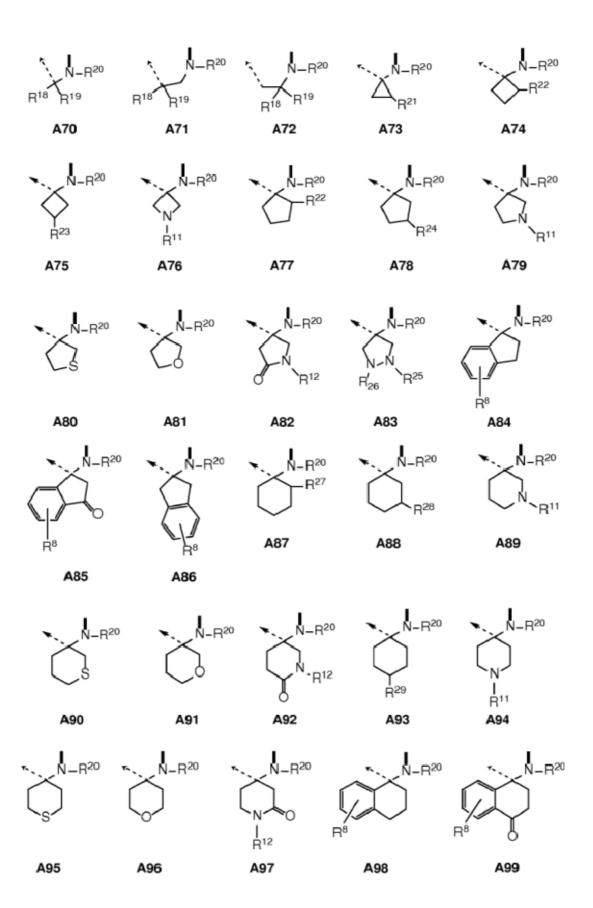
y/o

- Xaa¹¹ es un residuo de γ-aminoácido de tipo M;

y/o

- 35 - Xaa¹² es una glicina sustituida en el N de tipo I; o el isómero D de un residuo de aminoácido de tipo C; o de tipo D; o de tipo E; o de tipo F;
 - Xaa¹³ es una glicina sustituida en el N de tipo I; un residuo de β-aminoácido de tipo N; un residuo de γ-aminoácido
 - de tipo M; -A-CO-; o el isómero D de un residuo de aminoácido de tipo C; o de tipo D; o de tipo E; o de tipo F; y con la condición adicional de que
- 40
 - si Xaa¹¹ es Tyr; o His, entonces


Xaa¹ es Arg; hArg; o un residuo de aminoácido dipeptídico de tipo O; o de tipo P;


y/o

Xaa² es un residuo de aminoácido dipeptídico de tipo O; o de tipo P;

- -B-CO- es un residuo de un L- α -aminoácido, siendo B un residuo de fórmulas -NR²⁰CH(R⁷¹)-; -NR²⁰CH(R¹²)-; 45 -NR²⁰CH(R⁷³)-; -NR²⁰CH(R⁷⁴)-; -NR²⁰CH(R⁸⁴)-; o el enantiómero de uno de los grupos A1 a A37 y A105, tal como se definen a continuación;
 - -A-CO- es un residuo de un aminoácido, siendo A un grupo de una de las fórmulas

50 **A5 A6 A7 8**A Α9

R¹ es H; alquilo inferior; o aril-alquilo inferior;

- $\begin{array}{llll} 10 & R^3 & es & alquilo; & alquenilo; & -(CH_2)_o(CHR^{61})_sOR^{55}; & -(CH_2)_o(CHR^{61})_sSR^{56}; & -(CH_2)_o(CHR^{61})_sNR^{33}R^{34}; & -(CH_2)_o(CHR^{61})_sOCONR^{33}R^{75}; & -(CH_2)_o(CHR^{61})_sNR^{20}CONR^{33}R^{82}; & -(CH_2)_oNR^{20}(CHR^{61})_sCOR^{64}; & -(CH_2)_o(CHR^{61})_sCOR^{57}; & -(CH_2)_o(CHR^{61})_sCONR^{58}R^{59}; & -(CH_2)_o(CHR^{61})_sPO(OR^{60})_2; & -(CH_2)_p(CHR^{61})_sSO_2R^{62}; & o & -(CH_2)_o(CHR^{61})_sCOR^{58}R^{59}; & -(CH_2)_o(CHR^{61})_sCOR^{58}R^{59}R^{59}; & -(CH_2)_o(CHR^{61})_sCOR^{58}R^{59}; & -(CH_2)_o(CHR^{61})_sCOR^{58}R^{59}; & -(CH_2)_o(C$

- $\begin{array}{llll} 30 & R^7 & es & alquilo; & alquenilo; & -(CH_2)_q(CHR^{61})_sOR^{55}; & -(CH_2)_q(CHR^{61})_sNR^{33}R^{34}; & -(CH_2)_q(CHR^{61})_sOCONR^{33}R^{75}; \\ & -(CH_2)_q(CHR^{61})_sNR^{20}CONR^{33}R^{82}; & -(CH_2)_qNR^{20}(CHR^{61})_sCOR^{64}; & -(CH_2)_r(CHR^{61})_sCOOR^{57}; & -(CH_2)_r(CHR^{61})_sCONR^{58}R^{51}; \\ & -(CH_2)_r(CHR^{61})_sPO(OR^{60})_2; & -(CH_2)_r(CHR^{61})_sSO_2R^{62}; & o & -(CH_2)_q(CHR^{61})_sC_6H_4R^8; \end{array}$
- $R^8 \text{ es } H; \text{ CI; } F; \text{ CF}_3; \text{ NO}_2; \text{ alquilo inferior; alquenilo inferior; aril-alquilo inferior; -(CH_2)}_o(\text{CHR}^{61})_s\text{R}^{77}; \\ -(\text{CH}_2)_o(\text{CHR}^{61})_s\text{OCONR}^{33}\text{R}^{56}; -(\text{CH}_2)_o(\text{CHR}^{61})_s\text{NR}^{33}\text{R}^{34}; -(\text{CH}_2)_o(\text{CHR}^{61})_s\text{OCONR}^{33}\text{R}^{75}; \\ -(\text{CH}_2)_o(\text{CHR}^{61})_s\text{NR}^{20}\text{CONR}^{33}\text{R}^{82}; -(\text{CH}_2)_o\text{NR}^{20}(\text{CHR}^{61})_s\text{COR}^{64}; -(\text{CH}_2)_o(\text{CHR}^{61})_s\text{COOR}^{57}; -(\text{CH}_2)_o(\text{CHR}^{61})_s\text{CONR}^{58}\text{R}^{59}; \\ -(\text{CH}_2)_o(\text{CHR}^{61})_s\text{PO}(\text{OR}^{60})_2; -(\text{CH}_2)_o(\text{CHR}^{61})_s\text{SO}_2\text{R}^{62}; \text{ o -(\text{CH}_2)}_o(\text{CHR}^{61})_s\text{COR}^{64}; \\ \end{aligned}$

```
-(CH_2)_o(CHR^{61})_sC_6H_4R^8;
                               R^{11} \quad \text{es} \quad H; \quad \text{alquilo}; \quad \text{alquenilo}; \quad \text{-(CH}_2)_m (CHR^{61})_s OR^{55}; \quad \text{-(CH}_2)_m (CHR^{61})_s NR^{33}R^{34}; \quad \text{-(CH}_2)_m (CHR^{61})_s OCONR^{33}R^{75}; \\ \text{-(CH}_2)_m (CHR^{61})_s OR^{55}; \quad \text{-(CH}_2)_m (CHR^{61})_s OR^{55}; \quad \text{-(CH}_2)_m (CHR^{61})_s OR^{55}; \\ \text{-(CH}_2)_m (CHR^{61})_s OR^{55}; \quad \text{-(CH}_2)_m (CHR^{61})_s OR^{55}; \\ \text{-(CH}_2)_m (CH
                               -(CH<sub>2</sub>)<sub>m</sub>(CHR<sup>61</sup>)<sub>s</sub>NR<sup>20</sup>CONR<sup>33</sup>R<sup>82</sup>;
                                                                                                                                                                                                                                             -(CH<sub>2</sub>)<sub>m</sub>NR<sup>20</sup>(CHR<sup>61</sup>)<sub>s</sub>COR<sup>64</sup>;
                                                                                                                                                                                                                                                                                                                                                                                                                                             -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>COOR<sup>57</sup>;
                               -(CH_2)_o(CHR^{61})_sCONR^{58}R^{59}; -(CH_2)_o(CHR^{61})_sPO(OR^{60})_2; -(CH_2)_o(CHR^{61})_sSO_2R^{62}; \ o \ -(CH_2)_o(CHR^{61})_sC_6H_4R^8; \\ -(CH_2)_o(CHR^{61})_sC_6H_4
                               R<sup>12</sup> es H; alquilo;
                                                                                                                                                      alquenilo;
                                                                                                                                                                                                                -(CH_2)_m(CHR^{61})_sOR^{55}; \qquad -(CH_2)_m(CHR^{61})_sSR^{56}; \qquad -(CH_2)_m(CHR^{61})_sNR^{33}R^{34};
                               -(CH<sub>2</sub>)<sub>m</sub>(CHR<sup>61</sup>)<sub>s</sub>OCONR<sup>33</sup>R<sup>75</sup>:
                                                                                                                                                                                                                        -(CH<sub>2</sub>)<sub>m</sub>(CHR<sup>61</sup>)<sub>s</sub>NR<sup>20</sup>CONR<sup>33</sup>R<sup>82</sup>;
                                                                                                                                                                                                                                                                                                                                                                                                                                -(CH<sub>2</sub>)<sub>m</sub>NR<sup>20</sup>(CHR<sup>61</sup>)<sub>s</sub>COR<sup>64</sup>;
                               -(CH<sub>2</sub>)<sub>r</sub>(CHR<sup>61</sup>)<sub>s</sub>COOR<sup>57</sup>;
                                                                                                                                                      -(CH_2)_r(CHR^{61})_sCONR^{58}R^{59}; -(CH_2)_r(CHR^{61})_sPO(OR^{60})_2;
                                                                                                                                                                                                                                                                                                                                                                                                                                -(CH_2)_o(CHR^{61})_sSO_2R^{62}; 0
                               -(CH_2)_r(CHR^{61})_sC_6H_4R^8;
 10
                                                                                                                                                                                                               -(CH<sub>2</sub>)<sub>q</sub>(CHR<sup>61</sup>)<sub>s</sub>OR<sup>55</sup>;
                                                                                                                                                                                                                                                                                                                              -(CH<sub>2</sub>)<sub>q</sub>(CHR<sup>61</sup>)<sub>s</sub>SR<sup>56</sup>;
                                                                                                                                                                                                                                                                                                                                                                                                                                                -(CH<sub>2</sub>)<sub>q</sub>(CHR<sup>61</sup>)<sub>s</sub>NR<sup>33</sup>R<sup>34</sup>;
                                                                                                                                                 alquenilo;
                                                               es
                                                                                              alquilo;
                                                                                                                                                                                                                         -(CH<sub>2</sub>)<sub>q</sub>(CHR<sup>61</sup>)<sub>s</sub>NR<sup>20</sup>CONR<sup>33</sup>R<sup>82</sup>;
                               -(CH<sub>2</sub>)<sub>q</sub>(CHR<sup>61</sup>)<sub>s</sub>OCONR<sup>33</sup>R<sup>75</sup>;
                                                                                                                                                                                                                                                                                                                                                                                                                                   -(CH<sub>2</sub>)<sub>q</sub>NR<sup>20</sup>(CHR<sup>61</sup>)<sub>s</sub>COR<sup>64</sup>;
                                -(CH_2)_q(CHR^{61})_sCOOR^{51}; -(CH_2)_q(CHR^{61})_sCONR^{58}R^{51}; -(CH_2)_q(CHR^{61})_sPO(OR^{60})_2;
                                                                                                                                                                                                                                                                                                                                                                                                                                 -(CH<sub>2</sub>)<sub>q</sub>(CHR<sup>61</sup>)<sub>s</sub>SO<sub>2</sub>R<sup>62</sup>; o
                               -(CH<sub>2</sub>)<sub>q</sub>(CHR<sup>61</sup>)<sub>s</sub>C<sub>6</sub>H<sub>4</sub>R<sup>8</sup>;
 15
                               R^{14} \quad \text{es} \quad H; \quad \text{alquilo}; \quad \text{alquenilo}; \quad \text{-(CH}_2)_m (CHR^{61})_s OR^{55}; \quad \text{-(CH}_2)_m (CHR^{61})_s NR^{33}R^{34}; \quad \text{-(CH}_2)_m (CHR^{61})_s OCONR^{33}R^{75}; \\ \text{-(CH}_2)_m (CHR^{61})_s OR^{55}; \quad \text{-(CH}_2)_m (CHR^{61})_s OR^{55}; \quad \text{-(CH}_2)_m (CHR^{61})_s OR^{55}; \\ \text{-(CH}_2)_m (CHR^{61})_s OR^{55}; \quad \text{-(CH}_2)_m (CHR^{61})_s OR^{55}; \\ \text{-(CH}_2)_m (CH
                               -(CH<sub>2</sub>)<sub>m</sub>(CHR<sup>61</sup>)<sub>s</sub>NR<sup>20</sup>CONR<sup>33</sup>R<sup>82</sup>;
                                                                                                                                                                                                                                              -(CH<sub>2</sub>)<sub>m</sub>NR<sup>20</sup>(CHR<sup>61</sup>)<sub>s</sub>COR<sup>64</sup>;
                                                                                                                                                                                                                                                                                                                                                                                                                                            -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>COOR<sup>51</sup>;
                               -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>CONR<sup>58</sup>R<sup>59</sup>; -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>PO(OR<sup>60</sup>)<sub>2</sub>; -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>SOR<sup>62</sup>; o -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>C<sub>6</sub>H<sub>4</sub>R<sup>8</sup>;
20
                               R^{18} \ \ \text{es alquilo inferior; alquenilo inferior; -(CH_2)_p(CHR^{61})_sOR^{55}; -(CH_2)_p(CHR^{61})_sSR^{56}; -(CH_2)_p(CHR^{61})_sNR^{33}R^{34};}
                               -(CH_2)_p(CHR^{61})_sOCONR^{33}R^{75}; \quad -(CH_2)_p(CHR^{61})_sNR^{20}CONR^{33}R^{82}; \\ -(CH_2)_p(CHR^{61})_sCOOR^{57}; \quad -(CH_2)_p(CHR^{61})_sCONR^{58}R^{59}; \quad -(CH_2)_p(CHR^{61})_sPO(OR^{60})_2; \\ -(CH_2)_p(CHR^{61})_sCONR^{58}R^{59}; \quad -(CH_2)_p(CHR^{61})_sPO(OR^{61})_2; \\ -(CH_2)_p(CHR^{61})_sCONR^{58}R^{59}; \quad -(CH_2)_p(CHR^{61})_2; \\ -(CH_2)_p(CHR^{61})_2;
                                                                                                                                                                                                                                                                                                                                                                                                                                 -(CH<sub>2</sub>)<sub>p</sub>NR<sup>20</sup>(CHR<sup>61</sup>)<sub>s</sub>COR<sup>64</sup>;
                                                                                                                                                                                                                                                                                                                                                                                                                                 -(CH_2)_p(CHR^{61})_sSO_2R^{62}; o
                               -(CH_2)_o(CHR^{61})_sC_6H_4R^8;
25
                                                                                                                                                                                                                                                                                                                              -(CH_2)_p(CHR^{61})_sSR^{56};
                                                                                                                                                                                                              -(CH<sub>2</sub>)<sub>p</sub>(CHR<sup>61</sup>)<sub>s</sub>OR<sup>55</sup>;
                                                                                                                                                                                                                                                                                                                                                                                                                                                -(CH_2)_p(CHR^{61})_sNR^{33}R^{34};
                                                                                               alquilo;
                                                                                                                                                  alquenilo
                                                                 es
                               -(CH<sub>2</sub>)<sub>p</sub>(CHR<sup>61</sup>)<sub>s</sub>OCONR<sup>33</sup>R<sup>75</sup>;
                                                                                                                                                                                                                         -(CH<sub>2</sub>)<sub>p</sub>(CHR<sup>61</sup>)<sub>s</sub>NR<sup>20</sup>CONR<sup>33</sup>R<sup>82</sup>;
                                                                                                                                                                                                                                                                                                                                                                                                                                   -(CH<sub>2</sub>)<sub>p</sub>NR<sup>20</sup>(CHR<sup>61</sup>)<sub>s</sub>COR<sup>64</sup>:
                                                                                                                                                         -(CH<sub>2</sub>)<sub>p</sub>(CHR<sup>61</sup>)<sub>s</sub>CONR<sup>58</sup>R<sup>59</sup>; -(CH<sub>2</sub>)<sub>p</sub>(CHR<sup>61</sup>)<sub>s</sub>O(OR<sup>60</sup>)<sub>2</sub>;
                                -(CH<sub>2</sub>)<sub>p</sub>(CHR<sup>61</sup>)<sub>s</sub>COOR<sup>57</sup>;
                                                                                                                                                                                                                                                                                                                                                                                                                                -(CH_2)_p(CHR^{61})_sSO_2R^{62}; o
                               -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>C<sub>6</sub>H<sub>4</sub>R<sup>8</sup>; o
30
                               R<sup>18</sup> y R<sup>19</sup> tomados juntos pueden formar: -(CH<sub>2</sub>)<sub>2-6</sub>-; -(CH<sub>2</sub>)<sub>2</sub>O(CH<sub>2</sub>)<sub>2</sub>-; -(CH<sub>2</sub>)<sub>2</sub>S(CH<sub>2</sub>)<sub>2</sub>-; o -(CH<sub>2</sub>)<sub>2</sub>NR<sup>57</sup>(CH<sub>2</sub>)<sub>2</sub>-;
                               R<sup>20</sup> es H; alquilo; alquenilo; o aril-alquilo inferior;
                               R^{21}
                                                                                                                                                                                                                      -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>OR<sup>55</sup>;
                                                                                                                                                                                                                                                                                                                                   -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>SR<sup>56</sup>;
                                                                                                                                                                                                                                                                                                                                                                                                                                               -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>NR<sup>33</sup>R<sup>34</sup>;
35
                                                            es
                                                                                      H;
                                                                                                              alquilo;
                                                                                                                                                           alquenilo;
                               -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>OCONR<sup>33</sup>R<sup>75</sup>:
                                                                                                                                                                                                                        -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>NR<sup>20</sup>CONR<sup>33</sup>R<sup>82</sup>;
                                                                                                                                                                                                                                                                                                                                                                                                                                   -(CH<sub>2</sub>)<sub>o</sub>NR<sup>20</sup>(CHR<sup>61</sup>)<sub>s</sub>COR<sup>64</sup>;
                               -(CH_2)_o(CHR^{61})_sCOOR^{57}; -(CH_2)_o(CHR^{61})_sCONR^{58}R^{59}; -(CH_2)_o(CHR^{61})_sPO(OR^{60})_2;
                                                                                                                                                                                                                                                                                                                                                                                                                                -(CH_2)_o(CHR^{61})_sSO_2R^{62}; o
                               -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>C<sub>6</sub>H<sub>4</sub>R<sup>8</sup>;
                                                                                                                                                                                                                      -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>OR<sup>55</sup>;
                                                                                                                                                                                                                                                                                                                                   -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>SR<sup>56</sup>;
                                                                                                                                                                                                                                                                                                                                                                                                                                                -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>NR<sup>33</sup>R<sup>34</sup>;
40
                                                                                 H;
                                                                                                              alquilo;
                                                                                                                                                           alquenilo;
                               -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>OCONR<sup>33</sup>R<sup>75</sup>;
                                                                                                                                                                                                                         -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>NR<sup>20</sup>CONR<sup>33</sup>R<sup>82</sup>;
                                                                                                                                                                                                                                                                                                                                                                                                                                   -(CH<sub>2</sub>)<sub>o</sub>NR<sup>20</sup>(CHR<sup>61</sup>)<sub>s</sub>COR<sup>64</sup>;
                               -(CH_2)_o(CHR^{61})_sCOOR^{57}; -(CH_2)_o(CHR^{61})_sCONR^{58}R^{59}; -(CH_2)_o(CHR^{61})_sPO(OR^{60})_2;
                                                                                                                                                                                                                                                                                                                                                                                                                                  -(CH_2)_o(CHR^{61})_sSO_2R^{62}; o
                               -(CH_2)_o(CHR^{61})_sC_6H_4R^8;
                                                                                                                                                                                                               -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>OR<sup>55</sup>;
                                                                                                                                                                                                                                                                                                                              -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>SR<sup>56</sup>;
                                                                                                                                                                                                                                                                                                                                                                                                                                                -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>NR<sup>33</sup>R<sup>34</sup>;
                                                                                             alquilo;
45
                                                                                                                                                alquenilo;
                                                                es
                               -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>OCONR<sup>33</sup>R<sup>75</sup>;
                                                                                                                                                                                                                         -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>NR<sup>20</sup>CONR<sup>33</sup>R<sup>82</sup>;
                                                                                                                                                                                                                                                                                                                                                                                                                                    -(CH<sub>2</sub>)<sub>0</sub>NŔ<sup>20</sup>(CHR<sup>61</sup>)<sub>8</sub>COR<sup>64</sup>:
                                -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>COOR<sup>57</sup>;
                                                                                                                                                       -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>CONR<sup>58</sup>R<sup>59</sup>; -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>PO(OR<sup>60</sup>)<sub>2</sub>;
                                                                                                                                                                                                                                                                                                                                                                                                                                  -(CH_2)_o(CHR^{61})_sSO_2R^{62}; o
                               -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>C<sub>6</sub>H<sub>4</sub>R<sup>8</sup>;
                               R^{24}
                                                                                                                                                                                                                                                                                                                                                                                                                                                -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>NR<sup>33</sup>R<sup>34</sup>;
50
                                                                                                                                                                                                               -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>OR<sup>55</sup>;
                                                                                                                                                                                                                                                                                                                               -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>SR<sup>56</sup>;
                                                               es
                                                                                             alquilo;
                                                                                                                                                alquenilo;
                               -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>OCONR<sup>33</sup>R<sup>75</sup>;
                                                                                                                                                                                                                                                                                                                                                                                                                                  -(CH<sub>2</sub>)<sub>o</sub>NR<sup>20</sup>(CHR<sup>61</sup>)<sub>s</sub>COR<sup>64</sup>;
                                                                                                                                                                                                                         -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>NR<sup>20</sup>CONR<sup>33</sup>R<sup>82</sup>;
                                -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>COOR<sup>57</sup>; -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>CONR<sup>58</sup>R<sup>59</sup>; -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>PO(OR<sup>60</sup>)<sub>2</sub>;
                                                                                                                                                                                                                                                                                                                                                                                                                                  -(CH_2)_o(CHR^{61})_sSO_2R^{62}; o
                               -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>C<sub>6</sub>H<sub>4</sub>R<sup>8</sup>;
55
                                                         es H; alquilo;
                                                                                                                                                                                                                  -(CH<sub>2</sub>)<sub>m</sub>(CHR<sup>61</sup>)<sub>s</sub>OR<sup>55</sup>; -(CH<sub>2</sub>)<sub>m</sub>(CHR<sup>61</sup>)<sub>s</sub>SR<sup>56</sup>;
                                                                                                                                                                                                                                                                                                                                                                                                                                           -(CH<sub>2</sub>)<sub>m</sub>(CHR<sup>61</sup>)<sub>s</sub>NR<sup>33</sup>R<sup>34</sup>;
                                                                                                                                                         alguenilo:
                                                                                                                                                                                                                         -(CH<sub>2</sub>)<sub>m</sub>(CHR<sup>61</sup>)<sub>s</sub>NR<sup>20</sup>CONR<sup>33</sup>R<sup>82</sup>;
                               -(CH_2)_m(CHR^{61})_sOCONR^{33}R^{75};
                                                                                                                                                                                                                                                                                                                                                                                                                                -(CH<sub>2</sub>)<sub>m</sub>NR<sup>20</sup>(CHR<sup>61</sup>)<sub>s</sub>COR<sup>64</sup>;
                                -(CH_2)_{o}(CHR^{61})_{s}COOR^{57}; -(CH_2)_{o}(CHR^{61})_{s}CONR^{58}R^{59}; -(CH_2)_{o}(CHR^{61})_{s}PO(OR^{60})_{2};
                                                                                                                                                                                                                                                                                                                                                                                                                              -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>SO<sub>2</sub>R<sup>62</sup>; 0
                               -(CH<sub>2</sub>)<sub>0</sub>(CHR<sup>61</sup>)<sub>s</sub>C<sub>6</sub>H<sub>4</sub>R<sup>8</sup>;
                               R^{26}
                                                                                                                                                                                                                                                                                                                                                                                                                                             -(CH<sub>2</sub>)<sub>m</sub>(CHR<sup>61</sup>)<sub>s</sub>NR<sup>33</sup>R<sup>34</sup>:
                                                                                                                                                                                                                    -(CH_2)_m(CHR^{61})_sOR^{55}; -(CH_2)_m(CHR^{61})_sSR^{56};
60
                                                           es H; alquilo;
                                                                                                                                                                                                                        -(CH<sub>2</sub>)<sub>m</sub>(CHR<sup>61</sup>)<sub>s</sub>NR<sup>20</sup>CONR<sup>33</sup>R<sup>82</sup>:
                               -(CH<sub>2</sub>)<sub>m</sub>(CHR<sup>61</sup>)<sub>s</sub>OCONR<sup>33</sup>R<sup>75</sup>;
                                                                                                                                                                                                                                                                                                                                                                                                                                -(CH_2)_mNR^{20}(CHR^{61})_sCOR^{64};
                               -(CH<sub>2</sub>)<sub>o</sub>(CHR<sup>61</sup>)<sub>s</sub>COOR<sup>57</sup>;
                                                                                                                                                    -(CH_2)_o(CHR^{61})_sCONR^{58}R^{59}; -(CH_2)_o(CHR^{61})_sPO(OR^{60})_2;
                                                                                                                                                                                                                                                                                                                                                                                                                               -(CH_2)_o(CHR^{61})_sSO_2R^{62}; o
```

R²⁵ y R²⁶ tomados juntos pueden formar: -(CH₂)₂₋₆-; -(CH₂)_rO(CH₂)_r; -(CH₂)_rS(CH₂)_r-; o -(CH₂)_rNR⁵⁷(CH₂)_r-;

-(CH₂)_o(CHR⁶¹)_sC₆H₄R⁸; o

65

```
R^{27} \quad \text{es} \quad H; \quad \text{alqueilo}; \quad \text{alquenilo}; \quad \text{-(CH_2)_o(CHR^{61})_sOR^{55}}; \quad \text{-(CH_2)_o(CHR^{61})_sSR^{56}}; \quad \text{-(CH_2)_o(CHR^{61})_sNR^{33}R^{34}}; \\ \text{-(CH_2)_oNR^{20}(CHR^{61})_sCOR^{64}}; \quad \text{-(CH_2)_o(CHR^{61})_sCONR^{57}}; \quad \text{-(CH_2)_o(CHR^{61})_sCONR^{58}R^{59}}; \quad \text{-(CH_2)_o(CHR^{61})_sOCONR^{33}R^{75}}; \\ \text{-(CH_2)_o(CHR^{61})_sNR^{20}CONR^{33}R^{82}}; \quad \text{-(CH_2)_o(CHR^{61})_sPO(OR^{60})_2}; \quad \text{-(CH_2)_o(CHR^{61})_sSO_2R^{62}}; \quad \text{o} \quad \text{-(CH_2)_o(CHR^{61})_sC_6H_4R^8}; \\ \text{-(CH_2)_o(CHR^{61})_sNR^{20}CONR^{33}R^{82}}; \quad \text{-(CH_2)_o(CHR^{61})_sPO(OR^{60})_2}; \quad \text{-(CH_2)_o(CHR^{61})_sSO_2R^{62}}; \quad \text{o} \quad \text{-(CH_2)_o(CHR^{61})_sC_6H_4R^8}; \\ \text{-(CH_2)_o(CHR^{61})_sNR^{20}CONR^{33}R^{82}}; \quad \text{-(CH_2)_o(CHR^{61})_sPO(OR^{60})_2}; \quad \text{-(CH_2)_o(CHR^{61})_sNR^{20}CONR^{33}R^{82}}; \\ \text{-(CH_2)_o(CHR^{61})_sNR^{20}CONR^{33}R^{82}}; \quad \text{-(CH_2)_o(CHR^{61})_sPO(OR^{60})_2}; \quad \text{-(CH_2)_o(CHR^{61})_sNR^{20}CONR^{33}R^{82}}; \\ \text{-(CH_2)_o(CHR^{61})_sNR^{20}CONR^{33}R^{82}}; \quad \text{-(CH_2)_o(CHR^{61})_sPO(OR^{60})_2}; \quad \text{-(CH_2)_o(CHR^{61})_sNR^{20}CONR^{33}R^{82}; \\ \text{-(CH_2)_o(CHR^{61})_sNR^{20}CONR^{33}R^{82}}; \quad \text{-(CH_2)_o(CHR^{61})_sPO(OR^{60})_2}; \\ \text{-(CH_2)_o(CHR^{61})_sNR^{20}CONR^{33}R^{82}; \\ \text{-(CH_2)_o(CHR^{61})
```

- 15 R³³ es H; alquilo, alquenilo; -(CH₂)_m(CHR⁶¹)_sOR⁵⁷; -(CH₂)_m(CHR⁶¹)_sNR³⁴R⁶³; -(CH₂)_m(CHR⁶¹)_sOCONR⁷⁵R⁸²; -(CH₂)_m(CHR⁶¹)_sCOR⁶⁴; -(CH₂)_o(CHR⁶¹)_sCOR⁶⁴; -(CH₂)_o(CHR⁶¹)_sCOR⁶⁴; -(CH₂)_o(CHR⁶¹)_sCOR⁶⁸; -(CH₂)_o(CHR
 - R³⁴ es H; alquilo inferior; arilo, o aril-alquilo inferior; o
- 20 $R^{33} \ y \ R^{34} \ tomados \ juntos \ pueden \ formar: -(CH_2)_{2-6}-; -(CH_2)_2O(CH_2)_2-; -(CH_2)_2S(CH_2)_2-; \ o \ -(CH_2)_2NR^{57}(CH_2)_2-; \ del{eq:charge_eq}$
 - R⁵⁰ es H; alquilo inferior; o aril-alquilo inferior;
- 25 R⁵⁵ es H; alquilo inferior; alquenilo inferior; aril-alquilo inferior; -(CH₂)_m(CHR⁶¹)_sOR⁵⁷; -(CH₂)_m(CHR⁶¹)_sNR³⁴R⁶³; -(CH₂)_m(CHR⁶¹)_sOCONR⁷⁵R⁸²; -(CH₂)_m(CHR⁶¹)_sCONR⁵⁷R⁸²; -(CH₂)_o(CHR⁶¹)_sCONR⁵⁸R⁵⁹; o -(CH₂)_o(CHR⁶¹)_sCONR⁵⁸R⁵⁹;
- - R⁵⁷ es H; alquilo inferior; alquenilo inferior; aril-alquilo inferior; o heteroaril-alquilo inferior;
- 35 R⁵⁸ es H; alquilo inferior; alquenilo inferior; arilo; heteroarilo; aril-alquilo inferior; o heteroaril-alquilo inferior;
 - R⁵⁹ es H; alquilo inferior; aquenilo inferior; arilo; heteroarilo; aril-alquilo inferior; o heteroaril-alquilo inferior; o
 - R⁵⁸ y R⁵⁹ tomados juntos pueden formar: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂-;
- 40 R⁶⁰ es H; alquilo inferior; alquenilo inferior; arilo; o aril-alquilo inferior;

65

- R⁶¹ es alquilo; alquenilo; arilo; heteroarilo; aril-alquilo inferior; heteroaril-alquilo inferior; -(CH₂)_pOR⁵⁷; -(CH₂)_pNR⁷⁵R⁸²; -(CH₂)_pNR²⁰(CHR⁶¹)_sCOR⁶⁴; -(CH₂)_oCOOR⁵⁷; -(CH₂)_oCONR⁵⁸R⁵⁹; o -(CH₂)_oPO(OR⁶⁰)₂;
 - R⁶² es alquilo inferior; alquenilo inferior; arilo, heteroarilo; o aril-alquilo inferior;
- $R^{63} \text{ es H; alquilo inferior; alquenilo inferior; arilo, heteroarilo; aril-alquilo inferior; heteroaril-alquilo inferior; -COR^{64}; \\ -COOR^{57}; -CONR^{58}R^{59}; -SO_2R^{62}; o -PO(OR^{60})_2 o \\ R^{34} \text{ y R}^{63} \text{ tomados juntos pueden formar: -(CH}_2)_{2-6}; -(CH}_2)_2O(CH}_2)_2-; -(CH}_2)_2S(CH}_2)_2-; o -(CH}_2)_2NR^{57}(CH}_2)_2-; \\ -(CH}_2)_2C(CH}_2)_2-; -(CH}_2)_2C(CH}_2)_2-; o -(CH}_2)_2C(CH}_2-; o -(CH}_2)_2C(CH}_2-; o -(CH}_2)_2C(CH}_2-; o -(CH}_2-; o -(CH}_2-;$
- R^{64} es H; alquilo inferior; alquenilo inferior; arilo; heteroarilo; aril-alquilo inferior; heteroaril-alquilo inferior; $-(CH_2)_p(CHR^{61})_sOR^{65};$ $-(CH_2)_p(CHR^{61})_sNR^{34}R^{63};$ $-(CH_2)_p(CHR^{61})_sOCONR^{75}R^{82};$ o $(CH_2)_p(CHR^{61})_sNR^{20}CONR^{78}R^{82};$
 - R^{65} es H; alquilo inferior; alquenilo inferior; arilo, aril-alquilo inferior; heteroaril-alquilo inferior; -COR 57 ; -COOR 57 ; o -CONR $^{58}R^{59}$:
- 60 R⁶⁶ es H; alquilo inferior; alquenilo inferior; arilo; aril-alquilo inferior; heteroaril-alquilo inferior; o -CONR⁵⁸R⁵⁹;
 - R⁶⁷ es H; CI; Br; F; NO₂; -NR³⁴COR⁵⁷; -CF₃; CN; -OCF₃; -OCHF₂; -OR⁵⁷; -SR⁶²; alquilo inferior; o alquenilo inferior;
- R⁶⁸ es H; CI; Br; F; NO₂; -NR³⁴COR⁵⁷; -CF₃; CN; -OCF₃; -OCHF₂; -OR⁵⁷; -SR⁶²; alquilo inferior; o alquenilo inferior;
- R⁶⁹ es H; Cl; Br; F; NO₂; -NR³⁴COR⁵⁷; -CF₃; CN; -OCF₃; -OCHF₂; -OR⁵⁷; -SR⁶²; alquilo inferior; o alquenilo inferior;

R⁷⁰ es H; CI; Br; F; NO₂; -NR³⁴COR⁵⁷; -CF₃; CN; -OCF₃; -OCHF₂; -OR⁵⁷; -SR⁶²; alquilo inferior; o alquenilo inferior;

 $R^{71} \ \ \text{es alquilo inferior; alquenilo inferior; -(CH_2)_p(CHR^{61})_sOR^{75}; -(CH_2)_p(CHR^{61})_sSR^{75}; -(CH_2)_p(CHR^{61})_sNR^{33}R^{34}; \\ -(CH_2)_p(CHR^{61})_sOCONR^{33}R^{75}; -(CH_2)_p(CHR^{61})_sNR^{20}CONR^{33}R^{82}; -(CH_2)_p(CHR^{61})_sCOOR^{75}; -(CH_2)_pCONR^{58}R^{59}; -(CH_2)_pPO(OR^{62})_2; -(CH_2)_pSO_2R^{62}; o -(CH_2)_o-C_6R^{67}R^{68}R^{69}R^{70}R^{76}; \\ -(CH_2)_pCONR^{58}R^{59}; -(CH_2)_pCONR^{58}R^{59}R^{59}$

 R^{72} es alquilo; alquenilo; cicloalquilo inferior; cicloalquilo inferior-alquilo inferior; -(CH₂)_p(CHR⁶¹)_sOR⁸⁵; o -(CH₂)_p(CHR⁶¹)_sSR⁸⁵;

 R^{73} es -(CH₂)₀ R^{77} ; -(CH₂)₁O(CH₂)₀ R^{77} ; -(CH₂)₁S(CH₂)₀ R^{77} ; o -(CH₂)₁NR²⁰(CH₂)₀ R^{77} ;

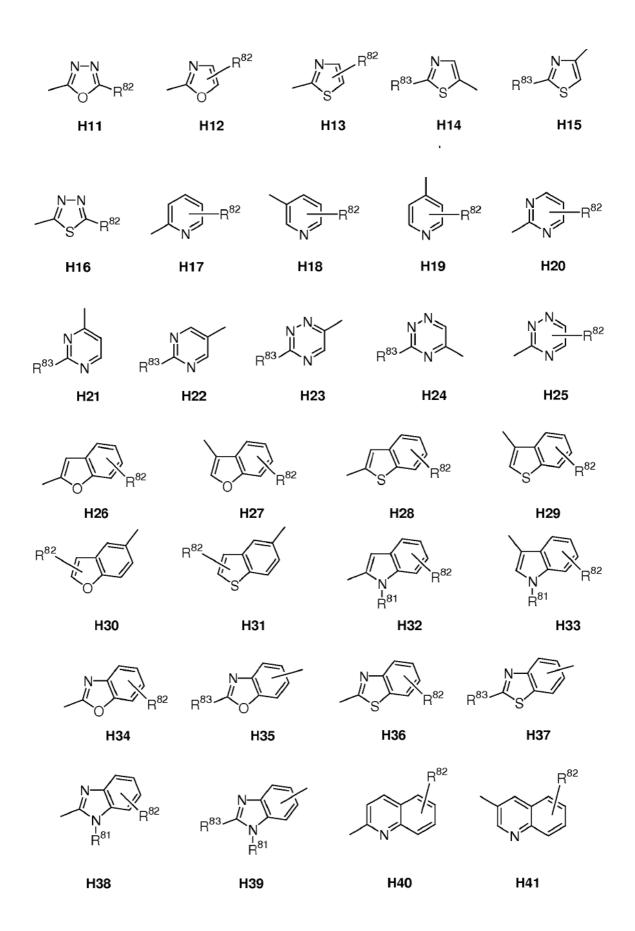
10

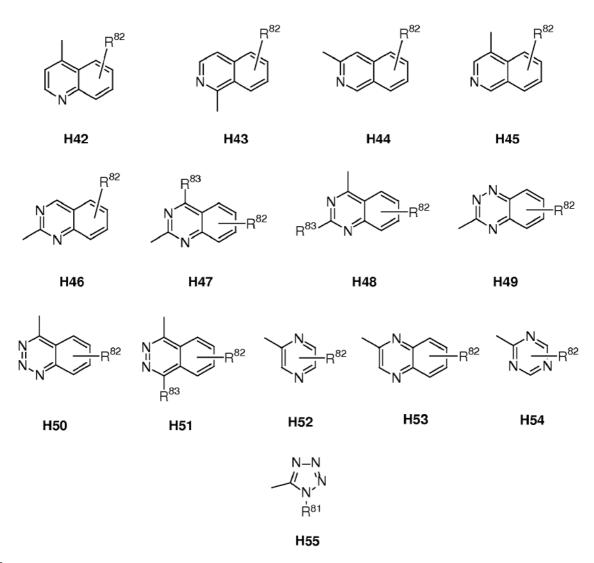
35

40

 $-(CH_2)_pC(=NOR^{50})NR^{78}R^{79}$: -(CH₂)_pNR⁷⁸R⁷¹; $-(CH_2)_pC(=NR^{80})NR^{78}R^{79}$: -(CH₂)_pNR⁷⁷R⁸⁰; $-(CH_2)_pC(=NNR^{78}R^{79})NR^{78}R^{79};$ $-(CH_2)_pNR^{80}C(=NR^{80})NR^{78}R^{79};$ $-(CH_2)_pN=C(NR^{78}R^{80})NR^{78}R^{90};$ $-(CH_2)_pC_6H_4NR^{78}R^{79};$ $\hbox{-(CH$_2$)$}_p\hbox{C$_6$}\hbox{H$_4$}\hbox{NR}^{77}\hbox{R}^{80}.$ -(CH₂)_pC₆H₄C(=NR⁸⁰)NR⁷⁸R⁷⁹: $-(CH_2)_pC_6H_4C(=NOR^{50})NR^{78}R^{79}$ 15 $-(CH_2)_pC_6H_4NR^{80}C(=NR^{80})NR^{78}R^{79}$ $-(CH_2)_pC_6H_4C(=NNR^{78}R^{79})NR^{78}R^{79}$: $-(CH_2)_pC_6H_4N=C(NR^{78}R^{80})NR^{79}R^{80}$. -(CH₂)_rO(CH₂)_mNR⁷⁷R⁸⁰: -(CH₂)_rO(CH₂)_pC(=NR⁸⁰)NR⁷⁸R⁷⁹: -(CH₂)_rO(CH₂)_mNR⁷⁸R⁷⁹; -(CH₂)_rO(CH₂)_mNR⁸⁰C(=NR⁸⁰)NR⁷⁸R⁷⁹: $-(CH_2)_rO(CH_2)_pC(=NOR^{50})NR^{78}R^{79}$: $-(CH_2)_rO(\dot{C}H_2)_pC(\dot{=}NNR^{78}R^{79})NR^{78}R^{79}$: $-(CH_2)_rO(CH_2)_mN=C(NR^{78}R^{80})NR^{79}R^{80}$: -(CH₂)_rO(CH₂)_pC₆H₄C(=NR⁸⁰)NR⁷⁸R⁷⁹. -(CH₂)_rO(CH₂)_pC₆H₄CNR⁷⁸R⁷⁹; $-(CH_2)_rO(CH_2)_pC_6H_4C(=NOR^{50})NR^{78}R^{79}$ $-(CH_2)_rO(CH_2)_pC_6H_4C(=NNR^{78}R^{79})NR^{78}R^{79}$ 20 $-(CH_2)_rO(CH_2)_pC_6H_4NR^{80}C(=NR^{80})NR^{78}R^{79}$: -(CH₂)_rS(CH₂)_mNR⁷⁷R⁸⁰; -(CH₂)_rS(CH₂)_mNR⁷⁸R⁷⁹; -(CH₂)_rS(CH₂)_pC(=NNR⁷⁸R⁷⁹)NR⁷⁸R⁷⁹: $-(CH_2)_rS(CH_2)_pC(=NR^{80})NR^{78}R^{79};$ $-(CH_2)_rS(CH_2)_pC(=NOR^{50})NR^{78}R^{79};$ $-(CH_2)_rS(CH_2)_mNR^{80}C(=NR^{80})NR^{78}R^{79}$: $-(CH_2)_rS(CH_2)_mN=C(NR^{78}R^{80})NR^{79}R^{80};$ -(CH₂)_rS(CH₂)_pC₆H₄CNR⁷⁸R⁷⁹; $-(CH_2)_rS(CH_2)_pC_6H_4C(=NR^{80})NR^{78}R^{79}$ $-(CH_2)_rS(CH_2)_pC_6H_4C(=NOR^{50})NR^{78}R^{79}$: -(CH₂)_pC₆H₄C(=NNR⁷⁸R⁷⁹)NR⁷⁸R⁷⁹; $-(CH_2)_rS(CH_2)_pC_6H_4NR^{80}C(=NR^{80})NR^{78}R^{79};$ -(CH₂)_pNR⁸⁰COR⁶⁴; 25 $-(CH_2)_pNR^{80}COR^{77}$; $-(CH_2)_pNR^8CONR^{78}R^{79}$; o $-(CH_2)_pC_6H_4NR^{80}CONR^{78}R^{79}$;

R⁷⁵ es alquilo inferior; alquenilo inferior; cicloalquilo inferior; cicloalquilo inferior; o aril-alquilo inferior; o


30 R^{33} y R^{75} tomados juntos pueden formar: $-(CH_2)_2-6-$; $-(CH_2)_2O(CH_2)_2-$; $-(CH_2)_2S(CH_2)_2-$; o $-(CH_2)_2NR^{57}(CH_2)_2-$; o


R⁷⁵ y R⁸² tomados juntos pueden formar: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂-;

 R^{76} es H; alquilo inferior; alquenilo inferior; aril-alquilo inferior; -(CH₂)_oOR⁷²; -(CH₂)_oSR⁷²; -(CH₂)_oNR³³R³⁴; -(CH₂)_oCONR³³R⁷⁵; -(CH₂)_oNR²⁰CONR³³R⁸¹; -(CH₂)_oCOR⁷⁵; -(CH₂)_oCONR⁵⁸R⁵⁹; -(CH₂)_oPO(OR⁶⁰)₂; -(CH₂)_oSO₂R⁶²; o -(CH₂)_oCOR⁶⁴;

 R^{77} es $-C_6 R^{67} R^{68} R^{69} R^{70} R^{76}$, con la condición de que, como mínimo, dos de R^{67} , R^{68} , R^{69} y R^{70} sean H; o un grupo heteroarilo de una de las fórmulas

 R^{82} R^{82} R^{82} R^{82} R^{82} R^{82} R^{82} R^{81} R^{82} R^{82} R^{83} R^{83} R^{81} R^{82} R^{81} R^{82} R^{82} R^{81} R^{82} R^{82} R^{82} R^{82} R^{82} R^{81} R^{82} R^{82} R^{82} R^{81} R^{82} R^{82} R^{82} R^{81}

R⁷⁸ es H; alquilo inferior; arilo; o aril-alquilo inferior; o

 R^{78} y R^{82} tomados juntos pueden formar: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂-;

5 R⁷⁹ es H; alquilo inferior; arilo; o aril-alquilo inferior; o

 R^{78} y R^{79} , tomados juntos, pueden ser -(CH₂)₂₋₇-; -(CH₂)₂O(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂-;

R⁸⁰ es H; o alquilo inferior;

R81 es H; alquilo inferior; o aril-alquilo inferior; o

 R^{33} y R^{81} tomados juntos pueden formar: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂-;

10 R⁸² es H; -CF₃; alquilo inferior; arilo; heteroarilo; o aril-alquilo inferior;

R⁸³ es H; alquilo inferior; arilo; o -NR⁷⁸R⁷⁹;

15 -(CH₂)_p(CHR⁶¹)_sOSO₂R⁶⁰;

R⁸⁵ es alquilo inferior; o alquenilo inferior;

R⁸⁶ es H; alquilo inferior, en el que el H puede estar sustituido por halógeno; o halógeno;

R⁸⁷ es H; alquilo inferior, en el que el H puede estar sustituido por halógeno; o halógeno;

R⁸⁸ es R⁷⁴ o R⁸⁴

20 R^{89} es $-(CH_2)_pNR^{20}CO(CHNHR^{20})R^{72}$; $-(CH_2)_pNR^{20}CO(CHNHR^{20})R^{73}$; $-(CH_2)_pNR^{20}CO(CHNHR^{20})R^{74}$; o $-(CH_2)_pNR^{20}CO(CHNHR^{20})R^{84}$;

 $\stackrel{?}{\text{R}^{90}} \stackrel{\text{ (CH}_2)_p}{\text{CONR}^{20}} \stackrel{\text{(CH}_2)_p}{\text{CONR}^{20}} \stackrel{\text{(CH}_2)_p}{\text{CONR}^{2$

 R^{91} es -(CH₂)_pNR²⁰COR⁷⁵;

25 R^{92} es -(CH₂)_pCONR²⁰R⁷⁵;

m es 2-4; o es 0-4; p es 1-4; q es 0-2; r es 1 o 2; s es 0 o 1;

el residuo de aminoácido de tipo C es un residuo de fórmula -NR 20 CH(R 72)CO-; el residuo de aminoácido de tipo D es un residuo de fórmula -NR 20 CH(R 73)CO-;

```
el residuo de aminoácido de tipo E es un residuo de fórmula -NR<sup>20</sup>CH(R<sup>74</sup>)CO-; el residuo de aminoácido de tipo F es un residuo de fórmula -NR<sup>20</sup>CH(R<sup>84</sup>)CO-; el residuo de glicina sustituido en el N de tipo I es un residuo de fórmula -NR<sup>88</sup>CH<sub>2</sub>CO-; el residuo de aminoácido de tipo M es un residuo de una de las fórmulas -NR<sup>20</sup>CH(R<sup>73</sup>)(CH<sub>2</sub>)<sub>2</sub>CO-; el residuo de aminoácido de tipo N es un residuo de una de las fórmulas -NR<sup>20</sup>CH(R<sup>72</sup>)(CH<sub>2</sub>)<sub>2</sub>CO-; -NR<sup>20</sup>CH(R<sup>73</sup>)(CH<sub>2</sub>)<sub>2</sub>CO- o -NR<sup>20</sup>CH(R<sup>84</sup>)(CH<sub>2</sub>)<sub>2</sub>CO-; el residuo de aminoácido de tipo O es un residuo de fórmula -NR<sup>20</sup>CH(R<sup>89</sup>)CO-; el residuo de aminoácido de tipo P es un residuo de fórmula -NR<sup>20</sup>CH(R<sup>90</sup>)CO-; el residuo de aminoácido de tipo Q es un residuo de fórmula -NR<sup>20</sup>CH(R<sup>91</sup>)CO-; y el residuo de aminoácido de tipo R es un residuo de fórmula -NR<sup>20</sup>CH(R<sup>92</sup>)CO-.
```

Según la presente invención, estos peptidomiméticos de horquilla β se pueden preparar mediante un proceso que comprende

(a) acoplar un soporte sólido funcionalizado de manera apropiada con un derivado de ese aminoácido protegido en el N de manera apropiada, que en el producto final deseado corresponde a Xaaⁿ, en el que n es 13, 8, 7, 6, 5 o 4, estando cualquier grupo funcional, que pueda estar presente en dicho derivado de aminoácido protegido en el N, también protegido de manera apropiada;

(b) eliminar el grupo N-protector del producto así obtenido;

15

20

30

35

40

65

- (c) acoplar el producto así obtenido con un derivado de ese aminoácido protegido en el N de manera apropiada, que en el producto final deseado corresponde a Xaaⁿ⁻¹, estando cualquier grupo funcional, que pueda estar presente en dicho derivado de aminoácido protegido en el N, también protegido de manera apropiada;
- (d) eliminar el grupo N-protector del producto obtenido en la etapa (c);
- (e) realizar las etapas sustancialmente correspondientes a las etapas (c) y (d) utilizando derivados de aminoácidos protegidos en el N de manera apropiada, que en el producto final deseado están en las posiciones n-2 a 1, estando cualquier grupo o grupos funcionales, que puedan estar presentes en dichos derivados de aminoácidos protegidos en el N, también protegidos de manera apropiada;
 - (f) si n no es 13, realizar adicionalmente etapas sustancialmente correspondientes a las etapas (c) y (d) utilizando derivados de aminoácidos protegidos en el N de manera apropiada, que en el producto final deseado están en las posiciones 13 a n + 1, estando cualquier grupo o grupos funcionales, que puedan estar presentes en dichos derivados de aminoácidos protegidos en el N, también protegidos de manera apropiada;
 - (g) si se desea, antes de eliminar el grupo protector en el N del producto obtenido en las etapas (e) o (f), desproteger de manera selectiva uno o varios grupos funcionales protegidos presentes en la molécula y sustituir de manera apropiada el grupo o grupos reactivos así liberados mediante la unión de uno o varios restos derivados de ácidos, aminoácidos o aminas y eliminar el grupo protector en el N del producto obtenido;
 - (h) desprender el producto así obtenido del soporte sólido;
 - (i) ciclar el producto escindido del soporte sólido;
 - (j) eliminar cualquier grupo protector presente en los grupos funcionales de cualquier elemento de la cadena de residuos de aminoácidos; y
 - (k) si se desea, convertir el producto así obtenido en una sal aceptable farmacéuticamente o convertir una sal aceptable, o inaceptable, farmacéuticamente, así obtenida en el compuesto libre correspondiente o en una sal diferente aceptable farmacéuticamente.
- Tal como se utiliza en esta descripción, el término "alquilo", tomado solo o en combinaciones, designa radicales 45 hidrocarbonados saturados, de cadena lineal o ramificada, que tienen hasta 24, de manera preferente, hasta 12, átomos de carbono. De manera similar, el término "alquenilo" designa radicales hidrocarbonados de cadena lineal o ramificada que tienen hasta 24, de manera preferente, hasta 12, átomos de carbono, y que contienen, como mínimo, uno o, dependiendo de la longitud de la cadena, hasta cuatro dobles enlaces olefínicos. El término "inferior" designa 50 radicales que tienen hasta 8 átomos de carbono. Por tanto, por ejemplo, el término "alquilo inferior" designa radicales hidrocarbonados saturados, de cadena lineal o ramificada, que tienen hasta 8 átomos de carbono, tales como metilo, etilo, n-propilo, isopropilo, n-butilo, sec-butilo, isobutilo, terc-butilo, y similares. De manera similar, el término "cicloalquilo inferior" designa radicales hidrocarbonados cíclicos saturados que tienen hasta 8 átomos de carbono, tales como ciclobutilo, ciclopentilo, ciclohexilo y similares. El término "arilo" designa radicales hidrocarbonados 55 carbocíclicos aromáticos que contienen uno o dos anillos de seis miembros, tales como fenilo o naftilo, que pueden estar sustituidos con hasta tres sustituyentes, tales como Br, Cl, F, CF₃, NO₂, alquilo inferior o alquenilo inferior. El término "heteroarilo" designa radicales heterocíclicos aromáticos que contienen uno o dos anillos de cinco y/o seis miembros, conteniendo, como mínimo, uno de ellos hasta tres heteroátomos seleccionados del grupo que consiste en O, S y N y estando dicho o dichos anillos opcionalmente sustituidos; los ejemplos representativos de dichos 60 radicales heteroarilo opcionalmente sustituidos se indican anteriormente en el presente documento en relación con la definición de R⁷⁷.

Las unidades estructurales A1-A37 y A105 del elemento estructural -A-CO- pertenecen a una clase de aminoácidos en los que el extremo N-terminal es una amina secundaria que forma parte de un anillo. Entre los aminoácidos codificados genéticamente solo la prolina pertenece a esta clase. La configuración de las unidades estructurales A1 a A37 y A105 es (D), y se pueden combinar con una unidad estructural -B-CO- de configuración (L). Las

combinaciones preferentes son -DA1-CO-LB-CO- a -DA37-CO-LB-CO- y -DA105-CO-LB-CO-. De este modo, por ejemplo, DPro-LPro constituye el prototipo de dicha combinación.

Se entenderá que las unidades estructurales –A1-CO- a -A37-CO- y A105-CO- en las que A tiene la *configuración* (*D*), contienen un grupo R¹ en la posición β al extremo N-terminal. Los valores preferentes para R¹ son H y alquilo inferior, siendo los valores más preferentes para R¹, H y metilo. Los expertos en la materia reconocerán que A1-A37 y A105 se muestran en la *configuración* (*D*) que, siendo R¹ H y metilo, corresponde a la *configuración* (*R*). Dependiendo de la prioridad de otros valores para R¹, según las reglas de Cahn, Ingold y Prelog, esta configuración también puede tener que expresarse como (*S*).

5

10

15

20

25

45

50

55

60

65

Además de R¹, las unidades estructurales –**A1**-CO- a -**A37**-CO- y -**A105**-CO- pueden contener un sustituyente adicional designado como R² a R¹7. Este sustituyente adicional puede ser H, y si es distinto de H, es, de manera preferente, un grupo alifático o aromático de tamaño pequeño a mediano. Entre los ejemplos de valores preferentes para R² a R¹7 se encuentran:

- R²: H; alquilo inferior; alquenilo inferior; $(CH_2)_pOR^{55}$ (donde R⁵⁵: H; alquilo inferior; o alquenilo inferior); $(CH_2)_pNR^{36}$ (donde R⁵⁶: alquilo inferior; o alquenilo inferior); $(CH_2)_pNR^{33}R^{34}$ (donde R³³: H; alquilo inferior; o alquenilo inferior; R³⁴: H; o alquilo inferior; R³³ y R³⁴ tomados juntos forman: $-(CH_2)_2.6^-$; $-(CH_2)_2O(CH_2)_2^-$; $-(CH_2)_2S(CH_2)_2^-$; o $-(CH_2)_2NR^{57}(CH_2)_2^-$; R⁵⁷: H; o alquilo inferior); $(CH_2)_mOCONR^{33}R^{75}$ (donde R³³: H; o alquilo inferior; o alquenilo inferior; R⁷⁵: alquilo inferior; o R³³ y R⁷⁵ tomados juntos forman: $-(CH_2)_2.6^-$; $-(CH_2)_2O(CH_2)_2^-$; $-(CH_2)_2S(CH_2)_2^-$; o $-(CH_2)_2NR^{57}(CH_2)_2^-$; (donde R⁵⁷: H; o alquilo inferior; R³³: H; o alquilo inferior; o alquenilo inferior; o alquenilo inferior; R⁸²: H; o alquilo inferior; o R³³ y R⁸² tomados juntos forman: $-(CH_2)_2.6^-$; $-(CH_2)_2O(CH_2)_2^-$; $-(CH_2)_2S(CH_2)_2^-$; o $-(CH_2)_2NR^{57}(CH_2)_2^-$; (donde R⁵⁷: H; o alquilo inferior); $-(CH_2)_pN(R^{20})COR^{64}$ (donde: R²⁰: H; o alquilo inferior; R⁶⁴: alquilo inferior; o alquenilo inferior; y R⁵⁹: donde R⁵⁷: alquilo inferior; o alquenilo inferior; $-(CH_2)_0COR^{57}$ (donde R⁵⁷: alquilo inferior; o alquenilo inferior; y R⁵⁹: H; o alquilo inferior; o R⁵⁸ y R⁵⁹ tomados juntos forman: $-(CH_2)_2.6^-$; $-(CH_2)_2O(CH_2)_2^-$; $-(CH_2)_2S(CH_2)_2^-$; o $-(CH_2)_2NR^{57}(CH_2)_2^-$; (donde R⁵⁷: H o alquilo inferior); $-(CH_2)_0COR^{57}$ (donde R⁵⁷: H o alquilo inferior); $-(CH_2)_0COR^{57}$ (donde R⁵⁸: alquilo inferior); $-(CH_2)_0COR^{57}$ (donde R⁵⁷: alquilo inferior); $-(CH_2)_0COR^{57}$ (donde R⁵⁸: alquilo inferior); $-(CH_2)_2NR^{57}(CH_2)_2^-$; (donde R⁵⁸: alquilo inferior); $-(CH_2)_2NR^{57}(CH_2)_2^-$; (donde R⁵⁸: alquilo inferior); $-(CH_2)_0COR^{58}$ (donde R⁵⁸: alquilo inferior); -

- R³: H′; alquilo inferior; alquenilo inferior; -(CH₂)_oOR⁵⁵ (donde R⁵⁵: H; alquilo inferior; o alquenilo inferior); -(CH₂)_oSR⁵⁶ (donde R⁵⁶: alquilo inferior; o alquenilo inferior); -(CH₂)_oNR³³R³⁴ (donde R³³: H; alquilo inferior; o alquenilo inferior; R³⁴: H; o alquilo inferior; o R³³ y R³⁴ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_oOCONR³³R⁷⁵ (donde R³³: H; o alquilo inferior; o alquenilo inferior; R⁷⁵: alquilo inferior; o R³³ y R⁷⁵ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_oNR²⁰CONR³³R⁸² (donde R²⁰: H; o alquilo inferior; R³³: H; o alquilo inferior; O R³³ y R⁸² tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂-; donde R⁵⁷: H; o alquilo inferior); -(CH₂)_oN(R²⁰)COR⁶⁴ (donde: R²⁰: H; o alquilo inferior; R⁶⁴: alquilo inferior; o alquenilo inferior; y R⁵⁹: H; alquilo inferior; o alquenilo inferior); -(CH₂)_oCOOR⁵⁷ (donde R⁵⁷: alquilo inferior; o alquenilo inferior; y R⁵⁹: H; alquilo inferior; o R⁵⁸ y R⁵⁹ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_oPO(OR⁶⁰)₂ (donde R⁶⁰: alquilo inferior; o alquenilo inferior; alquenilo inferior; o alq

- R⁴: H; alquilo inferior; alquenilo inferior; -(CH₂)_mOR⁵⁵ (donde R⁵⁵: H; alquilo inferior; o alquenilo inferior); -(CH₂)_mSR⁵⁶ (donde R⁵⁶: alquilo inferior; o alquenilo inferior; -(CH₂)_mNR³³R³⁴ (donde R³³: H; alquilo inferior; o alquenilo inferior; R³⁴: H; o alquilo inferior; o R³³ y R³⁴ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_mOCONR³³R⁷⁵ (donde R³³: H; o alquilo inferior; R⁷⁵: alquilo inferior; o R³³ y R⁷⁵ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_mNR²⁰CONR³³R⁸² (donde R²⁰: H; o alquilo inferior; R³³: H; o alquilo inferior; o alquenilo inferior; R⁸²: H; o alquilo inferior; o R³³ y R⁸² tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)₀CONR⁵⁷ (donde R⁵⁷: alquilo inferior; o alquenilo inferior); -(CH₂)₀CONR⁵⁸R⁵⁹ (donde R⁵⁸: alquilo inferior; o alquenilo inferior; y R⁵⁹: H; o alquilo inferior; o R⁵⁸ y R⁵⁹ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)₀OOR⁶⁰)₂ (donde R⁶⁰: alquilo inferior; o alquenilo i

- R^5 : alquilo inferior; alquenilo inferior; - $(CH_2)_oOR^{55}$ (donde R^{55} : H; alquilo inferior; o alquenilo inferior); - $(CH_2)_oNR^{36}$ (donde R^{56} : alquilo inferior; o alquenilo inferior); - $(CH_2)_oNR^{33}R^{34}$ (donde R^{33} : H; alquilo inferior; o alquenilo inferior; R^{34} : H; o alquilo inferior; o R^{33} y R^{34} tomados juntos forman: - $(CH_2)_{2-6}$ -; - $(CH_2)_2O(CH_2)_2$ -; - $(CH_2)_2S(CH_2)_2$ -; o - $(CH_2)_2NR^{57}(CH_2)_2$ - (donde R^{57} : H; o alquilo inferior); - $(CH_2)_oOCONR^{33}R^{75}$ (donde R^{33} : H; o alquilo inferior; o R^{33} y R^{75} tomados juntos forman: - $(CH_2)_{2-6}$ -; - $(CH_2)_2O(CH_2)_2$ -; - $(CH_2)_2S(CH_2)_2$ -; o - $(CH_2)_2NR^{57}(CH_2)_2$ -; R^{57} : donde H; o alquilo inferior); ($CH_2)_oNR^{20}CONR^{33}R^{82}$ (donde R^{20} : H; o alquilo inferior; R^{33} : H; o alquilo inferior; o alquenilo inferior; R^{82} : H; o alquilo inferior; o R^{33} y R^{82} tomados juntos forman: - $(CH_2)_2R^{57}$ -; - $(CH_2)_2O(CH_2)_2$ -; - $(CH_2)_2S(CH_2)_2$ -; o - $(CH_2)_2NR^{57}(CH_2)_2$ -; donde R^{57} : H; o alquilo inferior); ($CH_2)_oN(R^{20})COR^{64}$ (donde: R^{20} : H; o alquilo inferior; R^{64} : alquilo; alquenilo; arilo; y aril-alquilo inferior;

heteroaril-alquilo inferior); -(CH₂)_pCOOR⁵⁷ (donde R⁵⁷: alquilo inferior; o alquenilo inferior); -(CH₂)_pCONR⁵⁸R⁵⁹ (donde R⁵⁸: alquilo inferior; o alquenilo inferior; y R⁵⁹: H; o alquilo inferior; o R⁵⁸ y R⁵⁹ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_oPO(OR⁶⁰)₂ (donde R⁶⁰: alquilo inferior; o alquenilo inferior); -(CH₂)_oSO₂R⁶² (donde R⁶²: alquilo inferior; o alquenilo inferior); o -(CH₂)_oC₆H₄R⁸ (donde R⁸: H; F; CI; CF₃; alquilo inferior; alquenilo inferior; o alcoxi inferior).

- R⁶: H; alquilo inferior; alquenilo inferior; -(CH₂)_oOR⁵⁵ (donde R⁵⁵: H; alquilo inferior; o alquenilo inferior); -(CH₂)_oSR⁵⁶ (donde R⁵⁶: alquilo inferior; o alquenilo inferior); -(CH₂)_oNR³³R³⁴ (donde R³³: H; alquilo inferior; o alquenilo inferior; R³⁴: H; o alquilo inferior; o R³³ y R³⁴ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_oOCONR³³R⁷⁵ (donde R³³: H; o alquilo inferior; o alquenilo inferior; R⁷⁵: alquilo inferior; o R³³ y R⁷⁵ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂O(CH₂)₂-; (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_oNR²⁰CONR³³R⁸² (donde R²⁰: H; o alquilo inferior; R⁸²: H; o alquilo inferior; o R³³ y R⁸² tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂-; donde R⁵⁷: H; o alquilo inferior; -(CH₂)_oN(R²⁰)COR⁶⁴ (donde: R²⁰: H; o alquilo inferior; R⁶⁴: alquilo inferior; o alquenilo inferior; o alquenilo inferior; y R⁵⁹: H; o alquilo inferior; o R⁵⁸ y R⁵⁹ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_oCONR⁵⁸R⁵⁹ (donde R⁶⁸: alquilo inferior; o alquenilo inferior; o alquenilo inferior; o R⁵⁸ y R⁵⁹ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁶²: alquilo inferior); -(CH₂)_oPO(OR⁶⁰)₂ (donde R⁶⁰: alquilo inferior; o alquenilo inferior;

10

15

35

40

45

55

60

65

- R⁷: alquilo inferior; alquenilo inferior; -(CH₂)_qOR⁵⁵ (donde R⁵⁵: H; alquilo inferior; o alquenilo inferior); -(CH₂)_qSR⁵⁶ (donde R⁵⁶: alquilo inferior; o alquenilo inferior); -(CH₂)_qNR³³R³⁴ (donde R³³: H; alquilo inferior; o alquenilo inferior; R³⁴: H; o alquilo inferior; o R³³ y R³⁴ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; o -(CH₂)₂S(CH₂)₂-; o alquilo inferior; o R³³ y R⁷⁵ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; o -(CH₂)₂D(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior; (CH₂)₄NR²⁰CONR³³R⁸² (donde R²⁰: H; o alquilo inferior; R³³: H; o alquilo inferior; o alquenilo inferior; R³²: H; o alquilo inferior; o R³³ y R⁸² tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; o -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior; o R³³ y R⁸² tomados juntos forman: -(CH₂)₂OCR⁶⁴ (donde: R²⁰: H; o alquilo inferior; R⁶⁴: alquilo inferior; o alquenilo inferior; -(CH₂)₄COOR⁵⁷ (donde R⁵⁷: alquilo inferior; o alquenilo inferior); -(CH₂)₄CONR⁵⁸R⁵⁹ (donde R⁵⁸: alquilo inferior; o alquenilo inferior; y R⁵⁹: H; o alquilo inferior; o R⁵⁸ y R⁵⁹ tomados juntos forman: -(CH₂)₂-6-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)₄PO(OR⁶⁰)₂ (donde R⁶⁰: alquilo inferior; o alquenilo inferior; alquenilo inferior; o alquenilo inferior).

- R⁸: H; F; CI; CF₃; alquilo inferior; alquenilo inferior; -(CH₂)_oOR⁵⁵ (donde R⁵⁵: H; alquilo inferior; o alquenilo inferior); (CH₂)_oSR⁵⁶ (donde R⁵⁶: alquilo inferior; o alquenilo inferior); -(CH₂)_oNR³³R³⁴ (donde R³³: H; alquilo inferior; o alquenilo inferior; R³⁴: H; o alquilo inferior; o R³³ y R³⁴ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_oOCONR³³R⁷⁵ (donde R³³: H; o alquilo inferior; o alquenilo inferior; R⁷⁵: alquilo inferior; o R³³ y R⁷⁵ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior; R⁸²: H; o alquilo inferior; o R³³ y R⁸² tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂-; donde R⁵⁷: H; o alquilo inferior; -(CH₂)₂N(R²⁰)COR⁶⁴ (donde: R²⁰: H; o alquilo inferior; R⁶⁴: alquilo inferior; o alquenilo inferior; o alquenilo inferior; y R⁵⁹: H; o alquilo inferior; o R⁵⁸ y R⁵⁹ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)₀OOR⁵⁷ (donde R⁵⁸: alquilo inferior; o alquenilo inferior; o alquenilo

- R⁹: alquilo inferior; alquenilo inferior; -(CH₂)_oOR⁵⁵ (donde R⁵⁵: H; alquilo inferior; o alquenilo inferior); -(CH₂)_oSR⁵⁶ (donde R⁵⁶: alquilo inferior; o alquenilo inferior); -(CH₂)_oNR³³R³⁴ (donde R³³: H; alquilo inferior; o alquenilo inferior; R³⁴: H; o alquilo inferior; o R³³ y R³⁴ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_oOCONR³³R⁷⁵ (donde R³³: H; o alquilo inferior; o alquenilo inferior; R⁷⁵: alquilo inferior; o R³³ y R⁷⁵ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂O(CH₂)₂-; (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_mNR²⁰CONR³³R⁸² (donde R²⁰: H; o alquilo inferior; R⁸²: H; o alquilo inferior; o R³³ y R⁸² tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂-; donde R⁵⁷: H; o alquilo inferior); -(CH₂)₀N(R²⁰)COR⁶⁴ (donde: R²⁰: H; o alquilo inferior; R⁶⁴: alquilo inferior; o alquenilo inferior; o alquenilo inferior; y R⁵⁹: H; o alquilo inferior; o R⁵⁸ y R⁵⁹ tomados juntos forman: -(CH₂)₂-6-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)₀CONR⁵⁸R⁵⁹ (donde R⁶⁸: alquilo inferior; o alquenilo inferior; o al

- R¹⁰: alquilo inferior; alquenilo inferior; -(CH₂)_oOR⁵⁵ (donde R⁵⁵: H; alquilo inferior; o alquenilo inferior); -(CH₂)_oSR⁵⁶ (donde R⁵⁶: alquilo inferior; o alquenilo inferior); -(CH₂)_oNR³³R³⁴ (donde R³³: H; alquilo inferior; o alquenilo inferior; R³⁴: H; o alquilo inferior; o R³³ y R³⁴ tomados juntos forman: -(CH₂)₂-6-; -(CH₂)₂O(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)₀OCONR³³R⁷⁵ (donde R³³: H; o alquilo inferior; o alquenilo inferior; R⁷⁵: alquilo inferior; o R³³ y R⁷⁵ tomados juntos forman: -(CH₂)₂-6-; -(CH₂)₂O(CH₂)₂-;

- -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)₀NR²⁰CONR³³R⁸² (donde R²⁰: H; o alquilo inferior; R³³: H; o alquilo inferior; o alquenilo inferior; R⁸²: H; o alquilo inferior; o R³³ y R⁸² tomados juntos forman: -(CH₂)₂-6-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)₀COOR⁵⁷ (donde R⁵⁷: alquilo inferior; o alquenilo inferior; o alquenilo inferior; y R⁵⁹: H; alquilo inferior; o R⁵⁸ y R⁵⁹ tomados juntos forman: -(CH₂)₂-6-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)₀PO(OR⁶⁰)₂ (donde R⁶⁰: alquilo inferior; o alquenilo inferior); -(CH₂)₀SO₂R⁶² (donde R⁶²: alquilo inferior; o alquenilo inferior; alquenilo inferior; o alcoxi inferior).
- R¹¹: H; alquilo inferior; alquenilo inferior; -(CH₂)_mOR⁵⁵ (donde R⁵⁵: H; alquilo inferior; o alquenilo inferior); -(CH₂)_mSR⁵⁶ (donde R⁵⁶: alquilo inferior; o alquenilo inferior); -(CH₂)_mNR³³R³⁴ (donde R³³: H; alquilo inferior; o alquenilo inferior; R³⁴: H; o alquilo inferior; o R³³ y R³⁴ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_mOCONR³³R⁷⁵ (donde R³³: H; o alquilo inferior; o R³³ y R⁷⁵ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂O(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_mNR²⁰CONR³³R⁸² (donde R²⁰: H; o alquilo inferior; R⁸²: H; o alquilo inferior; o R³³ y R⁸² tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂-; donde R⁵⁷: H; o alquilo inferior); -(CH₂)_mN(R²⁰)COR⁶⁴ (donde: R²⁰: H; o alquilo inferior; R⁶⁴: alquilo inferior; o alquenilo inferior; o alquenilo inferior; y (donde R⁵⁷: alquilo inferior; o alquenilo inferior; y (CH₂)₂CONR⁵⁸R⁵⁹ (donde R⁵⁸: alquilo inferior; o alquenilo inferior; o -(CH₂)₂OCH₄OH₄R⁸ (donde R⁸: H; F; C
- R¹²: H; alquilo inferior; alquenilo inferior; -(CH₂)_mOR⁵⁵ (donde R⁵⁵: H; alquilo inferior; o alquenilo inferior); -(CH₂)_mSR⁵⁶ (donde R⁵⁶: alquilo inferior; o alquenilo inferior); -(CH₂)_mNR³³R³⁴ (donde R³³: H; alquilo inferior; o alquenilo inferior; R³⁴: H; o alquilo inferior; o R³³ y R³⁴ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂C(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_mOCONR³³R⁷⁵ (donde R³³: H; o alquilo inferior; o alquenilo inferior; R⁷⁵: alquilo inferior, o R³³ y R⁷⁵ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂C(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_mNR²⁰CONR³³R⁸² (donde R²⁰: H; o alquilo inferior; R⁸²: H; o alquilo inferior; o R³³ y R⁸² tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂-; donde R⁵⁷: H; o alquilo inferior); -(CH₂)_mN(R²⁰)COR⁶⁴ (donde: R²⁰: H; o alquilo inferior; R⁶⁴: alquilo inferior; o alquenilo inferior; o alquenilo inferior; y R⁵⁹: H; o alquilo inferior; o alquenilo inferior; o alq

alquilo inferior; alquenilo inferior; o alcoxi inferior).

alguilo inferior; alguenilo inferior; o alcoxi inferior).

inferior; o alcoxi inferior).

(donde R⁵⁶: alquilo inferior; o alquenilo inferior); -(CH₂)_qNR³³R³⁴ (donde R³³: H; alquilo inferior; o alquenilo inferior; A³⁴: H; o alquilo inferior; o R³³ y R³⁴ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_qOCONR³³R⁷⁵ (donde R³³: H; o alquilo inferior; o alquenilo inferior; R⁷⁵: alquilo inferior; o R³³ y R⁷⁵ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_qNR²⁰CONR³³R⁸² (donde R²⁰: H; o alquilo inferior; R³³: H; o alquilo inferior; o alquenilo inferior; o R³³ y R⁸² tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_qN(R²⁰)COR⁶⁴ (donde: R²⁰: H; o alquilo inferior; R⁶⁴: alquilo inferior; o alquenilo inferior; o alquenilo inferior y R⁵⁹: H; o alquilo inferior; o R⁵⁸ y R⁵⁹ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_rPO(OR⁶⁰)₂ (donde R⁶⁰: alquilo inferior; o alquenilo inferior); -(CH₂)_rSO₂R⁶² (donde R⁶²: alquilo inferior; o alquenilo inferior; alquenilo

- R¹³: alquilo inferior; alquenilo inferior; -(CH₂)_qOR⁵⁵ (donde R⁵⁵: H; alquilo inferior; o alquenilo inferior); -(CH₂)_qSR⁵⁶

R¹⁴: H; alquilo inferior; alquenilo inferior; -(CH₂)_mOR⁵⁵ (donde R⁵⁵: H; alquilo inferior; o alquenilo inferior); -(CH₂)_mSR⁵⁶ (donde R⁵⁶: alquilo inferior; o alquenilo inferior); -(CH₂)_mNR³³R³⁴ (donde R³³: H; alquilo inferior; o alquenilo inferior; R³⁴: H; o alquilo inferior; o R³³ y R³⁴ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_mOCONR³³R⁷⁵ (donde R³³: H; o alquilo inferior; o alquenilo inferior; R⁷⁵: alquilo inferior; o R³³ y R⁷⁵ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂O(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_mNR²⁰CONR³³R⁸² (donde R²⁰: H; o alquilo inferior; R⁸²: H; o alquilo inferior; o R³³ y R⁸² tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)₂NR⁵⁷(CH₂)₂-; o -(CH₂)₂OOR⁵⁷ (donde R⁵⁷: alquilo inferior; o alquenilo inferior; R⁶⁴: alquilo inferior; o alquenilo inferior; o alquenilo inferior; y R⁵⁹: H; o alquilo inferior; o R⁵⁸ y R⁵⁹ tomados juntos forman: -(CH₂)₂-6-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)₄PO(OR⁶⁰)₂ (donde R⁶⁰: alquilo inferior; o alquenilo inferior); -(CH₂)₄SO₂R⁶² (donde R⁶²: alquilo inferior); -(CH₂)₄PO(OR⁶⁰)₂ (donde R⁶⁰: alquilo inferior; o alquenilo inferior; o alquenilo inferior; alquenilo inferior; o alcoxi inferior).

Entre las unidades estructurales A1 a A37 y A105 son preferentes las siguientes: A2, siendo R² H; A5, siendo R² H; A8; A13; A15; A22; A25; A32; y A105. Las más preferentes son las unidades estructurales de tipo A8':

A8′

5

10

15

20

35

40

45

50

55

en las que R^{20} es H; o alquilo inferior; y R^{64} es alquilo; alquenilo; arilo; aril-alquilo inferior; o heteroaril-alquilo inferior; especialmente aquellas en las que R^{64} es n-hexilo (A8'-1); n-heptilo (A8'-2); 4-(fenil)bencilo (A8'-3); difenilmetilo (A8'-4); 3-amino-propilo (A8'-5); 5-amino-pentilo (A8'-6); metilo (A8'-7); etilo (A8'-8); isopropilo (A8'-9); isobutilo (A8'-10); n-propilo (A8'-11); ciclohexilo (A8'-12); ciclohexilmetilo (A8'-13); n-butilo (A8'-14); fenilo (A8'-15); bencilo (A8'-16); (3-indolil)metilo (A8'-17); 2-(3-indolil)etilo (A8'-18); (4-fenil)fenilo (A8'-19); y n-nonilo (A8'-20).

La unidad estructural A70 pertenece a la clase de los α -aminoácidos α -sustituidos de cadena abierta, las unidades estructurales A71 y A72 a los correspondientes análogos de β -aminoácidos y las unidades estructurales A73-A104 a los análogos cíclicos de A70. Se ha demostrado que dichos derivados de aminoácidos limitan los péptidos pequeños en conformaciones bien definidas de giro inverso o en forma de U (C.M. Venkatachalam, Biopolymers 1968, 6, 1425-1434; W. Kabsch, C. Sander, Biopolymers 1983, 22, 2577). Dichas unidades estructurales son adecuadas de manera ideal para la estabilización de conformaciones de horquilla β en bucles peptídicos (D. Obrecht, M. Altorfer, J. A. Robinson, "Novel Peptide Mimetic Building Blocks and Strategies for Efficient Lead Finding", Adv. Med. Chem. 1999, volumen 4, 1-68; P. Balaram, "Non-standard amino acids in peptide design and protein engineering", Curr. Opin. Struct. Biol. 1992, 2, 845-851; M. Crisma, G. Valle, C. Toniolo, S. Prasad, R.B. Rao, P. Balaram, " β -turn conformations in crystal structures of model peptides containing α , α -disubstituted amino acids", Biopolymers 1995, 35, 1-9; V.J. Hruby, F. Al-Obeidi, W. Kazmierski, Biochem. J. 1990, 268, 249-262).

Se ha demostrado que ambos enantiómeros de las unidades estructurales -A70-CO- a A104-CO- en combinación con una unidad estructural -B-CO- que es un α-aminoácido con configuración L pueden estabilizar e inducir de manera eficaz conformaciones de horquilla β. (D. Obrecht, M. Altorfer, J.A. Robinson, "Novel Peptide Mimetic Building Blocks and Strategies for Efficient Lead Finding", Adv. Med. Chem. 1999, volumen 4, 1-68; D. Obrecht, C. Spiegler, P. Schönholzer, K. Muller, H. Heimgartner, F. Stierli, Helv. Chim. Acta 1992, 75, 1666-1696; D. Obrecht, U. Bohdal, J. Daly, C. Lehmann, P. Schönholzer, K. Muller, Tetrahedron 1995, 51, 10883-10900; D. Obrecht, C. Lehmann, C. Ruffieux, P. Schönholzer, K. Muller, Helv. Chim. Acta 1995, 78, 1567-1587; D. Obrecht, U. Bohdal, C. Broger, D. Bur, C. Lehmann, R. Ruffieux, P. Schönholzer, C. Spiegler, Helv. Chim. Acta 1995, 78, 703-714).

Los valores preferentes para R^{20} en **A70** a **A104** son H; o alquilo inferior; siendo metilo el más preferente. Los valores preferentes para R^{18} , R^{19} y R^{21} - R^{29} en las unidades estructurales **A70** a **A104** son los siguientes:

- R¹⁸: alquilo inferior.

- R¹⁹: alquilo inferior; alquenilo inferior; -(CH₂)_pOR⁵⁵ (donde R⁵⁵: H; alquilo inferior; o alquenilo inferior); -(CH₂)_pNR³³R³⁴ (donde R³³: H; alquilo inferior; o alquenilo inferior; R³⁴: H; o alquilo inferior; o R³³ y R³⁴ tomados juntos forman: -(CH₂)₂-6-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_pOCONR³³R⁷⁵ (donde R³³: H; o alquilo inferior; o alquenilo inferior; R⁷⁵: alquilo inferior; o R³³ y R⁷⁵ tomados juntos forman: -(CH₂)₂-6-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; (donde R⁵⁷: H; o alquilo inferior; -(CH₂)_pNR²⁰CONR³³R⁸² (donde R²⁰: H; o alquilo inferior; R⁸²: H; o alquilo inferior; o R³³ y R⁸² tomados juntos forman: -(CH₂)₂-6-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_pN(R²⁰)COR⁶⁴ (donde: R²⁰: H; o alquilo inferior; R⁶⁴: alquilo inferior; o alquenilo inferior; o alquenilo inferior y R⁵⁹: H; o alquilo inferior; o R⁵⁸ y R⁵⁹ tomados juntos forman: -(CH₂)₂-6-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior; o alquenilo inferior; o al

- R²¹: H; alquilo inferior; alquenilo inferior; -(CH₂)_oOR⁵⁵ (donde R⁵⁵: H; alquilo inferior; o alquenilo inferior); -(CH₂)_oNR³⁸R³⁴ (donde R³³: H; alquilo inferior; o alquenilo inferior; o alquenilo inferior; R³⁴: H; o alquilo inferior; o R³³ y R³⁴ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)₀OCONR³³R⁷⁵ (donde R³³: H; o alquilo inferior; o alquenilo inferior; R⁷⁵: alquilo inferior; o R³³ y R⁷⁵ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior): -(CH₂)₀NR²⁰CONR³³R⁸² (donde R²⁰: H; o

alquilo inferior; R^{33} : H; o alquilo inferior; o alquenilo inferior; R^{82} : H; o alquilo inferior; o R^{33} y R^{82} tomados juntos forman: $-(CH_2)_{2-6}$ -; $-(CH_2)_2O(CH_2)_2$ -; $-(CH_2)_2S(CH_2)_2$ -; o $-(CH_2)_2NR^{57}(CH_2)_2$ - (donde R^{57} : H; o alquilo inferior); $-(CH_2)_oN(R^{20})COR^{64}$ (donde: R^{20} : H; o alquilo inferior; R^{64} : alquilo inferior; o alquenilo inferior); $-(CH_2)_oCONR^{58}$ (donde R^{58} : alquilo inferior o alquenilo inferior; y R^{59} : H; alquilo inferior; o R^{58} y R^{59} tomados juntos forman: $-(CH_2)_{2-6}$ -; $-(CH_2)_2O(CH_2)_{2-7}$ -; $-(CH_2)_2S(CH_2)_{2-7}$ -; o $-(CH_2)_2NR^{57}(CH_2)_2$ - (donde R^{57} : H; o alquilo inferior); $-(CH_2)_oPO(OR^{60})_2$ (donde R^{60} : alquilo inferior; o alquenilo inferior); $-(CH_2)_oSO_2R^{62}$ (donde $-(CH_2)_2R^{62})$ (donde $-(CH_2)_2R^{62})$); o alquenilo inferior; o alquenilo inferior; alquenilo inferior; o alcoxi inferior).

- R²²: alquilo inferior; alquenilo inferior; -(CH₂)_oOR⁵⁵ (donde R⁵⁵: H; alquilo inferior; o alquenilo inferior); -(CH₂)_oSR⁵⁶ (donde R⁵⁶: alquilo inferior; o alquenilo inferior); -(CH₂)_oNR³³R³⁴ (donde R³³: H; alquilo inferior; o alquenilo inferior; R³⁴: H; o alquilo inferior; o R³³ y R³⁴ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_oOCONR³³R⁷⁵ (donde R³³: H; o alquilo inferior; o alquenilo inferior; R⁷⁵: alquilo inferior; o R³³ y R⁷⁵ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂C(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_oNR²⁰CONR³³R⁸² (donde R²⁰: H; o alquilo inferior; R⁸²: H; o alquilo inferior; o R³³ y R⁸² tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂-; donde R⁵⁷: H; o alquilo inferior; -(CH₂)_oN(R²⁰)COR⁶⁴ (donde: R²⁰: H; o alquilo inferior; R⁶⁴: alquilo inferior; o alquenilo inferior; -(CH₂)_oCOOR⁵⁷ (donde R⁵⁷: alquilo inferior; o alquenilo inferior; y R⁵⁹: H; alquilo inferior; o R⁵⁸ y R⁵⁹ tomados juntos forman: -(CH₂)₂-6-; -(CH₂)₂O(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_oOOR⁶⁰)₂ (donde R⁶⁰: alquilo inferior; o alquenilo inferior; -(CH₂)_oSO₂R⁶² (donde R⁶²: alquilo inferior; o alquenilo inferior; o alqu

10

15

20

- R²³: H; alquilo inferior; alquenilo inferior; -(CH₂)_oOR⁵⁵ (donde R⁵⁵: H; alquilo inferior; o alquenilo inferior); -(CH₂)_oSR⁵⁶ (donde R⁵⁶: alguilo inferior; o alquenilo inferior); -(CH₂)_oNR³³R³⁴ (donde R³³: H; alquilo inferior; o alquenilo inferior; R^{34} : H; o alquilo inferior; o R^{33} y R^{34} tomados juntos forman: -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R^{57} : H; o alquilo inferior); -(CH₂)₀OCONR³³R⁷⁵ (donde R^{33} : H; o alquilo inferior) 25 inferior; o alquenilo inferior; R⁷⁵: alquilo inferior; o R³³ y R⁷⁵ tomados juntos forman: -(CH₂)₂₋₆; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)₀NR²⁰CONR³³R⁸² (donde R²⁰: H; o alquilo inferior; R³³: H; o alquilo inferior; o alquenilo inferior; R⁸²: H; o alquilo inferior; o R³³ y R⁸² tomados juntos forman: $-(CH_2)_{2-6-}$; $-(CH_2)_2O(CH_2)_2-$; $-(CH_2)_2S(CH_2)_2-$; o $-(CH_2)_2NR^{57}(CH_2)_2-$ (donde R^{57} : H; o alquilo inferior); $-(CH_2)_0N(R^{20})COR^{64}$ (donde: R^{20} : H; o alquilo inferior; R^{64} : alquilo inferior; o alquenilo inferior); son particularmente 30 favorecidos -(CH₂)_oNR²⁰CO-alquilo inferior (R²⁰ = H; o alquilo inferior); -(CH₂)_oCOOR⁵⁷ (donde R⁵⁷: alquilo inferior; o alquenilo inferior); -(CH₂)_oCONR⁵⁸R⁵⁹ (donde R⁵⁸: alquilo inferior o alquenilo inferior; y R⁵⁹: H; alquilo inferior; o R⁵⁸ y R^{59} tomados juntos forman: $-(CH_2)_2-6$; $-(CH_2)_2O(CH_2)_2$; $-(CH_2)_2S(CH_2)_2$; $-(CH_2)_2NR^{57}(CH_2)_2$ (donde R^{57} : H; o alquilo inferior); -(CH₂)_oPO(OR⁶⁰)₂ (donde R⁶⁰: alquilo inferior; o alquenilo inferior); -(CH₂)_oSO₂R⁶² (donde R⁶²: alquilo 35 inferior; o alquenilo inferior); o -(CH₂)₀C₆H₄R⁸ (donde R⁸: H; F; CI; CF₃; alquenilo inferior; alquenilo inferior; o alcoxi inferior);
- R²⁴: alquilo inferior; alquenilo inferior; -(CH₂)_oOR⁵⁵ (donde R⁵⁵: H; alquilo inferior; o alquenilo inferior); -(CH₂)_oSR⁵⁶ (donde R⁵⁶: alquilo inferior; o alquenilo inferior); -(CH₂)_oNR³³R³⁴ (donde R³³: H; alquilo inferior; o alquenilo inferior; o R³⁴: H; o alquilo inferior; o R³⁴ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_oOCONR³³R⁷⁵ (donde R³³: H; o alquilo inferior; o alquenilo inferior; R⁷⁵: alquilo inferior, o R³³ y R⁷⁵ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior; o R³³ y R⁸² tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior; o R³³ y R⁸² tomados juntos forman: -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)₀N(R²⁰)COR⁶⁴ (donde: R²⁰: H; o alquilo inferior; R⁶⁴: alquilo inferior; o alquenilo inferior); son particularmente favorecidos -(CH₂)₀NR²⁰CO-alquilo inferior (R²⁰ = H; o alquilo inferior); -(CH₂)₀COOR⁵⁷ (donde R⁵⁷: alquilo inferior; o alquenilo inferior; o (CH₂)₂OCONR⁵⁸R⁵⁹ (donde R⁵⁸: alquilo inferior o alquenilo inferior; y R⁵⁹: H; alquilo inferior; o R⁵⁸ y R⁵⁹ tomados juntos forman: -(CH₂)₂-6-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)₀OOR⁵⁸ (donde R⁵⁸: alquilo inferior); -(CH₂)₂SO₂R⁶² (donde R⁵⁷: H; o alquilo inferior); o alquenilo inferior); -(CH₂)₀SO₂R⁶² (donde R⁶²: alquilo inferior); o alquenilo inferior); o alquenilo inferior); o -(CH₂)₂COOR⁶⁰ (donde R⁶⁰: alquilo inferior); o alquenilo inferior; alquenilo inferior; o alquenilo inferior):
- R²⁵: H; alquilo inferior; alquenilo inferior; -(CH₂)_mOR⁵⁵ (donde R⁵⁵: H; alquilo inferior; o alquenilo inferior); -(CH₂)_mNR³³R³⁴ (donde R³³: H; alquilo inferior; o alquenilo inferior; R³⁴: H; o alquilo inferior; o R³³ y R³⁴ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_mOCONR³³R⁷⁵ (donde R³³: H; o alquilo inferior; o alquenilo inferior; R⁷⁵: alquilo inferior; o R³³ y R⁷⁵ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior; R³³: H; o alquilo inferior; o R³³ y R⁸² tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_mN(R²⁰)COR⁶⁴ (donde: R²⁰: H; o alquilo inferior; R⁶⁴: alquilo inferior; o alquenilo inferior); -(CH₂)_oCONR⁵⁸R⁵⁹ (donde R⁵⁸: alquilo inferior; o alquenilo inferior); -(CH₂)₀COR⁶⁰ (donde R⁶¹: alquilo inferior; o alquenilo inferior).
 - R²⁶: H; alquilo inferior; alquenilo inferior; -(CH₂)_mOR⁵⁵ (donde R⁵⁵: H; alquilo inferior; o alquenilo inferior);

-(CH₂)_mNR³³R³⁴ (donde R³³: H; alquilo inferior; o alquenilo inferior; R³⁴: H; o alquilo inferior; o R³³ y R³⁴ tomados juntos forman: -(CH₂)₂-6-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_mOCONR³³R⁷⁵ (donde R³³: H; o alquilo inferior; o alquenilo inferior; R⁷⁵: alquilo inferior; o R³³ y R⁷⁵ tomados juntos forman: -(CH₂)₂-6-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior; o R³³ y R⁸² (donde R²⁰: H; o alquilo inferior; R³³: H; o alquilo inferior; o alquenilo inferior; R⁸²: H; o alquilo inferior; o R³³ y R⁸² tomados juntos forman: -(CH₂)₂-6-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂-, donde R⁵⁷: H; o alquilo inferior); -(CH₂)_mN(R²⁰)COR⁶⁴ (donde: R²⁰: H; o alquilo inferior; R⁶⁴: alquilo inferior; o alquenilo inferior; o alquenilo inferior; o alquenilo inferior; o R⁵⁸: alquilo inferior; o R⁵⁸: p R⁵⁹ tomados juntos forman: -(CH₂)₂-6-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁶⁷: H; o alquilo inferior; o alquenilo inferior), o -(CH₂)_qC₆H₄R⁸ (donde R⁸: H; F, CI, CF₃, alquilo inferior; alquenilo inferior; o alcoxi inferior).

- De manera alternativa, R^{25} y R^{26} tomados juntos pueden ser - $(CH_2)_2$ -(CH

- R²⁷: H; alquilo inferior; alquenilo inferior; -(CH₂)_oOR⁵⁵ (donde R⁵⁵: H; alquilo inferior; o alquenilo inferior); -(CH₂)_oSR⁵⁶ (donde R⁵⁶: alquilo inferior; o alquenilo inferior); -(CH₂)_oNR³³R³⁴ (donde R³³: H; alquilo inferior; o alquenilo inferior; R³⁴: H; o alquilo inferior; o R³³ y R³⁴ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_oOCONR³³R⁷⁵ (donde R³³: H; o alquilo inferior; o alquenilo inferior; R⁷⁵: alquilo inferior; o R³³ y R⁷⁵ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior; R⁸²: H; o alquilo inferior; o R³³ y R⁸² tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior; o R³³ y R⁸² tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior; o alquenilo inferior; o alquenilo inferior y R⁵⁹: H; alquilo inferior; o alquenilo inferior); -(CH₂)₀CONR⁵⁸R⁵⁹ (donde R⁵⁸: alquilo inferior o alquenilo inferior y R⁵⁹: H; alquilo inferior; o R⁵⁸ y R⁵⁹ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)₀PO(OR⁶⁰)₂ (donde R⁶⁰: alquilo inferior; o alquenilo inferior; o alquen

- R²⁸: alquilo inferior; alquenilo inferior; -(CH₂)_oOR⁵⁵ (donde R⁵⁵: H; alquilo inferior; o alquenilo inferior); -(CH₂)_oSR⁵⁶ (donde R⁵⁶: alquilo inferior; o alquenilo inferior); -(CH₂)_oNR³³R³⁴ (donde R³³: H; alquilo inferior; o alquenilo inferior; R³⁴: H; o alquilo inferior; o R³³ y R³⁴ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_oOCONR³³R⁷⁵ (donde R³³: H; o alquilo inferior; o alquenilo inferior; R⁷⁵: alquilo inferior; o R³³ y R⁷⁵ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂C(CH₂)₂-; (donde R⁵⁷: H; o alquilo inferior; o R³³ y R⁸² tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)₀N(R²⁰)COR⁶⁴ (donde: R²⁰: H; o alquilo inferior; R⁶⁴: alquilo inferior; o alquenilo inferior); -(CH₂)₀COOR⁵⁷ (donde R⁵⁷: alquilo inferior; o alquenilo inferior); -(CH₂)₀CONR⁵⁸R⁵⁹ (donde R⁵⁸: alquilo inferior o alquenilo inferior; y R⁵⁹: H; alquilo inferior; o R⁵⁸ y R⁵⁹ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)₀OOR⁶⁰)₂ (donde R⁶⁰: alquilo inferior; o alquenilo inferior; o alquenilo

- R²⁹: alquilo inferior; alquenilo inferior; -(CH₂)_oOR⁵⁵ (donde R⁵⁵: H; alquilo inferior; o alquenilo inferior); -(CH₂)_oSR⁵⁶ (donde R⁵⁶: alquilo inferior; o alquenilo inferior); -(CH₂)_oNR³³R³⁴ (donde R³³: H; alquilo inferior; o alquenilo inferior; R³⁴: H; o alquilo inferior; o R³³ y R³⁴ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_oOCONR³³R⁷⁵ (donde R³³: H; o alquilo inferior; o alquenilo inferior; R⁷⁵: alquilo inferior; o R³³ y R⁷⁵ tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂O(CH₂)₂-; (donde R⁵⁷: H; o alquilo inferior); -(CH₂)_oNR²⁰CONR³³R⁸² (donde R²⁰: H; o alquilo inferior; R³³: H; o alquilo inferior; o alquenilo inferior; o R³³ y R⁸² tomados juntos forman: -(CH₂)₂₋₆-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂-; donde R⁵⁷: H; o alquilo inferior); -(CH₂)_oN(R²⁰)COR⁶⁴ (donde: R²⁰: H; o alquilo inferior; R⁶⁴: alquilo inferior; o alquenilo inferior); son particularmente favorecidos -(CH₂)_oNR²⁰CO-alquilo inferior (R²⁰ = H; o alquilo inferior); -(CH₂)_oCOOR⁵⁷ (donde R⁵⁷: alquilo inferior; o alquenilo inferior; y R⁵⁹: H; alquilo inferior; o R⁵⁸ y R⁵⁹ tomados juntos forman: -(CH₂)₂-6-; -(CH₂)₂O(CH₂)₂-; -(CH₂)₂S(CH₂)₂-; o -(CH₂)₂NR⁵⁷(CH₂)₂- (donde R⁶⁷: H; o alquilo inferior); -(CH₂)_oOO(OR⁶⁰)₂ (donde R⁶⁰: alquilo inferior; o alquenilo inferior; alquenilo inferior; o alqu

Entre las unidades estructurales **A70** a **A104** son preferentes las siguientes: **A74**, siendo R²² H; **A75**; **A76**; **A77**, siendo R²² H; **A78**; y **A79**.

La unidad estructural -B-CO- designa un residuo de L-aminoácido. Los valores preferentes para **B** son: -NR 20 CH(R 71)-; -NR 20 CH(R 72)-; -NR 20 CH(R 73)-; -NR 20 CH(R 74)-; -NR 20 CH(R 84)-; o enantiómeros de los grupos **A2**, siendo R 2 H; **A5**, siendo R 2 H; **A8**; **A13**; **A15**; **A22**; **A25**; **A32**; y **A105**. Las unidades estructurales -B-CO- más preferentes son

	Ala	L-Alanina
	Arg	L-Arginina
	Asn	L-Asparagina
_	Asp	Ácido L-aspártico
5	Gln Glu	L-Glutamina
	Gly	Ácido L-glutámico Glicina
	His	L-Histidina
	lle	L-Isoleucina
10	Leu	L-Leucina
. •	Lys	L-Lisina
	Met	L-Metionina
	Phe	L-Fenilalanina
	Pro	L-Prolina
15	Ser	L-Serina
	Thr	L-Treonina
	Trp	L-Triptófano
	Tyr	L-Tirosina
20	Val Cit	L-Valina
20	Orn	L-Citrulina L-Ornitina
	tBuA	L-t-Butilalanina
	Sar	Sarcosina
	t-BuG	L-terc-Butilglicina
25	4AmPhe	L-para-Aminofenilalanina
	3AmPhe	L-meta-Aminofenilalanina
	2AmPhe	L-orto-Aminofenilalanina
	Phe(mC(NH ₂)=NH)	L-meta-Amidinofenilalanina
	Phe(pC(NH ₂)=NH)	L-para-Amidinofenilalanina
30	Phe(mNHC(NH ₂)=NH)	L-meta-Guanidinofenilalanina
	Phe(pNHC(NH ₂)=NH)	L-para-Guanidinofenilalanina
	Phg	L-Fenilglicina L-Ciclohexilalanina
	Cha C ₄ al	L-3-Ciclobutilalanina
35	C ₅ al	L-3-Cicloputilalanina L-3-Ciclopentilalanina
55	Nle	L-Norleucina
	2-Nal	L-2-Naftilalanina
	1-Nal	L-1-Naftilalanina
	4CI-Phe	L-4-Clorofenilalanina
40	3CI-Phe	L-3-Clorofenilalanina
	2CI-Phe	L-2-Clorofenilalanina
	3,4Cl ₂ -Phe	L-3,4-Diclorofenilalanina
	4F-Phe	L-4-Fluorofenilalanina
4.5	3F-Phe 2F-Phe	L-3-Fluorofenilalanina
45	ZF-Phe Tic	L-2-Fluorofenilalanina Ácido L-1,2,3,4-tetrahidroisoquinolina-3-carboxílico
	Thi	L-β-2-Tienilalanina
	Tza	L-2-Tiazolilalanina
	Mso	Sulfóxido de L-metionina
50	AcLys	L-N-Acetil lisina
	Dpr	Ácido L-2,3-diaminopropiónico
	A₂Bu	Ácido L-2,4-diaminobutírico
	Dbu	Ácido (2S, 3S)-2,3-diaminobutírico
	Abu	Ácido L-α-aminobutírico
55	Aha	Ácido ε-aminohexanoico
	Aib	Ácido α-aminoisobutírico
	Tyr(Bzl)	L-O-Benciltirosina
	Bip	L-Bifenilalanina
00	Ser(Bzl)	L-O-Bencilserina L-O-Benciltreonina
60	Thr(Bzl) hCha	L-Homo-ciclohexilalanina
	hSer	L-Homo-serina
	hSer(Me)	L-Homo-O-metilserina
	hArg	L-Homo-arginina
65	hPhe	L-Homo-fenilalanina
	Вра	L-4-Benzoilfenilalanina

	Azt	Ácido L-Azetidin-2-carboxílico
	Pip	Ácido L-pipecólico
	OctG	L-Octilglicina
	MePhe	L-N-Metilfenilalanina
5	MeNle	L-N-Metilnorleucina
	MeAla	L-N-Metilalanina
	Melle	L-N-Metilisoleucina
	MeVal	L-N-Metvalina
	MeLeu	L-N-Metil leucina
10	4Hyp1	(4S)-L-Hidroxiprolina
	4Hyp2	(4R)-L-Hidroxiprolina
	4Mp1	(4S)-L-Mercaptoprolina
	4Mp2	(4R)-L-Mercaptoprolina
	Oic	Ácido (3aS, 7aS)-L-1-octahidro-1H-indol-2-carboxílico
15	2lnd	Ácido L-1H-indol-2-carboxílico

Además, los valores más preferentes para B también incluyen grupos de configuración tipo A8" de configuración (L):

20

25

en los que R^{20} es H; o alquilo inferior; y R^{64} es alquilo; alquenilo; -[(CH_2) $_u$ -X] $_t$ -CH $_3$ (donde X es -O-; -NR $_3$ -N, o -S-; u = 1-3, y t = 1-6), arilo; aril-alquilo inferior; o heteroaril-alquilo inferior; especialmente aquellos en los que R^{64} es n-hexilo (A8"-21), n-heptilo (A8"-22); 4-(fenil)bencilo (A8"-23), difenilmetilo (A8"-24); 3-amino-propilo (A8"-25), 5-amino-pentilo (A8"-26); metilo (A8"-27); etilo (A8"-28); isopropilo (A8"-29), isobutilo (A8"-30); n-propilo (A8"-31), ciclohexilo (A8"-32); ciclohexil-metilo (A8"-33), n-butilo (A8"-34); fenilo (A8"-35), bencilo (A8"-36); (3-indolil)metilo (A8"-37); 2-(3-indolil)etilo (A8"-38); (4-fenil)-fenilo (A8"-39), n-nonilo (A8"-40); CH₃-OCH₂-OCH₂-OCH₂- (A8"-41) y CH₃-(OCH₂CH₂)₂-OCH₂- (**A8"-42**).

Además del elemento estructural -B-CO-, los peptidomiméticos de horquilla β de la presente invención pueden 30 comprender el elemento estructural -A-CO- y los residuos de aminoácidos pertenecientes a uno de los siguientes grupos:

-NR²⁰CH(R⁷²)CO-; "hidrófobo: de tamaño pequeño a mediano" Grupo C: Grupo D: NR²⁰CH(R⁷³)CO-; "hidrófobo: grande aromático o heteroaromático" -NR²⁰CH(R⁷⁴)CO-; "catiónico polar" y "derivado de urea" Grupo E: -NR²⁰CH(R⁸⁴)CO-; "polar no cargado o aniónico" Grupo F: -NR88CH2CO-: "residuo de glicina sustituido en N" Grupo I:

Grupo M: -NR²⁰CH(R⁷³)(CH₂)₂CO-;

NR²⁰CH(R⁷⁴)(CH₂)₂CO-; o "γ4-aminoácidos"

-NR²⁰CH(R⁸⁴)(CH₂)₂CO-;

-NR²⁰CH(R⁷²)(CH₂)CO-; NR²⁰CH(R⁷³)(CH₂)CO-; -Grupo N:

-NR²⁰CH(R⁹¹)CO-

NR²⁰CH(R⁷⁴)(CH₂)CO-, o -"β3-aminoácidos"

NR²⁰CH(R⁸⁴)(CH₂)CO-;

-NR²⁰CH(R⁸⁹)CO-; Grupo O:

"residuo de aminoácido dipeptídico basado en una cadena lateral catiónica polar del grupo E"

Grupo P: -NR²⁰CH(R⁹⁰)CO-; "residuo de aminoácido dipeptídico basado en una cadena lateral aniónica del grupo F"

"residuo de aminoácido basado en una cadena lateral catiónica polar

del grupo E prolongado por una cadena lateral adicional con longitud

"residuo de aminoácido basado en una cadena lateral aniónica del Grupo R: -NR²⁰CH(R⁹²)CO-;

grupo F prolongado por una cadena lateral adicional con longitud

delimitada"

El grupo C comprende residuos de aminoácidos con grupos de cadena lateral hidrófobos alifáticos de tamaño pequeño a mediano, según la definición general para el sustituyente R72. Un residuo hidrófobo se refiere a una

Grupo Q:

cadena lateral de aminoácido que no está cargada a pH fisiológico y que es repelida por la solución acuosa. Además, estas cadenas laterales, en general, generalmente no contienen grupos donadores de enlaces de hidrógeno, tales como (pero sin limitarse a los mismos) amidas primarias y secundarias, aminas primarias y secundarias y las correspondientes sales protonadas de las mismas, tioles, alcoholes, fosfonatos, fosfatos, ureas o tioureas. Sin embargo, pueden contener grupos aceptores de enlaces de hidrógeno, tales como éteres, tioéteres, ésteres, amidas terciarias, fosfonatos y fosfatos de alquilo o arilo, o aminas terciarias. Entre los aminoácidos hidrófobos de tamaño pequeño a mediano codificados genéticamente se incluyen alanina, isoleucina, metionina y valina.

- El grupo D comprende residuos de aminoácidos con grupos de cadena lateral aromáticos y heteroaromáticos, según la definición general para el sustituyente R⁷³. Un residuo de aminoácido aromático se refiere a un aminoácido hidrófobo que tiene una cadena lateral que contiene, como mínimo, un anillo que tiene un sistema de electrones π conjugado (grupo aromático). Además, pueden contener grupos donadores de enlaces de hidrógeno, tales como (pero sin limitarse a los mismos) amidas primarias y secundarias, aminas primarias y secundarias y las correspondientes sales protonadas de las mismas, tioles, alcoholes, fosfonatos, fosfatos, ureas o tioureas y grupos aceptores de enlaces de hidrógeno, tales como (pero sin limitarse a los mismos) éteres, tioéteres, ésteres, amidas terciarias, fosfonatos y fosfatos de alquilo o arilo, o aminas terciarias. Entre los aminoácidos aromáticos codificados genéticamente se incluyen fenilalanina y tirosina.
- Un residuo de aminoácido heteroaromático se refiere a un aminoácido hidrófobo que tiene una cadena lateral que contiene, como mínimo, un anillo que tiene un sistema π conjugado que incorpora, como mínimo, un heteroátomo, tal como (pero sin limitarse a los mismos) O, S y N, según la definición general para el sustituyente R⁷⁷. Además, dichos residuos pueden contener grupos donadores de enlaces de hidrógeno, tales como (pero sin limitarse a los mismos) amidas primarias y secundarias, aminas primarias y secundarias y las correspondientes sales protonadas de las mismas, tioles, alcoholes, fosfonatos, fosfatos, ureas o tioureas, y grupos aceptores de enlaces de hidrógeno, tales como (pero sin limitarse a los mismos) éteres, tioéteres, ésteres, amidas terciarias, fosfonatos y fosfatos de alquilo o arilo, o aminas terciarias. Entre los aminoácidos heteroaromáticos codificados genéticamente se incluyen triptófano e histidina.
- 30 El **grupo E** comprende aminoácidos que contienen cadenas laterales con residuos *catiónicos polares* derivados de acilamino y urea, según la definición general para el sustituyente R⁷⁴. Catiónico polar se refiere a una cadena lateral básica que está protonada a pH fisiológico. Entre los aminoácidos catiónicos polares codificados genéticamente se incluyen arginina, lisina e histidina. La citrulina es un ejemplo de un residuo de aminoácido derivado de la urea.
- El **grupo F** comprende aminoácidos que contienen cadenas laterales con residuos *polares no cargados o aniónicos*, según la definición general para el sustituyente R⁸⁴. Un residuo polar no cargado o aniónico se refiere a una cadena lateral hidrófila que no está cargada y, respectivamente, es aniónica a pH fisiológico (incluidos los ácidos carboxílicos), pero que no es repelida por soluciones acuosas. Dichas cadenas laterales contienen habitualmente grupos donadores de enlaces de hidrógeno, tales como (pero sin limitarse a los mismos) amidas primarias y secundarias, ácidos carboxílicos y ésteres, aminas primarias y secundarias, tioles, alcoholes, fosfonatos, fosfatos, ureas o tioureas. Estos grupos pueden formar redes de enlaces de hidrógeno con moléculas de agua. Además, también pueden contener grupos aceptores de enlaces de hidrógeno, tales como (pero sin limitarse a los mismos) éteres, tioéteres, ésteres, amidas terciarias, ácidos carboxílicos y carboxilatos, fosfonatos y fosfatos de alquilo o arilo, o aminas terciarias. Entre los aminoácidos polares no cargados codificados genéticamente se incluyen asparagina, cisteína, glutamina, serina y treonina, pero también ácido aspártico y ácido glutámico.
 - El **grupo I** comprende glicina que tiene el grupo amino sustituido por cadenas que contienen residuos *polares* catiónicos, polares no cargados o aniónicos, según la definición general para el sustituyente R⁸⁸. Polar catiónico se refiere a una cadena lateral básica que está protonada a pH fisiológico. Un residuo polar no cargado o aniónico se refiere a una cadena lateral hidrófila que no está cargada y, respectivamente, es aniónica a pH fisiológico (incluidos los ácidos carboxílicos), pero que no es repelida por soluciones acuosas.

El **grupo M** comprende residuos de γ^4 -aminoácidos que tienen tanto el grupo amino como la cadena lateral unidos al átomo de carbono γ ; residuos de γ^4 -aminoácidos con grupos de cadena lateral *aromáticos y heteroaromáticos*, según la definición general para el sustituyente R^{73} ; residuos de γ^4 -aminoácidos con grupos de cadena lateral *polares catiónicos*, derivados de acilamino y urea, según la definición general para el sustituyente R^{74} ; y residuos de γ^4 -aminoácidos con grupos *polares no cargados o aniónicos*, según la definición general para el sustituyente R^{84} . Un grupo de cadena lateral *aromático* es hidrófobo y contiene, como mínimo, un anillo que tiene un sistema de electrones π conjugado (grupo aromático). Un grupo de cadena lateral *heteroaromático* es hidrófobo y contiene, como mínimo, un anillo que tiene un sistema π conjugado que incorpora, como mínimo, un heteroátomo, tal como (pero sin limitarse a los mismos) O, S y N, según la definición general para el sustituyente R^{77} . Un grupo de cadena lateral *polar catiónico* se refiere a una cadena lateral básica que está protonada a pH fisiológico. Un grupo de cadena lateral *polar no cargado o aniónico* no está cargado y, respectivamente, es aniónico a pH fisiológico (incluidos los ácidos carboxílicos), pero no es repelido por soluciones acuosas.

65

50

55

60

El **grupo N** comprende residuos de β^3 -aminoácidos que tienen tanto el grupo amino como la cadena lateral unidos al átomo de carbono β con grupos de cadena lateral, según la definición general para el sustituyente R^{71} ; residuos de β^3 -aminoácidos con grupos de cadena lateral *hidrófobos* de tamaño pequeño a mediano, según la definición general para el sustituyente R^{72} ; residuos de β^3 -aminoácidos con grupos de cadena lateral *aromáticos y heteroaromáticos*, según la definición general para el sustituyente R^{73} ; residuos de β^3 -aminoácidos con grupos de cadena lateral *polares catiónicos*, derivados de acilamino y urea, según la definición general para el sustituyente R^{74} ; y residuos de β^3 -aminoácidos con grupos *polares no cargados o aniónicos*, según la definición general para el sustituyente R^{84} . Los grupos de cadena lateral *hidrófobos* no están cargados a pH fisiológico y son repelidos por la solución acuosa. Un grupo de cadena lateral *aromático* es hidrófobo y contiene, como mínimo, un anillo que tiene un sistema de electrones π conjugado (grupo aromático). Un grupo de cadena lateral *heteroaromático* es hidrófobo y contiene, como mínimo, un anillo que tiene un sistema π conjugado que incorpora, como mínimo, un heteroátomo, tal como (pero sin limitarse a los mismos) O, S y N, según la definición general para el sustituyente R^{77} . Un grupo de cadena lateral *polar catiónico* se refiere a una cadena lateral básica que está protonada a pH fisiológico. Un grupo de cadena lateral *polar no cargado o aniónico* no está cargado y, respectivamente, es aniónico a pH fisiológico (incluidos los ácidos carboxílicos), pero no es repelido por soluciones acuosas.

10

15

20

25

30

35

40

45

El **grupo O** comprende aminoácidos que contienen cadenas laterales, según la definición general de R^{89} . Estas cadenas laterales se basan en *residuos catiónicos polares que tienen grupos amino terminales* que se derivatizan mediante la formación de un enlace amida con el grupo α -carboxílico de otro aminoácido del grupo C, D, E o F para generar finalmente un residuo de aminoácido dipeptídico. La formación de dichas unidades estructurales de aminoácidos dipeptídicos, así como su protección adecuada para que sean adecuadas para SPPS ("Síntesis de péptidos en fase sólida") basada en Fmoc, es bien conocida en la técnica.

El **grupo P** comprende aminoácidos que contienen cadenas laterales, según la definición general de R⁹⁰. Estas cadenas laterales se basan en *residuos aniónicos que tienen grupos carboxílicos terminales* que se derivatizan mediante la formación de un enlace amida con el grupo α-amino de otro aminoácido del grupo C, D, E o F para generar finalmente un residuo de aminoácido dipeptídico. La formación de dichas unidades estructurales de aminoácidos dipeptídicos, así como su protección adecuada para que sean adecuadas para SPPS basada en Fmoc, es bien conocida en la técnica.

El **grupo Q** comprende aminoácidos que contienen cadenas laterales, según la definición general de R⁹¹. Estas cadenas laterales se basan en *residuos catiónicos polares que tienen grupos amino terminales* que se derivatizan mediante la formación de un enlace amida con el grupo carboxílico de un ácido carboxílico orgánico que tiene una longitud delimitada, según R⁷⁵. La formación de dichas unidades estructurales de aminoácidos, así como su protección adecuada para que sean adecuadas para SPPS basada en Fmoc, es bien conocida en la técnica.

El **grupo R** comprende aminoácidos que contienen cadenas laterales, según la definición general de R⁹². Estas cadenas laterales se basan en *residuos aniónicos que tienen grupos carboxílicos terminales* que se derivatizan mediante la formación de un enlace amida con el grupo amino de una amina orgánica que tiene una longitud delimitada, según R⁷⁵. La formación de dichas unidades estructurales de aminoácidos, así como su protección adecuada para que sean adecuadas para SPPS basada en Fmoc, es bien conocida en la técnica.

Los residuos de aminoácidos más preferentes en ciclo(VXaa¹-Xaa²-Thr³-Xaa⁴-Ser⁵-Xaa⁶-Xaa³-Xaað-Xaa¹-Xaa¹¹-Xaa¹²-Xaa¹³-), son los derivados de α -aminoácidos y γ -aminoácidos. A continuación, se encuentra una lista de aminoácidos que, o cuyos residuos, son adecuados para los fines de la presente invención, correspondiendo las abreviaturas con la práctica habitual generalmente adoptada:

código de tres letras Ala DAla Arg Arg Asn Asn Asp DAsp Glu DGlu Gln Gly His	L-Alanina D-Alanina L-Arginina D-Arginina L-Asparagina D-Asparagina Ácido L-aspártico Ácido D-aspártico Ácido L-glutámico Ácido D-glutámico L-Glutamina D-Glutamina Glicina L-Histidina	código de una letra A PA R PR N PN D PD E PD E Q PQ G
•		_
lle	L-Isoleucina	ı

Pille Leu PLeu Lys PLys Met Phe Phe Pro Pro Ser Thr Trp Trp Tyr	D-Isoleucina L-Leucina D-Leucina L-Lisina D-Lisina L-Metionina D-Metionina L-Fenilalanina D-Fenilalanina L-Prolina D-Prolina L-Serina D-Serina L-Treonina L-Triptófano D-Triptófano L-Tirosina	OLLKKMM FFPPSSTTWWY
Tyr	L-Tirosina	Υ
DTyr	D-Tirosina	DΥ
Val	L-Valina	V
^D Val	D-Valina	DΛ

	H-β ³ -HAIa-OH	Ácido (3S)-3-amino-butírico
	H-β³-HVal-OH	Ácido (3R)-3-amino-4-metil-valérico
	H-β ³ -Hlle-OH	Ácido (3R, 4S)-3-amino-4-metil-hexanoico
5	H- [;] β³-HLeu-OH	Ácido (3S)-3-amino-5-metil-hexanoico
	H-β ³ -HMet-OH	Ácido (3S)-3-amino-5-metiltio-pentanoico
	H-β ³ -HTyr-OH	Ácido (3S)-3-amino-4-(4'-hidroxifenil)-butírico
	H-β³-HHis-OH	Ácido (3S)-3-amino-4-(imidazol-4'-il)-butírico
	H-β³-HPhe-OH	Ácido (3S)-3-amino-4-fenil-butírico
10	H-β³-HTrp-OH	Ácido (3S)-3-amino-4-(indol-3'-il)-butírico
	H-β³-HSer-OH	Ácido (3R)-3-amino-4-hidroxi-butírico
	H-β³-HAsp-OH	Ácido 3-amino-pentanodioico
	H-β³-HGlu-OH	Ácido (3S)-3-amino-hexanodioico
	H-β³-HLys-OH	Ácido (3S)-3,7-diamino-heptanoico
15	H-β ³ -HArg-OH	Ácido (3S)-3-amino-6-guanidino-hexanoico
	H-β³-HCys-OH	Ácido (3R)-3-amino-4-mercapto-butírico
	H-β³-HAsn-OH	Ácido (3S)-3-amino-4-carbamoil-butírico
	H-β³-HGIn-OH	Ácido (3S)-3-amino-5-carbamoil-pentanoico
	H-β³-HThr-OH	Ácido (3R, 4R)-3-amino-4-hidroxi-pentanoico
20	H-γ⁴-DiHTyr-OH	Ácido (4R)-4-amino-5-(4'-hidroxifenil)-pentanoico
	H-γ⁴-DiHHis-OH	Ácido (4R)-4-amino-5-(imidazol-4'-il)-pentanoico
	H-γ ⁴ -DiHPhe-OH	Ácido (4R)-4-amino-5-fenil-pentanoico
	H-γ ⁴ -DiHTrp-OH	Ácido (4R)-4-amino-5-(indol-3'-il)-pentanoico
	H-γ ⁴ -DiHSer-OH	Ácido (4R)-4-amino-5-hidroxi-pentanoico
25	H-γ ⁴ -DiHAsp-OH	Ácido (4R)-4-amino-hexanodioico
	H-γ ⁴ -DiHGlu-OH	Ácido 4-amino-heptanodioico
	H-γ ⁴ -DiHLys-OH	Ácido (4S)-4,8-diamino-octanoico
	H-γ ⁴ -DiHArg-OH	Ácido (4S)-4-amino-7-guanidino-heptanoico
	H-γ ⁴ -DiHCys-OH	Ácido (4R)-4-amino-5-mercapto-pentanoico
30	H-γ ⁴ -DiHAsn-OH	Ácido (4R)-4-amino-5-carbamoil-pentanoico
50	H-γ ⁴ -DiHGIn-OH	Ácido (4S)-4-amino-6-carbamoil-hexanoico
	H-γ ⁴ -DiHThr-OH	Ácido (4R, 5R)-4-amino-5-hidroxi-hexanoico
	TI I DITTINI-OTI	Acido (+it, 5it)-+-amino-o-maion-nevanoico

Entre otros α -aminoácidos, β -aminoácidos y γ -aminoácidos, o residuos de los mismos, que son adecuados para los fines de la presente invención se incluyen:

AlilGly
OctGly
Ala(CF3)

Cit
Cit
Corn
Orn
Dorn
BuA
L-Alilglicina
L-Octilglicina
L-Trifluoroalanina
L-Citrulina
D-Citrulina
D-Citrulina
L-Ornitina
D-Orn
Bu-Ornitina
L-t-Butilalanina

	^D tBuA	D-t-Butilalanina
	Sar	Sarcosina
	Pen	L-Penicilamina
_	^D Pen	D-Penicilamina
5	tBuG	L-terc-Butilglicina
	DtBuG	D-terc-Butilglicina
	4AmPhe ^D 4AmPhe	L-para-Aminofenilalanina
	3AmPhe	D-para-Aminofenilalanina L-meta-Aminofenilalanina
10	D3AmPhe	D-meta-Aminofenilalanina
10	2AmPhe	L-orto-Aminofenilalanina
	D2AmPhe	D-orto-Aminofenilalanina
	Phe(mC(NH ₂)=NH)	L-meta-Amidinofenilalanina
	DPhe(mC(NH ₂)=NH)	D-meta-Amidinofenilalanina
15	Phe(pC(NH ₂)=NH)	L-para-Amidinofenilalanina
	DPhe(pC(NH ₂)=NH)	D-para-Amidinofenilalanina
	Phe(mNHC(NH ₂)=NH)	L-meta-Guanidinofenilalanina
	DPhe(mNHC(NH ₂)=NH)	D-meta-Guanidinofenilalanina
	Phe(pNHC(NH ₂)=NH)	L-para-Guanidinofenilalanina
20	D Phe(pNHC(NH ₂)=NH)	D-para-Guanidinofenilalanina
	2Pal	Ácido (2S)-2-amino-3-(piridin-2'-il)-propiónico
	^D 2Pal	Ácido (2R)-2-amino-3-(piridin-2'-il)-propiónico
	4Pal	Ácido (2S)-2-amino-3-(piridin-4'-il)-propiónico
0.5	^D 4Pal	Ácido (2R)-2-amino-3-(piridin-4'-il)-propiónico
25	Phg ^D Phg	L-Fenilglicina
	Cha	D-Fenilglicina L-Ciclohexilalanina
	DCha	D-Ciclohexilalanina
	C ₄ al	L-3-Ciclobutilalanina
30	DC4al	D-3-Ciclobutilalanina
	C₅al	L-3-Ciclopentilalanina
	^D C₅al	D-3-Ciclopentilalanina
	Nle	L-Norleucina
	^D NIe	D-Norleucina
35	2-Nal	L-2-Naftilalanina
	^D 2Nal	D-2-Naftilalanina
	1-Nal	L-1-Naftilalanina
	D1Nal	D-1-Naftilalanina
40	4CIPhe D4CIPhe	L-4-Clorofenilalanina D-4-Clorofenilalanina
40	3CIPhe	L-3-Clorofenilalanina
	D3CIPhe	D-3-Clorofenilalanina
	2CIPhe	L-2-Clorofenilalanina
	D2CIPhe	D-2-Clorofenilalanina
45	3,4Cl ₂ Phe	L-3,4-Diclorofenilalanina
	^D 3,4Cl₂Phe	D-3,4-Diclorofenilalanina
	4FPhe	L-4-Fluorofenilalanina
	^D 4FPhe	D-4-Fluorofenilalanina
	3FPhe	L-3-Fluorofenilalanina
50	D3FPhe	D-3-Fluorofenilalanina
	2FPhe	L-2-Fluorofenilalanina
	D2FPhe	D-2-Fluorofenilalanina
	Thi ^D Thi	L-β-2-Tienilalanina D-β-2-Tienilalanina
55	Tza	L-2-Tiazolilalanina
55	DTza	D-2-Tiazolilalanina
	Mso	Sulfóxido de L-metionina
	DMso	Sulfóxido de D-metionina
	AcLys	N-Acetil lisina
60	DAcLys	N-Acetil-D-lisina
	Dap	Ácido L-2,3-diaminopropiónico
	^D Dap	Ácido D-2,3-diaminopropiónico
	Dpr	Ácido 2,3-diaminopropiónico
0.5	Dpr Date	Ácido D-2,3-diaminopropiónico
65	Dab ^D Dab	Ácido L-2,4-diaminobutírico
	-Dau	Ácido D-2,4-diaminobutírico

Dbu Acido (2R)-2,3-diamino-butifico Abu Acido (2R)-2,3-diamino-butifico Aba Acido (2R-2,3-diamino-butifico 5 Alb Acido -a-minoiscutifico Cyp Acido -a-minoiscutifico Tyr(B2I) L-O-Bencilitrosina PTyr(B2I) D-O-Bencilitrosina PTyr(B2I) PO-Bencilitrosina 10 *His(B2I) Acido (8R)-2-amino-3-(1-bencilimidazol-4-il)-propiónico Bip L-4-fenilljenilalanna Bip L-4-fenilljenilalanna *Ser(B2I) PO-Benciliserina *Ser(B2I) PO-Benciliserina *Ser(B2I) PO-Benciliserina *Ser(B2I) PO-Benciliserina *Ser(B2I) PO-Benciliserina *Ser(B2I) PO-Benciliserina *Thr(B2I) PO-Benciliserina *Po-Benciliserina Po-Benciliserina *Po-Benciliserina Po-Benciliserina *Po-Benciliserina Po-Benciliserina *Po-Benciliserina Po-Benciliserina *Po-Benciliserina Po-Benciliserina *Po-Benciliserina Po-Benciliserina			
Abu		Dbu	Ácido (2S)-2,3-diamino-butírico
Ana		^D Dbu	Ácido (2R)-2,3-diamino-butírico
5 Alb Ácido -aminos ciolopentano carboxilico Tyr(B2) L-O-Bencilitrosina Pyr(B2) D-O-Bencilitrosina His(B2) Acido (3S)-2-amino-3-(1-bencilimidazol-4-il)-propiónico Bip L-(4-fenil/fenildanina Bip L-(4-fenil/fenildanina Bip D-Q-Bencilserina Ser(B2) L-O-Bencilserina Poser(B2) L-O-Bencilserina Thr(B2) L-O-Bencilserina Bip L-O-Bencilserina Thr(B2) L-O-Bencilserina Bir L-O-Bencilserina Print(B2) L-O-Bencilserina Bir L-O-Bencilserina Bir Thr(B2) Bir L-O-Bencilserina Bir L-O-Bencilserina Bir Thr(B2) Bir L-O-Bencilserina Bir Thr(B2) Bir L-O-Bencilserina Bir L-U-Bencilserina Bir L-U-Bencilserina Bir L-U-Bencilserina Bir L-U-Bencilserina		Abu	Ácido L-α-aminobutírico
Cyp Tyr(Bzt) Acide 1-amine ciclopentano carboxilico 1-07-yr(Bzt) L-O-Bencilitrosina Priyr(Bzt) L-O-Bencilitrosina Priyr(Bzt) 10 PHis(Bzt) Acide (3R)-2-amino-3-(1'-bencilimidazol-4'-il)-propiónico Pigin L-(4-lenilyenitalanina Pigin L-(4-lenilyenitalanina Po-Benciliseri		Aha	Ácido ε-aminohexanoico
Tyr(Bz) Pyr(Bz) Pyr(Bz) Pyr(Bz) Po-Bencilitrosina Pis(Bz) Acido (35)-2-amino-3-(1-bencilimidazol-4-ii)-propiónico Pis(Bz) Acido (35)-2-amino-3-(1-bencilimidazol-4-ii)-propiónico Bip Pisp Pisp Pisp Pisp Pisp Po-Carellifenilatanina Ser(Bz) Po-Bencilitrosina Po-Benc	5	Aib	Ácido α-aminoisobutírico
PTyr(Bz) D-O-Bencitirosina Hs(Bz) Acido (3S)-2-amino-3-(1'-bencilimidazol-4'-il)-propiónico 10 PHis(Bz) Acido (3S)-2-amino-3-(1'-bencilimidazol-4'-il)-propiónico PBp L-(4-fenil/fenilalanina Ser(Bzl) Lo-Dencilserina 9Ser(Bzl) D-O-Bencilserina 15 Thr(Bzl) Lo-Dencilteronina PThr(Bzl) D-O-Bencilteronina alloThr Acido (2S, 3S)-2-amino-3-hidroxi-butifroc Leu3OH Acido (2S, 3S)-2-amino-3-hidroxi-butifroc Leu3OH Acido (2S, 3S)-2-amino-3-hidroxi-d-metil-pentanoico Acido (2R, SS)-2-amino-3-hidroxi-d-metil-pentanoico Acido (2R, SS)-2-amino-3-hidroxi-d-metil-pentanoico Acido (2R, SS)-2-amino-3-hidroxi-d-metil-pentanoico Acido (2R, SS)-2-amino-3-hidroxi-d-metil-pentanoico Acido D-Alla L-Homo-alanina PhAla D-Homo-alanina PhAla D-Homo-alanina PhArg L-Homo-alanina PhArg D-Homo-alanina PhCys L-Homo-alanina PhCys L-Homo-cisteina PhGli Acido b-Homo-glutamina PhHis		Сур	Ácido 1-amino ciclopentano carboxílico
His(Bz1)		Tyr(Bzl)	L-O-Benciltirosina
Phis(Bz)		^D Tyr(Bzl)	D-O-Benciltirosina
Bip L-(4-fenil/fenilalanina Ser(Bz) D-(4-fenil/fenilalanina Ser(Bz) D-Q-Bencilserina D-D-Bencilserina D-Bencilserina D-Bencilseri		His(Bzl)	Ácido (3S)-2-amino-3-(1'-bencilimidazol-4'-il)-propiónico
PSip D-(4-fenil/fenilalanina PSer(Bz) L-O-Bencilserina PSer(Bz) L-O-Bencilserina PSer(Bz) D-O-Bencilserina PSer(Bz) D-O-Bencilserina PSer(Bz) PThr(Bz) L-O-Benciltreonina PO-Benciltreonina PO-Benc	10	^D His(BzI)	
Ser(8z)			
□ Ser(Bz) D-O-Bencilserina 15 Thr(Bz) L-O-Benciltreonina □ Thr(Bz) D-O-Benciltreonina □ Thr(Bz) D-O-Benciltreonina □ Intraction Acido (2R, 3S)-2-amino-3-hidroxi-butirico □ Leu3OH Acido (2R, 3R)-2-amino-3-hidroxi-4-metil-pentanoico 20 ¹Leu3OH Acido (2R, 3R)-2-amino-3-hidroxi-4-metil-pentanoico 1 Ala L-Homo-alanina □ PhAla D-Homo-alanina □ PhAla L-Homo-alanina □ PhArg L-Homo-alanina □ PhArg D-Homo-alanina □ PhArg L-Homo-alanina □ PhCys D-Homo-alanina □ PhGlu Acido D-homo-glutamico □ PhGlu Acido D-homo-glutamina □ PhHis D-Homo-pisturina □ PhHis D-Homo-pisturina □ PhLu D-Homo-pisturina □ PhLu D-Homo-pisturina □ PhLu		^D Bip	
15 Drt/REZ) L-O-Bencittreonina alloThr Acido (2S, 3S)-2-amino-3-hidroxi-butirico alloThr Acido (2S, 3S)-2-amino-3-hidroxi-butirico 20 PLeu3OH Acido (2S, 3R)-2-amino-3-hidroxi-4-metil-pentanoico 1 PLeu3OH Acido (2R, 3S)-2-amino-3-hidroxi-4-metil-pentanoico 1 PLeu3OH Acido (2R, 3R)-2-amino-3-hidroxi-4-metil-pentanoico 1 PLA PhAIa 1 PLA PhOmo-alanina 1 PAR D-Homo-alanina 1 PAR PhOmo-alanina 1 PAR PhOmo-disteina 1 PAR PhOmo-disteina 1 PAR PhOmo-disteina 1 PAR PhOmo-disteina 1 PAR PhOmo-bistidina 1 PAR PhLeu 1 PAR PhOmo-deucina 1 PAR PhLeu 2 PAR PhOmo-deucina 2 PAR PhAR 3 PAR P		Ser(Bzl)	L-O-Bencilserina
PTh([82])			
alloThr	15		L-O-Benciltreonina
PalloThr			,
Leu3OH			
20 □Leu3OH Acido (2R, 3R)-2-amino-3-hidroxi-4-metil-pentanoico hAla L-Homo-alanina □PhAla D-Homo-arginina □PhArg L-Homo-arginina 1 hCys L-Homo-cisterina □PhCys D-Homo-cisterina □PhGIU Acido L-homo-glutámico □PhGII Acido L-homo-glutámico □PhGII Acido D-homo-glutámina □PhGII D-Homo-leutina □PhIIs D-Homo-histidina □PhIIs D-Homo-bleucina □PhIIe D-Homo-leucina □PhLeu D-Homo-leucina □PhLeu D-Homo-leucina □PhNIe D-Homo-leucina			
hAla			
PhAla	20		
hArg			
PhArg D-Homo-arginina			
25 hCys L-Homo-cisteína PhCys D-Homo-cisteína Acido L-homo-glutámico Acido L-homo-glutámico PhGlu Acido D-homo-glutámico 30 PhGln D-Homo-glutamina 31 PhGln D-Homo-glutamina 35 NHIs L-Homo-listidina 36 NHIe L-Homo-Instidina 37 NHIe L-Homo-Instidina 38 NLeu L-Homo-Instidina 39 NNIe L-Homo-Instidina 39 NIE L-Homo-Instidina 39 NIE L-Homo-Instidina 39 NIE L-Homo-Instidiania 39 NIE L-Homo-Instidiania 39 NIE L-Homo-Instidiania 39 NIE L-Homo-Instidiania 39 NIE L-Homo-Instid			
PhÓys D-Homo-cisteína hGlu Ácido L-homo-glutamico PhGlu Ácido D-homo-glutamico hGln L-Homo-glutamina 30 PhGln D-Homo-glutamina hHis L-Homo-histidina hHis L-Homo-histidina hHie L-Homo-histidina PhIII D-Homo-sloeucina PhIII D-Homo-sloeucina PhLeu D-Homo-leucina PhLeu D-Homo-leucina PhNIII L-Homo-Indecina PhNIII L-Homo-Indecina PhNIII L-Homo-Indecina PhIII L-Homo-Indecina PhIII L-Homo-Indecina PhIIII L-Homo-Indecina L-Homo-Indecina		•	
NGIu	25		
PhGlu Ácido D-homo-glutámico hGln L-Homo-glutamina 30 PhGln D-Homo-histidina hHis L-Homo-histidina phHis D-Homo-histidina hHile L-Homo-soleucina PhIle D-Homo-isoleucina PhLeu L-Homo-leucina PhLeu D-Homo-isoleucina PhNIe D-Homo-norleucina NNIe L-Homo-norleucina PhNIe D-Homo-isina PhUs L-Homo-isina PhMet L-Homo-lisina PhMet D-Homo-isina PhMet D-Homo-metionina PhMet D-Homo-metionina PhPhe L-Homo-metionina PhPhe D-Homo-fenilalanina, ácido (2S)-2-amino-5-fenilpentanoico 45 PhPhe D-Homo-fenilalanina NSer L-Homo-serina PhSer D-Homo-fenilalanina NSer(Me) L-Homo-centiserina PhSer(Me) D-Homo-treonina NThr L-Homo-circosina PhTp D-Homo-treonina			
NGIn			,
D-Homo-glutamina D-Homo-glutamina h-His L-Homo-histidina D-Homo-histidina D-Homo-histidina h-His D-Homo-histidina h-His D-Homo-histidina h-His D-Homo-histidina h-His D-Homo-histidina h-His D-Homo-leucina D-Homo-leucina D-Homo-leucina D-Homo-leucina h-Leu D-Homo-leucina D-Homo-norleucina h-His D-Homo-norleucina h-His D-Homo-norleucina h-His D-Homo-norleucina h-His D-Homo-norleucina h-His D-Homo-metionina D-Homo-metionina D-Homo-metionina D-Homo-metionina D-Homo-metionina D-Homo-metionina D-Homo-metionina D-Homo-fenilalanina h-His D-Homo-fenilalanina h-His D-Homo-fenilalanina h-His D-Homo-fenilalanina h-His D-Homo-serina D-Homo-serina h-His D-Homo-treonina h-His h			
hHis D-Homo-histidina D-Homo-histidina D-Homo-histidina D-Homo-histidina D-Homo-histidina D-Homo-histidina D-Homo-histidina D-Homo-isoleucina D-Homo-isoleucina D-Homo-leucina D-Homo-metionina D-Homo-metionina D-Homo-metionina D-Homo-D-Homo-leucinalanina D-Homo-D-Homo-D-Indialanina D-Homo-D-Indialanina D-Homo-D-	20	_	
D-Homo-histidina hlle	30	_	
hlle		-	
Deciding Deciding			
35 hLeu L-Homo-leucina PhLeu D-Homo-leucina PhNIe D-Homo-norleucina PhNIe D-Homo-norleucina hLys L-Homo-lisina 40 PhLys D-Homo-lisina hMet L-Homo-metionina PhMet D-Homo-fenilalanina hPhe L-Homo-fenilalanina, ácido (2S)-2-amino-5-fenilpentanoico 45 PhPhe D-Homo-fenilalanina hSer L-Homo-serina hSer (Me) D-Homo-fenilalanina hSer(Me) D-Homo-o-metilserina PhSer(Me) D-Homo-o-metilserina 50 hThr L-Homo-treonina PhTrp D-Homo-treonina PhTrp D-Homo-treonina PhTrp D-Homo-triptófano PhTrp D-Homo-triptófano 55 PhTyr L-Homo-triosina hCval L-Homo-triosina hCval L-Homo-triosina hCval L-Homo-triosina PhVal D-Homo-ticlohexilalanina PhCha D-Homo-ticlohexilalanina PhCha L-4-Benzoilfenilalanina			
D-Homo-leucina hNle hNle bhNle hLys L-Homo-norleucina hNet bhMet b	35		
hNle	00		
PhNIe hLys L-Homo-Insina Met L-Homo-Insina PhMet L-Homo-metionina PhMet D-Homo-metionina PhMet D-Homo-metionina PhPe L-Homo-fenilalanina DiHPhe L-Dihomo-fenilalanina, ácido (2S)-2-amino-5-fenilpentanoico PhSer D-Homo-serina PhSer D-Homo-serina PhSer(Me) D-Homo-O-metilserina PhSer(Me) D-Homo-O-metilserina PhThr L-Homo-treonina PhThr D-Homo-treonina PhTrp D-Homo-triptófano PhTrp D-Homo-triptófano PhTrp D-Homo-triptófano PhTrp D-Homo-triptófano PhTrp D-Homo-triptófano PhTry D-Homo-triptófano PhTry D-Homo-triptófano PhTry D-Homo-triptófano PhTry D-Homo-triptófano PhOtal D-Homo-valina PhOtal D-Homo-valina PhOtal D-Homo-valina PhCha			
hLys hLys hNet hMet hMet hMet hMet hPhe b-Homo-metionina hPhe L-Homo-fenilalanina L-Homo-fenilalanina biHPhe L-Homo-fenilalanina, ácido (2S)-2-amino-5-fenilpentanoico b-Homo-fenilalanina hSer hSer hSer hSer hSer hSer(Me) hSer(Me) hSer(Me) hThr hTr hTr hTr hTr hTr hTr h			
40 PhĹys hMet L-Homo-metionina PhMet D-Homo-fenilalanina PhPhe L-Dihomo-fenilalanina, ácido (2S)-2-amino-5-fenilpentanoico DiHPhe L-Dihomo-fenilalanina, ácido (2S)-2-amino-5-fenilpentanoico DiHPhe D-Homo-fenilalanina, ácido (2S)-2-amino-5-fenilpentanoico DiHPhe D-Homo-fenilalanina ASer L-Homo-serina D-Homo-serina D-Homo-o-metilserina D-Homo-O-metilserina D-Homo-Treonina D-Homo-treonina D-Homo-treonina D-Homo-treonina D-Homo-triptófano D-Homo-triptófano D-Homo-triptófano D-Homo-triptófano D-Homo-triosina D-Homo-triosina D-Homo-valina D-Homo-valina D-Homo-valina D-Homo-valina D-Homo D-Homo-ciclohexilalanina D-CtG D-OctG D-OctG D-OctIglicina D-OctG D-OctIglicina D-OctG D-OctIglicina			
hMet PhMet PhMet PhMet PhHe D-Homo-metionina hPhe D-Homo-fenilalanina L-Dihomo-fenilalanina, ácido (2S)-2-amino-5-fenilpentanoico DiHPhe D-Homo-fenilalanina hSer PhSer L-Homo-serina hSer(Me) PhSer(Me) D-Homo-O-metilserina PhSer(Me) D-Homo-O-metilserina D-Homo-Tenilanina L-Homo-Treonina D-Homo-Treonina D-Homo-treonina D-Homo-treonina D-Homo-triptófano D-Homo-ciclohexilalanina D-Homo-valina D-Homo-valina D-Homo-valina D-Homo-ciclohexilalanina	40		
D-Homo-metionina hPhe hPhe D-Homo-fenilalanina DiHPhe L-Dihomo-fenilalanina, ácido (2S)-2-amino-5-fenilpentanoico D-Homo-fenilalanina hSer D-Homo-serina hSer hSer D-Homo-serina hSer(Me) D-Homo-O-metilserina D-Homo-O-metilserina D-Homo-Treonina D-Homo-treonina D-Homo-treonina D-Homo-triptófano D-Homo-triptófano D-Homo-triptófano D-Homo-triptófano D-Homo-triosina D-Homo-triosina D-Homo-triosina D-Homo-valina D-Homo-valina D-Homo D-Homo-valina D-Homo D-Homo-ciclohexilalanina D-Homo D-Homo-ciclohexilalanina D-Homo D-Homo-ciclohexilalanina D-Homo D-Homo-ciclohexilalanina D-Homo-ciclohexilalanina D-Homo D-Homo-ciclohexilalanina			
DiHPhe L-Dihomo-fenilalanina, ácido (2S)-2-amino-5-fenilpentanoico PhPhe D-Homo-fenilalanina hSer PhSer D-Homo-serina D-Homo-serina hSer(Me) D-Homo-O-metilserina D-Homo-O-metilserina NEFIME D-HOMO-O-metilserina D-Homo-O-metilserina D-Homo-O-metilserina D-Homo-O-metilserina D-Homo-O-metilserina L-Homo-treonina D-Homo-treonina D-Homo-treonina L-Homo-triptófano D-Homo-triptófano hTyr L-Homo-triptófano hTyr L-Homo-triosina D-Homo-tirosina L-Homo-valina PhVal D-Homo-valina D-Homo-valina D-Homo-valina D-Homo-valina D-Homo-ciclohexilalanina D-Hoha D-Homo-ciclohexilalanina			D-Homo-metionina
45 PhPhe hSer L-Homo-serina PhSer D-Homo-fenilalanina hSer D-Homo-serina PhSer D-Homo-o-metilserina PhSer(Me) D-Homo-O-metilserina 50 hThr D-Homo-treonina PhThr D-Homo-treonina hTrp L-Homo-triptófano PhTrp D-Homo-triptófano PhTrp D-Homo-triptófano hTyr L-Homo-triosina 55 PhTyr D-Homo-triosina NVal L-Homo-valina PhVal L-Homo-valina PhVal D-Homo-valina PhCha D-Homo-ciclohexilalanina D-Hoha D-Homo-ciclohexilalanina		hPhe	L-Homo-fenilalanina
hSer DhSer DhSer D-Homo-serina D-Homo-o-metilserina D-Homo-O-metilserina D-Homo-o-metilserina D-Homo-treonina D-Homo-treonina D-Homo-treonina D-Homo-treonina D-Homo-treonina D-Homo-triptófano D-Homo-triptófano D-Homo-triptófano D-Homo-triosina D-Homo-triosina D-Homo-triosina D-Homo-valina D-Homo-valina D-Homo-valina D-Homo-ciclohexilalanina D-Homo D-Homo-ciclohexilalanina		DiHPhe	L-Dihomo-fenilalanina, ácido (2S)-2-amino-5-fenilpentanoico
D-Homo-serina hSer(Me) D-Homo-O-metilserina D-Homo-O-metilserina D-Homo-O-metilserina 50 hThr D-Homo-treonina D-Homo-treonina D-Homo-triptófano D-Homo-triptófano D-Homo-triptófano hTyr D-Homo-triosina D-Homo-triosina D-Homo-triosina D-Homo-valina D-Homo-valina D-Homo-valina D-Homo-valina D-Homo-ciclohexilalanina	45	^D hPhe	D-Homo-fenilalanina
hSer(Me) DhSer(Me) D-Homo-O-metilserina D-Homo-O-metilserina D-Homo-O-metilserina L-Homo-treonina D-Homo-treonina D-Homo-treonina L-Homo-triptófano D-Homo-triptófano D-Homo-triptófano hTyr L-Homo-triosina D-Homo-tirosina D-Homo-tirosina D-Homo-valina D-Homo-valina D-Homo-valina D-Homo-valina D-Homo-ciclohexilalanina		hSer	L-Homo-serina
D-Homo-O-metilserina 50 hThr D-Homo-treonina D-Homo-treonina D-Homo-treonina hTrp D-Homo-triptófano D		^D hSer	D-Homo-serina
50 hThr DhThr DhThr D-Homo-treonina D-Homo-treonina D-Homo-triptófano D-Homo-triptófano D-Homo-triptófano D-Homo-triptófano D-Homo-triptófano L-Homo-triosina D-Homo-triosina D-Homo-triosina D-Homo-valina D-Homo-valina D-Homo-valina D-Homo-ciclohexilalanina		hSer(Me)	L-Homo-O-metilserina
D-Homo-treonina hTrp D-Homo-triptófano D-Homo-triptófano D-Homo-triptófano D-Homo-triptófano D-Homo-triptófano D-Homo-triptófano D-Homo-triosina D-Homo-triosina D-Homo-valina D-Homo-valina D-Homo-valina D-Homo-ciclohexilalanina		^D hSer(Me)	D-Homo-O-metilserina
hTrp PhTrp D-Homo-triptófano D-Homo-triptófano D-Homo-triptófano D-Homo-triptófano D-Homo-triosina D-Homo-triosina D-Homo-valina D-Homo-valina D-Homo-valina D-Homo-ciclohexilalanina D-Homo-triptófano D-Homo-tirosina D-	50		L-Homo-treonina
D-Homo-triptófano hTyr L-Homo-tirosina D-Homo-tirosina L-Homo-tirosina D-Homo-tirosina L-Homo-valina D-Homo-valina D-Homo-valina L-Homo-ciclohexilalanina D-Homo-ciclohexilalanina D-Homo-ciclohexilalanina D-Homo-ciclohexilalanina D-Homo-ciclohexilalanina L-4-Benzoilfenilalanina D-4-Benzoilfenilalanina			
hTyr L-Homo-tirosina D-Homo-tirosina D-Homo-tirosina D-Homo-valina D-Homo-valina D-Homo-valina D-Homo-ciclohexilalanina D-Homo-valina D-Homo-valina D-Homo-valina L-Homo-tirosina D-Homo-tirosina D-Homo-tirosina D-Homo-valina D-Homo-			
55 PhTyr D-Homo-tirosina L-Homo-valina PhVal D-Homo-valina hCha L-Homo-ciclohexilalanina PhCha D-Homo-ciclohexilalanina 60 Bpa L-4-Benzoilfenilalanina PBpa D-4-Benzoilfenilalanina OctG L-Octilglicina POctG D-Octilglicina Tic Ácido (3S)-1,2,3,4-tetrahidroisoquinolina-3-carboxílico 65 PTic			
hVal L-Homo-valina D-Homo-valina D-Homo-valina L-Homo-ciclohexilalanina D-Homo-ciclohexilalanina D-Homo-ciclohexilalanina D-Homo-ciclohexilalanina L-4-Benzoilfenilalanina DBpa D-4-Benzoilfenilalanina DctG DoctG D-Octilglicina Tic Ácido (3S)-1,2,3,4-tetrahidroisoquinolina-3-carboxílico Ácido (3R)-1,2,3,4-tetrahidroisoquinolina-3-carboxílico			
D-Homo-valina hCha bhCha D-Homo-ciclohexilalanina D-Homo-ciclohexilalanina D-Homo-ciclohexilalanina D-Homo-ciclohexilalanina D-Homo-ciclohexilalanina D-Homo-ciclohexilalanina D-Homo-ciclohexilalanina D-Homo-ciclohexilalanina D-Homo-ciclohexilalanina D-Homo-valina D-Homo-ciclohexilalanina D-Gottilalanina D-Got	55		
hCha D-Homo-ciclohexilalanina D-Homo-ciclohexilalanina D-Homo-ciclohexilalanina D-Homo-ciclohexilalanina D-Homo-ciclohexilalanina D-Homo-ciclohexilalanina L-4-Benzoilfenilalanina D-4-Benzoilfenilalanina D-4-Benzoilfenilalanina D-4-Benzoilfenilalanina D-4-Benzoilfenilalanina D-4-Benzoilfenilalanina Acido (3S)-1,2,3,4-tetrahidroisoquinolina-3-carboxílico Acido (3S)-1,2,3,4-tetrahidroisoquinolina-3-carboxílico			
D-Homo-ciclohexilalanina D-Homo-ciclohexilalanina D-Homo-ciclohexilalanina D-4-Benzoilfenilalanina D-4-Benzoilfenilalanina D-4-Benzoilfenilalanina D-4-Benzoilfenilalanina D-4-Benzoilfenilalanina D-4-Benzoilfenilalanina D-4-Benzoilfenilalanina Acido (3S)-1,2,3,4-tetrahidroisoquinolina-3-carboxílico D-Tic Ácido (3S)-1,2,3,4-tetrahidroisoquinolina-3-carboxílico			
60 Bpa L-4-Benzoilfenilalanina D-4-Benzoilfenilalanina OctG L-Octilglicina D-OctIglicina Tic Ácido (3S)-1,2,3,4-tetrahidroisoquinolina-3-carboxílico Ácido (3R)-1,2,3,4-tetrahidroisoquinolina-3-carboxílico			
D-4-Benzoilfenilalanina OctG D-OctG Tic D-Tic D-Tic D-4-Benzoilfenilalanina L-Octilglicina D-Octilglicina D-Octilglicina Acido (3S)-1,2,3,4-tetrahidroisoquinolina-3-carboxílico Ácido (3R)-1,2,3,4-tetrahidroisoquinolina-3-carboxílico	00		
OctG DOCTG DOCTG DOCTG DOCTG D-Octilglicina D-Octilglicina D-Octilglicina D-Octilglicina Acido (3S)-1,2,3,4-tetrahidroisoquinolina-3-carboxílico Acido (3R)-1,2,3,4-tetrahidroisoquinolina-3-carboxílico	60		
D-Octilglicina Tic Ácido (3S)-1,2,3,4-tetrahidroisoquinolina-3-carboxílico 65 DTic Ácido (3R)-1,2,3,4-tetrahidroisoquinolina-3-carboxílico			
Tic Ácido (3S)-1,2,3,4-tetrahidroisoquinolina-3-carboxílico Ácido (3R)-1,2,3,4-tetrahidroisoquinolina-3-carboxílico			
65 DTic Ácido (3R)-1,2,3,4-tetrahidroisoquinolina-3-carboxílico			
	6E		
riq Acido (15)-1,2,3,4-tetranidroisoquinoiina-1-cardoxiiico	oo		
		ПЧ	Acido (13)-1,2,3,4-tetramidroisoquinolina-1-carboxilico

	^D Tiq	Ácido (1R)-1,2,3,4-tetrahidroisoquinolina-1-carboxílico
	Oic	Ácido (2S, 3aS, 7aS)-1-octahidro-1H-indol-2-carboxílico
	^D Oic	Ácido (2R, 3aS, 7aS)-1-octahidro-1H-indol-2-carboxílico
	2Ind	Ácido L-2,3-dihidro-1H-indol-2-carboxílico
5	^D 2Ind	Ácido D-2,3-dihidro-1H-indol-2-carboxílico
	4AmPyrr1	Ácido (2S, 4S)-4-amino-pirrolidin-2-carboxílico
	D4AmPyrr1	Ácido (2R, 4S)-4-amino-pirrolidin-2-carboxílico
	4AmPyrr2	Ácido (2S, 4R)-4-amino-pirrolidin-2-carboxílico
	D4AmPyrr2	Ácido (2R, 4R)-4-amino-pirrolidin-2-carboxílico
10	4PhePyrr1	Ácido (2S, 4R)-4-fenil-pirrolidin-2-carboxílico
	D4PhePyrr1	Ácido (2R, 4R)-4-fenil-pirrolidin-2-carboxílico
	4PhePyrr2	Ácido (2S, 4S)-4-fenil-pirrolidin-2-carboxílico
	D4PhePyrr2	Ácido (2R, 4S)-4-fenil-pirrolidin-2-carboxílico
	5PhePyrr1	Ácido (2S, 5R)-5-fenil-pirrolidin-2-carboxílico
15	D5PhePyrr1	Ácido (2R, 5R)-5-fenil-pirrolidin-2-carboxílico
	5PhePyrr2	Ácido (2S, 5S)-5-fenil-pirrolidin-2-carboxílico
	D5PhePyrr2	Ácido (2R, 5S)-5-fenil-pirrolidin-2-carboxílico
	4Hyp1	(4S)-L-Hidroxiprolina
	D4Hyp1	(4S)-D-Hidroxiprolina
20	4Hyp2	(4R)-L-Hidroxiprolina
20	D4Hyp2	(4R)-D-Hidroxiprolina
	4Mp1	(4S)-L-Mercaptoprolina
	D4Mp1	(4S)-D-Mercaptoprolina
	4Mp2	(4R)-L-Mercaptoprolina
25	D4Mp2	(4R)-D-Mercaptoprolina
20	Azt	Ácido L-azetidin-2-carboxílico
	DAzt	Ácido D-azetidin-2-carboxílico
	Pip	Ácido L-pipecólico
	DPip	Ácido D-pipecólico
30	H-β ³ -HCit-OH	Ácido (3S)-3-amino-6-carbamidil-hexanoico
	H-β ³ -HOrn-OH	Ácido (3S)-3,6-diamino-hexanoico
	H-β³-HtBuA-OH	Ácido (3S)-3-amino-5,5-dimetil-hexanoico
	H-β ³ -HSar-OH	Ácido N-metil-3-amino-propiónico
	H-β ³ -HPen-OH	Ácido (3R)-3-amino-4-metil-4-mercapto-pentanoico
35	H-β ³ -HtBuG-OH	Ácido (3R)-3-amino-4,4-dimetil-pentanoico
	H-β ³ -H4AmPhe-OH	Ácido (3S)-3-amino-4-(4'-aminofenil)-butírico
	H-β ³ -H3AmPhe-OH	Ácido (3S)-3-amino-4-(3'-aminofenil)-butírico
	H-β ³ -H2AmPhe-OH	Ácido (3S)-3-amino-4-(2'-aminofenil)-butírico
	$H-\beta^3$ -HPhe(mC(NH ₂)=NH)-OH	Ácido (3S)-3-amino-4-(3'-amidinofenil)-butírico
40	$H-\beta^3$ -HPhe(pC(NH ₂)=NH)-OH	Ácido (3S)-3-amino-4-(4'-amidinofenil)-butírico
	$H-\beta^3$ -HPhe(mNHC(NH ₂)=NH)-OH	Ácido (3S)-3-amino-4-(3'-guanidinofenil)-butírico
	$H-\beta^3$ -HPhe(pNHC(NH ₂)=NH)-OH	Ácido (3S)-3-amino-4-(4'-guanidinofenil)-butírico
	H-β³-H2Pal-OH	Ácido (3S)-3-amino-4-(piridin-2'-il)-butírico
	H-β ³ -H4Pal-OH	Acido (3S)-3-amino-4-(piridin-4'-il)-butírico
45	$H-\beta^3$ -HPhg-OH	Ácido (3R)-3-amino-3-fenil-propiónico
	H-β ³ -HCha-OH	Ácido (3S)-3-amino-4-ciclohexil-butírico
	H-β ³ -HC ₄ al-OH	Ácido (3S)-3-amino-4-ciclobutil-butírico
	H-β³-HC₅al-OH	Acido (3S)-3-amino-4-ciclopentil-butírico
	H-β ³ -HNIe-OH	Acido (3S)-3-amino-heptanoico
50	H-β ³ -H2Nal-OH	Ácido (3S)-3-amino-4-(2'-naftil)-butírico
	H-β ³ -H1Nal-OH	Ácido (3S)-3-amino-4-(1'-naftil)-butírico
	H-β ³ -H4CIPhe-OH	Ácido (3S)-3-amino-4-(4'-clorofenil)-butírico
	H-β ³ -H3CIPhe-OH	Ácido (3S)-3-amino-4-(3'-clorofenil)-butírico
	H-β ³ -H2CIPhe-OH	Ácido (3S)-3-amino-4-(2'-clorofenil)-butírico Ácido (3S)-3-amino-4-(3',4'-diclorofenil)-butírico
55	H-β ³ -H3,4Cl ₂ Phe-OH H-β ³ -H4FPhe-OH	
		Ácido (3S)-3-amino-4-(4'-fluorofenil)-butírico
	H- $β^3$ -H3FPhe-OH H- $β^3$ -H2FPhe-OH	Ácido (3S)-3-amino-4-(3'-fluorofenil)-butírico Ácido (3S)-3-amino-4-(2'-fluorofenil)-butírico
	H-β°-H2FPNe-OH H-β³-HThi-OH	Ácido (38)-3-amino-4-(2-fluorofenii)-butírico Ácido (3R)-3-amino-4-(2'-tienil)-butírico
60	n-p ³ -n mi-On H-β ³ -HTza-OH	Ácido (3R)-3-amino-4-(2'-tiazolil)-butírico
00	H-β ³ -HMso-OH	Ácido (3R)-3-amino-4-(2-tiazolii)-butírico Ácido (3R)-3-amino-4-metilsulfoxil-butírico
	H-β ³ -HAcLys-OH	Ácido (3S)-7-acetilamino-3-amino-heptanoico
	H-β ³ -HDpr-OH	Ácido (3R)-3,4-diamino-butírico
	H-β ³ -HA ₂ Bυ-OH	Ácido (3S)-3,5-diamino-pentanoico
65	H-β ³ -HDbu-OH	Ácido (3R)-3,4-diamino-pentanoico
00	H-β ³ -HAib-OH	Ácido amino-dimetil-acético

		f
	H-β ³ -HCyp-OH	Ácido 1-amino-ciclopentano-1-il-acético
	$H-\beta^3$ - $HY(BzI)$ - OH	Ácido (3S)-3-amino-4-(4'-benciloxifenil)-butírico
	H-β ³ -HH(BzI)-OH	Ácido (3S)-3-amino-4-(1'-bencilimidazol-4'-il)-butírico
_	H-β ³ -HBip-OH	Acido (3S)-3-amino-4-bifenilil-butírico
5	H-β ³ -HS(BzI)-OH	Ácido (3S)-3-amino-4-(benciloxi)-butírico
	H-β ³ -HT(BzI)-OH	Ácido (3R, 4R)-3-amino-4-benciloxi-pentanoico
	H-β ³ -HalloT-OH	Ácido (3R, 4S)-3-amino-4-hidroxi-pentanoico
	H-β ³ -HLeu3OH-OH H-β ³ -HhAla-OH	Ácido (3R 4R)-3-amino-4-hidroxi-5-metil-hexanoico
10	H-β ³ -HhArg-OH	Ácido (3S)-3-amino-pentanoico Ácido (3S)-3-amino-7-guanidino-heptanoico
10	H-β ³ -HhCys-OH	Ácido (3R)-amino-5-mercapto-pentanoico
	H-β ³ -HhGlu-OH	Ácido (3S)-3-amino-heptanodioico
	H-β ³ -HhGln-OH	Ácido (3S)-3-amino-6-carbamoil-hexanoico
	H-β ³ -HhHis-OH	Ácido (3S)-3-amino-5-(imidazol-4'-il)-pentanoico
15	H-β ³ -Hhlle-OH	Ácido (3S, 5S)-3-amino-5-metil-heptanoico
	H- [,] β ³ -HhLeu-OH	Ácido (3S)-3-amino-6-metil-heptanoico
	H-β ³ -HhNle-OH	Ácido (3S)-3-amino-octanoico
	H-β ³ -DiAoc-OH	Ácido (3S)-3,8-diamino-octanoico
	H-β ³ -HhMet-OH	Ácido (3S)-3-amino-6-metiltio-hexanoico
20	H-β ³ -HhPe-OH	Ácido (3S)-3-amino-5-fenil-pentanoico
	H-β³-HhSer-OH	Ácido (3S)-3-amino-5-hidroxi-pentanoico
	H-β ³ -HhThr-OH	Ácido (3S, 5R)-3-amino-5-hidroxi-hexanoico
	H-β ³ -HhTrp-OH	Ácido (3S)-3-amino-5-(indol-3'-il)-pentanoico
25	H-β ³ -HhThr-OH H-β ³ -HhCha-OH	Ácido (3S)-3-amino-5-(4'-hidroxifenil)-pentanoico
25	n-p°-nnCha-On H-β³-HBpa-OH	Acido (3S)-3-amino-5-ciclohexil-pentanoico Ácido (3S)-3-amino-4-(4'-benzoilfenil)-butírico
	H-β ³ -HOctG-OH	Ácido (3S)-3-amino-undecanoico
	H-β ³ -HNIe-OH	Ácido (3S)-3-amino-heptanoico
	H-β ³ -HTic-OH	Ácido (3S)-1,2,3,4-tetrahidroisoquinolina-3-il-acético
30	H-β ³ -HTiq-OH	Ácido (1S)-1,2,3,4-Tetrahidroisoquinolina-1-acético
	H-β ³ -HOic-OH	Ácido (2S, 3aS, 7aS)-1-octahidro-1H-indol-2-il-acético
	H-β ³ -H4AmPyrr1-OH	Ácido (2S, 4S)-4-amino-pirrolidin-2-acético
	H-β ³ -H4AmPyrr2-OH	Ácido (2S, 4R)-4-amino-pirrolidin-2-acético
	H-β ³ -H4PhePyrr1-OH	Ácido (2S, 4R)-4-fenil-pirrolidin-2-acético
35	H-β ³ -H4PhePyrr2-OH	Ácido (2S, 4S)-4-fenil-pirrolidin-2-acético
	H-β ³ -H5PhePyrr1-OH	Ácido (2S, 5R)-5-fenil-pirrolidin-2-acético
	H-β ³ -H5PhePyrr2-OH	Ácido (2S, 5S)-5-fenil-pirrolidin-2-acético
	H-β ³ -H4Hyp1-OH	Ácido (2S, 4S)-4-hidroxi-pirrolidin-2-acético
40	H-β ³ -H4Hyp2-OH H-β ³ -H4Mp1-OH	Ácido (2S, 4R)-4-hidroxi-pirrolidin-2-acético
40	n-p°-п4мp1-Оп H-β³-H4Mp2-ОН	Ácido (2R, 4S)-4-mercapto-pirrolidin-2-acético Ácido (2R, 4R)-4-mercapto-pirrolidin-2-acético
	H-β ³ -HPip-OH	Ácido (2S)-piperidin-2-acético
	H-β ³ -HPro-OH	Ácido (2S)-pirrolidin-2-acético
	H-β ³ -H ^D Pro-OH	Ácido (2R)-pirrolidin-2-acético
45	H-γ ⁴ -DiHCit-OH	Ácido (4S)-4-amino-7-carbamidil-heptanoico
	H-γ ⁴ -DiHOrn-OH	Ácido (4S)-4,7-diamino-heptanoico
	H-γ ⁴ -DiH4AmPhe-OH	Ácido (4R)-4-amino-5-(4'-aminofenil)-pentanoico
	H-γ ⁴ -DiH3AmPhe-OH	Ácido (4R)-4-amino-5-(3'-aminofenil)-pentanoico
	H-γ ⁴ -DiH2AmPhe-OH	Ácido (4R)-4-amino-5-(2'-aminofenil)-pentanoico
50	$H-\gamma^4$ -DiHPhe(mC(NH ₂)=NH)-OH	Ácido (4R)-4-amino-5-(3'-amidinofenil)-pentanoico
	$H-\gamma^4$ -DiHPhe(pC(NH ₂)=NH)-OH	Ácido (4R)-4-amino-5-(4'-amidinofenil)-pentanoico
	$H-\gamma^4$ -DiHPhe(mNHC(NH ₂)=NH)-OH	Ácido (4R)-4-amino-5-(3'-guanidino-fenil)-pentanoico
	$H-\gamma^4$ -DiHPhe(pNHC(NH ₂)=NH)-OH	Ácido (4R)-4-amino-5-(4'-guanidino-fenil)-pentanoico
	H-γ ⁴ -DiH2Pal-OH	Ácido (4R)-4-amino-5-(piridin-4'-il)-pentanoico
55	H-γ ⁴ -DiH4Pal-OH	Ácido (4R)-4-amino-5-(piridin-4'-il)-pentanoico
	H-γ ⁴ -DiHPhg-OH	Ácido (4R)-4-amino-4-fenil-butírico
	H-γ ⁴ -DiH2Nal-OH	Ácido (4S)-4-amino-5-(2'-naftil)-pentanoico
	H-y⁴-DiH1Nal-OH	Ácido (4S)-4-amino-5-(1'-naftil)-pentanoico
	H-y⁴-DiH4ClPhe-OH	Ácido (4R)-4-amino-5-(4'-clorofenil)-pentanoico
60	H-y⁴-DiH3ClPhe-OH	Ácido (4R)-4-amino-5-(3'-clorofenil)-pentanoico
	H-γ ⁴ -DiH2CIPhe-OH	Ácido (4R)-4-amino-5-(2'-clorofenil)-pentanoico
	H-γ ⁴ -DiH3,4Cl ₂ Phe-OH	Ácido (4R)-4-amino-5-(3',4'-dicloro-fenil)-pentanoico
	H-γ ⁴ -DiH4FPhe-OH	Ácido (4R)-4-amino-5-(4'-fluorofenil)-pentanoico
	H-γ ⁴ -DiH3FPhe-OH	Ácido (4R)-4-amino-5-(3'-fluorofenil)-pentanoico

	4	
	H-γ ⁴ -DiH2FPhe-OH	Ácido (4R)-4-amino-5-(2'-fluorofenil)-pentanoico
	H-γ ⁴ -DiHThi-OH	Ácido (4R)-4-amino-5-(2'-tienil)-pentanoico
	H-γ ⁴ -DiHTza-OH	Ácido (4R)-4-amino-5-(2'-tiazolil)-pentanoico
_	H-γ ⁴ -DiHMso-OH	Ácido (4R)-4-amino-5-metilsulfoxil-pentanoico
5	H-γ ⁴ -DiHAcLys-OH	Ácido (4S)-8-acetilamino-4-amino-octanoico
	H-γ ⁴ -DiHDpr-OH	Ácido (4R)-4,5-diamino-pentanoico
	H-γ⁴-DiHA₂Bu-OH	Ácido (4R)-4,5-diamino-hexanoico
	H-γ ⁴ -DiHDbu-OH	Ácido (4R)-4,5-diamino-hexanoico
	H-γ ⁴ -DiHAib-OH	Ácido 3-amino-3,3-dimetil-propiónico
10	H-γ ⁴ -DiHY(BzI)-OH	Ácido (4R)-4-amino-5-(4'-benciloxifenil)-pentanoico
	H-γ ⁴ -DiHH(Bzl)-OH	Ácido (4R)-4-amino-5-(1'-bencilimidazol-4'-il)-pentanoico
	H-γ ⁴ -DiHBip-OH	Ácido (4R)-4-amino-5-bifenilil-pentanoico
	H-γ ⁴ -DiHS(Bzl)-OH	Ácido (4S)-4-amino-5-(benciloxi)-pentanoico
	H-γ ⁴ -DiHT(Bzl)-OH	Ácido (4R, 5R)-4-amino-5-benciloxi-hexanoico
15	H-γ ⁴ DiHalloT-OH	Ácido (4R, 5S)-4-amino-5-hidroxi-hexanoico
	H-γ ⁴ -DiHLeu3OH-OH	Ácido (4R, 5R)-4-amino-5-hidroxi-6-metil-heptanoico
	H-γ ⁴ -DiHhArg-OH	Ácido (4S)-4-amino-8-guanidino-octanoico
	H-γ ⁴ -DiHhGlu-OH	Ácido (4S)-4-amino-octanodioico
	H-γ ⁴ -DiHhGln-OH	Ácido (4S)-4-amino-7-carbamoil-heptanoico
20	H-γ ⁴ -DiHhHis-OH	Ácido (4S)-4-amino-6-(imidazol-4'-il)-hexanoico
	H-γ ⁴ -DiHhLys-OH	Ácido (4S)-4,9-diamino-nonanoico
	H-γ ⁴ -DiHhPhe-OH	Ácido (4S)-4-amino-6-fenil-hexanoico
	H-γ ⁴ -DiHhSer-OH	Ácido (4R)-4-amino-6-hidroxi-hexanoico
	H-γ ⁴ -DiHhThr-OH	Ácido (4R, 6R)-4-amino-6-hidroxi-heptanoico
25	H-γ ⁴ -DiHhTrp-OH	Ácido (4S)-4-amino-6-(indol-3'-il)-hexanoico
	H-γ ⁴ -DiHhTyr-OH	Ácido (4S)-4-amino-6-(4'-hidroxifenil)-hexanoico
	H-γ⁴-DihBpa-OH	Ácido (4R)-4-amino-5-(4'-benzoilfenil)-pentanoico
	H-γ ⁴ -DiHTic-OH	Ácido (3R)-1',2',3',4'-tetrahidroisoquinolina-3'-il-3-propiónico
	H-γ ⁴ -DiHTiq-OH	Ácido (1'R)-1',2',3',4'-tetrahidroisoquinolina-1'-il-3-propiónico
30	H-γ ⁴ -DiHOic-OH	Ácido (2'S, 3'aS, 7'aS)-1'-octahidro-1H-indol-2'-il-3-propiónico
	H-γ ⁴ -DiH4AmPyrr1-OH	Ácido (2'R, 4'S)-4'-amino-pirrolidin-2'-il-3-propiónico
	H-γ ⁴ -DiH4AmPyrr2-OH	Ácido (2'R, 4'R)-4'-amino-pirrolidin-2'-il-3-propiónico
	H-γ ⁴ -DiH4PhePyrr1-OH	Ácido (2'R, 4'R)-4'-fenil-pirrolidin-2'-il-3-propiónico
	H-γ ⁴ -DiH4PhePyrr2-OH	Ácido (2'R, 4'S)-4'-fenil-pirrolidin-2'-il-3-propiónico
35	H-γ ⁴ -DiH5PhePyrr1-OH	Ácido (2'S, 5'R)-5'-fenil-pirrolidin-2'-il-3-propiónico
	H-γ ⁴ -DiH5PhePyrr2-OH	Ácido (2'S, 5'S)-5'-fenil-pirrolidin-2'-il-3-propiónico
	H-γ⁴-DiH4Hyp1-OH	Ácido (2'R, 4'S)-4'-hidroxi-pirrolidin-2'-il-2-propiónico
	H-γ ⁴ -DiH4Hyp2-OH	Ácido (2'R, 4'R)-4'-hidroxi-pirrolidin-2'-il-3-propiónico
	H-γ ⁴ -DiH4Mp1-OH	Ácido (2'R, 4'S)-4'-mercapto-pirrolidin-2'-il-3-propiónico
40	H-γ ⁴ -DiH4Mp2-OH	Ácido (2'R, 4'R)-4'-mercapto-pirrolidin-2'-il-3-propiónico
	H-γ ⁴ -DiHPip-OH	Ácido (2'S)-piperidin-2'-il-3-propiónico
	H-γ ⁴ -DiHPro-OH	Ácido (2'S)-pirrolidin-2'-il-3-propiónico
	H-γ ⁴ -DiH ^D Pro-OH	Ácido (2'R)-pirrolidin-2'-il-3-propiónico
	(AEt)G	N-(2-Aminoetil)glicina
45	(APr)G	N-(3-Amino-n-propil)glicina
	(ABu)G, Nglu	N-(4-Amino-n-butil)glicina
	(APe)G	N-(5-Amino-n-pentil)glicina
	(GuEt)G (GuPr)G	N-(2-Guanidinoetil)glicina
50	(GuBu)G	N-(3-Guanidino-n-propil)glicina N-(4-Guanidino-n-butil)glicina
30	(GuPe)G	N-(5-Guanidino-n-pentil)glicina
	(CboMe)G	N-(Carboximetil)glicina
	(CboEt)G, Nglu	N-(2-Carboxinetil)glicina
	(CboPr)G	N-(3-Carboxipropil)glicina
55	(CbaMe)G	N-(Carbamoilmetil)glicina
	(CbaEt)G	N-(2-Carbamoiletil)glicina
	(CbaPr)G	N-(3-Carbamoilpropil)glicina
	(HyEt)G	N-(2-Hidroxietil)glicina
	(HyPr)G	(2R)-N-(2-Hidroxipropil)glicina
60	(Mcet)G	N-(2-Mercaptoetil)glicina
	NMeAla	L-N-Metilalanina
	NMe ^D Ala	D-N-Metilalanina
	NMeVal	L-N-Metilvalina

	NMe ^D Val	D-N-Metilvalina
	NMelle	L-N-Metilisoleucina
	NMe ^D lle	D-N-Metilisoleucina
	NMeLeu	L-N-Metil leucina
5	NMe ^D Leu	D-N-Metil leucina
Ŭ	NMeNie	L-N-metilnorleucina
	NMe ^D NIe	D-N-Metilnorleucina
	NMeMet	L-N-Metilmetionina
	NMe ^D Met	D-N-Metilmetionina
10	NMeTyr	L-N-Metiltirosina
10	NMe ^D Tyr	D-N-Metiltirosina
	NMeHis	L-N-Metilhistidina
	NMe ^D His	D-N-Metilhistidina
	NMePhe	L-N-Metilfenilalanina
4.5		
15	NMe ^D Phe	D-N-Metilfenilalanina
	NMeTrp	L-N-Metiltriptófano
	NMe ^D Trp	D-N-Metiltriptófano
	NMeSer	L-N-Metilserina
	NMe ^D Ser	D-N-Metilserina
20	NMeAsp	Ácido L-N-metilaspártico
	NMe ^D Asp	Acido D-N-metilaspártico
	NMeGlu	Ácido L-N-metilglutámico
	NMe ^D Glu	Ácido D-N-metilglutámico
	NMeLys	L-N-Metil lisina
25	NMe ^D Lys	D-N-Metil lisina
	NMeArg	L-N-Metilarginina
	NMe ^D Arg	D-N-Metilarginina
	NMeDab	Ácido L-N-metil-2,4-diamino butírico
	NMe ^D Dab	Ácido D-N-metil-2,4-diamino butírico
30	NMeCys	L-N-Metilcisteína
	NMe ^D Cys	D-N-Metilcisteína
	NMeAsn	L-N-Metilasparagina
	NMe ^D Asn	D-N-Metilasparagina
	NMeGIn	L-N-Metilglutamina
35	NMe ^D GIn	D-N-Metilglutamina
	NMeThr	L-N-Metiltreonina
	NMe ^D Thr	D-N-Metiltreonina
	Dap(Phe)	Ácido (2S)-2-amino-3-((2S)-2-amino-3-fenil)-propanamido)-propanoico
	Dap(Tyr)	Ácido (2S)-2-amino-3-((2S)-2-amino-(4-hidroxifenil)-propanamido)-
40		propanoico
	Dap(His)	Ácido (2S)-2-amino-3-((2S)-2-amino-(1H-imidazol-5-il)-propanamido)-
		propanoico
	Dap(Trp)	Ácido (2S)-2-amino-3-((2S)-2-amino-(1H-indol-3-il)-propanamido)-
		propanoico
45	Dab(Phe)	Ácido (2S)-2-amino-4-((2S)-2-amino-3-fenil)-propanamido)-
		butanoico
	Dab(Tyr)	Ácido (2S)-2-amino-4-((2S)-2-amino-(4-hidroxifenil)-propanamido)-
		butanoico
	Dab(His)	Ácido (2S)-2-amino-4-((2S)-2-amino-(1H-imidazol-5-il)-propanamido)-
50		butanoico
	Dab(Trp)	Ácido (2S)-2-amino-4-((2S)-2-amino-(1H-indol-3-il)-propanamido)-
		butanoico
	Orn(Phe)	Ácido (2S)-2-amino-5-((2S)-2-amino-3-fenil)-propanamido)-pentanoico
	Lys(Phe)	Ácido (2S)-2-amino-6-((2S)-2-amino-3-fenil)-propanamido)-hexanoico
55	Asp(Phe)	Ácido (2S)-2-amino-4-((1S)-1-carboxi-2-feniletilamino)-4-oxobutanoico
	Asp(Tyr)	Ácido (2S)-2-amino-4-((1S)-1-carboxi-2-(4-hidroxifenil)etilamino)-4-
		oxobutanoico
	Asp(His)	Ácido (2S)-2-amino-4-((1S)-1-carboxi-2-(1H-imidazol-5-il)etilamino)-4-
		oxobutanoico
60	Asp(Trp)	Ácido (2S)-2-amino-4-((1S)-1-carboxi-2-(1H-indol-3-il)etilamino)-4-
	OL (DL)	oxobutanoico
	Glu(Phe)	Acido (2S)-2-amino-5-((1S)-1-carboxi-2-feniletilamino)-5-oxopentanoico
	Glu(Tyr)	Acido (2S)-2-amino-5-((1S)-1-carboxi-2-(4-hidroxifenil)etilamino)-5-
6 -	OL (III.)	oxopentanoico
65	Glu(His)	Ácido (2S)-2-amino-5-((1S)-1-carboxi-2-(1H-imidazol-5-il)etilamino)-5-
		oxopentanoico

Glu(Trp) Ácido (2S)-2-amino-5-((1S)-1-carboxi-2-(1H-indol-3-il)e	etilamino)-5-
oxopentanoico	
Dap(pentanoílo) Ácido (2S)-2-amino-3-pentanamido-propanoico	
Dap(hexanoílo) Ácido (2S)-2-amino-3-hexanamido-propanoico	
5 Dap(heptanoílo) Ácido (2S)-2-amino-3-heptanamido-propanoico	
Dap(octanoílo) Ácido (2S)-2-amino-3-octanamido-propanoico	
Dab(propanoílo) Ácido (2S)-2-amino-4-propanamido-butanoico	
Dab(butanoílo) Ácido (2S)-2-amino-4-butanamido-butanoico	
Dab(pentanoílo) Ácido (2S)-2-amino-4-pentanamido-butanoico	
10 Dab(hexanoílo) Ácido (2S)-2-amino-4-hexanamido-butanoico	
Dab(heptanoílo) Ácido (2S)-2-amino-4-heptanamido-butanoico	
Dab(octanoílo) Ácido (2S)-2-amino-4-octanamido-butanoico	
Orn(propanoílo) Ácido (2S)-2-amino-5-propanamido-pentanoico	
Orn(butanoílo) Ácido (2S)-2-amino-5-butanamido-pentanoico	
15 Orn(pentanoílo) Ácido (2S)-2-amino-5-pentanamido-pentanoico	
Orn(hexanoílo) Ácido (2S)-2-amino-5-hexanamido-pentanoico	
Orn(heptanoílo) Ácido (2S)-2-amino-5-heptanamido-pentanoico	
Orn(octanoílo) Ácido (2S)-2-amino-5-octanamido-pentanoico	
Glu(fenetilo) Ácido (2S)-2-amino-5-fenetilamino-5-oxopentanoico	
20 Glu(fenpropilo) Ácido (2S)-2-amino-5-(fenilpropil)amino-5-oxopentano	oico
Glu(fenbutilo) Ácido (2S)-2-amino-5-(fenilbutil)amino-5-oxopentanoic	00
Glu(fenpentilo) Ácido (2S)-2-amino-5-(fenilpentil)amino-5-oxopentano	ico
Asp(fenetilo) Ácido (2S)-2-amino-4-fenetilamino-4-oxobutanoico	
Asp(fenpropilo) Ácido (2S)-2-amino-4-(fenilpropil)amino-4-oxobutanoic	00
25 Asp(fenbutilo) Ácido (2S)-2-amino-4-(fenilbutil)amino-4-oxobutanoico)
Asp(fenpentilo) Ácido (2S)-2-amino-4-(fenilpentil)amino-4-oxobutanoio	00

Los residuos particularmente preferentes para el **grupo C** son:

30	AlilGly Ala(CF ₃) Abu Ala ^D Ala	L-Alilglicina L-trifluoroalanina Ácido L-α-aminobutírico L-Alanina D-Alanina
35	lle ^D lle Leu ^D Leu	L-Isoleucina D-Isoleucina L-Leucina D-Leucina
40	Met ^D Met Val ^D Val	L-Metionina D-Metionina L-Valina D-Valina
45	tBuA ^D tBuA tBuG ^D tBuG Cha	L-t-Butilalanina D-t-Butilalanina L-terc-Butilglicina D-terc-Butilglicina L-Ciclohexilalanina
50	^D Cha C₄al ^D C₄al C₅al ^D C₅al	D-Ciclohexilalanina L-3-Ciclobutilalanina D-3-Ciclobutilalanina L-3-Ciclopentilalanina D-3-ciclopentilalanina
55	NIe ^D NIe hAla ^D hAla hIle	L-Norleucina D-Norleucina L-Homo-alanina D-Homo-alanina L-Homo-isoleucina
60	Dhlle hLeu DhLeu hNle DhNle	D-Homo-isoleucina L-Homo-leucina D-Homo-norleucina D-Homo-norleucina
65	hMet ^D hMet hSer(Me) ^D hSer(Me)	L-Homo-metionina D-Homo-metionina L-Homo-O-metilserina D-Homo-O-metilserina

```
hVal
                          L-Homo-valina
       <sup>D</sup>hVal
                          D-Homo-valina
       hCha
                          L-Homo-ciclohexilalanina
       <sup>D</sup>hCha
                          D-Homo-ciclohexilalanina
 5
       OctGly
                          L-Octilglicina
       <sup>D</sup>OctGly
                          D-Octilglicina
                          L-N-Metilalanina
       NMeAla
       NMe<sup>D</sup>Ala
                          D-N-Metilalanina
       NMeVal
                          L-N-Metilvalina
       NMeDVal
                          D-N-Metilvalina
10
       NMelle
                          L-N-Metilisoleucina
       NMe<sup>D</sup>lle
                          D-N-Metilisoleucina
       NMel eu
                          L-N-Metil leucina
       NMe<sup>D</sup>Leu
                          D-N-Metil leucina
15
       NMeNle
                          L-N-Metilnorleucina
       NMe<sup>D</sup>Nle
                          D-N-Metilnorleucina
       NMeMet
                          L-N-Metilmetionina
       NMe<sup>D</sup>Met
                          D-N-Metilmetionina
20
       Los residuos particularmente preferentes para el grupo D son:
       His
                          L-Histidina
       DHis
                          D-Histidina
       Phe
                          L-Fenilalanina
       DPhe
25
                          D-Fenilalanina
       Trp
                          L-Triptófano
       <sup>D</sup>Trp
                          D-Triptófano
       Tyr
                          L-Tirosina
       <sup>D</sup>Ťyr
                          D-Tirosina
30
       2Pal
                          Ácido (2S)-2-amino-3-(piridin-2'-il)-propiónico
       D2Pal
                          Ácido (2R)-2-amino-3-(piridin-2'-il)-propiónico
       4Pal
                          Ácido (2S)-2-amino-3-(piridin-4'-il)-propiónico
       D4Pal
                          Ácido (2R)-2-amino-3-(piridin-4'-il)-propiónico
       Phg
                          L-Fenilglicina
       DPhg
35
                          D-Fenilglicina
                          L-2-Naftilalanina
       2Nal
       D2Nal
                          D-2-Naftilalanina
       1-Nal
                          L-1-Naftilalanina
       D1Nal
                          D-1-Naftilalanina
40
       4CIPhe
                          L-4-Clorofenilalanina
       D4CIPhe
                          D-4-Clorofenilalanina
       3CIPhe
                          L-3-Clorofenilalanina
       D3CIPhe
                          D-3-Clorofenilalanina
       2CIPhe
                          L-2-Clorofenilalanina
                          D-2-Clorofenilalanina
45
       D2CIPhe
       3,4Cl<sub>2</sub>Phe
                          L-3,4-Diclorofenilalanina
       D3,4Cl<sub>2</sub>Phe
                          D-3,4-Diclorofenilalanina
       4FPhe
                          L-4-Fluorofenilalanina
       D4FPhe
                          D-4-Fluorofenilalanina
50
       3FPhe
                          L-3-Fluorofenilalanina
       D3FPhe
                          D-3-Fluorofenilalanina
       2FPhe
                          L-2-Fluorofenilalanina
       D2FPhe
                          D-2-Fluorofenilalanina
                          L-β-2-Tienilalanina
       Thi
       DThi
                          D-β-2-Tienilalanina
55
       Tza
                          L-2-Tiazolilalanina
       DTza
                          D-2-Tiazolilalanina
       Tyr(Bzl)
                          L-O-Benciltirosina
       DTyr(Bzl)
                          D-O-Benciltirosina
60
                          Ácido (3S)-2-amino-3-(1'-bencilimidazol-4'-il)-propiónico
       His(BzI)
       DHis(Bzl)
                          Ácido (3R)-2-amino-3-(1'-bencilimidazol-4'-il)-propiónico
                          L-(4-fenil)fenilalanina
       Bip
       DBip
                          D-(4-fenil)fenilalanina
       Ser(Bzl)
                          L-O-Bencilserina
       DSer(Bzl)
                          D-O-Bencilserina
65
       Thr(BzI)
                          L-O-Benciltreonina
```

DThr(Bzl) D-O-Benciltreonina hPhe L-Homo-fenilalanina ^DPhe D-Homo-fenilalanina L-Dihomo-fenilalanina, ácido (2S)-2-amino-5-fenilpentanoico DiHPhe 5 hTrp L-Homo-triptófano $^{\mathrm{D}}\mathrm{hTrp}$ D-Homo-triptófano L-Homo-tirosina hTyr ^DhTyr D-Homo-tirosina L-Homo-histidina hHis 10 ^DhHis D-Homo-histidina L-4-Benzoilfenilalanina Bpa ^DBpa D-4-Benzoilfenilalanina NMePhe L-N-Metilfenilalanina NMe^DPhe D-N-Metilfenilalanina 15 NMeTyr L-N-Metiltirosina NMe^DTyr D-N-Metiltirosina NMeHis L-N-Metilhistidina NMe^DHis D-N-Metilhistidina NMeTrp L-N-Metiltriptófano NMe^DTrp 20 D-N-Metiltriptófano Los residuos particularmente preferentes para el grupo E son L-Arginina Arg 25 DArg D-Arginina L-Lisina Lys **DLvs** D-Lisina Orn L-Ornitina DOrn. D-Ornitina 30 Dap Ácido L-2,3-diaminopropiónico ^DDap Ácido D-2,3-diaminopropiónico Ácido L-2,3-diaminopropiónico Dpr DDpr Ácido D-2,3-diaminopropiónico Ácido L-2,4-diaminobutírico Dab DDab 35 Ácido D-2.4-diaminobutírico Dbu Ácido (2S, 3S)-2,3-diaminobutírico $^{\mathrm{D}}\mathrm{Dbu}$ Ácido (2R, 3S)-2,3-diaminobutírico Cit L-Citrulina ^DCit D-Citrulina 40 4AmPhe L-para-Aminofenilalanina D4AmPhe D-para-Aminofenilalanina 3AmPhe L-meta-Aminofenilalanina D3AmPne D-meta-Aminofenilalanina 2AmPhe L-orto-Aminofenilalanina 45 D2AmPhe D-orto-Aminofenilalanina Phe(mC(NH₂)=NH) L-meta-Amidinofenilalanina DPhe(mC(NH₂)=NH) D-meta-Amidinofenilalanina Phe($pC(NH_2)=NH$) L-para-Amidinofenilalanina DPhe(pC(NH₂)=NH) D-para-Amidinofenilalanina Phe(mNHC(NH₂)=NH) L-meta-Guanidinofenilalanina 50 DPhe(mNHC(NH₂)=NH) D-meta-Guanidinofenilalanina Phe(pNHC(NH₂)=NH) L-para-Guanidinofenilalanina DPhe(pNHC(NH₂)=NH) D-para-Guanidinofenilalanina L-Homo-arginina hArg D-Homo-arginina 55 DhArg hLys L-Homo-lisina DhLys D-Homo-lisina AcLys L-N-Acetil lisina DAcLys D-N-Acetil lisina **NMeLys** L-N-Metil lisina 60 NMe^DLys D-N-Metil lisina **NMeArg** L-N-Metilarginina NMe^DArg D-N-Metilarginina NMeDab Ácido L-N-metil-2,4-diamino butírico

NMe^DDab

65

Ácido D-N-metil-2,4-diamino butírico

Los residuos particularmente preferentes para el **grupo F** son

5	Asn ^D Asn Asp ^D Asp Cys	L-Asparagina D-Asparagina Ácido L-aspártico Ácido D-aspártico L-Cisteína
10	DCys Gln DGIn Glu DGIu Ser	D-Cisteína L-Glutamina D-Glutamina Ácido L-glutámico Ácido D-glutámico L-Serina
15	^D Ser Thr ^D Thr Pen	D-Serina L-Treonina D-Treonina L-Penicilamina
20	^D Pen alloThr ^D alloThr Leu3OH	D-Penicilamina Ácido (2S, 3S)-2-amino-3-hidroxi-butírico Ácido (2R, 3S)-2-amino-3-hidroxi-butírico Ácido (2S, 3R)-2-amino-3-hidroxi-4-metil-pentanoico
25	DLeu3OH hCys DhCys hSer	Ácido (2R, 3R)-2-amino-3-hidroxi-4-metil-pentanoico L-Homo-cisteína D-Homo-cisteína L-Homo-serina
	^D hSer hGlu ^D hGlu hGln	D-Homo-serina Ácido L-homo-glutámico Ácido D-homo-glutámico L-Homo-glutamina
30	^D hGIn hThr ^D hThr NMeSer	D-Homo-glutamina L-Homo-treonina D-Homo-treonina L-N-Metilserina
35	NMe ^D Ser NMeAsp NMe ^D Asp NMeGlu NMe ^D Glu	D-N-Metilserina Ácido L-N-metilaspártico Ácido D-N-metilaspártico Ácido L-N-metilglutámico Ácido D-N-metilglutámico
40	NMeCys NMe ^D Cys NMeAsn NMe ^D Asn NMeGIn	L-N-Metilcisteína D-N-Metilcisteína L-N-Metilasparagina D-N-Metilasparagina L-N-Metilglutamina
45	NMe ^D GIn NMeThr NMe ^D Thr	D-N-Metilglutamina L-N-Metiltreonina D-N-Metiltreonina

Los residuos particularmente preferentes para el ${\it grupo}\ {\it l}$ son

50	(AEt)G	N-(2-Aminoetii)giicina
	(APr)G	N-(3-Amino-n-propil)glicina
	(ABu)G, Nlys	N-(4-Amino-n-butil)glicina
	(APe)G	N-(5-Amino-n-pentil)glicina
	(GuEt)G	N-(2-Guanidinoetil)glicina
55	(GuPr)G	N-(3-Guanidino-n-propil)glicina
	(GuBu)G	N-(4-Guanidino-n-butil)glicina
	(GuPe)G	N-(5-Guanidino-n-pentil)glicina
	(CboMe)G	N-(Carboximetil)glicina
	(CboEt)G, Nglu	N-(2-Carboxietil)glicina
60	(CboPr)G	N-(3-Carboxipropil)glicina
	(CbaMe)G	N-(Carbamoilmetil)glicina
	(CbaEt)G	N-(2-Carbamoiletil)glicina
	(CbaPr)G	N-(3-Carbamoilpropil)glicina
	(HyEt)G	N-(2-Hidroxietil)glicina
65	(HyPr)G	(2R)-N-(2-Hidroxipropil)glicina

Los residuos particularmente preferentes para el ${\bf grupo}~{\bf M}$ son

		,
	H-γ ⁴ -DihTyr-OH	Ácido (4R)-4-amino-5-(4'-hidroxifenil)-pentanoico
	H-γ ⁴ -DihHis-OH	Ácido (4R)-4-amino-5-(imidazol-4'-il)-pentanoico
5	H-γ ⁴ -DihPhe-OH	Ácido (4R)-4-amino-5-fenil-pentanoico
	H-γ ⁴ -DiTrp-OH	Ácido (4R)-4-amino-5-(indol-3'-il)-pentanoico
	H-γ ⁴ -DihSer-OH	Ácido (4R)-4-amino-5-hidroxi-pentanoico
	H-γ ⁴ -DihAsp-OH	Ácido (4R)-4-amino-hexanodioico
	H-γ ⁴ -DihGlu-OH	Ácido 4-amino-heptanodioico
10	H-γ ⁴ -DihLys-OH	Ácido (4S)-4,8-diamino-octanoico
	H-γ ⁴ -DihArg-OH	Ácido (4S)-4-amino-7-guanidino-heptanoico
	H-γ ⁴ -DihAsn-OH	Ácido (4R)-4-amino-5-carbamoil-pentanoico
	H-γ ⁴ -DihGln-OH	Ácido (4S)-4-amino-6-carbamoil-hexanoico
	H-γ⁴-DihThr-OH	Ácido (4R, 5R)-4-amino-5-hidroxi-hexanoico
15	H-γ ⁴ -DiHCit-OH	Ácido (4S)-4-amino-7-carbamidil-heptanoico
.0	H-γ ⁴ -DiHOrn-OH	Ácido (4S)-4,7-diamino-heptanoico
	H-γ ⁴ -DiH4AmPhe-OH	Ácido (4R)-4-amino-5-(4'-aminofenil)-pentanoico
	H-γ ⁴ -DiH3AmPhe-OH	Ácido (4R)-4-amino-5-(3'-aminofenil)-pentanoico
	H-γ ⁴ -DiH2AmPhe-OH	Ácido (4R)-4-amino-5-(2'-aminofenil)-pentanoico
20	$H-\gamma^4$ -DiHPhe(mC(NH ₂)=NH)-OH	
20		Ácido (4R)-4-amino-5-(3'-amidinofenil)-pentanoico
	H-γ ⁴ -DiHPhe(pC(NH ₂)=NH)-OH	Ácido (4R)-4-amino-5-(4'-amidinofenil)-pentanoico
		Ácido (4R)-4-amino-5-(3'-guanidino-fenil)-pentanoico
		Ácido (4R)-4-amino-5-(4'-guanidino-fenil)-pentanoico
0.5	H-γ ⁴ -DiH2Pal-OH	Ácido (4R)-4-amino-5-(piridin-2'-il)-pentanoico
25	H-γ ⁴ -DiH4Pal-OH	Acido (4R)-4-amino-5-(piridin-4'-il)-pentanoico
	H-γ ⁴ -DiHPhg-OH	Ácido (4R)-4-amino-4-fenil-butírico
	H-γ ⁴ -DiH2Nal-OH	Ácido (4S)-4-amino-5-(2'-naftil)-pentanoico
	H-γ ⁴ -DiH1Nal-OH	Ácido (4S)-4-amino-5-(1'-naftil)-pentanoico
	H-γ ⁴ -DiH4ClPhe-OH	Acido (4R)-4-amino-5-(4'-clorofenil)-pentanoico
30	H-γ ⁴ -DiH3CIPhe-OH	Ácido (4R)-4-amino-5-(3'-clorofenil)-pentanoico
	H-γ ⁴ -DiH2CIPhe-OH	Ácido (4R)-4-amino-5-(2'-clorofenil)-pentanoico
	H-γ ⁴ -DiH3,4CI ₂ Phe-OH	Ácido (4R)-4-amino-5-(3',4'-dicloro-fenil)-pentanoico
	H-γ ⁴ -DiH4FPhe-OH	Ácido (4R)-4-amino-5-(4'-fluorofenil)-pentanoico
	H-γ ⁴ -DiH3FPhe-OH	Ácido (4R)-4-amino-5-(3'-fluorofenil)-pentanoico
35	H-γ ⁴ -DiH2FPe-OH	Ácido (4R)-4-amino-5-(2'-fluorofenil)-pentanoico
	H-γ ⁴ -DiHThi-OH	Ácido (4R)-4-amino-5-(2'-tienil)-pentanoico
	H-γ ⁴ -DiHTza-OH	Ácido (4R)-4-amino-5-(2'-tiazolil)-pentanoico
	H-γ ⁴ -DiHMso-OH	Ácido (4R)-4-amino-5-metilsulfoxil-pentanoico
	H-γ ⁴ -DiHAcLys-OH	Ácido (4S)-8-acetilamino-4-amino-octanoico
40	H-γ ⁴ -DiHDpr-OH	Ácido (4R)-4,5-diamino-pentanoico
	H-γ ⁴ -DiHA ₂ Bu-OH	Ácido (4R)-4,5-diamino-hexanoico
	H-γ ⁴ -DiHDbu-OH	Ácido (4R)-4,5-diamino-hexanoico
	H-γ ⁴ -DiHY(Bzl)-OH	Ácido (4R)-4-amino-5-(4'-benciloxifenil)-pentanoico
	H-γ ⁴ -DiHH(Bzl)-OH	Ácido (4R)-4-amino-5-(1'-bencilimidazol-4'-il)-pentanoico
45	H-γ ⁴ -DiHBip-OH	Ácido (4R)-4-amino-5-bifenilil-pentanoico
	H-γ ⁴ -DiHS(BzI)-OH	Ácido (4S)-4-amino-5-(benciloxi)-pentanoico
	H-γ ⁴ -DiHT(Bzl)-OH	Ácido (4R, 5R)-4-amino-5-benciloxi-hexanoico
	H-y ⁴ -DiHalloT-OH	Ácido (4R, 5S)-4-amino-5-hidroxi-hexanoico
	H-γ⁴-DiHLeu3OH-OH	Ácido (4R, 5R)-4-amino-5-hidroxi-6-metil-heptanoico
50	H-γ⁴-DiHhArg-OH	Ácido (4S)-4-amino-8-guanidino-octanoico
	H-γ⁴-DiHhGlu-OH	Ácido (4S)-4-amino-octanodioico
	H-γ⁴-DiHhGln-OH	Ácido (4S)-4-amino-7-carbamoil-heptanoico
	H-γ ⁴ -DiHhHis-OH	Ácido (4S)-4-amino-6-(imidazol-4'-il)-hexanoico
55	H-γ ⁴ -DiHhLys-OH	Ácido (4S)-4,9-diamino-nonanoico
	H-γ ⁴ -DiHhPhe-OH	Ácido (4S)-4-amino-6-fenil-hexanoico
	H-γ ⁴ -DiHhSer-OH	Ácido (4R)-4-amino-6-hidroxi-hexanoico
	H-γ ⁴ -DiHhThr-OH	Ácido (4R, 6R)-4-amino-6-hidroxi-heptanoico
	$H-\gamma^4$ -DiHhTrp-OH	Ácido (4S)-4-amino-6-(indol-3'-il)-hexanoico
	H-γ ⁴ -DiHhTyr-OH	Ácido (4S)-4-amino-6-(Indoi-3-ii)-hexanoico
60	H-γ ⁴ -DihBpa-OH	Ácido (4R)-4-amino-5-(4'-benzoilfenil)-pentanoico
00		Acido (+17)-4-animo-3-(4-benzonienii)-pentanoico

Los residuos particularmente preferentes para el ${f grupo\ N}$ son:

	H-β³-HAla-OH	Ácido (3S)-3-amino-butírico
	H-β ³ -HVal-OH	Ácido (3R)-3-amino-4-metil-valérico
_	H-β ³ -Hlle-OH	Ácido (3R, 4S)-3-amino-4-metil-hexanoico
5	H-β ³ -HLeu-OH	Acido (3S)-3-amino-5-metil-hexanoico
	H-β ³ -HMet-OH	Ácido (3S)-3-amino-5-metiltio-pentanoico
	H-β³-HTyr-OH H-β³-HHis-OH	Ácido (3S)-3-amino-4-(4'-hidroxifenil)-butírico Ácido (3S)-3-amino-4-(imidazol-4'-il)-butírico
	H-β ³ -HPhe-OH	Ácido (3S)-3-amino-4-(imidazoi-4-ii)-butineo Ácido (3S)-3-amino-4-fenil-butírico
10	H-β ³ -HTrp-OH	Ácido (3S)-3-amino-4-(indol-3'-il)-butírico
	H-β ³ -HSer-OH	Ácido (3R)-3-amino-4-hidroxi-butírico
	H-β ³ -HAsp-OH	Ácido 3-amino-pentanodioico
	H-β ³ -HGlu-OH	Ácido (3S)-3-amino-hexanodioico
	H-β ³ -HLys-OH	Ácido (3S)-3,7-diamino-heptanoico
15	$H-\beta^3$ -HArg-OH	Ácido (3S)-3-amino-6-guanidino-hexanoico
	H-β³-HAsn-OH H-β³-HGIn-OH	Ácido (3S)-3-amino-4-carbamoil-butírico
	H-β ³ -HThr-OH	Ácido (3S)-3-amino-5-carbamoil-pentanoico Ácido (3R, 4R)-3-amino-4-hidroxi-pentanoico
	H-β ³ -HCit-OH	Ácido (3S)-3-amino-6-carbamidil-hexanoico
20	H-β ³ -HOrn-OH	Ácido (3S)-3,6-diamino-hexanoico
	H-β ³ -HtBuA-OH	Ácido (3S)-3-amino-5,5-dimetil-hexanoico
	H-β ³ -HSar-OH	Ácido N-metil-3-amino-propiónico
	H-β ³ -HPen-OH	Ácido (3R)-3-amino-4-metil-4-mercapto-pentanoico
0.5	H-β ³ -HtBuG-OH	Ácido (3R)-3-amino-4,4-dimetil-pentanoico
25	H-β ³ -H4AmPhe-OH H-β ³ -H3AmPhe-OH	Ácido (3S)-3-amino-4-(4'-aminofenil)-butírico
	H-β ³ -H2AmPhe-OH	Ácido (3S)-3-amino-4-(3'-aminofenil)-butírico Ácido (3S)-3-amino-4-(2'-aminofenil)-butírico
	H-β ³ -HPhe(mC(NH ₂)=NH)-OH	Ácido (3S)-3-amino-4-(2-aminoremi)-butírico
	$H-\beta^3$ -HPhe(pC(NH ₂)=NH)-OH	Ácido (3S)-3-amino-4-(4'-amidinofenil)-butírico
30	$H-\beta^3$ -HPhe(mNHC(NH ₂)=NH)-OH	Ácido (3S)-3-amino-4-(3'-guanidinofenil)-butírico
	$H-\beta^3$ -HPhe(pNHC(NH ₂)=NH)-OH	Ácido (3S)-3-amino-4-(4'-guanidino-fenil)-butírico
	H-β ³ -H2Pal-OH	Ácido (3S)-3-amino-4-(piridin-2'-il)-butírico
	H-β ³ -H4Pal-OH	Ácido (3S)-3-amino-4-(piridin-4'-il)-butírico
35	H-β ³ -HPhg-OH H-β ³ -HCha-OH	Ácido (3R)-3-amino-3-fenil-propiónico Ácido (3S)-3-amino-4-ciclohexil-butírico
33	H-β ³ -HC4al-OH	Ácido (3S)-3-amino-4-ciclohexil-butírico
	H-β³-HC₅al-OH	Ácido (3S)-3-amino-4-ciclopentil-butírico
	H-β ³ -HNIe-OH	Ácido (3S)-3-amino-heptanoico
	H-β ³ -H2Nal-OH	Ácido (3S)-3-amino-4-(2'-naftil)-butírico
40	H-β ³ -H1Nal-OH	Ácido (3S)-3-amino-4-(1'-naftil)-butírico
	H-β ³ -H4ClPhe-OH	Ácido (3S)-3-amino-4-(4'-clorofenil)-butírico
	H-β ³ -H3ClPhe-OH	Ácido (3S)-3-amino-4-(3'-clorofenil)-butírico
	H- β ³ -H2ClPhe-OH H- β ³ -H3,4Cl ₂ Phe-OH	Ácido (3S)-3-amino-4-(2'-clorofenil)-butírico Ácido (3S)-3-amino-4-(3',4'-diclorofenil)-butírico
45	H-β ³ -H4FPhe-OH	Ácido (3S)-3-amino-4-(4'-fluorofenil)-butírico
10	H-β ³ -H3FPhe-OH	Ácido (3S)-3-amino-4-(3'-fluorofenil)-butírico
	H-β ³ -H2FPhe-OH	Ácido (3S)-3-amino-4-(2'-fluorofenil)-butírico
	H-β ³ -HThi-OH	Ácido (3R)-3-amino-4-(2'-tienil)-butírico
	H-β ³ -HTza-OH	Ácido (3R)-3-amino-4-(2'-tiazolil)-butírico
50	$H-\beta^3$ -HMso-OH	Ácido (3R)-3-amino-4-metilsulfoxil-butírico
	H-β ³ -HAcLys-OH H-β ³ -HDpr-OH	Ácido (3S)-7-acetilamino-3-amino-heptanoico Ácido (3R)-3,4-diamino-butírico
	H-β ³ -HA ₂ Bu-OH	Ácido (3S)-3,5-diamino-putinco
	H-β ³ -HDbu-OH	Ácido (3R)-3,4-diamino-pentanoico
55	H-β ³ -HY(BzI)-OH	Ácido (3S)-3-amino-4-(4'-benciloxifenil)-butírico
	H-β ³ -HH(Bzl)-OH	Ácido (3S)-3-amino-4-(1'-bencilimidazol-4'-il)-butírico
	H-β ³ -HBip-OH	Ácido (3S)-3-amino-4-bifenilil-butírico
	H-β ³ -HS(BzI)-OH	Ácido (3S)-3-amino-4-(benciloxi)-butírico
60	H-β ³ -HT(BzI)-OH	Ácido (3R, 4R)-3-amino-4-benciloxi-pentanoico
60	H-β ³ -HalloT-OH H-β ³ -HLeu3OH-OH	Ácido (3R, 4S)-3-amino-4-hidroxi-pentanoico Ácido (3R, 4R)-3-amino-4-hidroxi-5-metil-hexanoico
	H-β ³ -HhAla-OH	Ácido (3S)-3-amino-pentanoico
	H-β ³ -HhArg-OH	Ácido (3S)-3-amino-7-guanidino-heptanoico
	H-β ³ -HhGlu-OH	Ácido (3S)-3-amino-heptanodioico
65	H-β ³ -HhGln-OH	Ácido (3S)-3-amino-6-carbamoil-hexanoico
	H-β ³ -HhHis-OH	Ácido (3S)-3-amino-5-(imidazol-4'-il)-pentanoico

```
H-β<sup>3</sup>-Hhlle-OH
                                          Ácido (3S, 5S)-3-amino-5-metil-heptanoico
       H-β3-HhLeu-OH
                                          Ácido (3S)-3-amino-6-metil-heptanoico
       H-β<sup>3</sup>-HhNle-OH
                                          Ácido (3S)-3-amino-octanoico
       H-β<sup>3</sup>-DiAoc-OH
                                          Ácido (3S)-3,8-diamino-octanoico
 5
       H-β<sup>3</sup>-HhMet-OH
                                          Ácido (3S)-3-amino-6-metiltio-hexanoico
       H-β<sup>3</sup>-HhPe-OH
                                          Ácido (3S)-3-amino-5-fenil-pentanoico
       H-β<sup>3</sup>-HhSer-OH
                                          Ácido (3S)-3-amino-5-hidroxi-pentanoico
       H-β<sup>3</sup>-HhThr-OH
                                          Ácido (3S, 5R)-3-amino-5-hidroxi-hexanoico
       H-β<sup>3</sup>-HhTrp-OH
                                          Ácido (3S)-3-amino-5-(indol-3'-il)-pentanoico
       H-β<sup>3</sup>-HhThr-OH
                                          Ácido (3S)-3-amino-5-(4'-hidroxifenil)-pentanoico
10
       H-β3-HhCha-OH
                                          Ácido (3S)-3-amino-5-ciclohexil-pentanoico
       H-β³-HBpa-OH
                                          Ácido (3S)-3-amino-4-(4'-benzoilfenil)-butírico
       H-β<sup>3</sup>-HOctG-OH
                                          Ácido (3S)-3-amino-undecanoico
       H-β<sup>3</sup>-HNIe-OH
                                          Ácido (3S)-3-amino-heptanoico
15
       Los residuos particularmente preferentes para el grupo O son:
       Dap(Phe)
                        Ácido (2S)-2-amino-3-((2S)-2-amino-3-fenil)-propanamido)-propanoico
       Dap(Tyr)
                        Ácido (2S)-2-amino-3-((2S)-2-amino-(4-hidroxifenil)-propanamido)-propanoico
20
       Dap(His)
                        Ácido (2S)-2-amino-3-((2S)-2-amino-(1H-imidazol-5-il)-propanamido)-propanoico
       Dap(Trp)
                        Ácido (2S)-2-amino-3-((2S)-2-amino-(1H-indol-3-il)-propanamido)-propanoico
                        Ácido (2S)-2-amino-4-((2S)-2-amino-3-fenil)-propanamido)-butanoico
       Dab(Phe)
       Dab(Tyr)
                        Ácido (2S)-2-amino-4-((2S)-2-amino-(4-hidroxifenil)-propanamido)-butanoico
       Dab(His)
                        Ácido (2S)-2-amino-4-((2S)-2-amino-(1H-imidazol-5-il)-propanamido)-butanoico
                        Ácido (2S)-2-amino-4-((2S)-2-amino-(1H-indol-3-il)-propanamido)-butanoico
25
       Dab(Trp)
       Orn(Phe)
                        Ácido (2S)-2-amino-5-((2S)-2-amino-3-fenil)-propanamido)-pentanoico
       Lys(Phe)
                        Ácido (2S)-2-amino-6-((2S)-2-amino-3-fenil)-propanamido)-hexanoico
       Los residuos particularmente preferentes para el grupo P son:
30
       Asp(Phe)
                        Ácido (2S)-2-amino-4-((1S)-1-carboxi-2-feniletilamino)-4-oxobutanoico
                        Ácido (2S)-2-amino-4-((1S)-1-carboxi-2-(4-hidroxifenil)etilamino)-4-oxobutanoico
       Asp(Tyr)
                        Ácido (2S)-2-amino-4-((1S)-1-carboxi-2-(1H-imidazol-5-il)etilamino)-4-oxobutanoico
       Asp(His)
       Asp(Trp)
                        Ácido (2S)-2-amino-4-((1S)-1-carboxi-2-(1H-indol-3-il)etilamino)-4-oxobutanoico
35
       Glu(Phe)
                        Ácido (2S)-2-amino-5-((1S)-1-carboxi-2-feniletilamino)-5-oxopentanoico
       Glu(Tyr)
                        Ácido (2S)-2-amino-5-((1S)-1-carboxi-2-(4-hidroxifenil)etilamino)-5-oxopentanoico
       Glu(His)
                        Ácido (2S)-2-amino-5-((1S)-1-carboxi-2-(1H-imidazol-5-il)etilamino)-5-oxopentanoico
                        Ácido (2S)-2-amino-5-((1S)-1-carboxi-2-(1H-indol-3-il)etilamino)-5-oxopentanoico
       Glu(Trp)
40
       Los residuos particularmente preferentes para el grupo Q son:
       Dap(pentanoílo)
                                 Ácido (2S)-2-amino-3-pentanamido-propanoico
       Dap(hexanoílo)
                                 Ácido (2S)-2-amino-3-hexanamido-propanoico
       Dap(heptanoílo)
                                 Ácido (2S)-2-amino-3-heptanamido-propanoico
                                 Ácido (2S)-2-amino-3-octanamido-propanoico
45
       Dap(octanoílo)
       Dab(propanoílo)
                                 Ácido (2S)-2-amino-4-propanamido-butanoico
       Dab(butanoílo)
                                 Ácido (2S)-2-amino-4-butanamido-butanoico
       Dab(pentanoílo)
                                 Ácido (2S)-2-amino-4-pentanamido-butanoico
                                 Ácido (2S)-2-amino-4-hexanamido-butanoico
       Dab(hexanoílo)
                                 Ácido (2S)-2-amino-4-heptanamido-butanoico
50
       Dab(heptanoílo)
                                 Ácido (2S)-2-amino-4-octanamido-butanoico
       Dab(octanoílo)
       Orn(propanoílo)
                                 Ácido (2S)-2-amino-5-propanamido-pentanoico
       Orn(butanoílo)
                                 Ácido (2S)-2-amino-5-butanamido-pentanoico
       Orn(pentanoílo)
                                 Ácido (2S)-2-amino-5-pentanamido-pentanoico
55
       Orn(hexanoílo)
                                 Ácido (2S)-2-amino-5-hexanamido-pentanoico
       Orn(heptanoílo)
                                 Ácido (2S)-2-amino-5-heptanamido-pentanoico
                                 Ácido (2S)-2-amino-5-octanamido-pentanoico
       Orn(octanoílo)
       Los residuos particularmente preferentes para el grupo R son:
60
       Glu(fenetilo)
                        Ácido (2S)-2-amino-5-fenetilamino-5-oxopentanoico
       Glu(fenpropilo)
                        Ácido (2S)-2-amino-5-(fenilpropil)amino-5-oxopentanoico
       Glu(fenbutilo)
                        Ácido (2S)-2-amino-5-(fenilbutil)amino-5-oxopentanoico
       Glu(fenpentilo)
                        Ácido (2S)-2-amino-5-(fenilpentil)amino-5-oxopentanoico
65
       Asp(fenetilo)
                        Ácido (2S)-2-amino-4-fenetilamino-4-oxobutanoico
```

Ácido (2S)-2-amino-4-(fenilpropil)amino-4-oxobutanoico

Asp(fenpropilo)

Ácido (2S)-2-amino-4-(fenilbutil)amino-4-oxobutanoico

Asp(fenbutilo)

```
Asp(fenpentilo) Ácido (2S)-2-amino-4-(fenilpentil)amino-4-oxobutanoico
         En una realización particular de la presente divulgación, los peptidomiméticos de horquilla β son compuestos de
 5
         fórmula general I,
         y sales aceptables farmacéuticamente de los mismos, en los que
         Xaa1 es OctGly; Arg; hArg; Cha; Dab(octanoílo); Dab(butanoílo); Glu(Phe); Glu(fenetilo); Dab(Phe); o Lys(Phe);
         Xaa<sup>2</sup> es Glu; Val; Leu; Nle; Phe; hPhe; DiHPhe; Tyr; hTyr; Trp; Dap(Phe); o Asp(Phe);
         Xaa4 es Ala; AlilGly; Abu; o Val;
10
         Xaa6 es Ile; u OctGly;
         Xaa<sup>7</sup> es Pro; Nglu; o Nlys;
         Xaa8 es Pro; Oic; Nglu; Nlys; Pip; o Azt;
         Xaa<sup>9</sup> es Gln; H-β<sup>3</sup>-HGln-OH; o Tyr;
15
         Xaa<sup>10</sup> es Lys; H-\beta<sup>3</sup>-HLys-OH; H-\gamma<sup>4</sup>-DiHLys-OH; Asn; o Gly;
         Xaa<sup>11</sup> es hLeu; Ser; hSer; hSer(Me); Thr; alloThr; H-\gamma^4-DiHThr-OH; Asn; Gln; hGln; Dap; Tyr; H-\gamma^4-DiHTyr-OH; o His;
         Xaa<sup>12</sup> es <sup>D</sup>Pro; <sup>D</sup>Ala; <sup>D</sup>Val; <sup>D</sup>Ser; <sup>D</sup>Glu; <sup>D</sup>Tyr; <sup>D</sup>Lys; <sup>D</sup>Arg; Gly; o Nlys; y
         Xaa<sup>13</sup> es Pro; H-β<sup>3</sup>-HPro-OH; H-\gamma^4-DiHPro-OH; DPro; Oic; Tic; Glu; Asp; Ala; Val; Thr; Lys; Tyr; Nglu; o DGlu;
20
         con la condición de que
         - Xaa1 sea Dab(octanoílo); Glu(Phe); Dab(Phe); o Lys(Phe); y/o
         - Xaa2 sea Dap(Phe); o Asp(Phe); y/o
         - Xaa<sup>7</sup> sea Nglu; o Nlys; y/o
         - Xaa8 sea Oic; Nglu; Nlys; Pip; o Azt; y/o
25
         - Xaa<sup>9</sup> sea H-β<sup>3</sup>-HGIn-OH; y/o
         - Xaa<sup>10</sup> sea H-β<sup>3</sup>-HLys-OH; o H-γ<sup>4</sup>-DiHLys-OH; y/o
         - Xaa<sup>11</sup> sea H-γ<sup>4</sup>-DiHThr-OH; o H-γ<sup>4</sup>-DiHTyr-OH; y/o
         - Xaa<sup>12</sup> sea <sup>D</sup>Ala; <sup>D</sup>Val; <sup>D</sup>Ser; <sup>D</sup>Glu; <sup>D</sup>Tyr; <sup>D</sup>Lys; <sup>D</sup>Arg; o Nlys; y/o
         - Xaa<sup>13</sup> sea H-β<sup>3</sup>-HPro-OH; H-γ<sup>4</sup>-DiHPro-OH; <sup>D</sup>Pro; Oic; Glu; Asp; Thr; o <sup>D</sup>Glu;
30
         y con la condición adicional de que
         - si Xaa11 es Tyr; o His, entonces
35
         Xaa<sup>1</sup> es Arg; hArg; Glu(Phe); Glu(fenetilo); Dab(Phe); o Lys(Phe);
         Xaa<sup>2</sup> es Dap(Phe); o Asp(Phe).
40
         En otra realización particular de la presente divulgación, los peptidomiméticos de horquilla β son compuestos de
         fórmula general I.
         y sales aceptables farmacéuticamente de los mismos, en los que
         Xaa<sup>1</sup> es OctGly; Dab(Phe); Arg; Dab(octanoílo); o Glu(Phe);
45
         Xaa2 es Glu; Phe; Dap(Phe); Val; o hTyr;
         Xaa4 es Ala; o AlilGly;
         Xaa<sup>6</sup> es Ile;
         Xaa<sup>7</sup> es Pro; Nglu; o Nlys;
         Xaa8 es Pro; Nglu; Nlys; Pip; Azt; u Oic;
         Xaa<sup>9</sup> es Gln; o H-β<sup>3</sup>-HGln-OH;
50
         Xaa<sup>10</sup> es Lys; H-\beta<sup>3</sup>-HLys-OH; o H-\gamma<sup>4</sup>-DiHLys-OH;
         Xaa<sup>11</sup> es hSer; hSer(Me); Thr; alloThr; hGln; Dap; Tyr; o H-\gamma^4-DiHTyr-OH; H-\gamma^4-DiHThr-OH; Ser; o Asn;
         Xaa<sup>12</sup> es <sup>D</sup>Pro; <sup>D</sup>Ala; <sup>D</sup>Val; <sup>D</sup>Tyr; <sup>D</sup>Lys; o <sup>D</sup>Ser; y
         Xaa^{13} \ es \ Pro; \ ^D\!Pro; \ Oic; \ Ala; \ Tyr; \ Val; \ Lys; \ H-\beta^3-HPro-OH; \ ^D\!Glu; \ o \ Glu;
55
         con la condición de que
         - Xaa1 sea Dab(Phe); Dab(octanoílo); o Glu(Phe); y/o
         - Xaa7 sea Nglu; o Nlys; y/o
60
         - Xaa8 sea Nglu; Nlys; Pip; Azt; u Oic; y/o
         - Xaa<sup>9</sup> sea H-β<sup>3</sup>-HGIn-OH; y/o
         - Xaa<sup>10</sup> sea H-β<sup>3</sup>-HLys-OH; o H-γ<sup>4</sup>-DiHLys-OH; y/o
         - Xaa<sup>11</sup> sea H-\gamma^4-DiHTvr-OH; o H-\gamma^4-DiHThr-OH; v/o
         - Xaa<sup>12</sup> sea <sup>D</sup>Ala; <sup>D</sup>Val; <sup>D</sup>Tyr; <sup>D</sup>Lys; o <sup>D</sup>Ser; y/o
         - Xaa<sup>13</sup> sea <sup>D</sup>Pro; Oic; H-β<sup>3</sup>-HPro-OH; o <sup>D</sup>Glu;
65
```

```
y con la condición adicional de que
        - si Xaa<sup>11</sup> es Tyr, entonces
        Xaa1 es Dab(Phe); Arg; o Glu(Phe);
        Xaa2 es Dap(Phe).
        En otra realización particular de la presente divulgación, los peptidomiméticos de horquilla β son compuestos de
10
        fórmula general I,
        y sales aceptables farmacéuticamente de los mismos, en los que
        Xaa1 es OctGly; o Dab(Phe);
        Xaa2 es Glu:
15
        Xaa4 es Ala;
        Xaa<sup>6</sup> es Ile;
        Xaa<sup>7</sup> es Pro; Nglu; o Nlys;
         Xaa8 es Pro; Nglu; Nlys; Pip; o Azt;
        Xaa<sup>9</sup> es Gln; o H-β<sup>3</sup>-HGln-OH;
        Xaa<sup>10</sup> es Lys; H-\beta<sup>3</sup>-HLys-OH; o H-\gamma<sup>4</sup>-DiHLys-OH;
20
        Xaa^{11} es hSer; hSer(Me); Thr; alloThr; hGln; Dap; Tyr; o H-\gamma^4-DiHTyr-OH;
        Xaa<sup>12</sup> es <sup>D</sup>Pro; <sup>D</sup>Ala; <sup>D</sup>Val; <sup>D</sup>Tyr; o <sup>D</sup>Lys; y
        Xaa<sup>13</sup> es Pro; Oic; Ala; Tyr; o Val;
25
        con la condición de que
        - Xaa1 sea Dab(Phe); y/o
        - Xaa<sup>7</sup> sea Nglu; o Nlys; y/o
        - Xaa8 sea Nglu; Nlys; Pip; o Azt; y/o
30
        - Xaa<sup>9</sup> sea H-β<sup>3</sup>-HGIn-OH; y/o
        - Xaa<sup>10</sup> sea H-β<sup>3</sup>-HLys-OH; o H-γ<sup>4</sup>-DiHLys-OH; y/o
        - Xaa<sup>11</sup> sea hSer; hSer(Me); alloThr; hGIn; Dap o H-\gamma<sup>4</sup>-DiHTyr-OH; y/o
        - Xaa<sup>12</sup> sea <sup>D</sup>Ala; <sup>D</sup>Val; <sup>D</sup>Tyr; o <sup>D</sup>Lys; y/o
        - Xaa<sup>13</sup> sea Oic;
35
        y con la condición adicional de que
        - si Xaa11 es Tyr, entonces
40
        Xaa1 es Dab(Phe).
        En otra realización particular de la presente divulgación, los peptidomiméticos de horquilla β son compuestos de
        fórmula general I,
        y sales aceptables farmacéuticamente de los mismos, en los que
45
        Xaa1 es OctGly; Arg; Dab(octanoílo); o Glu(Phe);
         Xaa2 es Glu; Phe; Dap(Phe); Val; o hTyr;
        Xaa4 es Ala; o AlilGly
        Xaa<sup>6</sup> es Ile:
50
        Xaa<sup>7</sup> es Pro;
        Xaa8 es Pro; u Oic;
        Xaa9 es Gln;
        Xaa<sup>10</sup> es Lys;
        Xaa<sup>11</sup> es Thr; H-γ<sup>4</sup>-DiHThr-OH; Tyr;
        Xaa12 es DPro; DVal; DTyr; DLys; o DSer; y
55
        Xaa<sup>13</sup> es Pro; <sup>D</sup>Pro; Lys; Val; Tyr; H-β<sup>3</sup>-HPro-OH; <sup>D</sup>Glu; o Glu;
        con la condición de que
60
        - Xaa1 sea Dab(octanoílo); o Glu(Phe); y/o
        - Xaa2 sea Dap(Phe); y/o
        - Xaa8 sea Oic; y/o
        - Xaa<sup>11</sup> sea H-γ<sup>4</sup>-DiHThr-OH; y/o
        - Xaa12 sea DVal; DTyr; DLys; o DSer; y/o
```

- Xaa¹³ sea ^DPro; H-β³-HPro-OH; o ^DGlu;

y con la condición adicional de que

- si Xaa¹¹ es Tyr, entonces

Xaa² es Dap(Phe).

Xaa1 es Arg; o Glu(Phe); y/o

```
En aún otra realización particular de la presente divulgación, los peptidomiméticos de horquilla β son compuestos de
        fórmula general I, y sales aceptables farmacéuticamente de los mismos, en los que
10
         Xaa1 es OctGly; Arg; hArg; Cha; Dab(octanoílo); Dab (butanoílo); Glu(Phe); Glu(fenetilo); Dab(Phe); o Lys(Phe);
         Xaa<sup>2</sup> es Glu; Val; Leu; Nle; Phe; hPhe; DiHPhe; Tyr; hTyr; Trp; Dap(Phe); o Asp(Phe);
         Xaa4 es Ala; AlilGly; Abu; o Val;
         Xaa6 es Ile: u OctGlv:
15
         Xaa<sup>7</sup> es Pro; Nglu; o Nlys;
        Xaa8 es Pro; Oic; Nglu; Nlys; Pip; o Azt;
         Xaa<sup>9</sup> es Gln; H-β<sup>3</sup>-HGln-OH; o Tyr;
         Xaa<sup>10</sup> es Lys; H-\beta<sup>3</sup>-HLys-OH; H-\gamma<sup>4</sup>-DiHLys-OH; Asn; o Gly;
        Xaa<sup>11</sup> es hLeu: Ser: hSer: hSer(Me): Thr: alloThr: H-γ<sup>4</sup>-DiHThr-OH: Asn: Gln: hGln: Dap: Tvr: H-γ<sup>4</sup>-DiHTvr-OH: o His:
        Xaa<sup>12</sup> es <sup>D</sup>Pro; <sup>D</sup>Ala; <sup>D</sup>Val; <sup>D</sup>Ser; <sup>D</sup>Glu; <sup>D</sup>Tyr; <sup>D</sup>Lys; <sup>D</sup>Arg; Gly; o Nlys; y Xaa<sup>13</sup> es Pro; H-β<sup>3</sup>-HPro-OH; H-γ<sup>4</sup>-DiHPro-OH; <sup>D</sup>Pro; Oic; Tic; Glu; Asp; Ala; Val; Thr; Lys; Tyr; o Nglu; o <sup>D</sup>Glu;
20
        con la condición de que
        - Xaa1 sea Glu(Phe); Dab(Phe); o Lys(Phe); y/o
25
         - Xaa2 sea Dap(Phe); o Asp(Phe).
        En aún otra realización particular de la presente divulgación, los peptidomiméticos de horquilla β son compuestos de
        fórmula general I.
30
        y sales aceptables farmacéuticamente de los mismos, en los que
        Xaa1 es OctGly; Arg; hArg; Cha; Dab(octanoílo); Dab(butanoílo); Glu(Phe); Glu(fenetilo); Dab(Phe); o Lys(Phe);
         Xaa<sup>2</sup> es Glu; Val; Leu; Nle; Phe; hPhe; DiHPhe; Tyr; hTyr; Trp; Dap(Phe); o Asp(Phe);
        Xaa4 es Ala; AlilGly; Abu; o Val;
        Xaa<sup>6</sup> es Ile; u OctGly;
35
         Xaa<sup>7</sup> es Pro; Nglu; o Nlys;
         Xaa8 es Pro; Oic; Nglu; Nlys; Pip; o Azt;
        Xaa<sup>9</sup> es Gln; H-β<sup>3</sup>-HGln-OH; o Tyr;
        Xaa<sup>10</sup> es Lys; H-\beta<sup>3</sup>-HLys-OH; H-\gamma<sup>4</sup>-DiHLys-OH; Asn; o Gly;
        Xaa<sup>11</sup> es hLeu; Ser; hSer; hSer(Me); Thr; alloThr; H-\gamma^4-DiHThr-OH; Asn; Gln; hGln; Dap; Tyr; H-\gamma^4-DiHTyr-OH; o His;
40
        Xaa<sup>12</sup> es <sup>D</sup>Pro; <sup>D</sup>Ala; <sup>D</sup>Val; <sup>D</sup>Ser; <sup>D</sup>Glu; <sup>D</sup>Tyr; <sup>D</sup>Lys; <sup>D</sup>Arg; Gly; o Nlys; y
        Xaa<sup>13</sup> es Pro; H-β<sup>3</sup>-HPro-OH; H-\gamma^4-DiHPro-OH; DPro; Oic; Tic; Glu; Asp; Ala; Val; Thr; Lys; Tyr; o Nglu; o DGlu;
        con la condición de que
45
        - Xaa7 sea Nglu; o Nlys; y/o
        - Xaa8 sea Nglu; o Nlys; y/o
        - Xaa12 sea Nlys; y/o
        - Xaa<sup>13</sup> sea Nglu;
50
        y con la condición adicional de que
        - si Xaa<sup>11</sup> es Tyr, entonces
55
         Xaa<sup>1</sup> es Arg; hArg; Glu(Phe); Glu(fenetilo); Dab(Phe); o
         Lys(Phe); y/o
        Xaa2 es Dap(Phe): o Asp(Phe).
        En aún otra realización particular de la presente divulgación, los peptidomiméticos de horquilla β son compuestos de
60
        fórmula general I, y sales aceptables farmacéuticamente de los mismos, en los que
        Xaa1 es OctGly; Arg; hArg; Cha; Dab(octanoílo); Dab(butanoílo); Glu(Phe); Glu(fenetilo); Dab(Phe); o Lys(Phe);
        Xaa<sup>2</sup> es Glu; Val; Leu; Nle; Phe; hPhe; DiHPhe; Tyr; hTyr; Trp; Dap(Phe); o Asp(Phe);
         Xaa4 es Ala; AlilGly; Abu; o Val;
        Xaa<sup>6</sup> es Ile; u OctGly;
65
```

Xaa⁷ es Pro; Nglu; o Nlys;

Xaa8 es Pro; Oic; Nglu; Nlys; Pip; o Azt;

```
Xaa<sup>9</sup> es Gln; H-β<sup>3</sup>-HGln-OH; o Tyr;
         Xaa<sup>10</sup> es Lys; H-\beta<sup>3</sup>-HLys-OH; H-\gamma<sup>4</sup>-DiHLys-OH; Asn; o Gly;
         Xaa<sup>11</sup> es hLeu; Ser; hSer(Me); Thr; alloThr; H-\gamma^4-DiHThr-OH; Asn; Gln; hGln; Dap; Tyr; H-\gamma^4-DiHTyr-OH; o His;
  5
         Xaa<sup>12</sup> es <sup>D</sup>Pro; <sup>D</sup>Ala; <sup>D</sup>Val; <sup>D</sup>Ser; <sup>D</sup>Glu; <sup>D</sup>Tyr; <sup>D</sup>Lys; <sup>D</sup>Arg; Gly; o Nlys; y
         Xaa<sup>13</sup> es Pro; H-β<sup>3</sup>-HPro-OH; H-\gamma<sup>4</sup>-DiHPro-OH; <sup>D</sup>Pro; Oic; Tic; Glu; Asp; Ala; Val; Thr; Lys; Tyr; o Nglu; o <sup>D</sup>Glu;
         con la condición de que
10
         - Xaa<sup>9</sup> sea H-β<sup>3</sup>-HGIn-OH; y/o
         - Xaa<sup>10</sup> sea H-β<sup>3</sup>-HLys-OH; y/o
         - Xaa<sup>13</sup> sea H-β<sup>3</sup>-HPro-OH;
15
         y con la condición adicional de que
         - si Xaa<sup>11</sup> es Tyr, entonces
         Xaa1 es Arg; hArg; Glu(Phe); Glu(fenetilo); Dab(Phe); o Lys(Phe); v/o
20
         Xaa2 es Dap(Phe); o Asp(Phe).
         En aún otra realización particular de la presente divulgación, los peptidomiméticos de horquilla β son compuestos de
         fórmula general I,
         y sales aceptables farmacéuticamente de los mismos, en los que
25
         Xaa1 es OctGly; Arg; hArg; Cha; Dab(octanoílo); Dab(butanoílo); Glu(Phe); Glu(fenetilo); Dab(Phe); o Lys(Phe);
         Xaa<sup>2</sup> es Glu; Val; Leu; Nle; Phe; hPhe; DiHPhe; Tyr; hTyr; Trp; Dap(Phe); o Asp(Phe);
         Xaa4 es Ala; AlilGly; Abu; o Val;
         Xaa6 es Ile: u OctGlv:
30
         Xaa<sup>7</sup> es Pro; Nglu; o Nlys;
         Xaa8 es Pro; Oic; Nglu; Nlys; Pip; o Azt;
         Xaa<sup>9</sup> es Gln; H-β<sup>3</sup>-HGln-OH; o Tyr;
         Xaa<sup>10</sup> es Lys; H-\beta<sup>3</sup>-HLys-OH; H-\gamma<sup>4</sup>-DiHLys-OH; Asn; o Gly;
         Xaa<sup>11</sup> es hLeu; Ser; hSer; hSer(Me); Thr; alloThr; H-\gamma^4-DiHThr-OH; Asn; Gln; hGln; Dap; Tyr; H-\gamma^4-DiHTyr-OH; o His;
         Xaa<sup>12</sup> es <sup>D</sup>Pro; <sup>D</sup>Ala; <sup>D</sup>Val; <sup>D</sup>Ser; <sup>D</sup>Glu; <sup>D</sup>Tyr; <sup>D</sup>Lys; <sup>D</sup>Arg; Gly; o Nlys; y Xaa<sup>13</sup> es Pro; H-β<sup>3</sup>-HPro-OH; H-γ<sup>4</sup>-DiHPro-OH; <sup>D</sup>Pro; Oic; Tic; Glu; Asp; Ala; Val; Thr; Lys; Tyr o Nglu; o <sup>D</sup>Glu;
35
         con la condición de que
40
         - Xaa<sup>10</sup> sea H-γ<sup>4</sup>-DiHLys-OH; y/o
         - Xaa<sup>11</sup> sea H-γ<sup>4</sup>-DiHThr-OH; o H-γ<sup>4</sup>-DiHTyr-OH; y/o
         - Xaa<sup>13</sup> sea H-γ<sup>4</sup>-DiHPro-OH;
         y con la condición adicional de que
45
         - si Xaa<sup>11</sup> es Tyr, entonces
         Xaa1 es Arg; hArg; Glu(Phe); Glu(fenetilo); Dab(Phe); o Lys(Phe); y/o
         Xaa<sup>2</sup> es Dap(Phe); o Asp(Phe).
50
         En aún otra realización particular de la presente divulgación, los peptidomiméticos de horquilla β son compuestos de
         fórmula general I,
         y sales aceptables farmacéuticamente de los mismos, en los que
55
         Xaa1 es OctGly; Arg; hArg; Cha; Dab(octanoílo); Dab(butanoílo); Glu(Phe); Glu(fenetilo); Dab(Phe); o Lys(Phe);
         Xaa<sup>2</sup> es Glu; Val; leu; NIe; Phe; hPhe; DiHPhe; Tyr; hTyr; Trp; Dap(Phe); o Asp(Phe);
         Xaa<sup>4</sup> es Ala; AlilGly; Abu; o Val;
         Xaa6 es Ile; u OctGly;
         Xaa<sup>7</sup> es Pro; Nglu; o Nlys;
60
         Xaa8 es Pro; Oic; Nglu; Nlys; Pip; o Azt;
         Xaa<sup>9</sup> es Gln; H-β<sup>3</sup>-HGln-OH; o Tyr;
         Xaa<sup>10</sup> es Lys; H-\beta<sup>3</sup>-HLys-OH; H-\gamma<sup>4</sup>-DiHLys-OH; Asn; o Gly;
         Xaa<sup>11</sup> es hLeu; Ser; hSer; hSer(Me); Thr<sup>17</sup>; alloThr; H-γ<sup>4</sup>-DiHThr-OH; Asn; Gln; hGln; Dap; Tyr; H-γ<sup>4</sup>-DiHTyr-OH; o
         His:
         Xaa<sup>12</sup> es <sup>D</sup>Pro; <sup>D</sup>Ala; <sup>D</sup>Val; <sup>D</sup>Ser; <sup>D</sup>Glu; <sup>D</sup>Tyr; <sup>D</sup>Lys; <sup>D</sup>Arg; Gly; o Nlys; y
65
```

```
Xaa<sup>13</sup> es Pro; H-β<sup>3</sup>-HPro-OH; H-\gamma^4-DiHPro-OH; DPro; Oic; Tic; Glu; Asp; Ala; Val; Thr; Lys; Tyr; o Nglu; o DGlu;
        con la condición de que
 5
       - Xaa8 y/o Xaa sean Oic
       y con la condición adicional de que
       - si Xaa11 es Tyr, entonces
10
        Xaa1 es Arg; hArg; Glu(Phe); Glu(fenetilo); Dab(Phe); o Lys(Phe); y/o
        Xaa2 es Dap(Phe); o Asp(Phe).
       En aún otra realización particular de la presente divulgación, los peptidomiméticos de horquilla β son compuestos de
15
       fórmula general I.
       y sales aceptables farmacéuticamente de los mismos, en los que
        Xaa1 es OctGly: Arg: hArg: Cha: Dab(octanoílo): Dab(butanoílo): Glu(Phe): Glu(fenetilo): Dab(Phe): o Lys(Phe):
        Xaa<sup>2</sup> es Glu; Val; Leu; Nle; Phe; hPhe; DiHPhe; Tyr; hTyr; Trp; Dap(Phe); o Asp(Phe);
       Xaa4 es Ala; AlilGly; Abu; o Val;
20
       Xaa6 es Ile; u OctGly;
        Xaa7 es Pro; Nglu; o Nlys;
       Xaa8 es Pro; Oic; Nglu; Nlys; Pip; o Azt;
        Xaa<sup>9</sup> es Gln; H-β<sup>3</sup>-HGln-OH; o Tyr;
25
        Xaa<sup>10</sup> es Lys; H-\beta<sup>3</sup>-HLys-OH; H-\gamma<sup>4</sup>-DiHLys-OH; Asn; o Gly;
        Xaa<sup>11</sup> es hLeu; Ser; hSer; hSer(Me); Thr; alloThr; H-\gamma^4-DiHThr-OH; Asn; Gln; hGln; Dap; Tyr; H-\gamma^4-DiHTyr-OH; o His;
        Xaa<sup>12</sup> es <sup>D</sup>Pro; <sup>D</sup>Ala; <sup>D</sup>Val; <sup>D</sup>Ser; <sup>D</sup>Glu; <sup>D</sup>Tyr; <sup>D</sup>Lys; <sup>D</sup>Arg; Gly; o Nlys; y
       Xaa<sup>13</sup> es Pro; H-β<sup>3</sup>-HPro-OH; H-\gamma^4-DiHPro-OH; DPro; Oic; Tic; Glu; Asp; Ala; Val; Thr; Lys; Tyr; o Nglu; o DGlu;
30
       con la condición de que
       - Xaa<sup>12</sup> sea <sup>D</sup>Ala; <sup>D</sup>Val; <sup>D</sup>Ser; <sup>D</sup>Glu; <sup>D</sup>Tyr; <sup>D</sup>Lys; o <sup>D</sup>Arg;
       y con la condición adicional de que
35
       si Xaa11 es Tyr, entonces
       Xaa<sup>1</sup> es Arg; hArg; Glu(Phe); Glu(fenetilo); Dab(Phe); o Lys(Phe); y/o
        Xaa2 es Dap(Phe); o Asp (Phe).
40
       En la presente invención, el peptidomimético de horquilla β es un compuesto de fórmula general I,
       y sales aceptables farmacéuticamente del mismo, seleccionado entre
        Ciclo(-OctGly-Glu-Thr-Ala-Ser-lle-Pro-Pro-Gln-Lys-hSer(Me)-DPro-Pro-);
45
        Ciclo(-OctGly-Glu-Thr-Ala-Ser-lle-Pro-Pro-Gln-Lys-Dap-DPro-Pro-);
        Ciclo(-OctGly-Glu-Thr-Ala-Ser-lle-Pro-Pro-Gln-Lys-alloThr-DPro-Pro-);
        Ciclo(-OctGly-Glu-Thr-Ala-Ser-lle-Pro-Pro-Gln-Lys-hSer-DPro-Pro-);
        Ciclo(-OctGly-Glu-Thr-Ala-Ser-lle-Pro-Pro-Gln-Lys-hGln-DPro-Pro-);
        Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-DPro-Oic-);
50
        Ciclo(-OctGly-Glu-Thr-Ala-Ser-lle-Nglu-Pro-Gln-Lys-Thr-DPro-Pro-);
        Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-[H-γ<sup>4</sup>-DiHTyr-OH]-<sup>D</sup>Pro-Pro-);
        Ciclo(-Dab(Phe)-Glu-Thr-Ala-Ser-lle-Pro-Pro-Gln-Lys-Tyr-DPro-Pro-);
        Ciclo(-OctGly-Glu-Thr-Ala-Ser-lle-Pro-Pro-Gln-Lys-Thr-DAla-Ala-);
        Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-DVal-Tyr-);
        Ciclo(-OctGly-Glu-Thr-Ala-Ser-lle-Pro-Pro-Gln-Lys-Thr-DTyr-Tyr-);
55
        Ciclo(-OctGly-Glu-Thr-Ala-Ser-lle-Pro-Pro-Gln-Lys-Thr-DLys-Val-);
        Ciclo(-OctGly-Glu-Thr-Ala-Ser-lle-Nlys-Pro-Gln-Lys-Thr-DPro-Pro-);
        Ciclo(-OctGly-Glu-Thr-Ala-Ser-lle-Pro-Nglu-Gln-Lys-Thr-DPro-Pro-);
        Ciclo(-OctGly-Glu-Thr-Ala-Ser-lle-Pro-Nlys-Gln-Lys-Thr-DPro-Pro-);
        Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-[H-β<sup>3</sup>-HGln-OH]-Lys-Thr-<sup>D</sup>Pro-Pro-);
60
        Ciclo(-OctGly-Glu-Thr-Ala-Ser-lle-Pro-Pro-Gln-[H-β<sup>3</sup>-HLys-OH]-Thr-DPro-Pro-);
        Ciclo(-OctGly-Glu-Thr-Ala-Ser-lle-Pro-Pro-Gln-[H-\gamma^4-DiHLys-OH]-Thr-DPro-Pro-);
        Ciclo(-OctGly-Glu-Thr-Ala-Ser-lle-Pro-Pip-Gln-Lys-Thr-DPro-Pro-);
        Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Azt-Gln-Lys-Thr-DPro-Pro-).
65
```

En una realización particular de la presente invención, el peptidomimético de horquilla β es un compuesto de fórmula general I.

y sales aceptables farmacéuticamente del mismo, seleccionado entre

```
Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Oic-Gln-Lys-Thr-DPro-Pro-);
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-lle-Pro-Pro-Gln-Lys-[H-γ<sup>4</sup>-DiHThr-OH]-DPro-Pro-);
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-lle-Pro-Pro-Gln-Lys-Thr-DPro-DPro-);
       Ciclo(-OctGly-Phe-Thr-Ala-Ser-lle-Pro-Pro-Gln-Lys-Thr-DPro-Pro-);
       Ciclo(-OctGly-Dap(Phe)-Thr-Ala-Ser-lle-Pro-Pro-Gln-Lys-Tyr-DPro-Pro-);
10
       Ciclo(-Dab(octanoílo)-Glu-Thr-Ala-Ser-lle-Pro-Pro-Gln-Lys-Thr-Dero-Pro-);
       Ciclo(-Arg-Glu-Thr-Ala-Ser-lle-Pro-Oic-Gln-Lys-Thr-DPro-Pro-);
       Ciclo(-Glu(Phe)-Glu-Thr-AlilGly-Ser-lle-Pro-Pro-Gln-Lys-Tyr-DPro-Pro-);
       Ciclo(-Glu(Phe)-Glu-Thr-Ala-Ser-lle-Pro-Pro-Gln-Lys-Tyr-DPro-Pro-);
       Ciclo(-Glu(Phe)-Glu-Thr-AlilGly-Ser-lle-Pro-Pro-Gln-Lys-Thr-Dero-Pro-);
15
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-DVal-Lys-);
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-DTyr-Val-);
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-DTyr-Lys-);
       Ciclo(-OctGlv-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lvs-Thr-DLvs-Tvr-):
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-DLys-Lys-);
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-DLys-Glu-);
20
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-DSer-Val-);
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-DSer-Tyr-);
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-DSer-Lys-);
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-<sup>D</sup>Pro-[H-β<sup>3</sup>-HPro-OH]-);
25
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-DPro-DGlu-);
       Ciclo(-Arg-Val-Thr-Ala-Ser-Ile-Pro-Oic-Gln-Lys-Thr-DPro-DPro-);
       Ciclo(-Arg-hTyr-Thr-Ala-Ser-lle-Pro-Oic-Gln-Lys-Thr-DPro-DPro-);
       Ciclo(-Arg-hTyr-Thr-Ala-Ser-lle-Pro-Oic-Gln-Lys-Thr-DPro-Glu-);
       Ciclo(-Arg-Val-Thr-Ala-Ser-Ile-Pro-Oic-Gln-Lys-Thr-DPro-Glu-).
30
```

55

60

65

En aún otra realización particular de la divulgación, Xaa¹² es ^DPro; Gly; ^DAla; ^DVal; ^DLys; ^DArg; ^DTyr; ^DSer; ^DGlu; o Nlys; y Xaa¹³ es Pro; ^DPro; Glu; Asp; Ala; Val; Thr; Lys; Tyr; Oic; Tic; H-β³-HPro-OH; H-γ⁴-DiHPro-OH; Nglu; o ^DGlu.

Los peptidomiméticos de horquilla β de la presente invención se pueden fabricar, por ejemplo, siguiendo un procedimiento que comprende la síntesis del péptido lineal sobre una resina. El residuo o residuos de aminoácidos 35 dipeptídicos y/o el residuo o residuos de aminoácidos prolongados por una cadena lateral adicional con longitud delimitada se incorporarán como una unidad o unidades estructurales de aminoácidos que están disponibles en el mercado o se sintetizarán de antemano, tal como se conoce en la técnica; o siguiendo un procedimiento que comprende la síntesis del péptido lineal sobre una resina mediante la aplicación de una estrategia con grupo 40 protector ortogonal. Por ejemplo, la cadena lateral que contiene el grupo amino de un residuo de aminoácido se protege con Alloc o similar y, por tanto, es propensa a una desprotección individual y una posterior derivatización para generar finalmente un residuo de aminoácido dipeptídico o un residuo de aminoácido prolongado por una cadena lateral adicional de longitud delimitada sobre la resina. De manera similar, si, por ejemplo, la cadena lateral que contiene un grupo carboxílico de un residuo de aminoácido se protege con alilo o similar, también se puede 45 realizar sobre la resina una desprotección individual y posterior derivatización para generar finalmente un residuo de aminoácido dipeptídico o un residuo de aminoácido prolongado por una cadena lateral adicional con longitud delimitada.

El proceso de la presente invención se puede llevar a cabo de manera ventajosa como síntesis paralela en grupos para producir bibliotecas de peptidomiméticos de horquilla β de la fórmula general I anterior. Dicha síntesis paralela permite obtener grupos de numerosos (normalmente de 24 a 192, habitualmente 96) compuestos de fórmula general I con altos rendimientos y purezas definidas, minimizando la formación de subproductos diméricos y poliméricos. La elección adecuada del soporte sólido funcionalizado (es decir, el soporte sólido más la molécula enlazadora), las plantillas y el sitio de ciclación desempeñan, por tanto, funciones clave.

El soporte sólido funcionalizado se deriva de manera conveniente de poliestireno reticulado, de manera preferente, con un 1-5 % de divinilbenceno; poliestireno recubierto con espaciadores de polietilenglicol (Tentagel®); y resinas de poliacrilamida (D. Obrecht, J.-M. Villalgordo, "Solid-Supported Combinatorial and Parallel Synthesis of Small-Molecular-Weight Compound Libraries", Tetrahedron Organic Chemistry Series, volumen 17, Pergamon, Elsevier Science, 1998).

El soporte sólido se funcionaliza mediante un enlazador, es decir, una molécula espaciadora bifuncional que contiene en un extremo un grupo de anclaje para unirse al soporte sólido y en el otro extremo un grupo funcional escindible de manera selectiva utilizado para las transformaciones químicas posteriores y los procedimientos de escisión. Para los fines de la presente invención se utilizan dos tipos de enlazadores: enlazadores de tipo 1 diseñados para liberar el grupo amida en condiciones ácidas (H. Rink, Tetrahedron Lett. 1987, 28, 3783-3790). Los

enlazadores de este tipo forman amidas del grupo carboxilo de los aminoácidos; entre los ejemplos de resinas funcionalizadas dichas estructuras enlazadoras incluyen por 4-[(((2,4-dimetoxi-fenil)Fmoc-aminometil)fenoxiacetamido)aminometil] PS. resina 4-[(((2,4-dimetoxifenil)Fmoc-aminometil)fenoxi-acetamido)aminometil]-4-metil-benzhidrilamina PS (resina Rink amide MBHA PS) y resina 4-[(((2,4-dimetoxi-fenil)Fmoc-aminometil)fenoxiacetamido)aminometil]benzhidrilamina PS (resina Rink amide BHA PS). De manera preferente, el soporte deriva de poliestireno reticulado, de la manera más un 1-5 % preferente, con de divinilbenceno v se funcionaliza mediante 4-(((2,4-dimetoxifenil)Fmoc-aminometil)fenoxiacetamido).

Los enlazadores de tipo 2 están diseñados para liberar eventualmente el grupo carboxilo en condiciones ácidas. Los enlazadores de este tipo forman ésteres lábiles a ácidos con el grupo carboxilo de los aminoácidos, normalmente ésteres de bencilo, benzhidrilo y tritilo lábiles a ácidos; entre los ejemplos de dichas estructuras enlazadoras se incluyen 2-metoxi-4-hidroximetilfenoxi (enlazador Sasrin®), 4-(2,4-dimetoxifenil-hidroximetil)-fenoxi (enlazador Rink), ácido 4-(4-hidroximetil-3-metoxifenoxi)butírico (enlazador HMPB), tritilo y 2-clorotritilo. De manera preferente, el soporte deriva de poliestireno reticulado, de la manera preferente, con un 1-5 % de divinilbenceno y se funcionaliza mediante el enlazador 2-clorotritilo.

Cuando se llevan a cabo como síntesis paralelas en grupos, los procesos de la presente invención se pueden llevar a cabo de manera ventajosa, tal como se describe a continuación, pero será inmediatamente evidente para los expertos en la materia cómo se tendrán que modificar estos procedimientos en caso de que se desee sintetizar un solo compuesto de la presente invención.

Un número de recipientes de reacción igual al número total de compuestos a sintetizar mediante el procedimiento paralelo se cargan con 25 a 1.000 mg, de manera preferente, 60 mg, del soporte sólido funcionalizado apropiado, de manera preferente, del 1 al 5 % de poliestireno reticulado o resina Tentagel.

El disolvente que se va a utilizar debe ser capaz de hinchar la resina e incluye, pero sin limitarse a los mismos, diclorometano (DCM), dimetilformamida (DMF), N-metilpirrolidona (NMP), dioxano, tolueno, tetrahidrofurano (THF), etanol (EtOH), trifluoroetanol (TFE), alcohol isopropílico y similares. Las mezclas de disolventes que contienen como, como mínimo, un componente, un disolvente polar (por ejemplo, TFE al 20 %/DCM, THF al 35 %/NMP) son beneficiosos para asegurar una reactividad elevada y la solvatación de las cadenas peptídicas unidas a la resina (G.B. Fields, C.G. Fields, Am. Chem. Soc. 1991, 113, 4202-4207).

Con el desarrollo de diversos enlazadores que liberan el grupo ácido carboxílico C-terminal en condiciones ácidas suaves, sin afectar a los grupos lábiles a los ácidos que protegen los grupos funcionales en la cadena o cadenas 35 laterales, se han hecho progresos considerables en la síntesis de fragmentos peptídicos protegidos. El enlazador derivado de alcohol 2-metoxi-4-hidroxibencílico (enlazador Sasrin®, Mergler et al., Tetrahedron Lett. 1988, 29 4005-4008) se puede escindir con ácido trifluoroacético diluido (TFA al 0,5-1 % en DCM) y es estable en condiciones de desprotección con Fmoc durante la síntesis del péptido, siendo compatibles con este esquema de protección los 40 grupos protectores adicionales basados en Boc/tBu. Entre otros enlazadores que son adecuados para el proceso de la presente invención se incluyen el enlazador 4-(2,4-dimetoxifenil-hidroximetil)-fenoxi lábil a superácidos (enlazador Rink, H. Rink, Tetrahedron Lett. 1987, 28, 3787-3790), donde la extracción del péptido requiere ácido acético al 10 % en DCM o ácido trifluoroacético al 0,2 % en DCM; el enlazador derivado del ácido 4-(4-hidroximetil-3metoxifenoxi)butírico (enlazador HMPB, Florsheimer & Riniker, Peptides 1991, 1990 131) que también se escinde con TFA al 1 %/DCM a efectos de producir un fragmento peptídico que contiene todos los grupos protectores de 45 cadena lateral lábiles a ácidos; y, además, el enlazador cloruro de 2-clorotritilo (Barlos et al., Tetrahedron Lett. 1989, 30, 3943-3946), que permite el desprendimiento del péptido utilizando una mezcla de ácido acético glacial/trifluoroetanol/DCM (1:2:7) durante 30 minutos.

50 Los grupos protectores adecuados para aminoácidos y, respectivamente, para sus residuos son, por ejemplo,

- para el grupo amino (como está presente, por ejemplo, también en la cadena lateral de lisina)

Cbz benciloxicarbonilo
55 Boc terc-butiloxicarbonilo
Fmoc 9-fluorenilmetoxicarbonilo

Alloc aliloxicarbonilo

Teoc trimetilsililetoxicarbonilo
Tcc tricloroetoxicarbonilo
Nps o-nitrofenilsulfonilo
Trt trifenilmetilo o tritilo;

- para el grupo carboxilo (como está presente, por ejemplo, también en la cadena lateral de ácido aspártico y glutámico) por conversión en ésteres con los componentes alcohólicos

tBu terc-butilo

65

60

20

25

Bn bencilo
Me metilo
Ph fenilo
Pac fenacil alilo
Tse trimetilsililetilo
Tce tricloroetilo;

- para el grupo guanidino (como está presente, por ejemplo, en la cadena lateral de arginina)

10 Pmc 2,2,5,7,8-pentametilcromano-6-sulfonilo Ts tosilo (es decir, p-toluenosulfonilo)

Cbz benciloxicarbonilo

Pbf pentametildihidrobenzofuran-5-sulfonilo;

15 - para el grupo hidroxilo (como está presente, por ejemplo, en la cadena lateral de treonina y serina)

tBu terc-butilo Bn bencilo Trt tritilo.

20

Los derivados de aminoácidos protegidos con 9-fluorenilmetoxicarbonilo-(Fmoc) se utilizan, de manera preferente, como unidades estructurales para la construcción de los miméticos de bucle de horquilla β de la presente invención. Para la desprotección, es decir, la escisión del grupo Fmoc, se puede utilizar piperidina al 20 % en DMF o DBU al 2 %/piperidina al 2 % en DMF, así como hexafluoroisopropanol al 25 % en CH₂Cl₂.

25

30

35

60

65

Tetrahedron Lett. 1991, 32, 6711).

La cantidad del reactivo, es decir del derivado de aminoácido, es habitualmente de 1 a 20 equivalentes basado en los miliequivalentes por gramo (meq/g) de carga del soporte sólido funcionalizado (habitualmente de 0,1 a 2,85 meq/g para resinas de poliestireno) pesada originalmente en el tubo de reacción. Se pueden utilizar equivalentes adicionales de reactivos, si se requiere, para llevar la reacción a su finalización en un tiempo razonable. Las estaciones de trabajo preferentes (pero sin limitarse a las mismas) son la estación Combi-chem de Labsource, Symphony de Protein Technologies y el sintetizador Syro de MultiSyn Tech, este último equipado adicionalmente con una unidad de transferencia y una caja de depósito durante el proceso de desprendimiento del péptido lineal totalmente protegido del soporte sólido. Todos los sintetizadores pueden proporcionar un entorno controlado, por ejemplo, las reacciones se pueden llevar a cabo a temperaturas diferentes de la temperatura ambiente, así como bajo una atmósfera de gas inerte, si se desea.

La formación de enlaces amida requiere la activación del grupo α-carboxilo para la etapa de acilación. Cuando esta activación se lleva a cabo mediante las carbodiimidas utilizadas habitualmente, tales como diciclohexilcarbodiimida (DCC, Sheehan y Hess, J. Am. Chem. Soc. 1955, 77, 1067-1068) o diisopropilcarbodiimida (DIC, Sarantakis et al 40 Biochem. Biophys. Res. Commun. 1976, 73, 336-342), la diciclohexilurea y la diisopropilurea resultantes son insoluble y, respectivamente, soluble en los disolventes utilizados en general. En una variación del procedimiento de la carbodiimida, el 1-hidroxibenzotriazol (HOBt, König y Geiger, Chem. Ber 1970, 103, 788-798) se incluye como aditivo a la mezcla de acoplamiento. HOBt evita la deshidratación, suprime la racemización de los aminoácidos activados y actúa como catalizador para mejorar las reacciones de acoplamiento muy lentas. Se han utilizado determinados reactivos de fosfonio como reactivos de acoplamiento directo, tales como el hexafluorofosfato de 45 benzotriazol-1-il-oxi-tris-(dimetilamino)-fosfonio (BOP, Castro et al., Tetrahedron Lett. 1975, 14, 1219-1222; Synthesis, 1976, 751-752) o hexaflurofosfato de benzotriazol-1-il-oxi-tris-pirrolidino-fosfonio (Py-BOP, Coste et al., Tetrahedron Lett. 1990, 31, 205-208) o terafluoroborato de 2-(1H-benzotriazol-1-il-)-1,1,3,3-tetrametiluronio (TBTU), o hexafluorofosfato (HBTU, Knorr et al., Tetrahedron Lett. 1989, 30, 1927-1930); estos reactivos de fosfonio también 50 son adecuados para la formación in situ de ésteres de HOBt con los derivados de aminoácidos protegidos. Más recientemente, también se han utilizado azida de difenoxifosforilo (DPPA) o tetrafluoroborato O-(7-aza-benzotriazol-1-il)-N,N,N',N'-tetrametiluronio (TATU) hexafluorofosfato Ω de O-(7-aza-benzotriazol-1-il)-N,N,N',N'-tetrametiluronio (HATU)/7-aza-1-hidroxi benzotriazol (HOAt, Carpino et al.. Tetrahedron 1994. 35. 2279-2281) tetrafluoroborato O (6-cloro-1H-benzotriazol-1-il-)-N,N,N',N'-1,1,3,3-tetrametiluronio (TCTU), o hexafluorofosfato (HCTU, Marder, Shivo y 55 Albericio: HCTU and TCTU: New Coupling Reagents: Development and Industrial Applications, Presentación del póster, Conferencia Gordon de febrero de 2002) como reactivos de acoplamiento, así como hexafluorofosfato de 1,1,3,3-bis(tetrametilen)clorouronio (PyClU, especialmente para acoplar aminoácidos N-metilados, J. Coste, E. Frérot, P. Jouin, B. Castro, Tetrahedron Lett. 1991, 32, 1967) o difenilfosfinato de pentafluorofenilo (S. Chen, J. Xu,

Debido al hecho de que las reacciones de acoplamiento casi cuantitativas son esenciales, es deseable tener pruebas experimentales de la finalización de las reacciones. La prueba de la ninhidrina (Kaiser et al., Anal. Biochemistry 1970, 34, 595), donde una respuesta colorimétrica positiva a una alícuota de péptido unido a resina indica de manera cualitativa la presencia de la amina primaria, puede realizarse fácil y rápidamente después de cada etapa de acoplamiento. La guímica Fmoc permite la detección espectrofotométrica del cromóforo Fmoc cuando se

libera con la base (Meienhofer et al., Int. J. Peptide Protein Res. 1979, 13, 35-42).

El intermedio unido a la resina dentro de cada tubo de reacción se lava para eliminar el exceso de reactivos retenidos, de disolventes y de subproductos mediante la exposición repetitiva a un disolvente o disolventes puros mediante uno de los dos procedimientos siguientes:

- 1) Los recipientes de reacción se llenan con disolvente (de manera preferente, 5 ml), se agitan durante de 5 a 300 minutos, de manera preferente, 15 minutos y se drenan para expulsar el disolvente;
- 2) Los recipientes de reacción se llenan con disolvente (de manera preferente, 5 ml) y se drenan en un recipiente receptor, tal como un tubo de ensayo o un vial.

Ambos procedimientos de lavado anteriores se repiten hasta aproximadamente 50 veces (de manera preferente, aproximadamente 10 veces), monitorizando la eficacia de la eliminación de reactivos, disolventes y subproductos mediante procedimientos, tales como TLC, GC o inspección de los lavados.

El procedimiento descrito anteriormente de hacer reaccionar el compuesto unido a la resina con reactivos dentro de los pocillos de reacción, seguido de la eliminación del exceso de reactivos, subproductos y disolventes se repite con cada transformación sucesiva hasta que se obtiene el péptido lineal totalmente protegido unido a la resina final.

20 Antes de que este péptido lineal totalmente protegido se desprenda del soporte sólido, es posible, si se desea, desproteger de manera selectiva uno o varios grupos funcionales protegidos presentes en la molécula y sustituir de manera adecuada el grupo o grupos reactivos así liberados. A tal efecto, el grupo o grupos funcionales en cuestión deben estar inicialmente protegidos por un grupo protector que pueda ser eliminado de manera selectiva sin afectar a los restantes grupos protectores presentes. Alloc (aliloxicarbonilo) es un ejemplo de un grupo protector de amino, 25 mientras que Alilo es un ejemplo de un grupo protector carboxílico. Ambos grupos protectores se pueden eliminar de manera selectiva mediante Pd° y fenilsilano en CH2CI2, sin afectar a los restantes grupos protectores, tales como Fmoc, presentes en la molécula. El grupo reactivo así liberado puede tratarse, a continuación, con un agente adecuado para introducir el sustituyente deseado. De este modo, por ejemplo, un grupo amino se puede acilar mediante un agente acilante correspondiente al sustituyente acilo que se va a introducir, mientras que un grupo 30 carboxílico se puede derivatizar mediante la introducción de un sustituyente amino. De manera preferente, Alloc o Alilo se eliminarán aplicando 0,2 equivalentes de tetrakis(trifenilfosfina)paladio (0) (10 mM) en CH₂Cl₂ anhidro y 10 equivalentes de fenilsilano durante 15 minutos a temperatura ambiente. Después de la filtración y el lavado de la resina, la desprotección se completa repitiendo el procedimiento con una solución nueva de reactivos. En el caso de un grupo amino liberado, el acoplamiento posterior de un aminoácido protegido de manera adecuada o de un ácido 35 carboxílico se puede realizar, por ejemplo, aplicando los reactivos/condiciones de reacción para la formación de enlaces amida, tal como se ha descrito anteriormente. De manera similar, por ejemplo, se pueden aplicar los mismos reactivos/condiciones de reacción para el acoplamiento de un aminoácido protegido de manera adecuada o una amina después de la liberación de un grupo carboxílico.

El desprendimiento del péptido lineal totalmente protegido del soporte sólido se consigue exponiendo la resina cargada con una solución del reactivo utilizado para la escisión (de manera preferente, de 3 a 5 ml). El control de la temperatura, la agitación y la monitorización de la reacción se implementan, tal como se ha descrito anteriormente. A través de una unidad de transferencia, los recipientes de reacción están conectados con una caja de depósito que contiene tubos de depósito para recolectar de manera eficaz las soluciones de productos escindidos. A continuación, las resinas que quedan en los recipientes de reacción se lavan de 2 a 5 veces como antes con de 3 a 5 ml de un disolvente apropiado para extraer (lavar) la mayor cantidad posible de productos desprendidos. Las soluciones de producto así obtenidas se combinan, teniendo cuidado de evitar mezclas cruzadas. A continuación, las soluciones/extractos individuales se manipulan, según sea necesario, para aislar los compuestos finales. Entre las manipulaciones habituales se incluyen, pero sin limitarse las mismas, evaporación, concentración, extracción líquido/líquido, acidificación, basificación, neutralización o reacciones adicionales en solución.

Se evaporan las soluciones que contienen los derivados peptídicos lineales totalmente protegidos que se han escindido del soporte sólido y neutralizado con una base. A continuación, se efectúa la ciclación en solución utilizando disolventes, tales como DCM, DMF, dioxano, THF y similares. Se pueden utilizar diversos reactivos de acoplamiento que se mencionaron anteriormente para la ciclación. La duración de la ciclación es de aproximadamente 6-48 horas, de manera preferente, de aproximadamente 16 horas. El progreso de la reacción se sigue, por ejemplo, mediante RP-HPLC (Cromatografía Líquida de Alta Resolución en Fase Inversa). A continuación, el disolvente se elimina mediante evaporación, el derivado del péptido cíclico totalmente protegido se disuelve en un disolvente que no es miscible con agua, tal como DCM, y la solución se extrae con agua o una mezcla de disolventes miscibles con agua, a efectos de eliminar cualquier exceso del reactivo de acoplamiento.

Finalmente, el derivado peptídico totalmente protegido se trata con 95 % de TFA, 2,5 % de H₂O y 2,5 % de TIS u otra combinación de secuestrantes para efectuar la escisión de los grupos protectores. El tiempo de reacción de escisión es habitualmente de 30 minutos a 12 horas, de manera preferente, de aproximadamente 2,5 horas.

De manera alternativa, el desprendimiento y la despretección completa del péptido totalmente protegido del soporte

46

65

55

60

5

10

sólido se pueden conseguir de manera manual en recipientes de vidrio.

Después de la desprotección completa, por ejemplo, se pueden utilizar los siguientes procedimientos para un tratamiento posterior:

5

10

20

35

40

- 1) Los compuestos volátiles se evaporan a sequedad y el péptido en bruto se disuelve en AcOH al 20 % en agua y se extrae con éter isopropílico u otros disolventes adecuados para ello. La capa acuosa se recoge y evapora a sequedad, y se obtiene el péptido totalmente desprotegido, ciclo(-Xaa¹-Xaa²-Thr³-Xaa⁴-Ser⁵-Xaa⁶-Xaa³-Xaa³-Xaa³-Xaa¹¹-Xaa¹¹-Xaa¹²-Xaa¹³-), como producto final;
- 2) La mezcla de desprotección se concentra al vacío. Después de la precipitación del péptido totalmente desprotegido en éter dietílico, de manera preferente, a 0 °C, el sólido se lava hasta aproximadamente 10 veces, de manera preferente, 3 veces, se seca y se obtiene el péptido totalmente desprotegido, ciclo(-Xaa¹-Xaa²-Thr³-Xaa⁴-Ser⁵-Xaa⁶-Xaa³-Xaað-Xaa³-Xaa¹¹-Xaa¹¹-Xaa¹²-Xaa¹³-), como producto final.
- Dependiendo de su pureza, el producto final obtenido anteriormente se puede utilizar directamente para ensayos biológicos, o debe purificarse adicionalmente, por ejemplo, mediante HPLC preparativa.
 - Tal como se mencionó anteriormente, es posible después, si se desea, convertir el producto cíclico totalmente desprotegido así obtenido en una sal aceptable farmacéuticamente o convertir una sal aceptable, o inaceptable, farmacéuticamente así obtenida en el compuesto libre correspondiente o en una sal aceptable farmacéuticamente diferente. Cualquiera de estas operaciones puede llevarse a cabo mediante procedimientos bien conocidos en la técnica.
- Los peptidomiméticos de horquilla β de la presente invención se pueden utilizar en una amplia gama de aplicaciones en las que las enfermedades inflamatorias, las enfermedades pulmonares, las infecciones, las enfermedades inmunológicas, las enfermedades cardiovasculares o las enfermedades neurodegenerativas están mediadas por o resultan de la actividad de las serina proteasas, o en las que el cáncer está mediado por o resulta de la actividad de las serina proteasas. Para el control o la prevención de una enfermedad o afección determinada susceptible de tratamiento con inhibidores de proteasa, los peptidomiméticos de horquilla β de la presente invención pueden administrarse per se o pueden aplicarse como una formulación apropiada junto con portadores, diluyentes o excipientes bien conocidos en la técnica.
 - Cuando se utilizan para tratar, prevenir, modular o remodelar enfermedades, tales como la deficiencia de alfa 1 antitripsina (AATD, *alpha 1 antitrypsin deficiency*), enfisema pulmonar, artritis reumatoide, artrosis, aterosclerosis, psoriasis, fibrosis quística (FQ), enfermedad pulmonar obstructiva crónica (EPOC), fibrosis pulmonar idiopática (FPI), bronquiectasia, broncodilatación, bronquitis crónica, esclerosis múltiple, síndrome de dificultad respiratoria aguda (SDRA), lesión pulmonar aguda (LPA), hipertensión pulmonar (HP), hipertensión pulmonar arterial (HPA), pancreatitis, asma, rinitis alérgica, dermatosis inflamatoria, reestenosis postangioplastia, síndrome respiratorio inflamatorio sistémico (SIRS, *systemic inflammatory respiratory syndrome*), lesión por isquemia-reperfusión, hipertrofia cardíaca, miocarditis, infarto agudo de miocardio (IAM), insuficiencia cardíaca, trasplante cardíaco, enfermedad inflamatoria intestinal (EII), colitis, enfermedad de Crohn, colitis adaptativa o cáncer, tal como, pero sin limitarse a los mismos, cáncer de pulmón, cáncer de mama o cáncer relacionado con angiogénesis o metástasis, los peptidomiméticos de horquilla β de la presente invención se pueden administrar de manera individual, como mezclas de varios peptidomiméticos de horquilla β, en combinación con otros agentes antiinflamatorios, o agentes antimicrobianos o agentes anticancerígenos y/o en combinación con otros agentes activos farmacéuticamente. Los peptidomiméticos de horquilla β de la presente invención se pueden administrar per se o como composiciones farmacéuticas.
- Las composiciones farmacéuticas que comprenden peptidomiméticos de horquilla β de la presente invención se pueden fabricar mediante procesos convencionales de mezcla, disolución, granulación, fabricación de comprimidos recubiertos, levigación, emulsificación, encapsulación, atrapamiento o liofilización. Las composiciones farmacéuticas se pueden formular de manera convencional utilizando uno o más portadores, diluyentes, excipientes o auxiliares aceptables fisiológicamente que facilitan el procesamiento de los peptidomiméticos de horquilla β activos de la presente invención en preparaciones que se pueden utilizar farmacéuticamente. La formulación adecuada depende del procedimiento de administración elegido.
 - Para la administración tópica, los peptidomiméticos de horquilla β de la presente invención se pueden formular como soluciones, geles, pomadas, cremas, suspensiones, etc., tal como se conoce bien en la técnica.
- 60 Entre las formulaciones sistémicas se incluyen aquellas diseñadas para la administración mediante inyección, por ejemplo, inyección subcutánea, intravenosa, intramuscular, intratecal o intraperitoneal, así como las diseñadas para administración transdérmica, transmucosal, oral o pulmonar.
- Para inyecciones, los peptidomiméticos de horquilla β de la presente invención se pueden formular en soluciones adecuadas, de manera preferente, en tampones compatibles fisiológicamente, tales como solución de Hink, solución de Ringer o tampón salino fisiológico. Las soluciones pueden contener agentes de formulación, tales como agentes

de suspensión, estabilización y/o dispersión. De manera alternativa, los peptidomiméticos de horquilla β de la presente invención pueden estar en forma de polvo para combinarlos con un vehículo adecuado, por ejemplo, agua estéril libre de pirógenos, antes de su utilización.

5 Para la administración transmucosal, en la formulación se utilizan penetrantes apropiados para la barrera que se va a atravesar, tal como se conoce en la técnica.

Para la administración oral, los compuestos se pueden formular fácilmente combinando los peptidomiméticos de horquilla β activos de la presente invención con portadores aceptables farmacéuticamente bien conocidos en la técnica. Dichos portadores permiten que los peptidomiméticos de horquilla β de la presente invención se formulen como comprimidos, píldoras, grageas, cápsulas, líquidos, geles, jarabes, pastas espesas, suspensiones, polvos, etc., para la ingestión oral por un paciente que se va a tratar. Para formulaciones orales, tales como, por ejemplo, polvos, cápsulas y comprimidos, entre los excipientes adecuados se incluyen cargas, tales como azúcares, tales como lactosa, sacarosa, manitol y sorbitol; preparados de celulosa, tales como almidón de maíz, almidón de trigo, almidón de arroz, almidón de patata, gelatina, goma tragacanto, metilcelulosa, hidroxipropilmetilcelulosa, carboximetilcelulosa sódica y/o polivinilpirrolidona (PVP); agentes de granulación; y agentes aglutinantes. Si se desea, se pueden añadir agentes disgregantes, tales como polivinilpirrolidonas reticuladas, agar o ácido algínico o una sal del mismo, tal como alginato de sodio. Si se desea, las formas de dosificación sólidas pueden recubrirse con azúcar o con recubrimiento entérico utilizando técnicas estándar.

20

10

15

Para preparados líquidos orales, tales como, por ejemplo, suspensiones, elixires y soluciones, entre los portadores, excipientes o diluyentes adecuados se incluyen agua, glicoles, aceites, alcoholes, etc. Además, se pueden añadir agentes aromatizantes, conservantes, colorantes y similares. Para la administración bucal, la composición puede adoptar la forma de comprimidos, pastillas, etc., formuladas, tal como se conoce en la técnica.

25

30

40

55

Para la administración por inhalación, los peptidomiméticos de horquilla β de la presente invención se administran de manera conveniente en forma de aerosol pulverizado desde envases presurizados o un nebulizador, con la utilización de un propulsor adecuado, por ejemplo, diclorodifluorometano, tricloroflurometano, dióxido de carbono u otro gas adecuado. En el caso de un aerosol presurizado, la unidad de dosificación se puede determinar disponiendo una válvula para administrar una cantidad medida. Las cápsulas y cartuchos, por ejemplo, de gelatina, para su utilización en un inhalador o insuflador se pueden formular conteniendo una mezcla de polvo de los peptidomiméticos de horquilla β de la presente invención y una base de polvo adecuada, tal como lactosa o almidón.

Los compuestos también se pueden formular en composiciones rectales o vaginales, tales como supositorios, junto con bases apropiadas para supositorios, tales como manteca de cacao u otros glicéridos.

Además de las formulaciones descritas anteriormente, los peptidomiméticos de horquilla β de la presente invención también se pueden formular como preparados de depósito. Dichas formulaciones de acción prolongada se pueden administrar mediante implantación (por ejemplo, por vía subcutánea o intramuscular) o mediante inyección intramuscular. Para la fabricación de dichos preparados de depósito, los peptidomiméticos de horquilla β de la presente invención se pueden formular con materiales poliméricos o hidrófobos adecuados (por ejemplo, como una emulsión en un aceite aceptable) o resinas de intercambio iónico, o como sales poco solubles.

Además, se pueden utilizar otros sistemas de administración farmacéutica, tales como liposomas y emulsiones, bien conocidos en la técnica. También se pueden utilizar determinados disolventes orgánicos, tales como dimetilsulfóxido. Adicionalmente, los peptidomiméticos de horquilla β de la presente invención se pueden administrar utilizando un sistema de liberación sostenida, tal como matrices semipermeables de polímeros sólidos que contienen el agente terapéutico. Se han establecido diversos materiales de liberación sostenida y son bien conocidos por los expertos en la materia. Las cápsulas de liberación sostenida pueden liberar, según su naturaleza química, los compuestos durante unas cuantas semanas hasta más de 100 días. Dependiendo de la naturaleza química y la estabilidad biológica del agente terapéutico, se pueden utilizar estrategias adicionales para la estabilización de proteínas.

Como los peptidomiméticos de horquilla β de la presente invención contienen residuos cargados, pueden incluirse en cualquiera de las formulaciones descritas anteriormente como tales o como sales aceptables farmacéuticamente. Las sales aceptables farmacéuticamente tienden a ser más solubles en disolventes acuosos y otros disolventes próticos que las formas libres correspondientes.

Entre las sales aceptables farmacéuticamente particularmente adecuadas se incluyen sales con ácidos carboxílicos, fosfónicos, sulfónicos y sulfámicos, por ejemplo, ácido acético, ácido propiónico, ácido octanoico, ácido decanoico, ácido dodecanoico, ácido glicólico, ácido láctico, ácido fumárico, ácido succínico, ácido adípico, ácido pimélico, ácido subérico, ácido azelaico, ácido málico, ácido tartárico, ácido cítrico, aminoácidos, tales como ácido glutámico o ácido aspártico, ácido maleico, ácido hidroximaleico, ácido metilmaleico, ácido ciclohexanocarboxílico, ácido adamantanocarboxílico, ácido benzoico, ácido salicílico, ácido 4-aminosalicílico, ácido ftálico, ácido fenilacético, ácido mandélico, ácido cinámico, ácido metanosulfónico o etanosulfónico, ácido 2-hidroxietanosulfónico, ácido etano-1,2-disulfónico, ácido bencenosulfónico, ácido 2-naftalenosulfónico, ácido 1,5-naftalenodisulfónico, ácido

2-metil-bencenosulfónico, ácido 3-metil-bencenosulfónico o ácido 4-metil-bencenosulfónico, ácido metilsulfúrico, ácido dodecilsulfúrico, ácido N-ciclohexilsulfámico, ácido N-metil-sulfámico, ácido N-metil-sulfámico, ácido N-propil-sulfámico y otros ácidos protónicos orgánicos, tales como ácido ascórbico. Entre los ácidos inorgánicos adecuados se encuentran, por ejemplo, ácidos halogenhídricos, tales como ácido clorhídrico, ácido sulfúrico y ácido fosfórico.

Los peptidomiméticos de horquilla β de la presente invención, o las composiciones de los mismos, se utilizarán, en general, en una cantidad eficaz para conseguir el propósito pretendido. Debe entenderse que la cantidad utilizada dependerá de una aplicación particular.

10

5

Para la administración tópica para tratar o prevenir enfermedades susceptibles de tratamiento con miméticos de horquilla beta, se puede determinar una dosis eficaz terapéuticamente utilizando, por ejemplo, los ensayos in vitro dados a conocer en los ejemplos. El tratamiento se puede aplicar mientras la enfermedad es visible, o incluso cuando no es visible. Un experto en la materia será capaz de determinar cantidades eficaces terapéuticamente para tratar enfermedades tópicas sin gran experimentación.

15

Para la administración sistémica, se puede estimar inicialmente una dosis eficaz terapéuticamente a partir de ensayos in vitro. Por ejemplo, se puede formular una dosis en modelos animales para conseguir un intervalo de concentraciones de peptidomimético de horquilla β circulante que incluya la Cl₅₀ determinada en el cultivo celular. Dicha información se puede utilizar para determinar con mayor precisión las dosis útiles en seres humanos.

20

Las dosis iniciales también se pueden determinar a partir de datos in vivo, por ejemplo, modelos animales, utilizando técnicas que son bien conocidas en el sector. Un experto en la materia podría optimizar fácilmente la administración a seres humanos basándose en datos en animales.

25

Las cantidades de dosificación para aplicaciones como agentes inhibidores de serina proteasa pueden ajustarse de forma individual para proporcionar niveles plasmáticos de los peptidomiméticos de horquilla β de la presente invención que son suficientes para mantener el efecto terapéutico. Se pueden conseguir niveles séricos eficaces terapéuticamente mediante la administración de múltiples dosis cada día.

30

En los casos de administración local o captación selectiva, la concentración local eficaz de los peptidomiméticos de horquilla β de la presente invención puede no estar relacionada con la concentración plasmática. Un experto en la materia será capaz de optimizar las dosificaciones locales eficaces terapéuticamente sin gran experimentación.

La cantidad de peptidomiméticos de horquilla β de la presente invención administrada dependerá, por supuesto, del paciente que se esté tratando, del peso del paciente, de la gravedad de la afección, de la forma de administración y del criterio del médico tratante.

40

35

Normalmente, una dosis eficaz terapéuticamente de los peptidomiméticos de horquilla β de la presente invención descritos en el presente documento proporcionará un beneficio terapéutico sin provocar una toxicidad sustancial.

45

La toxicidad de los peptidomiméticos de horquilla β de la presente invención se puede determinar mediante procedimientos farmacéuticos estándar en cultivos celulares o animales de experimentación, por ejemplo, determinando la DL $_{50}$ (la dosis letal hasta el 50 % de la población) o la DL $_{100}$ (la dosis letal hasta el 100 % de la población). La proporción de dosis entre el efecto tóxico y el terapéutico es el índice terapéutico. Son preferentes los compuestos que muestran índices terapéuticos elevados. Los datos obtenidos a partir de estos ensayos de cultivos celulares y estudios en animales se pueden utilizar para formular un intervalo de dosificaciones que no sean tóxicas para su utilización en seres humanos. La dosificación de los peptidomiméticos de horquilla β de la presente invención se encuentra, de manera preferente, dentro de un intervalo de concentraciones circulantes que incluyen la dosis eficaz con poca o ninguna toxicidad. La dosificación puede variar dentro del intervalo dependiendo de la forma de dosificación utilizada y la vía de administración utilizada. El médico individual puede elegir la formulación exacta, la vía de administración y la dosis en función del estado del paciente (véase, por ejemplo, Fingl et al. 1975, en: The Pharmacological Basis of Therapeutics, capítulo 1, pág. 1).

50

55

La presente divulgación también puede incluir compuestos que son idénticos a los compuestos de fórmula general ciclo(-Xaa¹-Xaa²-Thr³-Xaa⁴-Ser⁵-Xaa⁶-Xaa³-Xaa³-Xaa¹-Xaa¹¹-Xaa¹²-Xaa¹³-), excepto que uno o más átomos sean reemplazados por un átomo que tenga un número de masa atómica o masa diferente del número de masa atómica o masa que se encuentra normalmente en la naturaleza, por ejemplo, compuestos enriquecidos en ²H (D), ³H, ¹¹C, ¹⁴C, ¹²⁰I, etc. Estos análogos isotópicos y sus sales y formulaciones farmacéuticas se consideran agentes

60

útiles en la terapia y/o el diagnóstico, por ejemplo, pero sin limitarse a los mismos, cuando la adaptación del tiempo de semivida *in vivo* podría conducir a una pauta de dosificación optimizada.

65

Los siguientes ejemplos ilustran la presente invención, pero no deben interpretarse, de ninguna manera, como limitantes de su alcance.

Ejemplos

10

15

1. Síntesis de péptidos

5 Acoplamiento del primer residuo de aminoácido protegido a la resina

Se introdujo 1 g (1,4 mmol) de resina de cloruro de 2-clorotritilo (1,4 mmol/g; matriz polimérica de copolímero(estireno-1 % de DVB) de malla 100 - 200; Barlos et al. Tetrahedron Lett. 1989, 30, 3943-3946) en un matraz seco. La resina se suspendió en CH₂Cl₂ (5 ml) y se dejó hinchar a temperatura ambiente con agitación constante durante 30 minutos. Se añadió una solución de 0,98 mmol (0,7 equivalentes) del primer residuo de aminoácido protegido de manera adecuada (véase a continuación) en CH₂Cl₂ (5 ml) mezclado con 960 μl (4 equivalentes) de diisopropiletilamina (DIEA). Después de agitar la mezcla de reacción durante 4 horas a 25 °C, la resina se separó por filtración y se lavó sucesivamente con CH₂Cl₂ (1x), DMF (1x) y CH₂Cl₂ (1x). A la resina se le añadió una solución de CH₂Cl₂/MeOH/DIEA (17/2/1, 10 ml) y la suspensión se agitó durante 30 minutos. Después de la filtración, la resina se lavó en el siguiente orden con CH₂Cl₂ (1x), DMF (1x), CH₂Cl₂ (1x), MeOH (1x), CH₂Cl₂ (2x), Et₂O (2x) y se secó al vacío durante 6 horas.

La carga fue habitualmente de 0,6-0,7 mmol/g.

20 Se prepararon las siguientes resinas precargadas:

Resina de Fmoc-Ser(tBu)-O-2-clorotritilo, resina de Fmoc-Ala-O-2-clorotritilo, resina de Fmoc-Pro-O-2-clorotritilo y resina de Fmoc-Oic-O-2-clorotritilo.

La síntesis se llevó a cabo utilizando un sintetizador Syro-peptide (MultiSynTech) utilizando 24-96 recipientes de reacción. En cada recipiente se colocaron 0,04 mmol de la resina anterior y la resina se hinchó en CH₂Cl₂ y DMF durante 15 minutos, respectivamente. Se programaron y llevaron a cabo los siguientes ciclos de reacción:

Etapa	Reactivo	Tiempo
1	DMF, lavado	5 x 1 min
2	piperidina al 20 %/DMF	1 x 5 min, 1 x 15 min
3	DMF, lavado	5 x 1 min
4	3,6 equivalentes de Fmoc aminoácido, 3,6 equivalentes de HOAt/DMF + 3,6 equivalentes de DIC/DMF	1 x 40 min
5	DMF, lavado	1 x 1 min
6	3,6 equivalentes de Fmoc aminoácido, 3,6 equivalentes de HOAt/DMF + 3,6 equivalentes de	4 40
	HATU + 7.2 equivalentes de DIPEA	1 x 40 min

A menos que se indique lo contrario, al acoplamiento final de un aminoácido le siguió la desprotección de Fmoc mediante la aplicación de las etapas 1-3 del ciclo de reacción descrito anteriormente.

Las unidades estructurales de aminoácidos protegidos de manera adecuada están disponibles en el mercado o se pueden sintetizar, tal como se conoce en la técnica.

35 Unión de ácidos carboxílicos o aminoácidos a cadenas laterales que contienen grupos amino o grupos carboxílicos

Procedimiento A

45

50

40 Unión de ácidos carboxílicos o aminoácidos a péptidos lineales desprotegidos de manera selectiva sobre resina:

Para eliminar los grupos protectores alloc de las funciones amino o los grupos protectores alilo de las funciones carboxilo presentes en el péptido unido a la resina, esta última (0,04 mmol) se hinchó en CH₂Cl₂ recién destilado, como mínimo, durante 15 minutos, seguido de la adición de 0,2 equivalentes de tetrakis(trifenilfosfina)paladio (0) (10 mM) en CH₂Cl₂ anhidro y 10 equivalentes de fenilsilano. Después de agitar la mezcla de reacción durante 15 minutos a temperatura ambiente, la resina se separó por filtración y se añadió una solución nueva de reactivos para repetir el procedimiento. Después del lavado posterior de la resina con CH₂Cl₂, DMF y Et₂O, la resina se hinchó de nuevo en CH₂Cl₂ y se realizó la unión de un ácido carboxílico o un aminoácido protegido de manera adecuada añadiendo posteriormente una mezcla de 3,6 equivalentes del ácido deseado y 3,6 equivalentes de HOAt disuelto en DMF y 3,6 equivalentes de DIC disuelta en DMF, permitiendo que la mezcla de reacción repose durante 1 hora interrumpida solamente por agitación ocasional. Después de filtrar y lavar la resina tres veces con DMF, se completó el acoplamiento repitiendo el procedimiento con una solución nueva de una mezcla de 3,6 equivalentes del mismo ácido deseado y 3,6 equivalentes de HOAt disuelto en DMF y una mezcla de 3,6 equivalentes de HATU y 7,2

equivalentes de DIPEA en DMF.

En el caso de cadenas laterales que contienen grupos amino, los ácidos utilizados para acoplarse mediante el protocolo descrito anteriormente fueron ácido octanoico o fenilalanina protegida con N-Boc, en el caso de cadenas laterales que contienen grupos carboxilo, el ácido acoplado mediante el protocolo descrito anteriormente fue fenilalanina, siendo el grupo carboxilo protegido por tBu.

Ciclación y tratamiento de péptidos ciclados en el esqueleto

10 Escisión del fragmento de péptido totalmente protegido

Después de completar la síntesis, la resina (0,04 mmol) se suspendió en 1 ml (0,13 mmol, 3,4 equivalentes) de TFA al 1 % en CH₂Cl₂ (v/v) durante 3 minutos, se filtró y el filtrado se neutralizó con 1 ml (0,58 mmol, 14,6 equivalentes) de DIEA al 10 % en CH₂Cl₂ (v/v). Este procedimiento se repitió tres veces para asegurar la finalización de la escisión. El filtrado se evaporó a sequedad y una muestra del producto se desprotegió completamente utilizando una mezcla de escisión que contenía un 95 % de ácido trifluoroacético (TFA), un 2,5 % de agua y un 2,5 % de triisopropilsilano (TIS) para analizar mediante HPLC de fase inversa (columna C₁₈) y ESI-MS para monitorizar la eficiencia de la síntesis de péptidos lineales.

20 Ciclación del péptido lineal

5

15

25

35

40

45

50

55

60

65

El péptido lineal totalmente protegido (0,04 mmol) se disolvió en DMF (4 μ mol/ml). A continuación, se añadieron 30,4 mg (0,08 mmol, 2 equivalentes) de HATU, 10,9 mg (0,08 mmol, 2 equivalentes) de HOAt y 28 μ l (0,16 mmol, 4 equivalentes) de DIEA, y la mezcla se agitó con vórtice a 25 °C durante 16 horas y, posteriormente, se concentró a alto vacío. El residuo se repartió entre CH₂Cl₂ y H₂O/CH₃CN (90/10: v/v). La fase de CH₂Cl₂ se evaporó para producir el péptido cíclico totalmente protegido.

Desprotección completa del péptido cíclico

30 El péptido cíclico obtenido se disolvió en 3 ml de la mezcla de escisión que contenía un 82,5 % de ácido trifluoroacético (TFA), un 5 % de agua, un 5 % de tioanisol, un 5 % de fenol y un 2,5 % de etanoditiol (EDT). La mezcla se dejó reposar a 25 °C durante 2,5 horas y, a continuación, se concentró al vacío. Después de la precipitación del péptido cíclico totalmente desprotegido en éter dietílico (Et₂O) a 0 °C, el sólido se lavó dos veces con Et₂O y se secó.

Después de la purificación de los productos en bruto mediante HPLC preparativa, los péptidos se liofilizaron (polvos blancos) y se analizaron mediante los siguientes procedimientos analíticos:

Procedimiento analítico A para los ejemplos 1-17, 19, 39-49:

Los tiempos de retención de la HPLC analítica (tR, en minutos) se determinaron utilizando una columna C18 Ascentis Express, 50×3.0 mm, (cod. 53811-U- Supelco) con los siguientes disolventes A ($H_2O + 0.1$ % de TFA) y B ($CH_3CN + 0.01$ % de TFA) y el gradiente: 0-0.05 min: 97 % de A, 3 % de B; 4,95 minutos: 3 % de A, 97 % de B; 5,40 min: 97 % de A, 3 % de B. Caudal = 1,3 ml/min; UV-Vis = 220 nm.

Procedimiento analítico B para el ejemplo 18:

Los tiempos de retención de la HPLC analítica (tR, en minutos) se determinaron utilizando una columna C18 Ascentis Express, 50×3.0 mm, (cod. 53811-U- Supelco) con los siguientes disolventes A ($H_2O + 0.1$ % de TFA) y B ($CH_3CN + 0.01$ % de TFA) y el gradiente: 0-0.05 min: 97 % de A, 3 % de B; 3,40 minutos: 33 % de A, 67 % de B; 3,45 minutos: 3 % de A, 97 % de B; 3,65 minutos: 3 % de A, 97 % de B; 3,70 min: 97 % de A, 3 % de B. Caudal = 1,3 ml/min; UV-Vis = 220 nm.

Procedimiento analítico C para los ejemplos 20-38:

Los tiempos de retención de la HPLC analítica (tR, en minutos) se determinaron utilizando una columna C18 XP Xselect CSH, 100×3.0 mm, (cod. 186006107, Waters) con los siguientes disolventes A ($H_2O + 0.1$ % de TFA) y B ($CH_3CN + 0.01$ % de TFA) y el gradiente: 0-0.05 min: 95 % de A, 5 % de B; 10.05 minutos: 3 % de A, 97 % de B; 12.05 minutos: 3 % de A, 97 % de B; 12.05 minutos: 95 % de A, 5 % de B. Caudal = 0.6 ml/min; UV-Vis = 0.05 mm.

Los **ejemplos 1-13, 16, 20, 22, 25-33, 35-37, 43, 47, 48** se muestran en la *tabla 1*. Los péptidos se sintetizaron de la siguiente manera: la resina de partida fue la resina Fmoc-Ser(tBu)-O-2-clorotritilo, que se preparó, tal como se ha descrito anteriormente. A esta resina se le injertó Xaa⁴ finalmente en la posición 4. El péptido lineal se sintetizó sobre un soporte sólido, según el procedimiento descrito anteriormente, en la siguiente secuencia: Resina-Ser⁵-Xaa⁴-Thr³-Xaa²-Xaa¹-Xaa¹³-Xaa¹¹-Xaa¹⁰-Xaa⁹-Xaa⁸-Xaa⁷-Xaa⁶. Después de una desprotección final de Fmoc, tal como se ha descrito anteriormente, el péptido se escindió de la resina, se cicló, se desprotegió y

se purificó, tal como se ha indicado anteriormente.

5

10

50

65

Los tiempos de retención de HPLC y las purezas según UV, determinados utilizando los procedimientos analíticos descritos anteriormente, se muestran en la tabla 1.

- El **ejemplo 14** se muestra en la *tabla 1*. El péptido se sintetizó de la siguiente manera: la resina de partida fue la resina Fmoc-Ser(tBu)-O-2-clorotritilo, que se preparó, tal como se ha descrito anteriormente. A esta resina se le injertó Xaa⁴ finalmente en la posición 4. El péptido lineal se sintetizó sobre un soporte sólido, según el procedimiento descrito anteriormente, en la siguiente secuencia: Resina-Ser⁵-Xaa⁴-Thr³-Dap²-Xaa¹-Xaa¹³-Xaa¹²-Xaa¹¹-Xaa¹⁰-Xaa⁹-Xaa⁸-Xaa⁷-Xaa⁶. Antes de la última desprotección de Fmoc, se aplicó el *procedimiento A* para unir fenilalanina a la cadena lateral de Dap². Después de una desprotección final de Fmoc, tal como se ha descrito anteriormente, el péptido se escindió de la resina, se cicló, se desprotegió y se purificó, tal como se ha indicado anteriormente.
- Los tiempos de retención de HPLC y las purezas según UV, determinados utilizando los procedimientos analíticos descritos anteriormente, se muestran en la *tabla 1*.
- El **ejemplo 15** se muestra en la *tabla 1*. El péptido se sintetizó de la siguiente manera: la resina de partida fue la resina Fmoc-Ser(tBu)-O-2-clorotritilo, que se preparó, tal como se ha descrito anteriormente. A esta resina se le injertó Xaa⁴ finalmente en la posición 4. El péptido lineal se sintetizó sobre un soporte sólido, según el procedimiento descrito anteriormente, en la siguiente secuencia: Resina-Ser⁵-Xaa⁴-Thr³-Xaa²-Dab¹-Xaa¹³-Xaa¹²-Xaa¹¹-Xaa¹⁰-Xaa⁹-Xaa⁸-Xaa⁷-Xaa⁶. Antes de la última desprotección de Fmoc, se aplicó el *procedimiento A* para unir ácido octanoico a la cadena lateral de Dab¹. Después de una desprotección final de Fmoc, tal como se ha descrito anteriormente, el péptido se escindió de la resina, se cicló, se desprotegió y se purificó, tal como se ha indicado anteriormente.

Los tiempos de retención de HPLC y las purezas según UV, determinados utilizando los procedimientos analíticos descritos anteriormente, se muestran en la tabla 1.

- 30 Los ejemplos 17-19 se muestran en la tabla 1. Los péptidos se sintetizaron de la siguiente manera: la resina de partida fue la resina Fmoc-Ser(tBu)-O-2-clorotritilo, que se preparó, tal como se ha descrito anteriormente. A esta resina se le injertó Xaa⁴ finalmente en la posición 4. El péptido lineal se sintetizó sobre un soporte sólido, según el anteriormente, procedimiento descrito en la siguiente secuencia: Resina-Ser⁵-Xaa⁴-Thr³-Xaa²-Glu¹-Xaa¹³-Xaa¹²-Xaa¹¹-Xaa¹⁰-Xaa⁹-Xaa⁸-Xaa⁶-Xaa⁶. Antes de la última desprotección de Fmoc, se aplicó el procedimiento A para unir fenilalanina a la cadena lateral de Glu¹. Después de una 35 desprotección final de Fmoc, tal como se ha descrito anteriormente, el péptido se escindió de la resina, se cicló, se desprotegió y se purificó, tal como se ha indicado anteriormente.
- Los tiempos de retención de HPLC y las purezas según UV, determinados utilizando los procedimientos analíticos descritos anteriormente, se muestran en la *tabla 1*.
- Los **ejemplos 21, 23, 24** se muestran en la *tabla 1*. Los péptidos se sintetizaron de la siguiente manera: la resina de partida fue la resina Fmoc-Ala-O-2-clorotritilo, que se preparó, tal como se ha descrito anteriormente. A esta resina se le injertó Thr³ finalmente en la posición 3. El péptido lineal se sintetizó sobre un soporte sólido, según el procedimiento descrito anteriormente, en la siguiente secuencia: Resina-Ala⁴-Thr³-Xaa²-Xaa¹-Xaa¹²-Xaa¹¹-Xaa¹¹-Xaa¹¹-Xaa³-Xaa³-Xaað-Ser⁵. Después de una desprotección final de Fmoc, tal como se ha descrito anteriormente, el péptido se escindió de la resina, se cicló, se desprotegió y se purificó, tal como se ha indicado anteriormente. Los tiempos de retención de HPLC y las purezas según UV, determinados utilizando los procedimientos analíticos descritos anteriormente, se muestran en la *tabla 1*.
- Los **ejemplos 34, 38, 45, 46** se muestran en la *tabla 1*. Los péptidos se sintetizaron de la siguiente manera: la resina de partida fue la resina Fmoc-Pro-O-2-clorotritilo, que se preparó, tal como se ha descrito anteriormente. A esta resina se le injertó Xaa¹² finalmente en la posición 12. El péptido lineal se sintetizó sobre un soporte sólido, según el procedimiento descrito anteriormente, en la siguiente secuencia:

 Resina-Pro¹³-Xaa¹²-Xaa¹¹-Xaa¹⁰-Xaa⁹-Xaa⁸-Xaa⁷-Xaa⁶-Ser⁵-Xaa⁴-Thr³-Xaa²-Xaa¹. Después de una desprotección final de Fmoc, tal como se ha descrito anteriormente, el péptido se escindió de la resina, se cicló, se desprotegió y se purificó, tal como se ha indicado anteriormente.
- Los tiempos de retención de HPLC y las purezas según UV, determinados utilizando los procedimientos analíticos descritos anteriormente, se muestran en la *tabla 1*.
 - Los **ejemplos 39, 40, 49** se muestran en la *tabla 1*. Los péptidos se sintetizaron de la siguiente manera: la resina de partida fue la resina Fmoc-Pro-O-2-clorotritilo, que se preparó, tal como se ha descrito anteriormente. A esta resina se le injertó Xaa⁷ finalmente en la posición 7. El péptido lineal se sintetizó sobre un soporte sólido, según el procedimiento descrito anteriormente, en la siguiente secuencia: Resina-Pro⁸-Xaa⁷-Xaa⁶-Ser⁵-Xaa⁴-Thr³-Xaa²-Xaa¹-Xaa¹³-Xaa¹¹-Xaa¹⁰-Xaa⁹. Después de una desprotección

final de Fmoc, tal como se ha descrito anteriormente, el péptido se escindió de la resina, se cicló, se desprotegió y se purificó, tal como se ha indicado anteriormente.

- Los tiempos de retención de HPLC y las purezas según UV, determinados utilizando los procedimientos analíticos descritos anteriormente, se muestran en la *tabla 1*.
 - Los **ejemplos 41, 42, 44** se muestran en la *tabla 1*. Los péptidos se sintetizaron de la siguiente manera: la resina de partida fue la resina Fmoc-Oic-O-2-clorotritilo, que se preparó, tal como se ha descrito anteriormente. A esta resina se le injertó Xaa⁷ finalmente en la posición 7. El péptido lineal se sintetizó sobre un soporte sólido, según el procedimiento descrito anteriormente, en la siguiente secuencia: Resina-Oic⁸-Xaa⁷-Xaa⁶-Ser⁵-Xaa⁴-Thr³-Xaa²-Xaa¹-Xaa¹²-Xaa¹¹-Xaa¹⁰-Xaa⁹. Después de una desprotección final de Fmoc, tal como se ha descrito anteriormente, el péptido se escindió de la resina, se cicló, se desprotegió y se purificó, tal como se ha indicado anteriormente.

10

Los tiempos de retención de HPLC y las purezas según UV, determinados utilizando los procedimientos analíticos descritos anteriormente, se muestran en la *tabla 1*.

Tabla 1: Ejemplos

i	7	~		V .	4	9	7	8	0	10		V 12	13	Directo		đ
ij	Vad . a)	лаат а)	уад. а)	Add ' a)	a)) ag) a)	a)	a)	٧٩٩٠٥ م)	٧٩٩ . : ع)) a)	۸۵۵ · ۵)	[%]	(a 2	[min]
-	OctGly	Glu	Thr	Ala	Ser	<u>e</u>	Pro	Pro	Gln	Lys	hSer(Me)	DPro	Pro	85	1.430,8	2,53
7	OctGly	gln	Thr	Ala	Ser	e	Pro	Pro	Gl	Lys	Dap	DPro	Pro	72	701,5	2,14
က	OctGly	Olu	Thr	Ala	Ser	≘	Pro	Pro	Gl	Lys	alloThr	DPro	Pro	80	1.416,8	2,35
4	OctGly	ollo	Thr	Ala	Ser	e	Pro	Pro	Gln	Lys	hSer	DPro	Pro	71	1.416,8	2,37
2	OctGly	Olu	Thr	Ala	Ser	lle	Pro	Pro	Gln	Lys	hGln	DPro	Pro	71	1.457,8	2,29
9	OctGly	Olu	Thr	Ala	Ser	e	Pro	Pro	Gln	Lys	Thr	DPro	Oic	77	1.470,8	2,73
7	OctGly	Olu	Thr	Ala	Ser	e	Ngln	Pro	Gln	Lys	Thr	DPro	Pro	7.1	1.448,8	2,41
8	OctGly	Olu	Thr	Ala	Ser	<u>e</u>	Pro	Pro	Gln	Lys	γ⁴-Tyrc)	DPro	Pro	85	1.506,8	2,57
6	Dab (Phe)	Blu	Thr	Ala	Ser	<u>e</u>	Pro	Pro	Gln	Lys	Tyr	DPro	Pro	74	0,677	1,72
10	OctGly	Olu	Thr	Ala	Ser	=	Pro	Oic	Gln	Lys	Thr	DPro	Pro	77	1.470,8	2,56
1	OctGly	Olu	Thr	Ala	Ser	e	Pro	Pro	Gln	Lys	γ ⁴ -Thr ^{c)}	DPro	Pro	70	1.444,8	2,41
12	OctGly	Olu	Thr	Ala	Ser	e e	Pro	Pro	Gln	Lys	Thr	DPro	DPro	88	1.416,8	2,30
13	OctGly	Phe	Thr	Ala	Ser	ell e	Pro	Pro	Gln	Lys	Thr	DPro	Pro	88	718.0	2.64
14	OctGly	Dap (Phe)	Thr	Ala	Ser	<u>el</u>	Pro	Pro	Gln	Lys	Tyr	DPro	Pro	75	1.584,0	2.52
12	Dab (Oct) ^{c)}	Glu	Thr	Ala	Ser	<u>e</u>	Pro	Pro	Gln	Lys	Thr	DPro	Pro	71	1.473,8	2.25
Tab	Tabla 1, continuación: Ejemplos	uación:	Ejemplos													
点	Xaa ^{1 a)}	Xaa ²	Xaa³ a)	Xaa ⁴ a)	Xaa ⁵	Xaa ⁶	Xaa ⁷ a)	Xaa ⁸ a)	Xaa ⁹ a)	Xaa ^{10 a)}	Xaa ^{11 a)}	Xaa ¹² a)	Xaa ^{13 a)}	Pureza [%]	ES b)	tR [min]
16	Arg	Glu	Thr	Ala	Ser	lle	Pro	Oic	Gln	Lys	Thr	DPro	Pro	83	1.457,8	1,78
17	Glu (Phe)	Glu	Thr	AllyGly	Ser	<u>⊜</u>	Pro	Pro	Gln	Lys	Tyr	DPro	Pro	72	1.612,8	2,21
18	Glu (Phe)	Glu	Thr	Ala	Ser	<u>⊕</u>	Pro	Pro	Gln	Lys	Tyr	DPro	Pro	85	1.587, 2	2,07 ^{d)}

(continuación)

Table	Tabla 1, continuación: Ejemplos	vación: E	jemplos													
峃	Xaa ¹ a)	Xaa ²	Xaa ³	Xaa ⁴ a)	Xaa ⁵	Xaa ⁶	Xaa ⁷	Xaa ⁸	Xaa ⁹	Xaa ¹⁰ a)	Xaa ¹¹ a)	Xaa ¹²	Xaa ^{13 a)}	Pureza [%]	ES D	# [min]
19	Glu (Phe)	Glu	Thr	AllyGly	Ser	<u>e</u>	Pro	Pro	Gln	Lys	Thr	DPro	Pro	77	1.550,8	2,12
20	OctGly	Glu	Thr	Ala	Ser	<u>e</u>	Pro	Pro	Gln	Lys	Thr	DAla	Ala	98	1.364,8	4,69 e)
21	OctGly	Glu	Thr	Ala	Ser	e e	Pro	Pro	Gln	Lys	Thr	D√al	Tyr	92	1.484,7	5,17 e)
22	OctGly	Glu	Thr	Ala	Ser	lle	Pro	Pro	Gln	Lys	Thr	DVal	Lys	98	1.450,0	4,26 e)
23	OctGly	Glu	Thr	Ala	Ser	e e	Pro	Pro	Gln	Lys	Thr	DTyr	Val	92	1.484,6	5,17 e)
24	OctGly	Glu	Thr	Ala	Ser	<u>e</u>	Pro	Pro	Gln	Lys	Thr	DTyr	Tyr	92	1.548,8	4,96 ^{e)}
25	OctGly	Glu	Thr	Ala	Ser	<u>e</u>	Pro	Pro	Gln	Lys	Thr	DTyr	Lys	84	1.513,8	4,20e)
26	OctGly	Glu	Thr	Ala	Ser	<u>e</u>	Pro	Pro	Gln	Lys	Thr	DLys	Val	94	1.450,0	4,33 e)
27	OctGly	Glu	Thr	Ala	Ser	<u>e</u>	Pro	Pro	Gln	Lys	Thr	DLys	Tyr	92	1.514,0	4,36 ^{e)}
28	OctGly	Glu	Thr	Ala	Ser	<u>e</u>	Pro	Pro	Gln	Lys	Thr	DLys	Lys	92	1.479,0	3,74 e)
29	OctGly	Glu	Thr	Ala	Ser	<u>e</u>	Pro	Pro	Gln	Lys	Thr	DLys	Glu	83	1.480,0	4,08 e)
30	OctGly	Glu	Thr	Ala	Ser	lle	Pro	Pro	Gln	Lys	Thr	DSer	Val	98	1.408,7	4,83 e)
31	OctGly	Glu	Thr	Ala	Ser	el.	Pro	Pro	Gln	Lys	Thr	DSer	Tyr	91	1.472,8	4,72 e)
32	OctGly	Glu	Thr	Ala	Ser	lle	Pro	Pro	Gln	Lys	Thr	DSer	Lys	98	1.437,8	4,02 ^{e)}
33	OctGly	Glu	Thr	Ala	Ser	lle	Nlys	Pro	Gln	Lys	Thr	DPro	Pro	29	724,4	4,79 ^{e)}
34	OctGly	Glu	Thr	Ala	Ser	le	Pro	Ngln	Gln	Lys	Thr	DPro	Pro	81	724,9	5,07 e)
35	OctGly	Glu	Thr	Ala	Ser	lle	Pro	Nlys	Gln	Lys	Thr	DPro	Pro	88	724,4	4,69 e)
36	OctGly	Glu	Thr	Ala	Ser	lle	Pro	Pro	β ³⁻ GIn ^{c)}	Lys	Thr	DPro	Pro	95	1.430,7	5,19 e)
37	OctGly	Glu	Thr	Ala	Ser	lle	Pro	Pro	Gln	(β³-Lys ^{c)}	Thr	DPro	Pro	22	1.430,7	5,03 e)
38	OctGly	Glu	Thr	Ala	Ser	lle	Pro	Pro	Gln	γ^{4} -Lys ^{c)}	Thr	DPro	Pro	85	1.444,7	5,13 ^{e)}
39	OctGly	Glu	Thr	Ala	Ser	lle	Pro	Pro	Gln	Lys	Thr	DPro	β^3 -Pro ^{c)}	74	1.432	2,22
40	OctGly	Glu	Thr	Ala	Ser	<u>e</u>	Pro	Pro	Gln	Lys	Thr	DPro	DGIn	98	1.449,1	2,31

(continuación)

Tabla	Tabla 1, continuación: Ejemplos	lación: E	jemplos													
峃	Xaa ¹ a)	Xaa ²	Xaa ³	Xaa ⁴ a)	Xaa ⁵	Xaa ⁶	Xaa ⁷	Xaa ⁸	Xaa ⁹	Xaa ^{10 a)}	Xaa ¹¹ a)	Xaa ¹²	Xaa ^{13 a)}	Pureza [%]	ES D	# [min]
41	Arg	Val	Thr	Ala	Ser	e e	Pro	Oic	Gln	Lys	Thr	DPro	Pro	87	1.427,8	2,09
42	Arg	hTyr	Thr	Ala	Ser	lle	Pro	Oic	Gln	Lys	Thr	DPro	Pro	92	1.506,1	2,02
43	Arg	hTyr	Thr	Ala	Ser	<u>e</u>	Pro	Oic	Gln	Lys	Thr	DPro	Glu	70	1.539,1	1,95
44	Arg	Val	Thr	Ala	Ser	ell e	Pro	Oic	Gln	Lys	Thr	DPro	Glu	70	1.460,1	1,97
45	OctGly	Glu	Thr	Ala	Ser	lle	Pro	Pip	Gln	Lys	Thr	DPro	Pro	74	1.431,1	2,28
46	OctGly	Glu	Thr	Ala	Ser	lle	Pro	Azt	Gln	Lys	Thr	DPro	Pro	80	702,2	2,49
47	OctGly	hTyr	Thr	Ala	Ser	lle	Pro	Pro	Gln	Lys	Ser	DPro	Pro	85	1.451,0	2,55
48	OctGly	hTyr	Thr	Ala	Ser	lle	Pro	Pro	Gln	Lys	Asn	DPro	Pro	98	1.479,0	2,46
49	Arg	hTyr	Thr	Ala	Ser	lle	Pro	Pro	Gln	Lys	Thr	DPro	Glu	70	1.484,0	1,76
a) Da	a) Para las abreviaturas de los aminoácidos véase el listado	iaturas de	los amino	pácidos vás	ise el lista	do anterio										

a) Para las abreviaturas de los aminoácidos, véase el listado anterior. b) ES: $[M+1H]^{1+}$ o $[M+2H]^{2+}$.

c) γ^4 -Tyr = H- ν^4 -DiHTyr-OH; γ^4 -Thr = H- γ^4 -DiHThr-OH; Dab(Oct) = Dab(octanoilo); β^3 -Gln = H- β^3 -HGin-OH; β^3 -Lys = H- β^3 -HLys-OH; γ^4 -Lys = H- γ^4 -DiHLys-OH; β^3 -Pro = γ^4 -Pro = H-p3-HPro-OH;

d) Procedimiento analítico B e) Procedimiento analítico C

- 2. Procedimientos biológicos
- 2.1 Preparación de las muestras de péptidos
- Los péptidos liofilizados se pesaron en una microbalanza (Mettler MT5) y se disolvieron en DMSO hasta una concentración final de 10 mM. Las soluciones madre se mantuvieron a +4 °C, protegidas de la luz. Los ensayos biológicos se llevaron a cabo en condiciones de ensayo que tenían menos del 1 % de DMSO, a menos que se indique de otro modo.
- 10 2.2 Inhibición de la elastasa de neutrófilos humana

La capacidad de los péptidos de la presente invención para inhibir la actividad de hidrólisis de la elastasa de neutrófilos humana (Serva Electrophoresis, Alemania) utilizando el sustrato tetrapeptídico sintético MeOSuc-AAPV-pNA (Bachem, Suiza) se determinó de la siguiente manera:

El sustrato anterior (0,3 mM) y la elastasa de neutrófilos humana (10 mM) se incubaron a 37 °C con diluciones en serie de los péptidos (DMSO al 1% final) en tampón de ensayo (Tris 50 mM, pH 8, NaCl 300 mM, Tween20 al 0,01 %). La liberación de pNA se siguió monitorizando el cambio de absorbancia a 405 nm durante 30 minutos. Los ensayos de control con la misma configuración de ensayo que la anterior, pero sin péptido, se desarrollaron linealmente. Los datos de dosis-respuesta se ajustaron a la ecuación de Hill de 4 parámetros proporcionando el valor Cl₅₀ utilizando Graphpad (Prism 5).

2.3 Inhibición de la elastasa pancreática porcina

La capacidad de los péptidos de la presente invención para inhibir la actividad de hidrólisis de la elastasa pancreática porcina (Sigma, Estados Unidos) utilizando el sustrato tripeptídico sintético MeOSuc-AAA-pNA (Bachem, Suiza) se determinó de la siguiente manera:

El sustrato anterior (1 mM) y la elastasa pancreática porcina humana (15 nM) se incubaron a 37 °C con diluciones en serie de los péptidos (DMSO al 0,5 % final) en tampón de ensayo (Tris 50 mM, pH 8, NaCl 100 mM, Tween20 al 0,01 %). La liberación de pNA se siguió monitorizando el cambio de absorbancia a 405 nm durante 30 minutos. Los ensayos de control con la misma configuración de ensayo que la anterior, pero sin péptido, se desarrollaron linealmente. Los datos de dosis-respuesta se ajustaron a la ecuación de Hill de 4 parámetros proporcionando el valor Cl₅₀ utilizando Graphpad (Prism 5).

2.4 Inhibición de la proteinasa 3 humana

La inactivación de la proteinasa 3 humana (Elastin Products Company, Estados Unidos) por los péptidos de la presente invención utilizando el sustrato tripeptídico sintético Boc-Ala-Ala-Nva-SBzI (Elastin Products Company, Estados Unidos) se determinó de la siguiente manera:

El sustrato anterior (1 mM), 4,4'-ditiodipiridina (250 μM) y proteinasa 3 humana (10 nM) se incubaron a 37 °C con diluciones en serie de los péptidos (DMSO al 0,5 % final) en tampón de ensayo (Tris 50 mM, pH 7,4, NaCl 150 mM, Tween20 al 0,01 %). El proceso de reacción se siguió monitorizando el cambio de absorbancia a 340 nm durante 30 minutos. Los ensayos de control con la misma configuración de ensayo que la anterior, pero sin péptido, se desarrollaron linealmente. Los datos de dosis-respuesta se ajustaron a la ecuación de Hill de 4 parámetros proporcionando el valor Cl₅₀ utilizando Graphpad (Prism 5).

3. Resultados

25

30

35

45

Los resultados de los experimentos descritos en 2.2 - 2.4, anteriormente, se indican en la tabla 2 a continuación.

Tabla 2:

	01 5 147 1	DE 1		Tabla 2:	I		1	
	CI ₅₀ [nM] de elastasa de	DE de Cl ₅₀	Cl ₅₀ [μM] de	DE de Cl ₅₀	Cl₅₀ [μM] de	DE de		
Ejemplo	neutrófilos	de	elastasa pancreática	de	proteinasa 3	Cl₅₀ de	Selectividad	Selectividad
Ljellipio	humana	hNE	porcina	PPE	humana	hPr3	hNE/PPE	hNE/hPr3
	(hNE)	[nM]	(PPE)	[μ M]	(hPr3)	[µM]		
1	4,8	1,2	0,62	0,10	0,72	0,44	129	150
2	5,5	0,7	1,20	0,44	3,54	1,07	218	644
3	6,8	1,1	1,42	0,03	1,01	0,41	209	149
4	8,6	2,8	1,35	0,01	1,02	0,13	157	119
5	9,9	2,1	1,59	0,33	2,35	0,80	161	237
6	12	4,9	3,85	0,63	4,46	3,07	321	372
7	13,3	3,7	3,92	0,88	4,06	1,27	295	305
8	19,8	9,6	1,81	0,08	3,33	0,47	91	168
9	17,3	1,0	3,72	0,34	12,3	3,5	215	711
10	7,3	0,4	36,2	1,8	>100	n.d.	4.959	>13.699
11	11,5	2,9	48,5	6,3	21,1	12,5	4.217	1.835
12	15,2	5,7	>100	n.d.	>100	n.d.	>6.579	>6.579
13	10,1	1,0	21,4	0,6	>100	n.d.	2.119	>9.901
14	15	9,5	5,5	1,1	26	0,7	367	1.733
15	19,1	3,2	92,8	n.d.	45,2	19,9	4.859	2.366
16	15	8,1	>100	n.d.	>100	n.d.	>6.667	>6.667
17	15	1,3	31,2	0,1	60,2	13,3	2.080	4.013
18	15,9	5,4	74,1	12	46,2	23,2	4.660	2.906
19	33	5,7	>100	n.d.	>100	n.d.	>3.030	>3.030
20	13,3	9,3	28,3	0,1	8,9	5,4	2.128	669
21	12,9	7,9	10,6	0,2	13,0	1,9	822	1.008
22	12,4	11,6	60,1	4,5	70,4	23,5	4.847	5.677
23	6,0	3,7	10,3	2,1	10,3	3,3	1.717	1.717
24	11,6	3,9	12,9	0,3	7,7	4,7	1.112	664
25	6,4	1,9	45,0	0,7	41,8	21,9	7.031	6.531
26	10,6	8,3	46,8	8,1	5,0	0,2	4.415	472
27	10,1	n.d.	44,1	4,0	39,6	n.d.	4.366	3.921
28	12,0	4,6	>100	n.d.	>100	n.d.	>8.333	>8.333
29	11,8	7,9	12,8	1,6	62,6	3,7	1.085	5.305
30	12,0	10,1	51,2	11,2	14,3	10,1	4.267	1.192
31	22,9	1,0	52,1	7,1	32,8	19,4	2.275	1.432
32	22,3	8,5	90,0	4,1	>100	n.d.	4.036	>4.484
33	7,0	4,0	8,3	1,1	6,1	1,8	1.186	871
34	30,3	15,1	15,5	0,3	5,2	1,7	512	172
35	7,7	7,3	1,6	0,8	1,5	0,4	208	195
36	16,2	6,4	11,1	0,9	5,9	0,9	685	364
37	41,5	32,5	8,8	0,5	15,4	2,1	212	371
38	17,2	10,1	9,2	0,6	9,2	3,1	535	535
39	2,9	0,1	87,9	13,6	71,5	26,0	30.310	24.655
40	1,3	0,2	>100	n.d.	>100	n.d.	>76.923	>76.923
41	7,9	2,8	>100	n.d.	>100	n.d.	>12.658	>12.658
42	4,8	3,1	>100	n.d	>100	n.d	>20.833	>20.833
43	2,7	1,9	>100	n.d	>100	n.d	>237.037	>237.037
44	9,6	4,9	>100	n.d	>100	n.d	>10.417	>10.417
45	7,1	1,9	2,3	0,5	0,9	0,4	324	127
46	7,1	5,5	1,9	0,1	2,2	0,1	268	310
47	1,4	0,2	0,5	0,3	1,0	0,2	357	714
48 49	2,7	1,0	0,4	0,3	1,1	0,7	148	407
	15,3	6,4	38,1	1,6	9,6	7,1	2.490	627
11.u. = 110 C	determinado							

REIVINDICACIONES

```
1. Compuesto peptídico ciclado en su esqueleto, construido a partir de 13 residuos de aminoácidos, de fórmula general ciclo(-Xaa¹-Xaa²-Thr³-Xaa⁴-Ser⁵-Xaa⁶-Xaa⁶-Xaa⁶-Xaa⁶-Xaa¹-Xaa¹¹-Xaa¹²-Xaa¹³-) (I),
```

```
y sales aceptables farmacéuticamente de los mismos,
       que se selecciona entre
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-hSer(Me)-DPro-Pro-);
10
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Dap-DPro-Pro-);
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-alloThr-DPro-Pro-);
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-hSer-DPro-Pro-);
       Ciclo(-OctGlv-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lvs-hGln-DPro-Pro-):
15
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-DPro-Oic-);
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Nglu-Pro-Gln-Lys-Thr-DPro-Pro-);
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-[H-√4-DiHTyr-OH]-DPro-Pro-);
       Ciclo(-Dab(Phe)-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lvs-Tvr-DPro-Pro-):
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Oic-Gln-Lys-Thr-DPro-Pro-);
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-[H-γ<sup>4</sup>-DiHThr-OH]-DPro-Pro-);
20
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-DPro-DPro-);
       Ciclo(-OctGly-Phe-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-DPro-Pro-);
       Ciclo(-OctGly-Dap(Phe)-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Tyr-DPro-Pro-);
       Ciclo(-Dab(octanoílo)-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-DPro-Pro-);
25
       Ciclo(-Arg-Glu-Thr-Ala-Ser-Ile-Pro-Oic-Gln-Lys-Thr-DPro-Pro-);
       Ciclo(-Glu(Phe)-Glu-Thr-AlilGly-Ser-Ile-Pro-Pro-Gln-Lys-Tyr-DPro-Pro-);
       Ciclo(-Glu(Phe)-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Tyr-DPro-Pro-);
       Ciclo(-Glu(Phe)-Glu-Thr-AlilGly-Ser-Ile-Pro-Pro-Gln-Lys-Thr-Dero-Pro-).
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-DAla-Ala-);
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-DVal-Tyr-);
30
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-DVal-Lys-);
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-DTyr-Val-);
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-DTyr-Tyr-);
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-DTyr-Lys-);
       Ciclo(-OctGlv-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lvs-Thr-DLvs-Val-):
35
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-DLys-Tyr-);
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-DLys-Lys-);
       Ciclo(-OctGlv-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lvs-Thr-DLvs-Glu-):
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-DSer-Val-);
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-DSer-Tyr-);
40
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-DSer-Lys-);
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Nlys-Pro-Gln-Lys-Thr-DPro-Pro-);
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Nglu-Gln-Lys-Thr-DPro-Pro-);
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Nlys-Gln-Lys-Thr-DPro-Pro-);
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-[H-\beta^3-HGln-OH]-Lys-Thr-^DPro-Pro-);
45
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-[H-β<sup>3</sup>-HLys-OH]-Thr-DPro-Pro-);
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-[H-γ<sup>4</sup>-DiHLys-OH]-Thr-DPro-Pro-);
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-<sup>D</sup>Pro-[H-β<sup>3</sup>-HPro-OH]-);
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-DPro-DGlu-);
       Ciclo(-Arg-Val-Thr-Ala-Ser-Ile-Pro-Oic-Gln-Lys-Thr-DPro-DPro-);
50
       Ciclo(-Arg-hTyr-Thr-Ala-Ser-Ile-Pro-Oic-Gln-Lys-Thr-DPro-DPro-);
       Ciclo(-Arg-hTyr-Thr-Ala-Ser-Ile-Pro-Oic-Gln-Lys-Thr-DPro-Glu-);
       Ciclo(-Arg-Val-Thr-Ala-Ser-Ile-Pro-Oic-Gln-Lys-Thr-DPro-Glu-);
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Pip-Gln-Lys-Thr-DPro-Pro-);
55
       Ciclo(-OctGly-Glu-Thr-Ala-Ser-Ile-Pro-Azt-Gln-Lys-Thr-DPro-Pro-);
       Ciclo(-OctGly-hTyr-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Ser-DPro-Pro-);
       Ciclo(-OctGly-hTyr-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Asn-DPro-Pro-);
       Ciclo(-Arg-hTyr-Thr-Ala-Ser-Ile-Pro-Pro-Gln-Lys-Thr-DPro-Glu-).
```

- 60 2. Compuesto, según la reivindicación 1, en forma libre o en forma de sal aceptable farmacéuticamente, para su utilización como medicamento.
- 3. Compuesto, según la reivindicación 1, en forma libre o en forma de sal aceptable farmacéuticamente, que tiene actividad inhibidora contra la elastasa para su utilización en el tratamiento o la prevención del cáncer de pulmón; cáncer de mama; psoriasis; deficiencia de alfa 1 antitripsina; enfisema pulmonar; fibrosis quística; enfermedad pulmonar obstructiva crónica; fibrosis pulmonar idiopática; bronquiectasia; hipertensión pulmonar;

hipertensión pulmonar arterial; hipertrofia cardiaca; miocarditis; infarto agudo de miocardio; artritis reumatoide; artrosis; aterosclerosis; esclerosis múltiple; pancreatitis; rinitis alérgica; síndrome respiratorio inflamatorio sistémico; dermatosis inflamatoria; enfermedad inflamatoria intestinal; o enfermedad de Crohn.

- 4. Composición farmacéutica que comprende un compuesto o una mezcla de compuestos, según la reivindicación 1, en forma libre o en forma de sal aceptable farmacéuticamente, y un portador inerte farmacéuticamente, en particular, en una forma adecuada para inhalación, para administración oral, tópica, transdérmica, por inyección, bucal, transmucosal, rectal, pulmonar o por inhalación, en especial, en forma de comprimido, gragea, cápsula, solución, líquido, gel, emplasto, crema, pomada, jarabe, pasta espesa, suspensión, polvo o supositorio.
 - 5. Compuesto, según la reivindicación 1, en forma libre o en forma de sal aceptable farmacéuticamente, para su utilización como sustancia activa farmacéuticamente que tiene actividad inhibidora de proteasa selectiva, en particular contra elastasa de neutrófilos humana, y/o actividad anticancerígena y/o actividad antiinflamatoria y/o actividad antiinflamatoria y/o actividad antiinflamatoria y/o actividad antineurodegenerativa.
 - 6. Compuesto, según la reivindicación 1, en forma libre o en forma de sal aceptable farmacéuticamente, o una composición, según la reivindicación 4, para su utilización como un medicamento que tiene actividad inhibidora contra la elastasa para el tratamiento o la prevención de infecciones o enfermedades relacionadas con dichas infecciones; o cáncer, tal como cáncer de pulmón o cáncer de mama, mediado por o resultante de la actividad de elastasa; o enfermedades inmunológicas, tales como psoriasis, mediadas por o resultantes de la actividad de elastasa; o enfermedades pulmonares, tales como deficiencia de alfa 1 antitripsina, enfisema pulmonar, fibrosis quística, enfermedad pulmonar obstructiva crónica, fibrosis pulmonar idiopática, bronquiectasia, hipertensión pulmonar o hipertensión pulmonar arterial, mediadas por o resultantes de la actividad de elastasa; o enfermedades cardiovasculares, tales como hipertrofia cardiaca, miocarditis o infarto agudo de miocardio, mediadas por o resultantes de la actividad de elastasa; o enfermedades neurodegenerativas mediadas por o resultantes de la actividad de elastasa; o inflamación o enfermedades relacionadas con la inflamación, tales como artritis reumatoide, artrosis, aterosclerosis, esclerosis múltiple, pancreatitis, rinitis alérgica, síndrome respiratorio inflamatorio sistémico, dermatosis inflamatoria, enfermedad inflamatoria intestinal o enfermedad de Crohn, mediadas por o resultantes de la actividad de elastasa; o cuando la reacción inmunológica está mediada por o resulta de la actividad de elastasa.
 - 7. Compuesto, según la reivindicación 1, para su utilización en el tratamiento de una infección o una enfermedad o trastorno asociado con dicha infección resultante de la actividad de elastasa; o cáncer mediado por o resultante de la actividad de elastasa; o enfermedades inmunológicas mediadas por o resultantes de la actividad de elastasa; o enfermedades pulmonares mediadas por o resultantes de la actividad de elastasa; o enfermedades cardiovasculares mediadas por o resultantes de la actividad de elastasa; o enfermedades neurodegenerativas mediadas por o resultantes de la actividad de elastasa; o inflamación mediada por o resultante de la actividad de elastasa; o cuando la reacción inmunológica está mediada por o resulta de la actividad de elastasa, que comprende administrar a un paciente que lo necesite una cantidad aceptable farmacéuticamente de un compuesto o composición farmacéutica, según la reivindicación 1 o 4.
- 40 8. Procedimiento para la fabricación de un compuesto, según la reivindicación 1, que comprende las etapas de
 - (a) acoplar un soporte sólido funcionalizado de manera apropiada con un derivado de ese aminoácido protegido en el N de manera apropiada, que en el producto final deseado corresponde a Xaaⁿ, en el que n es 13, 8, 7, 6, 5 o 4, estando cualquier grupo funcional, que pueda estar presente en dicho derivado de aminoácido protegido en el N, también protegido de manera apropiada;
 - (b) eliminar el grupo N-protector del producto así obtenido;

15

20

25

30

35

45

50

60

- (c) acoplar el producto así obtenido con un derivado de ese aminoácido protegido en el N de manera apropiada, que en el producto final deseado corresponde a Xaaⁿ⁻¹, estando cualquier grupo funcional, que pueda estar presente en dicho derivado de aminoácido protegido en el N, también protegido de manera apropiada;
- (d) eliminar el grupo N-protector del producto obtenido en la etapa (c);
- (e) realizar las etapas sustancialmente correspondientes a las etapas (c) y (d) utilizando derivados de aminoácidos protegidos en el N de manera apropiada, que en el producto final deseado están en las posiciones n-2 a 1, estando cualquier grupo o grupos funcionales, que puedan estar presentes en dichos derivados de aminoácidos protegidos en el N, también protegidos de manera apropiada;
- (f) si n no es 13, realizar adicionalmente etapas sustancialmente correspondientes a las etapas (c) y (d) utilizando derivados de aminoácidos protegidos en el N de manera apropiada, que en el producto final deseado están en las posiciones 13 a n + 1, estando cualquier grupo o grupos funcionales, que puedan estar presentes en dichos derivados de aminoácidos protegidos en el N, también protegidos de manera apropiada;
 - (g) desprender el producto así obtenido del soporte sólido;
 - (h) ciclar el producto escindido del soporte sólido;
 - (i) eliminar cualquier grupo protector presente en los grupos funcionales de cualquier elemento de la cadena de residuos de aminoácidos; y
 - (j) si se desea, convertir el producto así obtenido en una sal aceptable farmacéuticamente o convertir una sal aceptable, o inaceptable, farmacéuticamente, así obtenida en el compuesto libre correspondiente o en una sal diferente aceptable farmacéuticamente.

REFERENCIAS CITADAS EN LA DESCRIPCIÓN

Esta lista de referencias citada por el solicitante es únicamente para mayor comodidad del lector. No forman parte del documento de la Patente Europea. Incluso teniendo en cuenta que la compilación de las referencias se ha efectuado con gran cuidado, los errores u omisiones no pueden descartarse; la EPO se exime de toda responsabilidad al respecto.

Documentos de patentes citados en la descripción

- WO 2003054000 A1
- WO 2006087001 A1

• WO 2010127704 A1

Literatura no patente citada en la descripción

- R. P. BECKETT; A. DAVIDSON; A. H. DRUMMOND;
 M. WHITTAKER. Drug Disc. Today, 1996, vol. 1, 16-26
 L. L. JOHNSON; R. DYER; D. J. HUPE. Curr. Opin. Chem. Biol., 1998, vol. 2, 466-71
- D. LEUNG; G. ABBENANTE; D. P. FAIRLIE. J. Med. Chem., 2000, vol. 43, 305-341
- T. ROCKWAY. Expert Opin. Ther. Patents, 2003, vol. 13, 773-786
- M. M. BECKER; S. A. HARROP; J. P. DALTON; B. H. KALINNA; D. P. MCMANUS; D. P. BRINDLEY. J. Biol. Chem., 1995, vol. 270, 24496-501
- C. ABAD-ZAPETERO; R. GOLDMAN; S. W. MUCHMORE; C. HUTCHINS; K. STEWART; J. NAVAZA; C. D. PAYNE; T. L. RAY. *Protein Sci.*, 1996, vol. 5, 640-52
- A. WLODAWER; J. W. ERICKSON. Annu. Rev. Biochem., 1993, vol. 62, 543-85
- P. L. DARKE; J. R. HUFF. Adv. Pharmacol., 1994, vol. 5, 399-454
- J. L. KIM; K. A. MORGENSTERN; C. LIN; T. FOX; M. D. DWYER; J. A. LANDRO; S. P. CHAMBERS; W. MARKLAND; C. A. LEPRE; E. T. O'MALLEY. Cell, 1996, vol. 87, 343-55
- R. A. LOVE; H. E. PARGE; J. A. WICKERSHAM; Z. HOSTOMSKY; N. HABUKA; E. W. MOOMAW; T. ADACHI; Z. HOSTOMSKA. *Cell*, 1996, vol. 87, 331-342 W. GIBSON; M. R. HALL. *Drug. Des. Discov.*, 1997, vol. 15, 39-47
- P. R. BERNSTEIN; P. D. EDWARDS; J. C. WILLIAMS. *Prog. Med. Chem.*, 1994, vol. 31, 59-120
- T. E. HUGLI. Trends Biotechnol., 1996, vol. 14, 409-12
 M. T. STUBBS; W. A. BODE. Thromb. Res., 1993, vol. 69, 1-58
- H. FUKAMI et al. Current Pharmaceutical Design, 1998, vol. 4, 439-453
- R. VASSAR; B. D. BENNETT; S. BABU-KAHN; S. KAHN; E. A. MENDIAZ. Science, 1999, vol. 286, 735-41

- M. KAATINEN et al. Atherosklerosis, 1996, vol. 123 (1-2), 123-131
- M. Z. IBRAHIM et al. J. Neuroimmunol, 1996, vol. 70, 131-138
- J. L. METHA; L. Y. CHEN; W. W. NICHOLS; C. MATTSSON; D. GUSTAFFSON; T. G. P. SALDEEN. J. Cardiovasc. Pharmacol., 1998, vol. 31, 345-51
- C. LILA; P. GLOANEC; L. CADET; Y. HERVE; J. FOURNIER; F. LEBORGNE; T. J. VERBEUREN; G. DENANTEUIL. Synth. Comm., 1998, vol. 28, 4419-29
- J. P. VACCA. Annu. Rep. Med. Chem., 1998, vol. 33, 81-90
- J. R. WILLIAMS; R. C. FALCONE; C. KNEE; R. L. STEIN; A. M. STRIMPLER; B. REAVES; R. E. GILES; R. D. KRELL. *Am. Rev. Respir. Dis.*, 1991, vol. 144, 875-83
- C. SEIFE. Science, 1997, vol. 277, 1602-3
- U. BANK; S. ANSORGE. J. Leukoc. Biol., 2001, vol. 69, 177-90
- H. OHBAYASHI. Epert Opin. Investig. Drugs, 2002, vol. 11, 965-980
- B. KORKMAZ; T. MOREAU; F. GAUTHIER. Biochimie, 2008, vol. 90, 227
- S. LUCKETT; R. SANTIAGO GARCIA; J. J. BARKER; A. V. KONAREV; P. R. SHEWRY; A. R. CLARKE; R. L. BRADY. J. Mol. Biol., 1999, vol. 290, 525-533
- Y.-Q. LONG; S.-L. LEE; C.-Y. LIN; I. J. ENYEDY; S. WANG; P. LI; R. B. DICKSON; P. P. ROLLER. *Biorg. & Med. Chem. Lett.*, 2001, vol. 11, 2515-2519
- M. -I. AGUILAR; A. W. PURCELL; R. DEVI; R. LEW; J. ROSSJOHN; A. I. SMITH; P. PERLMUTTER. Org. Biomol. Chem., 2007, vol. 5, 2884
- D. F. HOOK; P. BINDSCHAEDLER; Y. R. MAHAYAN; R. SEBESTA; P. KAST; D. SEEBACH. Chem. Biodivers., 2005, vol. 2, 591
- P. ZUBRZAK; H. WILLIAMS; G.M. COAST; R. E. ISAAC; G. REYES-RANGEL; E. JUARISTI; J. ZABROCKI; R. J. NACHMAN. *Biopolymers*, 2007, vol. 88, 76

- S. SAGAN; TH. MILCENT; R. PONSINET; O. CONVERT; O. TASSEAU; G. CHASSAING; S. LAVIELLE; O. LEQUIN. Eur. J. Biochem., 2003, vol. 270, 939
- D. OBRECHT; M. ALTORFER; J. A. ROBINSON. *Adv. Med. Chem.*, 1999, vol. 4, 1-68
- J. A. ROBINSON. Syn. Lett., 2000, vol. 4, 429-441
- A. DESCOURS; K. MOEHLE; A. RENARD; J. A. ROBINSON. ChemBioChem, 2002, vol. 3, 318-323
- L. JIANG; K. MOEHLE; B. DHANAPAL; D. OBRECHT; J. A. ROBINSON. Helv. Chim. Acta., 2000, vol. 83, 3097-3112
- C.M. VENKATACHALAM. *Biopolymers*, 1968, vol. 6, 1425-1434
- W. KABSCH; C. SANDER. Biopolymers, 1983, vol. 22, 2577
- D. OBRECHT; M. ALTORFER; J.A. ROBINSON. Novel Peptide Mimetic Building Blocks and Strategies for Efficient Lead Finding. *Adv. Med. Chem.*, 1999, vol. 4, 1-68
- P. BALARAM. Non-standard amino acids in peptide design and protein engineering. *Curr. Opin. Struct. Biol.*, 1992, vol. 2, 845-851
- M. CRISMA; G. VALLE; C. TONIOLO; S. PRASAD; R.B. RAO; P. BALARAM. β -turn conformations in crystal structures of model peptides containing $\alpha.\alpha$ -disubstituted amino acids. *Biopolymers*, 1995, vol. 35, 1-9
- V.J. HRUBY; F. AL-OBEIDI; W. KAZMIERSKI. *Biochem. J.*, 1990, vol. 268, 249-262
- D. OBRECHT; C. SPIEGLER; P. SCHÖNHOLZER; K. MULLER; H. HEIMGARTNER; F. STIERLI. Helv. Chim. Acta, 1992, vol. 75, 1666-1696
- D. OBRECHT; U. BOHDAL; J. DALY; C. LEHMANN; P. SCHÖNHOLZER; K. MULLER. *Tetrahedron*, 1995, vol. 51, 10883-10900
- D. OBRECHT; C. LEHMANN; C. RUFFIEUX; P. SCHÖNHOLZER; K. MULLER. Helv. Chim. Acta, 1995, vol. 78, 1567-1587
- D. OBRECHT; U. BOHDAL; C. BROGER; D. BUR; C. LEHMANN; R. RUFFIEUX; P. SCHÖNHOLZER; C. SPIEGLER. Helv. Chim. Acta, 1995, vol. 78, 563-580

- D. OBRECHT; H. KARAJIANNIS; C. LEHMANN; P. SCHÖNHOLZER; C. SPIEGLER. Helv. Chim. Acta, 1995, vol. 78, 703-714
- Solid-Supported Combinatorial and Parallel Synthesis of Small-Molecular-Weight Compound Libraries.
- **D. OBRECHT; J.-M. VILLALGORDO.** Tetrahedron Organic Chemistry Series. Elsevier Science, 1998, vol. 17
- H. RINK. Tetrahedron Lett., 1987, vol. 28, 3783-3790
- G.B. FIELDS; C.G. FIELDS. J. Am. Chem. Soc., 1991, vol. 113, 4202-4207
- MERGLER et al. Tetrahedron Lett., 1988, vol. 29, 4005-4008
- RINK LINKER; H. RINK. Tetrahedron Lett., 1987, vol. 28, 3787-3790
- FLÖRSHEIMER; RINIKER. Peptides, 1991, vol. 1990,
- BARLOS et al. Tetrahedron Lett., 1989, vol. 30, 3943-3946
- SHEEHAN; HESS. J. Am. Chem. Soc., 1955, vol. 77, 1067-1068
- SARANTAKIS et al. Biochem. Biophys. Res. Commun., 1976, vol. 73, 336-342
- KÖNIG; GEIGER. Chem. Ber, 1970, vol. 103, 788-798
- CASTRO et al. Tetrahedron Lett., 1975, vol. 14, 1219-1222
- Synthesis, 1976, 751-752
- COSTE et al. Tetrahedron Lett., 1990, vol. 31, 205-208
- KNORR et al. Tetrahedron Lett., 1989, vol. 30, 1927-1930
- CARPINO et al. Tetrahedron Lett., 1994, vol. 35, 2279-2281
- J. COSTE; E. FRÉROT; P. JOUIN; B. CASTRO. *Tetrahedron Lett.*, 1991, vol. 32, 1967
- S. CHEN; J. XU. Tetrahedron Lett., 1991, vol. 32, 6711
- KAISER et al. Anal. Biochemistry, 1970, vol. 34, 595
- MEIENHOFER et al. Int. J. Peptide Protein Res., 1979, vol. 13, 35-42
- FINGL et al. The Pharmacological Basis of Therapeutics, 1975, 1