
(19) United States
US 2004OO64528A1

(12) Patent Application Publication (10) Pub. No.: US 2004/0064528A1
Meredith et al. (43) Pub. Date: Apr. 1, 2004

(54) SAFE INTEROPERABILITY AMONG WEB
SERVICES

(75) Inventors: L. Greg Meredith, Seattle, WA (US);
Steve Bjorg, Redmond, WA (US);
David Richter, Seattle, WA (US)

Correspondence Address:
CHRISTENSEN, O'CONNOR, JOHNSON,
KINDNESS, PLLC
1420 FIFTHAVENUE
SUTE 2800
SEATTLE, WA 98101-2347 (US)

(73) Assignee: Microsoft Corporation

(21) Appl. No.: 10/262,551

(22) Filed: Sep. 30, 2002

1OO

102

108B

SERVICE PORT BINDING
PORT
TYPE

NETWORK

O'a CLEAN P

Publication Classification

(51) Int. Cl." ... G06F 15/16
(52) U.S. Cl. .. 709/219

(57) ABSTRACT

The joining of Web services is accomplished via a virtual
contract through the use of safeties. The joining of Web
services heightens the safe interoperability of Web services
to create greater functionality than each Web Service alone
can provide. Moreover, because the joining of Web services
is formed programmatically, Web Services are more trust
worthy, dependable, and available if the safeties of Web
Services are complied with. The programmatic joining
reduces or eliminates mistakes, lost requests, faults in the
face of invalid requests, or corrupt persisted data in the
interoperability of Web services

106

110B

Patent Application Publication Apr. 1, 2004 Sheet 1 of 27 US 2004/0064528A1

..SO
l

g

g

vide
E33

FE doocoona
six
33xxxx
sks838 E sT

S

s
O

s

s

s

US 2004/0064528A1

voor /

007

Patent Application Publication

{

{{SOTO 3 MAISTLINIAM £3 MINISTGIVAYI = MYIS

{MMISTNICIO = S --|#70XI3AVS/ °°°° Quae ??Awasatia aax lixoa LOTIS 55??T?S ??VI?I???S?T?T

SO; OG

US 2004/0064528A1 Apr. 1, 2004 Sheet 5 of 27

3.SOTO 3 MAISTIRIM ? MAIS CIV?N=MAIS AMXIS’N EICIO=S

3IOLAYISIS 8IGIAM MISIAXHEISEITIGH

Patent Application Publication

cN
O

US 2004/0064528A1

909

)3IOLA XIGIS 8IGIAM 3{XIOLS

Apr. 1, 2004 Sheet 6 of 27

O809

809GIOIANISHS {{{AM INGHITO
HZ09

Patent Application Publication

US 2004/0064528A1 Apr. 1, 2004 Sheet 9 of 27

NOILISOdIWOD 3IOLAYISHS {{{AM

Patent Application Publication

0! 100/

US 2004/0064528A1

.90/ OOLA COk 4.C1904. Og0/ \/904.

3[WVNI

£90/

3IOLA XIGIS {{GIAM GINOOSIS3IOIANIEIS {H3IAM IS?III

Apr. 1, 2004 Sheet 12 of 27

'az'$1 {

Patent Application Publication

Patent Application Publication Apr. 1, 2004 Sheet 13 of 27 US 2004/0064528A1

Fig.8A.

800
STARTA METHOD FOR FORMING
INTEROPERABILITY AMONG WEB

SERVICES

DEVELOPERS CREATE WEBSERVICE
SPECIFICATIONS THAT CORRESPOND TOWEB 802
SERVICE PROGRAMS FOR FIRST AND SECOND

WEBSERVICES (SEE FIG.8B)

THE FIRSTWEBSERVICE DISCOVERS THE SECOND WEBSERVICE AND CHECKS WHETHER 804
| THE SECOND WEBSERVICE CANSAFELY
INTERACT WITH THE FIRST WEBSERVICE (SEE

FIGS.8C-8N)

A VIRTUAL CONTRACTIS CREATED FOR
GOVERNING THE INTERACTION BETWEEN THE 506
FIRST WEBSERVICE AND THE SECOND WEB

SERVICE (SEE FIG.8O)

FINISH

Patent Application Publication Apr. 1, 2004 Sheet 14 of 27 US 2004/0064528A1

Fig.8B.

A DEVELOPER CREATES ABSTRACT
DEFINITIONS FOR A SPECIFICATION OF THE 808

FIRST WEBSERVICE

THE DEVELOPER CREATES
CONCRETE DESCRIPTIONS FOR N. 810

THE SPECIFICATION

THE DEVELOPER CREATES SAFETIES
GOVERNING THE IN WOCATION OF 812
MESSAGES FOR THE SPECIFICATION

THE DEVELOPER PLACES THE SAFETIES INTO
THE DEFINITIONS OF PORTTYPES

814

Patent Application Publication Apr. 1, 2004 Sheet 15 of 27 US 2004/0064528A1

Fig.8C.

THE FIRST WEBSERVICE DISCOVERSA PORTTYPE OF
A PORT (P2) FROM THE SPECIFICATION OF THE

SECOND WEBSERVICE uSING A DISCOVERY SERVICE
816

THE FIRST WEBSERVICE SELECTSA PORT TYPE OFA
PORT (P1), WHICH IS TO BE FLISED WITH THE PORTP2,
FROM THE SPECIFICATION OF THE FIRST WEB SERVICE

818

THE FIRST WEBSERVICE EXTRACTS THE SAFETY (S1) OF
THE PORTTYPE OF THE PORTP1 AND THE SAFETY (S2)

OF THE PORTTYPE OF THE PORT P2

820

THE FIRST WEB SERVICE CHECKS THE
INTEROPERABILITY OF PORTS P1, P2 BY PLACING
SAFETIESS1, S2 INTO A RELATIONSHIP (S1 :=: S2)

822

ISS1 OF THE
FORM '0" 2

824

YES

NO

Patent Application Publication Apr. 1, 2004 Sheet 16 of 27 US 2004/0064528A1

826

ISS2 OF THE
FORM S/?

S1 BOUND WITHS2
(0 :=:S) IS

EQLIATED TOS2
828

NO

830

YES

... 5
Fig.8D. (C)

Patent Application Publication Apr. 1, 2004 Sheet 17 of 27 US 2004/0064528A1

ISS2 OF THE

FORM 'SIS,"?
832

S1 BOUND WITH S2 (M.S.:=: SIS)
IS EQUATED TO TWO CHOICES

(S:=:S/M)&(S:=S/M)
834

NO ONE OF THE TWO CHOICES (S:=:S
/M)&(S:=:S/M) ISSELECTED

836

ISS1 OF THE

FORM "S-S," ?

NO 3)
Fig.8E. (CE)

838

Patent Application Publication Apr. 1, 2004 Sheet 18 of 27 US 2004/0064528A1

Fig.8F.

840

S1 BOLIND WITH S2 (SS):=:S) 842
ISEQuATED TO TWO CHOICES

(S=:S)+(S:=:S)

NO ONE OF THE TWO CHOICES 844
(S=:S)+(S=S) ISSELECTED

ISST OF THE

FORM "S&S" ?

No 5)

846

Patent Application Publication Apr. 1, 2004 Sheet 19 of 27 US 2004/0064528A1

Fig.8G.

S1 BOUND WITHS2 (S&S):=:S) IS
EQuATED TO TWO CHOICES

(S=:S)&(S:=:S)
848

NO
ONE OF THE TWO CHOICES
(S=:S)&(S:=:S) ISSELECTED

S
S1 OF THE FORM

"(S S)" 2

NO

852

Patent Application Publication Apr. 1, 2004 Sheet 20 of 27 US 2004/0064528A1

ISS2 OF THE

FORM (S,S)"?

S1 BOUND WITHS2 (S,S):= (S,S)) IS
EQUATED TO ASET OF CHOICES
(So.231) &(S230) &(S2013) 8(S02)

856

EACH CHOICE OF THE SET
OF CHOICES IS PLACED IN A

FORMS

858

(S=: (S |S.):=:S
DEFINED FOR A
PARTICULAR

NO

YES
V

THE PARTICULAR CHOICES

EQUATED TO THE w

RELATIONSHIP (S:= (S,S)):=s,

THE PARTICULAR CHOICE IS
EQUATED TO THE

RELATIONSHIP (S:= (S,S)) IS,

Fig.8H.

Patent Application Publication Apr. 1, 2004 Sheet 21 of 27 US 2004/0064528A1

Fig.8I.

ONE OF THE FOLIR CHOICES 866

(So.23) &(S23) &(Sois) &(S302)
ISSELECTED

IS 868
S1 OF THE FORM

"recCK).S." 2

870

NO

872 S1 BOUND WITH S2 (recCK).S.-:S) IS
EQUIATED TO (Sfrec(K).S./K:=S)

Patent Application Publication Apr. 1, 2004 Sheet 22 of 27 US 2004/0064528A1

Fig.8J.

IS 874
S1 OF THE FORM

MSY 2

ISS2 OF THE

FORM '0/S"?

NO

S1 BOUND WITH S2 (S:=:0/s) IS
UNDEFINED

NO

Patent Application Publication Apr. 1, 2004 Sheet 23 of 27 US 2004/0064528A1

Fig.8K.

880

ISS2 OF THE

FORM "MS/M,"?

IS

MATCH(MM)
DEFINED 2

S2 IS EQuATED TO CuT(M.M.).S
NO

NO

S1 BOUND WITH S2 (S:=:MS/M.) IS
LINDEFINED

Patent Application Publication Apr. 1, 2004 Sheet 24 of 27 US 2004/0064528A1

Fig.8L.

, ISS2 OF THE
888 FORM (S+S.)/M'?

S2 (S+S)/M) IS EQUATED TO TWO
890 CHOICES (S/M)+(S/M)

ONE OF THE TWO CHOICES NO
892 (S/M)+(S/M) ISSELECTED

ISS2 OF THE
894 FORM (S&S)/M"?

S2 ((S&S)/M) IS EQUATED TO
TWO CHOICES (S/M)&(S/M)

NO

Patent Application Publication Apr. 1, 2004 Sheet 25 of 27

ONE OF THE TWO CHOICES

(S/M)&(S/M) ISSELECTED

ISS2 OF THE 899
FORM "(S,S)/M'?

S2 (SIS)/M) IS EQuATED TO TWO
897 CHOICES (SMM)&(S/M)

ONE OF THE TWO CHOICES

(S/M)&(S/M) ISSELECTED

US 2004/0064528A1

Fig.8M.

898

NO

Patent Application Publication Apr. 1, 2004 Sheet 26 of 27 US 2004/0064528A1

Fig.8N.

ISS2
OF THE FORM
"rec(K).S/M/?

S2 (rec(K).S/M) IS EQUATED TO
(rec(K).(S/M)) 891

NO

A SYNTAX ERROR HAS - 889
OCCLIRRED

S3 ISSET TO EQuATE TO THE
RESULT OF THE BINDING
RELATIONSHIP (S1 :=: S2)

887

FINISH

Patent Application Publication Apr. 1, 2004 Sheet 27 of 27 US 2004/0064528A1

Fig.8O.

885
ISS3 EQUAL TO 0?

FIRST WEBSERVICE
TOLERATE UNSAFE
FISING OF PORTS

P1, P2?

THE PORTP1 OF THE FIRST WEB
SERVICE CAN BE FUSED WITH THE PORT

P2 OF THE SECOND WEBSERVICE
881

NO
THE SECOND WEBSERVICE COMMENCES
COMMUNICATING WITH THE FIRST WEB
SERVICE TO PROVIDE DESIRED SERVICES

879

US 2004/OO64528A1

SAFE INTEROPERABILITY AMONG WEB
SERVICES

FIELD OF THE INVENTION

0001. The present invention relates generally to Web
Services, and more particularly, to interoperability among
Web Services.

BACKGROUND OF THE INVENTION

0002 Web services are the fundamental building blocks
in the movement toward distributed computing on the Inter
net. Open Standards and the focus on communication and
collaboration among Software applications have created an
environment where Web services are becoming the platform
of choice for application integration. Applications are con
Structed using multiple Web Services from various Sources
that work together regardless of where they reside or how
they are implemented. Web services represent black-box
functionality that can be used or reused without the need to
know the inner working of Web services. One of the primary
advantages of Web services architecture is that the archi
tecture allows Web Services written in different languages on
different platforms to communicate with each other with
ease via messages. Moreover, a significant number of cor
porations and companies already have a Web infrastructure
and perSonnel with deep knowledge and experience in
maintaining Such an infrastructure, thereby allowing more
fluid adoption of Web services as a platform for future
applications.

0.003 Examples of Web services include information
Sources that one could easily incorporate into applications,
Such as Stock quotes, weather forecasts, Sports Scores, etc.
Beyond information Sources, one can imagine a whole class
of applications that can be built from Web services to
analyze and aggregate information desired by interested
perSons, and present the information to the interested per
Sons. For example, consider a spreadsheet that Summarizes
a perSons whole financial picture: Stocks, 401K, bank
accounts, loans, etc. If this information were available
through Web Services, a Spreadsheet application could
update the information continuously. While most pieces of
information may be available now on the Web in a mixture
of incongruous, haphazard elements, Web Services make
programmatic access to all pieces of information easier and
more reliable.

0004 Web services are diverse, but almost all of them
have three things in common: (1) Web Services expose
useful functionality to users via a set of interfaces through a
Standard protocol, Such as Simple Object Access Protocol
(SOAP); (2) Web services describe the set of interfaces in a
document called a contract using Web Services Description
Language (WSDL), which is written in enough detail to
allow users to build client applications to talk to Web
Services, and (3) Web Services are registered So that potential
users can find Web services easily using Universal Discov
ery Description and Integration (UDDI). In other words, a
Web service is a piece of software exposed on the Web
through a particular protocol, described with a particular
WSDL contract, and registered in a parcticular location in
the UDDI.

0005. As discussed above, a WSDL contract describes
interfaces of Web services in enough detail to allow a user

Apr. 1, 2004

to build a client application. More particularly, a WSDL
contract is a document that describes a set of messages
written in a particular protocol and how these messages are
to be exchanged. In other words, a WSDL contract describes
a Web service interface in terms of messages the Web
Service can generate and accept. WSDL contracts are read
able and editable, but in most cases, WSDL contracts are
intended to be produced and consumed by Software.
0006 To see the value of WSDL contracts, consider a
user who desires to call a method in a Web service that is
provided by one of the user's business partners. The user can
obtain from the business partner Some Sample messages
generated and accepted by the method. Then the user can
proceed to write an application to produce and consume
messages that look like the given Sample messages. This
technique is fraught with errors, however. For example, the
user might See a customer identification "2837 in a message
and assume that the identification is an integer when, in fact,
it is a String. WSDL contracts Specify what a request
message must contain and what the response message will
look like in an unambiguous notation.
0007. The notation that WSDL contracts use to describe
message formats is based on the XML Schema Standard,
which is not dependent on any particular programming
language, and is Suitable for describing Web Services inter
faces that can be accessible from a wide variety of platforms
and programming languages. In addition to describing mes
sage content, WSDL contracts define where the service is
available and what communications protocol can be used to
talk to the service. Thus, a WSDL contract should define
everything that is required to write an application to work
with a Web service.

0008 Unfortunately, WSDL contracts lack the expressive
power to define precisely how an application is to interact
with a Web service. Although the term “contract” means a
binding agreement between two Software entities, an appli
cation that is interacting with a Web Service is free to ignore
the terms of a WSDL contract. Thus, a WSDL contract
appears as nothing more than a paper tiger. A System 100
shown in FIG. 1 illustrates this problem in greater detail.
0009. The system 100 includes a client 102, which is a
computer that accesses shared network resources being
provided by another computer, Such as a Server 106, on a
local area network or wide area network Such as the Internet
104. A number of Web services 108,110, are statically stored
on the client 102 and the server 106. Web services 108, 110
are composed of programs 108A, 110A, and WSDL con
tracts 108B-110B.

0010 Each WSDL contract can be divided into two major
Sections. The first Section contains abstract definitions and
the Second Section contains concrete descriptions. The
abstract definitions define contractual elements in a plat
form-independent and language-independent manner. The
abstract definitions do not contain machine-Specific or lan
guage-specific elements. This helps define a Set of Services
that several diverse Web sites can implement. Site-specific
elements, Such as data Serialization, are relegated to the
concrete descriptions. Abstract definitions include defini
tions for types, messages, and port types. the concrete
descriptions Specify bindings and Services. The types Section
declares data types used in a WSDL contract. The messages
Section defines parameters to operations (i.e., methods). The

US 2004/OO64528A1

port types Section defines one or more operations that can be
invoked by applications (and other Web services) external to
a Web service described by a WSDL contract. The bindings
Section can have one or more binding elements whose
purpose is to Specify how each call and response to an
operation is sent or received over the network 104 in
accordance with a protocol. The Services Section has one or
more Service elements, each of which contains port ele
ments, and each of which in turn refers to a binding element
in the bindings Section.

0.011 Structure 112 illustrates the relationship among
contractual elements of the contract 108B and is shown in
block diagram form. A port type 112D declares a number of
operation elements. Operation elements within a port type
define the Syntax for calling all methods declared in a
port type, Such as a prepare operation 112E, a "do work”
operation 112F, and a “clean up' operation 112G. Thus, each
operation element in a port type defines the name of the
method, the parameters (using messages), and the type of
each parameter. There can be Several port types within a
WSDL contract. Each port type groups together a number of
related operations.

0012. A binding element 112C specifies the protocol,
Serialization, and encoding to be used for each operation
112E-112G of the port type 112D. A port element 112B
asSociates an Internet location with the binding 112C in a
one-to-one correspondence Via the use of a Uniform
Resource Locator (URL). A service element 112A contains
a set of port elements, such as the port 112B. There can be
more than one service element in a WSDL contract. Each
Service element can be used to group together ports accord
ing to a URL destination. For example, a developer can
redirect all Service requests simply by using another Service
element, and external Web services can still interact with a
Web service. Another use of the service element is to classify
the ports according to an underlying protocol. For example,
a developer can put all HTTP ports in one service element
and all SMTP ports in another. An external Web service can
then Search the WSDL contract 108B for the Service that
matches the protocol that it can deal with.

0013 As indicated above, the WSDL contract 108B
includes Several operations, Such as the “prepare” operation
112E, the “do work' operation 112F, and the “clean up'
operation 112G, which can be invoked to access the Services
provided by the Web service 108. However, the “prepare”
operation 112E should be invoked before the “do work”
operation 112F, and the “do work' operation 112F should be
invoked before the invocation of the “clean up' operation
112G. Prior WSDL contracts lack the expressiveness power
to communicate this ordering information to other Web
services, such as the Web service 110, that may desire the
services of the Web service 108. For example, the Web
service 110 may choose to initially call the “clean up'
operation 112G instead of first invoking the prepare opera
tion 112E. This could be catastrophic to the working of the
Web service 108 in that it may corrupt the internal execution
state of the Web service 108. Moreover, Suppose that the
Web service 110 is malicious. In this case, the Web service
110 can exploit this weakness of the Web service 108 by
calling operations 112E-112G out of Sequence Simply to
wreak havoc with the proper operation of the Web service
108. If Web services can be inappropriately exploited in this

Apr. 1, 2004

fashion, trustworthiness of Web services will be questioned
and their use will be diminished and eventually extinguished
from the marketplace.
0014 Thus, there is a need for better methods and sys
tems for allowing Web services to safely interact with other
Web Services while avoiding or reducing the foregoing and
other problems associated with existing Web services.

SUMMARY OF THE INVENTION

0015. In accordance with this invention, a system,
method, and computer-readable medium for improving the
safe interoperability of Web services is provided. The system
form of the invention comprises a first Web service for
offering computing Services and a Second Web Service that
desires the computing services offered by the first Web
service. The first Web service includes a first port for
transmitting and receiving messages and the Second Web
Service includes a Second port for transmitting and receiving
messages. The first port includes a first port type and the
Second port includes a Second port type. The Second port is
fusable with the first port for safe access to the services
offered by the first Web service if the second port type is
compatible with the first port type.
0016. In accordance with further aspects of this inven
tion, a further System form of the invention comprises a first
Web service offering a first set of services and a second Web
service offering a second set of services. The first Web
Service includes a first safety (that programmatically
expresses safe access to the first set of Services) and a second
Web service includes a second safety (that programmatically
expresses safe access to the Second set of Services). The
Second Web service accesses the first set of Services and the
first Web service accesses the second set of services if the
Second Safety is able to programmatically align with the first
Safety.

0017. In accordance with further aspects of this inven
tion, another System form of the invention comprises a first
Web service offering services. The first Web service includes
a Safety that programmatically describes an order in which
to access the offered Services. The System further comprises
a second Web Service that desires to use the services offered
by the first Web service. The second Web service accepts the
safety of the first Web service to form a virtual contract with
the first Web service So that the Second Web Service can
access the offered Services.

0018. In accordance with further aspects of this inven
tion, a computer-readable form of the invention Stores a
customizable, tag-based data Structure Suitable for use by a
Web service to evaluate safe interoperability with another
Web service. More particularly, the data structure comprises
a port type tag that is indicative of operations capable of
being invoked by Web services and a safety tag that is
indicative of a Safety that programmatically specifies an
order by which Web services invoke the operations.
0019. In accordance with further aspects of this inven
tion, the method form of the invention is implementable in
a computer System. The method comprises creating a set of
operations that are capable of being invoked by Web ser
vices and creating a Safety that specifies the permissible
invocation permutations of the Set of operations.
0020. In accordance with further aspects of this inven
tion, another method form of the invention is a computer

US 2004/OO64528A1

implementable method for checking the compatibility of a
first port type of a first Web service and a second port type of
the Second Web Service. The method comprises extracting a
first safety from the first port type of the first Web service and
a second safety from the second port type of the second Web
Service. The method further comprises testing the compat
ibility of the first safety with the second safety by binding
the first safety with the second safety to determine whether
the result of the binding is an input-guarded process.

BRIEF DESCRIPTION OF THE DRAWINGS

0021. The foregoing aspects and many of the attendant
advantages of this invention will become more readily
appreciated as the Same become better understood by ref
erence to the following detailed description, when taken in
conjunction with the accompanying drawings, wherein:
0022 FIG. 1 is a block diagram illustrating a conven
tional Web services system;
0023 FIG. 2 is a block diagram illustrating an exemplary
computing device;
0024 FIGS. 3A-3C are block diagrams illustrating the
creation of a Specification for a Web Service that contains
safeties to define the order in which operations of a Web
Service are to be invoked;
0.025 FIG. 4 is a textual diagram illustrating syntaxes of
an exemplary programming language, which is an artificial
language that can be used to define a Sequence of instruc
tions that can ultimately be processed and executed for
expressing Safeties used in interoperability agreements
among Web services;
0026 FIGS. 5A-5C are block diagrams illustrating the
safe interoperability of two Web services when their ports
have been fused pursuant to the formation of a virtual
contract between the two Web services;
0.027 FIGS. 6A-6I are diagrams illustrating the creation
of a virtual contract for Safe interoperability among three
Web services, each Web service providing a service or
resource to another Web service in the virtual contract;
0028 FIGS. 7A-7B are diagrams illustrating syntaxes of
another exemplary programming language for forming Safe
ties used in interoperability agreements among Web Ser
vices, and
0029 FIGS. 8A-8O are method diagrams illustrating an
exemplary method formed in accordance with this invention
for verifying the compatibility of port types among Web
Services So as to form Safe interoperability among Web
Services.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

0030 FIG. 2 illustrates an example of a computing
system environment 200 suitable for practicing certain
aspects of the invention, Such as executing programs of Web
services and verifying the specifications of Web services for
Safe interoperability. The computing System environment
200 is only one example of a Suitable computing environ
ment and is not intended to Suggest any limitation as to the
scope of use or functionality of the invention. Neither should
the computing environment 200 be interpreted as having any

Apr. 1, 2004

dependency or requirement relating to any one or combina
tion of the illustrated and described components.
0031. The invention is operational with numerous other
general purpose or Special purpose computing System envi
ronments or configurations. Examples of well-known com
puting Systems, environments and/or configurations that
may be suitable for use with the invention include, but are
not limited to, personal computers, Server computers, hand
held or laptop devices, multiprocessor Systems, micropro
ceSSor-based Systems, Set top boxes, programmable con
Sumer electronics, network PCs, minicomputers, mainframe
computers, distributed computing environments that include
any of the above Systems or devices, and the like.
0032. The invention is described in the general context of
computer-executable instructions, Such as program modules
being executed by a computer. Generally, program modules
include routines, programs, objects, components, data Struc
tures, etc. that perform particular tasks or implement par
ticular abstract data types.
0033. The invention may also be practiced in distributed
computing environments where tasks are performed by
remote processing devices that are linked through a com
munications network. In a distributed computing environ
ment, program modules may be located in both local and
remote computer Storage media, including memory Storage
devices.

0034. The computing system environment illustrated in
FIG. 2 includes a general purpose computing device in the
form of a computer 210. Components of computer 210 may
include, but are not limited to, a processing unit 220, a
system memory 230, and a system bus 221 that couples
various System components including the System memory to
the processing unit 220. The system bus 221 may be any of
Several types of bus Structures, including a memory bus or
memory controller, a peripheral bus, and a local bus using
any of a variety of bus architectures. By way of example,
and not limitation, Such bus architectures include Industry
Standard Architecture (ISA) bus, Micro Channel Architec
ture (MCA) bus, Enhanced ISA (EISA) bus, Video Elec
tronics Standards Association (VESA) local bus, and Periph
eral Component Interconnect (PCI) bus, also known as
Mezzanine bus.

0035 Computer 210 typically includes a variety of com
puter-readable media. Computer-readable media can be any
available media that can be accessed by computer 210 and
includes both volatile and nonvolatile media, removable and
non-removable media. By way of example, and not limita
tion, computer-readable media may comprise computer Stor
age media and communication media. Computer Storage
media includes both volatile and nonvolatile, removable and
non-removable media implemented in any method or tech
nology for Storage of information, Such as computer-read
able instructions, data structures, program modules, or other
data. Computer Storage media include, but is not limited to,
RAM, ROM, EEPROM, flash memory or other memory
technology, CD-ROM, digital versatile disks (DVD) or other
optical disk Storage, magnetic cassettes, magnetic tapes,
magnetic disk Storage or other magnetic Storage devices, or
any other computer Storage media. Communication media
typically embody computer-readable instructions, data
Structures, program modules or other data in a modulated
data Signal, Such as a carrier wave or other transport mecha

US 2004/OO64528A1

nism that includes any information delivery media. The term
"modulated data Signal” means a signal that has one or more
of its characteristics Set or changed in Such a manner as to
encode information in the Signal. By way of example, and
not limitation, communication media include wired media,
Such as a wired network or direct-wired connection, and
wireleSS media, Such as acoustic, RF infrared, and other
wireless media. A combination of any of the above should
also be included within the Scope of computer-readable
media.

0.036 The system memory 230 includes computer stor
age media in the form of Volatile and/or nonvolatile memory,
such as read only memory (ROM) 231 and random access
memory (RAM) 232. A basic input/output system 233
(BIOS), containing the basic routines that help to transfer
information between elements within computer 210, such as
during start-up, is typically stored in ROM 231. RAM 232
typically contains data and/or program modules that are
immediately accessible and/or presently being operated on
by processing unit 220. By way of example, and not limi
tation, FIG. 2 illustrates operating System 234, application
programs 235, other program modules 236, and program
data 237.

0037. The computer 210 may also include other remov
able/non-removable, Volatile/nonvolatile computer Storage
media. By way of example only, FIG. 2 illustrates the hard
disk drive 241 that reads from or writes to non-removable,
nonvolatile magnetic media, the magnetic disk drive 251
that reads from or writes to a removable, nonvolatile mag
netic disk 252, and an optical disk drive 255 that reads from
or writes to a removable, nonvolatile optical disk 256, such
as a CD-ROM or other optical media. Other removable/non
removable, Volatile/nonvolatile computer Storage media that
can be used in the exemplary operating environment
include, but are not limited to, magnetic tape cassettes, flash
memory cards, digital versatile disks, digital Videotapes,
Solid state RAM, Solid state ROM, and the like. The hard
disk drive 241 is typically connected to the system bus 221
through a non-removable memory interface, Such as inter
face 240, and the magnetic disk drive 251 and optical disk
drive 255 are typically connected to the system bus 221 by
a removable memory interface, such as interface 250.
0.038. The drives and their associated computer storage
media discussed above and illustrated in FIG. 2 provide
Storage of computer-readable instructions, data Structures,
program modules and other data for the computer 210. In
FIG. 2, for example, hard disk drive 241 is illustrated as
Storing operating System 244, application programs 245,
other program modules 246, and program data 247. Note
that these components can either be the same as or different
from operating System 234, application programs 235, other
program modules 236, and program data 237. Operating
System 244, application programs 245, other program mod
ules 246, and program data 247 are given different numbers
here to illustrate that, at a minimum, they are different
copies. A user may enter commands and information into the
computer 210 through input devices, Such as a keyboard 262
and pointing device 261, the latter of which is commonly
referred to as a mouse, trackball, or touch pad. Other input
devices (not shown) may include a microphone, joystick,
game pad, Satellite dish, Scanner, or the like. These and other
input devices are often connected to the processing unit 220
through a user input interface 260 that is coupled to the

Apr. 1, 2004

System bus, but may be connected by other interface and bus
Structures, Such as a parallel port, game port, or universal
serial bus (USB). A monitor 291 or other type of display
device is also connected to the System buS 221 via an
interface, Such as a video interface 290. In addition to the
monitor, computerS may also include other peripheral output
devices, such as speakers 297 and printer 296, which may be
connected through an input/output peripheral interface 295.

0039 The computer 210 may operate in a networked
environment using logical connections to one or more
remote computers, Such as a remote computer 280. The
remote computer 280 may be a personal computer, a Server,
a router, a network PC, a peer device, or other common
network node, and typically includes many or all of the
elements described above relative to the computer 210,
although only a memory Storage device 281 has been
illustrated in FIG. 2. The logical connections depicted in
FIG. 2 include a local area network (LAN) 271 and a wide
area network (WAN) 273, but may also include other
networkS. Such network environments are commonplace in
offices, enterprise-wide computer networks, intranets, and
the Internet.

0040. When used in a LAN networking environment, the
computer 210 is connected to the LAN 271 through a
network interface or adapter 270. When used in a WAN
networking environment, the computer 210 typically
includes a modem 272 or other means for establishing
communications over the WAN 273, Such as the Internet.
The modem 272, which may be internal or external, may be
connected to the System buS 221 via the input/output periph
eral interface 295, or other appropriate mechanism. In a
networked environment, program modules depicted relative
to the computer 210, or portions thereof, may be stored in
the remote memory Storage device. By way of example, and
not limitation, FIG. 2 illustrates remote application pro
grams 285 as residing on memory device 281. It will be
appreciated that the network connections shown are for
illustrative purposes only and other means of establishing a
communication link between the computerS may be used.

0041 FIG.3B illustrates a Web service 300 that includes
a program 300A, which is a Sequence of instructions of the
Web service 300 that can be executed by a computing
device, and a specification 300B (shown as “spec” in the
drawings), which is a description of the interfaces of the
Web service 300. The specification 300B, unlike a WSDL
contract, contains Safety rules (hereinafter "safeties”) that
describe an order in which external Web services can invoke
the operations of the Web service 300. In other words, each
safety describes the allowable or permissible invocation
permutations of the operations of the Web service 300 with
which external Web Services can call to access the Services
offered by the Web service 300. If these safeties are not
acceptable to an external Web service who is desirous of
using the services of the Web service 300, no virtual contract
will be formed. Otherwise, if the safeties are acceptable to
the external Web Service, a virtual contract will be formed,
and safe interoperability between the external Web service
and the Web service 300 is possible.

0042 Ablock diagram that illustrates the structure 302 of
the Web Service 300 is shown in FIG. 3A. A Service element
302A taxonomically differentiates other services described
by the specification 300B by grouping together a set of ports

US 2004/OO64528A1

(not shown). Each port is associated with a port type. The
structure 302 has a port type 302B. The port type 302B
declares a number of operations, Such as a prepare operation
302D, a dowork operation 302E, and a cleanup operation
302F. For clarity purposes, the following terms are used as
follows in the discussion below: the term “operation” is used
interchangeably with the term “message” (in contrast, the
term “message' in a WSDL contract means only an argu
ment to an operation); the term "parameter is used to denote
an argument to an operation; and the term “binding” is used
to mean a programmatic relationship between two Safeties,
which are explained below (in contrast, the term “binding”
in a WSDL contract means an association of a port type with
a particular transfer protocol).
0043. The order in which operations 302D-302F are to be
invoked is specified by safeties 302C which have the fol
lowing forms: (1) S=prepare.SW; and (2)
SW=(dowork).SW+(cleanup). The safeties 302C are textu
ally expressed by a portion 304 of the specification 300B.
See FIG. 3C. Line 304A contains the keyword port type,
which declares the commencement of a definition for a
port type; a designator “start work Stop', which is the name
of the port type; and an open curly bracket “”, which has a
matching closed curly bracket “}” to delimit a block of text
that programmatically defines the port type. Line 304B
declares the prepare operation 302D, which takes a String as
a parameter. Line 304C declares a dowork operation 302E as
well as its parameter, a String. Line 304C declares a cleanup
operation 302F that has a String parameter.

0044) These operations declared on lines 304B-304D are
the operations available to an external Web service for it to
access the Services of the Web Service 300. For Some Web
Services, operations should be invoked in a particular order
for proper interoperability with these Web services. For
example, in the Web service 300, the prepare operation
302D should be called before the dowork operation 302E,
and the dowork operation 302E should be called before the
invocation of the cleanup operation 302F. To allow this
ordering information to be conveyed, one or more Safeties
can be formed in accordance with this invention. See lines
304E, 304F. Permutational nuances of a safety can be
expressed using the human-readable syntax 400 shown in
FIG. 4 (described below); the model syntax 702 shown in
FIG. 7A (described below); or the transfer syntax discussed
in Appendix B.

0045. The safeties on lines 304E, 304F is expressed as
two sentences: (1) S=prepare.SW; and (2)
SW=(dowork).SW+(cleanup). The letter S is the name of the
first safety and the letter SW is the name of the second safety.
Each equal sign "=" indicates that the Safety is equated to a
rule on the right-hand Side of the equal Sign "=''. Preceding
the period “.” of the safety S is the prepare operation 302D
indicating that the prepare operation 302D is to be invoked
first after which the safety SW is in force. The period “.”
after the dowork operation 302E but before the safety SW
indicates that the dowork operation 302E is invoked after
which a recursion of the safety SW can occur. In other
words, the phrase “.SW’’ following the dowork operation
302E indicates that Zero or more invocations of the dowork
operation 302E may be possible. The plus sign "+" indicates
that either the dowork operation 302E or the cleanup opera
tion 302F may be invoked following the invocation of the
prepare operation 302D. The cleanup operation 302F placed

Apr. 1, 2004

last in the sentence of the safety SW indicates that the
cleanup operation 302F should be called last or invoked by
an external Web service using the services of the Web
service 300. Each semicolon ";" following safeties S and
SW indicates the termination of the sentence of the safeties
on lines 304E, 304F.
0046 Port types and safeties can be expressed using the
human-readable syntax 400 illustrated in FIG. 4 (after
which they can be preferably placed in a specification of a
Web service, such as the specification 300B). Line 400A
contains a definition for a port: port type designator signa
ture; Safety;}, where port type is a keyword declaring the
commencement of the definition of a port type; designator is
an identifier of the port type; the pair of open and closed
curly brackets delimit expressions that define the port type;
and safety indicates rules that define the order in which to
invoke the operations described by the Signatures. Each
Signature has the Syntactical expression “designator (des
ignator:lineartype,designator:lineartype) shown on line
400B, where the first designator is the identifier of a par
ticular operation; the Second and third designators bound by
the, pair of parentheses indicate identifiers of parameters of
the operation; and the two linear types define the data type
of each parameter (for brevity purposes, only two parameter
slots are defined for the signature on line 400B, but more
than two are possible); the colon ":" indicates that the
designator of a parameter on the left-hand Side of the colon
has the data type declared on the right-hand Side of the
colon; the comma", delimits one parameter from another
parameter; and the pair of parentheses "()" delimit the
parameters and their types used by the operation.

0047 Lines 400C-4001 define various types of safeties. A
stop safety is declared on line 400C. A stop safety denotes
inactivity or termination of a Safety. A sequence Safety
declared on line 400D defines an order in which to invoke
an operation or a message of a Web Service. A choice Safety
and a menu safety declared on lines 400F, 400G denote
alternatives that can be chosen in a safety. On line 400G, a
parallel Safety is defined to denote concurrent, distributed
processing of two Safeties. A recursion Safety, which defines
a variable whose use is recursive in a Safety, is declared on
line 400H. A reference safety declared on line 400I denotes
that a Safety can be given a name to be used in combination
with other safeties. Line 400J shows that the stop safety is
composed of the symbol Zero “0”. The sequence safety is
composed of a signature of a function followed by a period
“...', which is then followed by another safety. See line 400K.
Whereas the choice safety is composed of two safeties
separated by a plus sign "+” (see line 400L), the menu safety
is composed of two Safeties Separated by an ampersand Sign
“&” (see line 400M). The parallel safety defined on line
400N is composed of two safeties separated by a vertical
Sign “I”. The recursion Safety is composed of a keyword
“rec' followed by a pair of parentheses, which bound a
designator, and is followed by a period and another Safety
rule. See line 400O. Using the recursion safety, safeties
(S=prepare.SW; SW=(dowork).SW+(cleanup)) can be
equivalently written as a safety (prepare.rec
(SW).((dowork).SW+(cleanup))). Line 400P indicates that a
reference Safety is simply a designator, which is a name or
an identifier.

0048. Using the human-readable syntax 400, expressive
nuances of Safeties can be specified to enhance Safe interop

US 2004/OO64528A1

erability among Web services. Each safety is preferably
placed in a port type definition in a Web Service's Specifica
tion. The human-readable syntax 400 is illustrated here for
ease of discussion in figures following FIG. 4. A more
restrained, but equally expressive is the model syntax 702
illustrated in FIG. 7A (described below). Similar subtle
variations of Safeties can also be expressed using the transfer
Syntax described in Appendix B. The transfer Syntax is
formed using a Suitable customizable, tag-based language.
Any Suitable customizable, tag-based language can be used.
One Suitable language includes the XML Schema language.
The transfer syntax is preferably used to fit safeties formed
in accordance with this invention into existing port type
definitions of WSDL contracts.

0049. A fileserver Web service 502 is shown at FIG. 5A
in block diagram form. The fileserver Web service provides
file storage services for other Web services on the network.
Unlike a disk server, the filerserver Web service 502 not only
Stores files but manages them and maintains order as other
Web Services request files and make changes to them. To
deal with the tasks of handling multiple (Sometimes simul
taneous) requests for files, the Web service 502 interacts
with processors and controlling Software as well as disk
drives for Storage.
0050. The fileserver Web service 502 includes a service
element 502A, and a port type 502B, among other elements
(not shown). The port type 502B defines a number of opera
tions, Such as an open operation 502D, a read operation
502E, a write operation 502F, and a close operation 502G.
These operations 502D-502G are further defined in a portion
504 of a fileserver Web service's specification. See FIG.5B.
The port type 502B also defines safeties 502C, which specify
the order with which external Web services access the
services offered by the fileserver Web service 502D via
operations 502D-502G. The safeties 502C are further
defined in the portion 504. See lines 504F, 504G. A port
502H of the fileserver Web Service 502 allows other Web
Services to fuse (described in detail below) in order to access
the services of the fileserver Web service 502B by invoking
operations 502D-502G.
0051. The portion 504 focuses on one port type definition
among many port types of the fileServer Web Service's Speci
fication. Line 504A contains the keyword port type followed
by the designator “fileServer', and a pair of open and closed
curly brackets for delimiting the definition of the fileserver
port type 502B. Line 504B declares the signature of the open
operation 502D that takes a file name as a parameter. In all
cases, to use the services of the fileserver Web service 502,
external Services Specify the name of the file to be opened
via the open operation 502D. Thus, the open operation 502D
should be the first operation that is invoked by external Web
Services for each particular file Server Session. The read
operation 502E is declared on line 504C. The read operation
takes a client's port as a parameter. When the read operation
502E is invoked by external Web services, the fileserver
Web service 502 reads a chunk of data from an opened file,
and transmits the read data toward the given client's port.
External Web services can also write information to opened
files via the write operation 502F, which is declared on line
504D. The write operation takes data as a parameter. This
data is written by the write operation to the opened file.
When all desired operations have been carried out on the
opened file, the opened file can be closed via the close

Apr. 1, 2004

operation 502G, which is declared on line 504E. The close
operation 502G takes a file name as an argument So that the
close operation 502G knows which file to close.

0.052 Lines 504F-504G contain the safeties of the
fileserver port type 502B. Line 504F contains a safety sen
tence: S=open. Srw, where S is a Safety rule, open denotes
that the open operation 502D is the first operation to be
invoked in a file server session; the period “.” denotes that
additional Safeties are to follow the invocation of the open
operation 502D; Srw refers to a second safety defined
further on line 504G. Line 504G contains the following
safety sentence: Srw read.Srw&write.Srw&close, where
Srw denotes the second safety; read.Srw denotes the invo
cation of the read operation 502E, which is then followed by
the Second Safety again (a recursion); write. Srw denotes the
invocation of the write operation 502F, which is then fol
lowed recursively by the Second Safety, close denotes the
invocation of the close operation 502G, and the ampersands
“&’ denote choices that external Web services can make to
invoke among the read operation 502E, the write operation
502F, or the close operation 502G.
0053 A system 500 shows the interoperability of Web
Services 502, 508 after a virtual contract has been created.
See FIG. 5C. A virtual contract is created when the port
types of ports 502H, 508A between the Web services 502,
508 are compatible. More particularly, a virtual contract is
created when the safeties of the port types of ports 502H,
508A are acceptable to both the Web services 502, 508. A
Virtual contract is not Something that physically exists but it
is present when the Safeties of port types align with each
other in a way that ensures Safe interoperability between
Web services 502,508. For clarity purposes, many elements
of the fileserver Web Service 502 are not shown in FIG. 5C.
The fileserver Web service 502 can be executed on a
computing device, Such as a cellular phone 506, the client
Web service 508 can be executed on a computing device,
such as a personal digital assistant 510; and a store Web
Service 512 can be executed on a computing device, Such as
a desktop computer 514.

0054) The port 508A of the client Web service 508 is
shown to be fused to the port 502H of the fileserver Web
service 502. This fusing between the client Web service 508
and the fileserver Web service 502 is possible after the client
Web service 508 has shown that it is willing to comply with
the safeties of the fileserver port type 502B. With the fusing
of ports 508A-502H, the client Web service 508 can access
and invoke operations 502D-502G of the fileserver Web
service 502 in accordance with and in the manner specified
by the safeties of the fileserver port type.

0055 Suppose that the client Web service 508 has already
invoked the open operation 502D to open a file. The client
Web service 508 can invoke the read operation 502E to
obtain the read data. In the invocation of the read operation
502E, the client Web service 508 provides a port 508B to
receive the read data after the invocation of the read opera
tion 502E. The fileserver Web service 502 includes a port
502I for transmitting the read data toward the port 508B. It
is not necessary, however, that the port 508B be an actual
port at the client Web service 508. The port 508B can be
virtually provided by another Web service, such as the store
Web service 512. A virtual contract may have been formed
between the client Web Service 508 and the Store Web

US 2004/OO64528A1

Service 512 to Store information in a particular manner
desired by the client Web service 508. Instead of providing
the port 508B as a parameter to the read operation 502E, the
client Web service can provide the port 512A of the store
Web service 512 so that the data read by the read operation
502E will be automatically forwarded to the store Web
Service 512. This can occur unbeknownst to the fileserver
Web service 502. Each port is thus a transferable quantity
that can be given to a Web Service to expand the commu
nication possibilities of a Web service. In this example, the
prior scope of the fileserver Web service 502 is limited to the
interaction with the client Web service 508 but can later be
expanded to include the store Web service 512 when the port
512A is transferred to the fileserver Web Service 502 via the
client Web Service 508.

0056. The joining of Web services, such as the fileserver
Web service 502 to the store Web service 512, is accom
plished via a virtual contract through the use of Safeties
formed in accordance with this invention. This joining of
Web services heightens the safe interoperability of Web
Services to create greater functionality than each Web Ser
Vice alone can provide. Moreover, because the joining of
Web services is formed programmatically, Web services are
more trustworthy, dependable, and available if the safeties of
Web Services are complied with. The programmatic joining
formed in accordance with this invention reduces or elimi
nates mistakes, lost requests, faults in the face of invalid
requests, or corrupt persisted data in the interoperability of
Web Services.

0057 The discussion above in connection with FIGS.
3A-3C introduces the notion of safeties to a specification of
a Web Service. Because a port type contains declarations of
operations that external Web Services can invoke to acceSS
services offered by a desired Web service, safeties are
preferably placed inside a port type. AS also discussed above,
Safeties describe the order with which external Web Services
must invoke the operations of a desired Web service to
obtain desired services. If an external Web service cannot
comply with the safeties of another Web service at the
outset, there is no binding agreement (a virtual contract)
between the two Web services, and the noncomplying Web
Service cannot invoke the services of the other Web service.
One example of a creation of a virtual contract between two
Web services is discussed above in connection with FIGS.
5A-5C. Because the client Web service 508 is willing to
comply with the safeties of the file server Web service 502,
the port 508A of the client Web service 508 can be fused to
the port 502H of the file server Web service 502. Such a
fusing allows the client Web service 508 to invoke the
services of the file server Web service 502 at the port 502H.
More particularly, a virtual contract can be created when the
port type of the port 508A of the client Web service 508 is
programmatically compatible (or complies with the Safeties
of) the port type of the port 502H of the file server Web
service 502. Instead of forming a virtual contract between
two Web services, the discussion in connection with FIGS.
6A-6I focuses on a binding agreement among three Web
services (a purchaser Web service 602, a Supplier Web
service 606, and a shipper Web service 610) formed in
accordance with this invention. However, Virtual contracts
can be formed without regard to the number of participating
Web services as long as each Web service is willing to
comply with the Safeties of other participating Web Services.

Apr. 1, 2004

0.058. The purchaser Web service 602 includes a service
element 602A and a port type element 602B, among other
elements (not shown). The port type 602B includes an ini
tiatepurchase operation 602D, a confirmpurchase operation
602E, and a safety 602C that specifies the invocation of
operations 602D-602E. The purchaser Web service 602 also
includes a port 602F whose data type is the port type 602B.
See FIG. 6A. A portion 604 of the purchaser Web service's
specification is illustrated in FIG. 6B. Line 604A contains
the keyword port type; the designator “purchaser of the
port type; and an open curly bracket “”, which has a
companion closed curly bracket to delimit the definition of
the purchaser port type 602B. Line 604B contains a signature
for the initiatepurchase operation 602D, which has two
parameters. One parameter is a purchase order parameter
designated as “PO”. The other parameter is an advanced
shipping notice “-ASN', where the tilde “-” denotes that
the purchaser Web service 602 consumes the data repre
sented by the parameter ASN. Line 604C contains a signa
ture of the confirmpurchase operation 602E, which takes an
“invoice' parameter and a “goods' parameter. The invoice
parameter is qualified by a tilde “-” to denote that the
purchaser Web service 602 consumes the data represented
by the invoice parameter. Both the PO parameter and the
goods parameter are not qualified by the tilde, hence indi
cating that the purchaser Web service 602 is the producer or
the Source of the data represented by these parameters. Line
604D contains a safety for the purchaser port type 602B. In
brief, the invocation of the initiatepurchase operation 602D
must occur before the invocation of the confirmpurchase
operation 602E, which is then followed by a recursion of the
invocation of operations 602D, 602E.
0059) The supplier Web service 606 is illustrated in block
diagram form in FIG. 6C. The supplier Web service 606
includes a Service element 606A and a port type element
606B, among other elements (not shown). The port type
606B is a data type for a port 606F of the supplier Web
service 606. The port type 606B contains a receivepo opera
tion 606D, a sendinvoice operation 606E, and a safety 606C
that specifies the invocation order of operations 606D, 606E.
The supplier Web service 606 also includes a port 606F
whose data type is the port type 606B. A portion 608 of the
supplier Web service's specification is shown in FIG. 6D.
Line 608A contains the declaration of a supplier port type
606B and includes an open curly bracket “ ”, which has a
companion closed curly bracket to delimit the definition of
the Supplier port type 606B. Line 608B contains a signature
of the receivepo operation, which takes the purchase order
“-PO” as a parameter. The tilde indicates that the Supplier
Web service 606 consumes the data represented by the
purchase order ~PO parameter. Line 608C contains a sig
nature of the sendinvoice operation 606E, which takes the
invoice as a parameter. Line 608D contains a safety for the
supplier port type 606B. In brief, the receivepo operation
606D is to be invoked prior to the invocation of the
sendinvoice operation 606E, which can then be followed by
the recursion of the invocation of operations 606D, 606E.
0060. As shown in FIG. 6E, the shipper Web service 610
includes a Service element 610A and a port type element
610B, among other elements (not shown). The port type
610B describes the data type of a port 610F of the shipper
Web service 610. The port type 610B includes a notifyof
shipment operation 610D, a confirmreceipt operation 610E,
and a safety 610C, which specifies the invocation order of

US 2004/OO64528A1

operations 610D, 610E. A portion 612 of the shipper Web
service's specification is illustrated in textual form in FIG.
6F. Line 612A contains the declaration of the shipper
port type 610B and an open curly bracket “{", which has a
companion closed curly bracket “” to delimit the definition
of the shipper port type 610B. Line 612B contains a signature
of the notifyofshipment operation 610D, which takes the
advance Shipping notice "ASN as a parameter. Because the
advanced shipping notice ASN is not qualified by a tilde, the
shipper Web service 610 is a producer or a source of the data
represented by the ASN parameter. Line 612C contains a
Signature of the confirmreceipt operation 610E, which takes
"-goods” as an argument. The tilde in front of the designator
“goods' denotes that the shipper Web service 610 is a
consumer of the data represented by the "goods' parameter.
Line 612D contains a safety for the shipper port type 610B.
In brief, the invocation of the notifyofshipment operation
610D occurs before the invocation of the confirmereceipt
operation 610E, and after which, a recursion of the invoca
tion of the operations 610E, 610E may occur.
0061 A portion 614 of a program for expressing the
composition of the purchaser Web service 602, the Supplier
Web service 606, and the shipper Web services 610 is shown
in FIG. 6G. Line 614A contains a signature of a purchaser
Web service 602, which has a port designated as “PC”
having the purchaser port type 602B. Line 614B contains a
signature of the supplier Web service 606, which has a port
designated as “PS' having the Supplier port type 606B. Line
614C contains a signature for the shipper Web services 610,
which has a port designated as “PH' having the Shipper
port type 610B.
0.062 Line 6141 contains the keyword service, which
heralds the commencement of the definition of a Web
Service or a composition of Web Services, the designator
“Scm purchaser Supplier shipper”, which denotes the name
of a composition of Web services 602, 606, and 610; and an
open curly bracket “”, which has a companion closed curly
bracket “” to delimit the definition of the composition of
Web services. Line 614J contains the keyword new, which
defines unique names for ports and associates these ports
with particular port types: a new port “PC” of the purchaser
port type 6002b; a new port “PS' of the supplier port type
606B; a new port “PH" of the shipper port type 610B; and an
open curly bracket “”, which has a companion closed curly
bracket “}” to delimit the scope of operations for these new
ports PC, PS, and PH. Line 614K contains the keyword
parallel, which denotes that Services and processes
expressed between an open curly bracket “” and a com
panion closed curly bracket “” are to be executed in
parallel.

0.063 Line 614L contains an invocation of another Web
Service composition called “Scm Purchaser Supplier,
which takes the ports PC, PS as parameters. Digressing, the
definition of the Web service composition “scm purchaser
Supplier” begins at line 614D. Line 614D contains the
keyword service indicating that a definition for Web services
or composition of Web services is about to commence; the
designator Scm purchaser Supplier denotes the name of the
Web service composition; the parameter PC, which is a port
602F of the purchaser port type 602B, a parameter PS, which
is the port 610F of the Supplier port type 610B; and an an
open curly bracket “”, which has a companion closed curly
bracket “” to delimit the definition of the Web service

Apr. 1, 2004

composition Scm purchaser Supplier. Line 614E contains
the keyword parallel denoting that Web services and pro
cesses defined between its open curly bracket “” and closed
curly bracket “” are to be executed in parallel. Line 614F
invokes the purchaser, Web service 602 with a port 602F
designated as PC. Line 614G invokes the Supplier Web
service 606 with the port 606F designated as PS. Line 614H
invokes the fusing mechanism formed in accordance with
this invention to fuse ports 602F (designated as PC) with
ports 606F (designated as PS). Whether ports 602F, 606F
can be fused depends on whether the port type 602B of the
purchaser Web service 602 is compatible with a port type
606B of the supplier Web service 606. More particularly, the
fusing of ports 602F, 606F is possible if the safety 602C of
the purchaser Web service 602 can be aligned with the safety
606C of the Supplier Web service 606 so as to produce an
input guarded process. In other words, if the safeties 602C,
606C can be aligned, it is programmatically Safe to fuse
ports 602F, 606F between the purchaser Web service 602
and the Supplier Web service 606. A virtual contract can be
created for the Safe interoperability between the purchaser
Web service 602 and the supplier Web service 606. This is
described in detail below in connection with FIGS. 8A-8O.

0064. Returning to the definition of the Web services
composition Scm purchaser Supplier shipper, line 614M
contains an invocation of the shipper Web service 610,
which takes the port 610F designated as PH as a parameter.
Line 614N contains an invocation of the fusing mechanism
formed in accordance with this invention between ports
602F (PC) and port 610F (PH). If the fusing between ports
cannot be accomplished due to incompatibility between
Safeties or port types, the ports will not be fused.
0065 FIG. 6H is a dynamic visual presentation of the
invocation of operations in a system 600 that includes the
purchaser Web service 602, the supplier Web service 606,
and the shipper Web service 610. The system 600 com
mences execution with the invocation of the initiatepurchase
operation 602D and the production of the purchase order
(PO). The purchaser Web service 602 then invokes the
receivepo operation 606D of the Supplier Web service 606,
provides the produced purchase order (PO), and the pur
chase order (-PO) is then consumed by the supplier Web
service 606. The sendinvoice operation 606E is then invoked
with the production of the invoice. The Supplier Web service
606 then invokes the confirmpurchase operation 602E or the
purchaser Web service 602, provides the produced invoice
(invoice), and the produced invoice (-invoice) is consumed
by the purchaser Web service 602. Next, the Supplier Web
service 606 invokes the notifyofshipment operation 610D of
the shipper Web service 610 and provides the advanced
shipping notice (ASN). The shipper Web service 610 then
provides the advanced shipping notice (ASN) to the pur
chaser Web service 602 and the purchaser Web service 602
consumes the advanced shipping notice (~ASN). The pur
chaser Web service 602 next invokes the confirmreceipt
operation 610E of the shipper Web service 610 and provides
the receipt of goods (goods). In turn, the shipper Web Service
610 provides the receipt of goods (goods), and the receipt of
goods (~goods) is consumed by the purchaser Web Service
602.

0066. The foregoing discussion in FIG. 6H illustrates the
invocation order specified by the safeties 602C, 606C, 610C.
However, the interoperability among Web services 602–610

US 2004/OO64528A1

can be better appreciated by Studying the production and the
consummation of messages. See FIG. 61. The system 600
commences when the purchase order (PO) is produced at the
port 602F of the purchaser Web service 602 and sent to the
port 606F of the supplier Web service 606, where the
purchase order (PO) is consumed. The production of the
purchase order (PO) is represented by the designator PO
without the tilde “-” in the parameter list of the initiatepur
chase operation 602D. The consummation of the purchase
order (PO) is represented by the receivepo operation 606D
with the parameter ~PO. A first process broadly represented
by the initiatepurchase operation 602D becomes inactive
(due to the safety 602C) because the port 602F has sent the
purchase order (PO) but has not received the advanced
Shipping notice (~ASN). A second process broadly repre
sented by the receivepo operation 606D continues to a third
proceSS broadly represented by the Sendinvoice operation
606E (due to the safety 606C) because the port 606F has
received the purchase order (-PO). With the third process
being active, the invoice is produced at the port 606F and is
sent to the port 602F of the purchaser Web service 602 where
the invoice is consumed. The safety 606C is now satisfied.
The production of the invoice is represented by the sendin
voice operation 606E and the consummation of the invoice
is represented by the confirmpurchase operations 602E. A
fourth proceSS broadly represented by the confirmpurchase
operation 602E becomes inactive (due to the safety 602C)
because the port 602F has not received the advanced ship
ping notice (~ASN). Mini communication occurs between
the supplier Web service 606 and the shipper Web service
602 once the Supplier Web service 606 has received the
purchase order (PO) at the port 606F. The advanced shipping
notice (ASN) is produced by the shipper Web services 610
at the port 610F and is sent to the port 602F of the purchaser
Web service 602 where it is consumed. A fifth process
broadly represented by the notifyofshipment operation 610D
continues on to a sixth process (due to the safety 610C)
broadly represented by the confirmreceipt operation 610E
because the port 610F has sent the advanced Shipping notice
(ASN), but the sixth process becomes inactive because the
port 610F has not received the receipt of goods (-goods).
The first process broadly represented by the initiatepurchase
operation 602D becomes active and continues to the the
fourth process (due to the safety 602C) broadly represented
by the confirmpurchase operation 602E because the port
602F has received the advanced shipping notice (~ASN).
The production of the advanced shipping notice (ASN) is
represented by the notifyofshipment operation 602D and the
consummation of the advanced Shipping notice (ASN) is
represented by the initiatepurchase operation 602D. The
fourth proceSS broadly represented by the confirmpurchase
operation 602E becomes active (due to the safety 602C)
because the port 602F has received the advanced shipping
notice (~ASN). With the activation of the fourth process, the
receipt of goods (goods) is produced at the port 602F of the
purchaser Web service 602 and is sent to the port 61 OF of
the shipper Web service 610 where it is consumed. The
production of the receipt of goods (goods) is represented by
the confirmpurchase operation 602E and the consummation
of the receipt of goods (goods) is represented by the con
firmreceipt operation 610E. The safety 602C is satisfied with
the production of the receipt of goods (goods). The sixth
proceSS broadly represented by the confirmreceipt operation
610E becomes active because the port 610F has received the

Apr. 1, 2004

receipt of goods (-goods) and the safety 610C is then
Satisfied. The hereinabove discussion shows the inherent
Synchronization (activity and inactivity) of messages and
operations when their processing nuances are expressed
using Safeties formed in accordance with this invention.
0067. The model syntax 702 for port types is illustrated in
FIG. 7A. Various elements of the model syntax 702 are
similar to elements of the human-readable syntax 400 (the
safety syntactical category described on lines 400C-400P).
The letter S 702A denotes a named collection of Safeties to
be defined by various elements of the model syntax 702. The
symbol “0”702B denotes an inactive or a stop safety. The
phrase “M.S'702C denotes a sequence safety, where the
letter M denotes a message type 702I, which is followed by
another safety 702A. Phrases “S+S,”702D and “So &
S”702E denote a choice to be made between the execution
of the safety So or the safety S. The phrase “SS”702F
denotes parallel execution of Safeties So and S. The phrase
“rec(K).S”702G denotes a recursion of a name K702J in the
safety S. The phrase “K”702H denotes that the safety 702A
can be given a name.

0068 FIG. 7B illustrates a system 700 showing the
interoperability between a first Web service 706 and a
second Web service 710, the first Web service 706 having a
safety S1 706A, a message 1 operation 706B; a message2
operation 706C; and a port 706D. The second Web service
710 includes a safety S2 710A; a message3 operation 710B;
a message4 operation 710C; and a port 710D. The first Web
Service 706 and the Second Web Service 710 are shown to be
fused by the fuse line 703.

0069 FIGS. 8A-8O illustrate a method 800 for forming
interoperability among Web services, such as the first Web
service 706 and the second Web service 710. For clarity
purposes, the following description of the method 800
makes references to various elements illustrated in connec
tion with the model syntax 702 and the system 700 shown
in FIGS. 7A-7B. From a start block, the method 800
proceeds to a set of method steps 802, defined between a
continuation terminal ("terminal A') and an exit terminal
(“terminal B"). The set of method steps 802 describes the
creation of Web Service Specifications that correspond to
Web service programs for first and second Web services 706,
710.

0070 From terminal A (FIG. 8B), the method 800 pro
ceeds to a block 808 where a developer creates abstract
definitions for a specification of the first Web service 706.
Abstract definitions of a specification include definitions of
data types, messages, and port types. Next, the developer
creates concrete descriptions for the Specification. See block
810. Concrete descriptions include bindings (not to be
confused with the binding mechanism formed in accordance
with the invention and described below), which are where
protocols, Serialization, and encoding of data transmission
are specified. The concrete descriptions include Service
elements, which Specify port addresses of each binding. The
developer then creates a safety S1 706A governing the
invocation of operations, Such as the message 1 operation
706B and the message2 operation 706C, for the specification
of the first Web service 706. See block 812. The developer
then preferably places the safety S1706A (hereinafter “S1”)
into the definition of the port type for the port 606D. See
block 814. Steps 808–814 can be repeated to create a

US 2004/OO64528A1

specification for the second Web service 710 including a
safety S2 710A (hereinafter “S2’). Next, the method 800
proceeds to the exit terminal B.
0071. From the exit terminal B (FIG. 8A), the method
800 proceeds to a set of method steps 804, defined between
a continuation terminal ("terminal C) and an exit terminal
(“terminal D"). The set of method steps 804 describe the
discovery of the second Web service 710 by the first Web
service 706 and the verification of the ability of the second
Web service 710 to safely interact with the first Web service
706.

0072. From terminal C (FIG. 8C) the method 800 pro
ceeds to a block 816 where the first Web Service 706
discovers a port type of the port 710D using the specification
of the second Web service 710 via a suitable discovery
service. One suitable discovery service includes a UDDI
service, but others are possible. The first Web service 706
then selects a port type of the port 706D, which is to be fused
with the port 710D, from the specification of the first Web
Service 706. See block 818. The first Web Service 706 then
extracts the safety S1 of the port type of the port 706D and
the safety S2 of the port type of the port 710D. See block 820.
Next, the process 800 enters another continuation terminal
(“terminal C18”). From terminal C18, the process 800 enters
block 822 where the first Web Service 706 checks the
interoperability between ports 706D, 710D by attempting to
place safeties S1, S2 into a binding relationship (S1:=:S2).
At decision block 824, the first Web service 706 checks
whether the safety S1 is of the form “0”, which denotes
inactivity or the stop Safety. If the answer is YES to the test
at decision block 824, the method 800 proceeds to another
continuation terminal (“terminal C1'). Otherwise, if the
answer is NO, the method 800 proceeds to another terminal
(“terminal C2").
0073. From terminal C1 (FIG. 8D), the method 800
proceeds to another decision block 826 where the first Web
service 706 determines whether the safety S2 is of the form
“S”702A. If the answer is NO, another continuation terminal
(“terminal C19”) is entered. Otherwise, if the answer is YES
to the test at decision block 826, the binding relationship
between the safety S1 and the safety S2 (0:=:S) is equated
to S2. See block 828. From here, the method 800 proceeds
to another continuation terminal (“terminal C20”).
0074) From terminal C2 (FIG. 8D), the method 800
proceeds to another decision block 830 where the first Web
service 706 determines whether the safety S1 is of the form
“M.S'702C. If the answer is YES, another continuation
terminal ("terminal C3") is entered. Otherwise, if the answer
is NO, the method 800 proceeds to another continuation
terminal (“terminal C4”).
0075) From terminal C3 (FIG. 8E) the method 800
proceeds to another decision block 832 where the first Web
service 706 determines whether the safety S2 is of the form
“SS'706F, which denotes the parallel safety. If the answer
is NO, the process 800 enters the terminal C19. Otherwise,
if the answer is YES to the test at decision block 832, block
834 is entered where the safety S1 bound with the safety S2
(M.S.:=SIS) is equated to two choices (S:=:S/M) & (S:=
:S/M). One of the two choices is then selected. See block
836. Next, the method 800 enters continuation terminal 18
to loop back to block 822 and the above steps are repeated.
0076) From terminal C4 (FIG. 8E) the method 800
proceeds to another decision block 838 where the first Web

Apr. 1, 2004

service 706 determines whether the safety S1 is of the form
“S+S,”, which denotes a choice safety 702D. If the answer
is YES, another continuation terminal ("terminal C5') is
entered. Otherwise, the method 800 proceeds to another
continuation terminal ("terminal C6”).
0077. From terminal C5 (FIG. 8F) the method 800
proceeds to another decision block 840 where the first Web
service 706 determines whether the safety S2 is of the form
“S”702A. If the answer is NO, continuation terminal C19 is
entered by the method 800. Otherwise, if the answer is YES,
the safety S1 bound with the safety S2 ((So-S):=:S)) is
equated to two choices (So:=:S)+(S:=:S)). See block 842.
One of these two choices is then selected. See block 844.
Next, the method 800 enters the continuation terminal C18
to loop back to 822 where the above-described steps are
repeated.

0078 From the terminal C6 (FIG. 8F) another decision
block 846 is entered by the method 800 where the first Web
service 706 determines whether the safety S1 is of form
“S&S", which is a menu safety 702E. If the answer is NO
to the test at decision block 826, another continuation
terminal (“terminal C8”) is entered. If instead, the answer is
YES, the method 800 proceeds to another continuation
terminal (“terminal C7”).
007.9 From terminal C7 the method 800 proceeds to
another decision block 846 where the first Web Service 706
determines whether the safety S2 is of the form “S”702A. If
the answer is NO, the method 800 proceeds to terminal C19.
Otherwise, if the answer is YES, block 848 is entered where
the safety S1 bound with the safety S2 (S&S):=:S) is
equated to two choices ((S:=:S)&(S:=:S)). One of these
two choices is then selected. See block 850. The process 800
proceeds to the terminal C18 to loop back to block 822
where the above-described method steps are repeated.

0080 From terminal C8 the method 800 proceeds to
another decision block 852 where the first Web Service 706
determines whether the safety S1 706A is of the form
“SS", which denotes the parallel safety 702F. If the
answer is NO, the method 800 proceeds to another continu
ation terminal (“terminal C11”). Otherwise, if the answer is
YES, another continuation terminal ("terminal C9”) is
entered.

0081 From terminal C9 the method 800 proceeds to
another decision block 854 where the first Web Service 706
determines whether the safety S2 of the second Web service
710 is of the form “SS", which is in the form of the
parallel safety 702F. If the answer is NO to the test at
decision block 854, the method 800 proceeds to terminal
C19. Otherwise, if the answer is YES, block 856 is entered
by the method 800. At this block, the safety S1 bound with
the Safety S2 ((SoS):=:(SIS)) is equated to a set of four
choices (Sos)&(Si2.so)&(Sois)&(Sso12). Each of the
four choices can be placed in a form S. See block 858.
For each choice of the four choices, a test is made to
determine whether the relationship (S::= (SIS)):=:S, is
defined for a particular choice. See decision block 860. If the
answer to the test at decision block 860 is YES, the par
ticular choice is then equated to the relationship (S:=
:(SIS)):=:S. See block 862. Next, the method 800 pro
ceeds to another continuation terminal (“terminal C10'). If
instead the answer is NO, block 864 is entered where the

US 2004/OO64528A1

particular choice is equated to the relationship (S:=
:(SIS))IS. The method 800 then also proceeds to the
terminal C10.

0082) From terminal C10 (FIG. 8I), the method 800
proceeds to block 866 where one of the four choices
(Soes)&(Si2.so)&(Seous)&(Sso12) is Selected. The pro
cess 800 then proceeds to terminal C18 to loop back to block
822 where the above-described method steps are repeated.

0083. From the terminal C11 (FIG. 8) the method 800
proceeds to another decision block 868 where the first Web
service 706 determines whether the safety S1 is of form
rec(K). So, which denotes a recursion safety 702G. If the
answer is NO to the test at decision block 868, another
continuation terminal (“terminal C12) is entered. Other
wise, if the answer is YES, another decision block 870 is
entered where the first Web service 706 checks whether the
safety S2 is of the form “S”702A. If the answer is NO to the
test at decision block 870, terminal C19 is entered by the
method 800. If instead, the answer is YES, the method 800
proceeds to block 872 where the safety S1 bound with the
safety S2 (rec(K). So:=:S) is equated to (So rec(K).S./K}:=
:S). The Syntactical phrase Sorec(K). So/K} means that
wherever in the safety So there is a mention of K, which is
a name as defined by the model syntax 702, K is replaced by
rec(K).S. Consider the following example: if the phrase
“So rec(K).S./K}” were to be applied to the safety sentence
“So-open.close.So, the result would be as follows: “So
open.close.rec(So).open.close.So. Thus, the "So' in the
example is the K in the recursion safety “rec(K)'. Next, the
method 800 proceeds to terminal C18 to loop back to block
822 where the above-described method steps are repeated. If
the answer to the test at decision block 870 is NO, the
method 800 proceeds to terminal C19.

0084. From terminal C12 (FIG. 8J), the method 800
proceeds to another decision block 874 where the first Web
service 706 checks whether the safety S1 is of the form
“S”702A. If the answer is NO, the method 800 proceeds to
terminal C19. Otherwise, if the answer is YES, another
decision block 876 is entered. At this decision block, the first
Web service 706 determines whether the safety S2 is of the
form “0/S". If the answer is NO, the method 800 proceeds
to another continuation terminal (“terminal C13”). Other
wise, if the answer to the test at decision block 876 is YES,
the safety S1 bound with the safety S2 (S:=:0/S) is unde
fined. See block 878. The method 800 then proceeds to
terminal C20.

0085. From terminal C13 (FIG. 8K), the method 800
proceeds to another decision block 880 where the first Web
service 706 verifies whether the safety S2 is of the form
“MS/M”. If the answer is NO, the method 800 proceeds
to another continuation terminal (“terminal C14”). If the
answer is YES, the first Web service 706 determines whether
a match function, which takes Mo, M as arguments, is
defined. See block 882. A simple implementation of the
match function includes a return of a TRUE Boolean result
if M is the complement of M. Otherwise, the match
function would return a FALSE Boolean result. If the answer
to the test at decision block 882 is NO, the safety S1 bound
with the safety S2 (S:=:MS/M) is undefined. See block
886. The method 800 then proceeds to terminal C20. If the
answer to the test at decision block 882 is YES, the safety
S2 is equated to “cut (Mo., M.).S", where cut is a function

Apr. 1, 2004

that takes Mo, M as arguments. One preferable implemen
tation of the cut function is shown in Appendix A (the
“comm” rule under Section 3.2, where Mo, M can be
substituted for Q, Q). Next, the process 800 proceeds to
terminal C18 to loop back to block 822 where the above
described method steps are repeated.
0086) From terminal C14, the method 800 proceeds to
another decision block 888 where the first Web Service 706
determines whether the safety S2 is of the form "(So-S)/
M”. If the answer is YES, the safety S2 is equated to two
choices (S/M)+(S/M). See block 890. One of these two
choices is selected. See block 892. Next, the method 800
proceeds to terminal C18 to loop back to block 822 where
the above-described method Steps are repeated. If the answer
to the test at decision block 888 is NO, another decision
block 894 is entered. At this decision block, the first Web
service 706 verifies whether the safety S2 is of the form
(S&S)/M. If the answer is NO, the method 800 proceeds
to another continuation terminal (“terminal C16”). Other
wise, the answer is YES to the test at decision block 894, the
safety S2 is equated to two choices, (So/M)&(S/M). The
method 800 then proceeds to another continuation terminal
(“terminal C15”).
0087. From terminal C15 (FIG. 8M) the process 800
proceeds to block 898 where one of the two choices (So/
M)&(S/M) is selected. The method 800 then proceeds to
terminal C18 to loop back to block 822 where the above
described method steps are repeated. From terminal C16
(FIG. 8M) the method 800 proceeds to another decision
block 899 where the first Web service 706 checks the safety
S2 to determine whether it has the form (SIS)/M. If the
answer is NO, the method 800 proceeds to another continu
ation terminal ("terminal C17"). Otherwise, the answer is
YES, and the safety S2 is equated to two choices (So/
M)&(S/M). See block 897. Next, the process 800 proceeds
to block 895 where one of the two choices is then selected.
Then, the method 800 proceeds to the terminal C18 to loop
back to block 822 where the above-described method steps
are repeated.

0088. From terminal C17 (FIG. 8N) the method 800
proceeds to another decision block 893 where the first Web
service 706 determines whether the safety S2 is of the form
rec(K).S/M. If the answer is YES, the safety S2 is equated
to (rec(K).(S/M)). See block 891. The method 800 then
proceeds to terminal C18 to loop back to block 822 where
the above-described method Steps are repeated. Otherwise,
the answer to the test at decision block 893 is NO, and
terminal C19 is entered.

0089. From terminal C19 (FIG. 8N) the first Web service
706 determines that a syntax error has occurred because
either the safety S1 or the safety S2 does not comply with the
model syntax 702. See block 889. Fusing between ports
706D, 710D is not possible because safeties S1, S2 are not
in a form that can be computed. The method 800 then
terminates processing. From terminal C20 (FIG. 8N), the
method 800 proceeds to block 887 where a temporary safety
S3 is Set to equate to the result of the binding relationship
between the safeties S1 and the safety (S=S:=:S). The
method 800 then enters exit terminal D.

0090. From exit terminal D, the method 800 proceeds to
a set of method steps 806, defined between a continuation
terminal (“terminal E”) and an exit terminal (“terminal F").

US 2004/OO64528A1

The set of method steps 806 creates a virtual contract, which
is a binding agreement, between the first Web service 706
and the second Web service 710 if the safeties S1 and the
Safety S2 can be aligned in a Suitable manner that allows for
safe interoperability between the first Web service 706 and
the Second Web Service 710.

0091) From terminal E (FIG. 8O) the method 800 pro
ceeds to another decision block 885 where the first Web
service 706 determines whether the safety S3 (which is the
result of the binding relationship between the safety S1 and
the safety S2) is equal to zero. If the answer to the test at
decision block 885 is YES, the port 706D of the first Web
service 706 can be fused with the port 710D of the second
Web service 710. See block 881. When two ports can be
fused in this way, the interoperability between the first Web
Service 706 and the Second Web Service 710 is safe. The term
“Safe” means that there exists an input guarded process, that
every output has met an input; or that there is no deadlock
because the input of either the first Web service 706 or the

Apr. 1, 2004

second Web service 710 is always available to receive
messages to process them. Once ports 706D, 710D are
fused, the second Web service 710 can commence commu
nicating with the first Web service 706 to provide or to
obtain desired Services. See block 879. The method 800 then
proceeds to exit terminal F where it terminateS processing.

0092) If the answer to the test at decision block 885 is
NO, another decision block 883 is entered where the first
Web service 706 determines whether it can tolerate a certain
degree of unsafe fusing of ports 706D, 710D. If the answer
is YES, method steps 881, 879 are repeated. Otherwise, the
answer to the test at decision block 883 is NO; ports 706D,
710D are not fused; and the method 800 proceeds to exit
terminal F where it terminates processing.

0093. While the preferred embodiment of the invention
has been illustrated and described, it will be appreciated that
various changes can be made therein without departing from
the Spirit and Scope of the invention.

US 2004/0064528 A1 Apr. 1, 2004

10

15

13

APPENDIX A

Syntactic Category Typical Identifier
Name XV,2

O, O, O,
P.P.P.

Qucry

Process

Read-Write Action
Program

0.2. Notation Conventions. We use vector notation to indicate lists, e.g. x to
indicate a list of names. We use infix notation for cons and append. Thus tit, denotes
consing t to the list denoted by t.

1. THE CALCULUS STYLE SYNTAX

Remark 1.0.1. Processes are built out of names and queries. Queries are built out of
ground values and identifiers. At the query level, a name is a ground value. We will use the
same variables to range over names and identifiers because it should always be clear from
the context which is which. When we wish to be explicit we will decoratic a namex like so
a X.

1.1. Queries. Within the query syntax we find following syntactic categories.

Notion Typical Identifier Syntactic Category
literal ground value

Variable identifier

data structure tCrm
Constraint constraint

Query Query

However, the reader will note that the process syntax only allows queries to be placed
at a queue. So, it is lucky that every value (identifier-free term), v, may be lified to a query
by forming the query (v)().

US 2004/0064528A1 Apr. 1, 2004
14

O (T)(C)

T ::= top bottom name y
x
OT

| TKT
| THT

(x)(OO)
inl(x)

T(a) T

Remark 1.1.1. For a query, Q = ()(c), we say that (7) is the head of O and (c) is
the body.

Definition 1.1.2. We say an identifier x is constrained by c when t = u ec for some
5 term, t, such that x occurs in it.

Remark 1.1.3. For a query, O = ()(c), we abuse notation and writic c e O to mean
that ce c.

1.2 Processes. The process syntax is built over names and queries.

US 2004/OO64528A1 Apr. 1, 2004
15

Remark 1.2.1. We formally identify the Zero-ary form of sum (X,x2)P) with 0.
Similarly, the unary form of sum is just prefix (xOP).

Remark 1.2.2. When a sequence term ends in a 0, as in xO).0, we omit the .0, as in
5 xO.

2. STRUCTURAL EQUIVALENCE
2.1. Queries.
2.1.1. Query Contexts. It is easier to state structural equivalence using query

contexts. Query contexts, denoted by K's, are simply queries with a hole that may be filled
0 by one or more constraints.

Kt :=: u
Kto := u-t, -u,

2.2. Processes. This is more or less as expected.

US 2004/0064528 A1 Apr. 1, 2004
16

PIP = PP,
PO = P
IP = PP

P + P = P + P.
P-0 E P

(new x)(new y) P = (new y)(new x)P
(new x)(new x) P = (new x)P

(new x) PQ s (new x)(PQ), x g FN (O)

The one difference is the substitution equivalence. This equivalence manifests in the
calculus that certain forms of queries are collections of fusions.

()(c., name X a X. ') in canonical form

()(c. name x =: ae x') P = ()(c., name x = namex" P{x', y)

5 3. OPERATIONAL SEMANTICS

3.1. Queries. These can be specifical in isolation of process evolution. In this
context x always ranges over identifiers, never names.

US 2004/0064528A1 Apr. 1, 2004
17

top :=: bottom->

(3)(i)(c))=u
()())'s

()(i)()-- - -

3.2. Processes. We have tried to separate process evolution from query evolution as
much as possible. The place where the two calculido interact is in the communication rule.
To state that rule we must introduce the following definitions.

5 Definition 3.2.1. Let O : n-> n be a permutation, (to • • t.)(c) a query. We take

a (r.t.)(c))=(.or.it)(c):
Definition 3.2.2. Let Q, = (...t.)(C) and Q =(u ...u.)(C). We take

Q = Q, =(-1,4-)(i. us, C.C.).
Definition 3.2.3. A constraint of the form lo:=:l on literals, lol, is a failure if

10 loz-l. --

Definition 3.2.4. A query, Q, fails if O->*O' and O' contains a failure.

US 2004/OO64528A1 Apr. 1, 2004
18

Definition 3.2.5. A constraint c is irreducible in a query Q if

WO'Q- > *O'.ce O'.

Definition 3.2.6. A query, Q, is canonical (alternatively, in canonical form) if all of
its constraints are irreducible and Q is not a failure.

do, O.O(O):=:O, (9)--> *Q, Q in canonical form 5 (comm)

(par) P- P'
p P P". . . . P' P"

P-> P'
(new) oom-o-o-o-o-o-

(new x) P- (new x)P

(region) P-L) P'
g x P-> x P

= ()(c), i ical f (lift) Q=()(c), in canonical form
xOP->(Q)P

10 (equiv) Po Po P. P.
P. --> P.

3.3. Discussion.

3.3.1. Examples. In the examples below we assume that the set of ground values is
extended with the usual suspects including integers, strings, etc.

US 2004/0064528 A1 Apr. 1, 2004
19

Example 3.3.1. To deposit the message containing a single integer value, say 42, at
the queue x, in an environment which is operating on x, denoted P(x), one would write

Example 3.3.2. To retrieve a message from the queue x and check that the message
5 contains the value, Say 42, in an environment, P(x), which is operating on x, one would write

x(v)(v r- 42)P (x).
Example 3.3.3. Putting the two examples together, we can easily express how to

make the two processes synchronize and communicate at queuc x in an environment, P(x),
which is operating on x.

s P(x)

The comm reduction, which is the first reduction, happens because
(42)():= (v)(v :=:- 42)= ()(42 :=: v, v':=:~42), and

—) ()()

The second reduction is the lifting reduction, which is applied to headless canonical
15 queries, i.e. canonical queries with no terms in the head.

The reader may note that in the second example we could just as easily have written
x(42)() P(x) ... We could also have used this form in the third example as well. But, the

choice makes a point.
As the semantics is currently written, queries only reduce at the point of

20 communication. So, even though the clean-up rule could have been applied to the qucry in
isolation, it is not applicable in the context.

US 2004/0064528A1 Apr. 1, 2004

10

15

20

APPENDIX B

We will use p, p. . . . to range over ports. We will use T.T., to range over port

types. We will write p T to mean that port p has been assigned type T.
1. Safety Expressions. We propose to extend port types with a specification of

the protocol expected on the port. In particular, we propose a small context-free language
containing as basic linguistic compositors: sequence, choice, parallel and recursion. The
terminals of this language are drawn from message types associated with the port type.

Concretely, then, if M is the set of message types expected to arrive at a port of type
P, and K a denumerable set of names, then the set of legal safety expressions over M given
K, denoted LK(M) is defined recursively as follows.

0 e L (M)
Se L (M), m e M o m. Se L (M)

So e L (M), S e L (M) ...Y S+S, e L (M)
So e L (M), S e L (M) --> S&S e L (M)
So e L (M), Se L (M) -> SIS, e L (M)

ke K, Se L (M) rec(K).S e L (M)
ke K > ke L (M)

Remark 1.1. Notc that this definition is parametric in the set of message types.
Therefore, it is quite independent of the system used to define message types. Any well
formed schema definition, e.g., XSD, will do. m.

1.2. Model Syntax. It is convenient to introduce the model syntax at this point.

US 2004/0064528A1 Apr. 1, 2004
21

S := 0

| M.S
So +S,
S. & S.
SS
eC (K) S

K
M ::= messagetype
K (22

2. The Type Checking Algorithm. There are two forms of type-checking to be
done. One checks the compliance of a given service implementation with the collection of
port types being advertised (or required). This cannot be specified here in absence of a

5 choice of implementation language. The other checks that given two port types it is safe to

"bind' one port to the other.
Remark 2.1. This algorithm is parametric in the message type. The notion of cut or

match must be definable within the type system. In appendix C we give an example of such
a type system.

10 The algorithm may be given equationally. We define S :=: S2 recursively as follows

(0:=:S) S.

(MS - Sls,) = (S = S, /M)&(S:= S, /M)

(Sls,) :=: (S. |S,) - So23&S.23.0 & Sols & S.02
(rec(K).S. := S) = S{rec(K).S. / K}=:S

where

US 2004/OO64528A1 Apr. 1, 2004
22

(S := (S.S.)= S,) (S = (S.S.)= S, defined
(S = (S.S.))ls, otherwise

and

(0/M) = undefined

(MS/M)-It." match (M.M.) defined undefined otherwise

(S+S.)/M)=(S, /M)+(S/M)
(S, &S.)/M)=(S, /M)&(S/MS)
(S.S.)/M)=(S, /M)&(S/M)

(rec(K).S/M) = rec(K).(S/M)

Remark 2.2. It is important to note that in the equation for (MS :=: SolS), S0 and S1
are assumed w.l.o.g. to be top level-free.

Remark 2.3. A simple interpretation of match and cut could be given by assuming
message types are atoms. So, we would have

true M = M. defined match (MM) = (O () otherwise

cut (Mo , M) =e

However, in appendix C we will provide a message typing scheme where the
message types have considerably greater structure and the match and cut are somewhat
more complex. This typing scheme corresponds to the situation where messages are forms,
i.e., documents potentially containing holes that need to be filled.

US 2004/0064528 A1
23

Apr. 1, 2004

Definition 2.4. Let p0 : S0, pl.: Si, and S = (S0 :=: S). If S = 0 or is input guarded,
then we say it is safe to fuse po and pl. Otherwise, S is the reason it is not safe to fuse po to
P.

The justification for this definition is that the only outputs that have not been matched
by inputs must be in the reason.

3. XML Schema for Transfer Syntax

<!-- port type -->

<xsd:complexType name="portTypeFxpr" final="Hall">
<xsd:sequences

<xsd:element name="presentations" type="presentations" minOccurs="0" /> -

<xsd:element name="name" type="designatorExpr" />
<xsd:sequence minOccurs="0" maxOccurs "unbounded">

- it <xsd:element name="signature" type="signatureExpr" />
</xsd:sequence>
<!-- TODO: remove minOccurs once fully supported -->
<xsd:choice minOccurs="0">

<xsd:element name="stop" type="zeroSafetyExpr" />
<xsd:element name="sequenceK" type="sequenceSafetyExpr" />
<xsd:element name="choiceK" type="choiceSafetyExpr" />
<xsd:element name="menuK" type="menuSafetyExpr" />
<xsd:element name="parallel K" type="parallelSafetyExpr” f>
<xsd:element name="recK" type="recSafetyExpr" />
<xsd:element name="iterateK" type="iterateSafetyExpr" />

</xsd:choice

</xsd:sequence>
</xsd:complexTypes

US 2004/0064528 A1 Apr. 1, 2004
24

<!-- signature -->

<xsd:complexType name="signatureExpr" final="#all">
5 <xsd:sequence>

<xsd:element name="presentations" type="presentations" minOccurs="0" />
<xsd:element name="name" type="designatorExpr" />
<xsd:sequence minOccurs="0" maxOccurs="unbounded">

<xsd:element name="identifier" type="designatorExpr" />
O <xsd:choice>

<xsd:element name="verum" type="veracityTypeExpr" />
<xsd:element name="absurdum" type="absurdityTypeExpr" />
<xsd:element name="subject" type="subjectivityTypeExpr" />
<xsd:element name="negation" type="negativityTypeExpr" />

5 <xsd:element name="liberation" type="libertyTypeExpr" />
<xsd:element name="partition" type="parityTypeExpr" />
<xsd:element name="selection" type="selectivityTypeExpr" />
<xsd:element name="variation" type="varietyTypeExpr" />
<xsd:element name="assertion" type="certaintyTypeExpr" />
<xsd:element name="question" type="curiosityTypeExpr" />

</xsd:choice>

</xsd:sequence>
</xsd:sequence

</xsd:complexType

<!-- safety -->

<xsd:complexType name="safetyExpr"abstract="true">
<xsd:sequences

US 2004/0064528 A1 Apr. 1, 2004
25

<xsd:element name="presentations" type="presentations" minOccurs="0" f>
</XSd:sequence

</xsd:complexTypes

5 <xsd:complexType name="zeroSafetyExpr" final="Hall">
<xsd:complexContent>
<xsd:extension base="safetyExpr" />

</xsd:complexContent>
</xsd:complexTypes

10

<xsd:complexType name="re?SafetyExpr" final="Hall">
<xsd:complex Content>
<xsd:cxtension base="safetyExpr">

<xsd:sequence
15 <xsd:element name="reference" type="designatorExpr" />

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType

20

<xsd:complexType name="sequenceSafetyExpr" final="Hall">
<xsd:complexContent>
<xsd:extension base="safetyExpr''>

<xsd:sequence>
25 <xsd:element name="action" type="signatureExpr" />

<xsd:sequence minOccurs="1" maxOccurs="1">
<xsd:choice>

<xsd:element name="stop" type="zeroSafetyExpr" f>
<xsd:element name="sequenceK" type="sequenceSafetyExpr" f>

US 2004/0064528A1 Apr. 1, 2004
27

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexTypes

S

<xsd:complexType name="menuSafetyExpr" final="Hall">
<xsd:complexContent>

<xsd:extension base="safetyExpr">
<xsd:sequence

10 <xsd:sequence minOccurs="2" maxOccurs="2">
<xsd: choice>

<xsd:element name="stop" type="zeroSafetyExpr" f>
<xsd:element name="sequenceK" type="sequenceSafetyExpr" />
<xsd:element name="choiceK" type-"choiceSafetyExpr" />

15 <xsd:element name="menu K" type="menuSafetyExpr" />
<xsd:element name="parallel K" type="parallelSafetyExpr" />
<xsd:element name="recK" type="recSafetyExpr" />
<xsd:element name="refK" type="refSafetyExpr" />
<xsd:element name="iterateK" type="iterateSafetyExpr" />

20 </xsd:choice>

</XSd:Sequence>
</xsd:sequence>

</xsd:extension

</xsd:complexContent>
25 </xsd:complexTypes

<xsd:complexType name="parallelSafetyExpr" final="#all">
<xsd:complexContent>

<xsd:extension base="safetyExpr">

US 2004/0064528A1 Apr. 1, 2004
30

<!-- root elements -->

<xsd:element name="theZeroSafety" type="zeroSafetyExpr" />
<xsd:element name--"theSequenceSafety" type="sequenceSafetyExpr" />

5 <xsd:element name="theChoiceSafety" type="choiceSafetyExpr" />
<xsd:element name="theMenuSafety" type="menuSafetyExpr" />
<xsd:element name="theparallelSafety" type="parallelSafetyExpr" />
<xsd:element name="therecSafety" type="recSafetyExpr" />
<xsd:element name="thelterateSafety" type="iterateSafetyExpr" />

- 10 <xsd:element name="port type" type= portTypeExpr" />
- <xsd:element name="aSignature" type="signatureExpr" />

US 2004/OO64528A1

The embodiments of the invention in which an exclusive
property or privilege is claimed are defined as follows:
1. A networked system for allowing Web services to

communicate, comprising:
a first Web Service for offering computing Services, the

first Web service including a first port for transmitting
and receiving messages, the first port including a first
port type; and

a Second Web Service that desires the computing Services
offered by the first Web service, the second Web service
including a Second port for transmitting and receiving
messages, the Second port including a Second port type,
the second port being fusable with the first port for safe
access to the services offered by the first Web service if
the Second port type is compatible with the first port
type.

2. The networked system of claim 1, wherein the first Web
Service includes a third port for transmitting messages, and
the second Web service provides a fourth port for receiving
messages from the third port.

3. The networked system of claim 2, wherein the fourth
port is located on a third Web service, the fourth port being
provided to the second Web service by the third Web service.

4. The networked system of claim 1, wherein the first Web
Service is executed on a first computing device.

5. The networked system of claim 2, wherein the second
Web Service is executed on a Second computing device.

6. A networked system for allowing Web services to
communicate, comprising:

a first Web service offering a first set of services, the first
Web Service including a first Safety that programmati
cally expresses Safe access to the first Set of Services,
and

a Second Web Service offering a Second Set of Services, the
Second Web Service including a Second Safety that
programmatically expresses Safe access to the Second
Set of Services, the Second Web Service accessing the
first set of services and the first Web service accessing
the Second Set of Services if the Second Safety is able to
programmatically align with the first Safety.

7. The networked system of claim 6, wherein the first set
of Services of the first Web Service are accessible via a first
Set of operations, the first Safety programmatically Specify
ing allowable invocation permutations of the first Set of
operations.

8. The networked system of claim 7, wherein the second
set of Services of the second Web service are accessible via
a Second Set of operations, the Second Safety programmati
cally Specifying allowable invocation permutations of the
Second Set of operations.

9. The networked system of claim 8, wherein the first Web
Service includes a first port type, the first port type including
the first Set of operations and the first Safety.

10. The networked system of claim 9, wherein the second
Web Service includes a Second port type, the Second port type
including the Second Set of operations and the Second Safety.

11. A networked system for allowing Web services to
communicate, comprising:

a first Web service offering services, the first Web service
including a Safety that programmatically describes an
order in which to access the offered Services, and

31
Apr. 1, 2004

a second Web service that desires he services offered by
the first Web service, the second Web service accepting
the safety of the first Web service to form a virtual
contract with the first Web service so that the second
Web service can access the offered services.

12. The networked system of claim 11, wherein the first
Web service includes a first port type and the second Web
Service includes a Second port type, wherein the Virtual
contract is formed when the first port type is compatible with
the Second port type.

13. The networked system of claim 11, wherein the
second Web service includes another safety, wherein the
Virtual contract is formed when the Safeties are acceptable to
both the first Web service and the second Web service.

14. The networked system of claim 11, wherein the first
Web service includes a first port and the second Web service
includes a Second port, wherein the first port and the Second
port is fused when the virtual contract is formed.

15. The networked system of claim 11, wherein the first
Web service programmatically joins the second Web service
when the virtual contract is created to form a composition
Web service that comprises both the first Web service and
the second Web service.

16. A computer-readable medium having a customizable,
tag-based data structure stored thereon for use by a Web
service to evaluate safe interoperability with another Web
Service, the data Structure comprising:

a port type tag that is indicative of operations capable of
being invoked by Web services; and

a Safety tag that is indicative of a safety that program
matically specifies an order by which Web services
invoke the operations.

17. The computer-readable medium of claim 16, wherein
the Safety tag is nested within the port type tag.

18. The computer-readable medium of claim 17, wherein
nesting within the port type tag are one or more Signature
tags that are indicative of Signatures of the operations.

19. The computer-readable medium of claim 17, wherein
nesting within the Safety tag is a Stop Safety tag that is
indicative of inactivity or termination of the Safety.

20. The computer-readable medium of claim 17, wherein
nesting within the Safety tag is a choice Safety tag that is
indicative of a choice between two Safeties.

21. The computer-readable medium of claim 17, wherein
nesting within the Safety tag is a menu Safety tag that is
indicative of a choice between two Safeties.

22. The computer-readable medium of claim 17, wherein
nesting within the Safety tag is a parallel Safety tag that is
indicative of parallel execution of two Safeties.

23. The computer-readable medium of claim 17, wherein
nesting within the Safety tag is a recursion Safety tag that is
indicative of a recursion of the Safety.

24. The computer-readable medium of claim 17, wherein
nesting within the Safety tag is a reference Safety tag that is
indicative of a name for the Safety.

25. A computer-implemented method for creating a speci
fication for a Web Service that corresponds to a program of
the Web service, the method comprising:

creating a set of operations that are capable of being
invoked by Web services; and

creating a Safety that specifies the permissible invocation
permutations of the Set of operations.

US 2004/OO64528A1

26. The method of claim 25, wherein the method further
comprising creating a port type and placing the Set of opera
tions and the Safety in the port type.

27. The method of claim 26, wherein the method further
comprising creating abstract definitions of the Web Service
and placing the port type into the abstract definitions of the
Web Service.

28. The method of claim 27, wherein the method further
comprising creating concrete descriptions for the Web Ser
WCC.

29. A computer-readable medium having computer-ex
ecutable instructions for performing a method of creating a
Specification for a Web Service that corresponds to a pro
gram of the Web Service, the method comprising:

creating a set of operations that are capable of being
invoked by Web services; and

creating a Safety that specifies the permissible invocation
permutations of the Set of operations.

30. The computer-readable medium of claim 29, wherein
the method further comprising creating a port type and
placing the Set of operations and the Safety in the port type.

31. The computer-readable medium of claim 30, wherein
the method further comprising creating abstract definitions
of the Web service and placing the port type into the abstract
definitions of the Web service.

32. The computer-readable medium of claim 31, wherein
the method further comprising creating concrete descrip
tions for the Web service.

33. A computer-implemented method for checking the
compatibility of a first port type of a first Web service and a
second port type of the second Web service, the method
comprising:

extracting a first safety (S1) from the first port type of the
first Web service and a second safety (S2) from the
second port type of the second Web service; and

testing the compatibility of the first safety with the second
safety by binding the first safety with the second safety
(S1:=:S2) to determine whether the result of the bind
ing is an input-guarded process.

34. The method of claim 33, wherein the first Web service
includes a first port of the first port type and the second Web
Service includes a Second port of the Second port type, the
first port being fusable with the second port if the result of
the binding is an input guarded process.

35. The method of claim 33, wherein the first Web service
includes a first port of the first port type and the second Web
Service includes a Second port of the Second port type, the
first port being fusable with the second port if the result of
the binding is not an input-guarded proceSS and both the first
Web service and the second Web service tolerate the fusing
of the first port and the Second port.

36. The method of claim 33, wherein if the first safety is
a stop safety (0) and the second safety is of the form (S), the
result of the binding is the Second Safety.

37. The method of claim 33, wherein if the first safety is
a sequence Safety (M.S) and the Second Safety is a parallel
Safety (So.Si.), the result of the binding is a menu Safety
((S:=:S/M)&(S:=:S/M)).

38. The method of claim 33, wherein if the first safety is
a choice Safety (So-S) and the Second Safety is of the form
(S), the result of the binding is a choice safety (So:=:S)+

32
Apr. 1, 2004

39. The method of claim 33, wherein if the first safety is
a menu Safety (So&S) and the Second Safety is of the form
(S), the result of the binding is a menu Safety (So:=
:S)&(S:=:S)).

40. The method of claim 33, wherein if the first safety is
a parallel safety (SoS) and the Second safety is another
parallel safety (SIS), the result of the binding is a menu
Safety (Sos)&(Si2.so)&(S2013)&(Sso12)).

41. The method of claim 40, wherein each choice in the
menu Safety (So.2s.)&(S.12so)&(S2013)&(Sso12)) can
be placed in a form (S,), wherein if a relationship
((S:=:(SIS)):=:S) is defined for a particular choice, the
result of the binding is the relationship (S:=:(SIS)):=:S)
or otherwise the result of the binding is another relationship
(S:=:(SIS))|S).

42. The method of claim 33, wherein if the first safety is
a recursion safety (rec(K).S.) and the Second Safety is of the
form (S), the result of the binding is a relationship
(S{rec(K).S./K}:=:S).

43. The method of claim 33, wherein if the first safety is
of the form (S) and the second safety is of the form (0/S),
the result of the binding is undefined.

44. The method of claim 33, wherein if the first safety is
of the form (S) and the second safety is of the form
(MS/M) and a match function (match(Mo, M)) is
defined, the result of the binding is equated to a cut function
(cut(Mg, M)).

45. The method of claim 33, wherein if the first safety is
of the form (S) and the second safety is of the form
(MS/M) and a match function (match(Mo, M)) is not
defined, the result of the binding is undefined.

46. The method of claim 33, wherein if the first safety is
of the form (S) and the second safety is of the form
((So-S)/M), the result of the binding is equated to a choice
safety (S/M)+(S/M)).

47. The method of claim 33, wherein if the first safety is
of the form (S) and the second safety is of the form
((So&S)/M), the result of the binding is equated to a menu
safety (So/M)&(S/M)).

48. The method of claim 33, wherein if the first safety is
of the form (S) and the second safety is of the form
((SoS)/M), the result of the binding is equated to a menu
safety (So/M)&(S/M)).

49. The method of claim 33, wherein if the first safety is
of the form (S) and the second safety is of the form
(rec(K).S/M), the result of the binding is equated to a
recursion safety (rec(K).(S/M)).

50. A computer-readable medium having computer-ex
ecutable instructions for performing a method for checking
the compatibility of a first port type of a first Web service and
a second port type of the second Web service, the method
comprising:

extracting a first safety (S1) from the first port type of the
first Web service and a second safety (S2) from the
second port type of the second Web service; and

testing the compatibility of the first safety with the second
safety by binding the first safety with the second safety
(S1:=:S2) to determine whether the result of the bind
ing is an input-guarded process.

51. The computer-readable medium of claim 50, wherein
the first Web service includes a first port of the first port type
and the second Web service includes a second port of the

US 2004/OO64528A1

Second port type, the first port being fuSable with the Second
port if the result of the binding is an input guarded process.

52. The computer-readable medium of claim 50, wherein
the first Web service includes a first port of the first port type
and the second Web service includes a second port of the
Second port type, the first port being fuSable with the Second
port if the result of the binding is not an input-guarded
process and both the first Web service and the second Web
Service tolerate the fusing of the first port and the Second
port.

53. The computer-readable medium of claim 50, wherein
if the first safety is a stop Safety (O) and the Second safety is
of the form (S), the result of the binding is the second safety.

54. The computer-readable medium of claim 50, wherein
if the first safety is a sequence Safety (M.S) and the Second
Safety is a parallel Safety (SIS), the result of the binding is
a menu safety (S:=:So/M)&(S:=:S/M)).

55. The computer-readable medium of claim 50, wherein
if the first safety is a choice Safety (So-S) and the Second
safety is of the form (S), the result of the binding is a choice
safety (So:=:S)+(S:=:S)).

56. The computer-readable medium of claim 50, wherein
if the first safety is a menu Safety (S&S) and the Second
safety is of the form (S), the result of the binding is a menu
safety (S:=:S)&(S:=:S)).

57. The computer-readable medium of claim 50, wherein
if the first Safety is a parallel safety (SoS) and the Second
Safety is another parallel safety (SIS), the result of the
binding is a menu Safety ((Soes)&(Si2.so)&(Sola)&(Ss.
O.1.2)).

58. The computer-readable medium of claim 57, wherein
each choice in the menu Safety (Soes)&(Sao)&(So.
1.3)&(Sso12)) can be placed in a form (Sn), wherein if
a relationship (S:=:(SIS)):=:S) is defined for a particular
choice, the result of the binding is the relationship (S:=
:(SIS)):=:S) or otherwise the result of the binding is
another relationship (S:=:(SIS))IS).

Apr. 1, 2004

59. The computer-readable medium of claim 50, wherein
if the first Safety is a recursion safety (rec(K). So) and the
second safety is of the form (S), the result of the binding is
a relationship (So rec(K).S./K} :=:S).

60. The computer-readable medium of claim 50, wherein
if the first safety is of the form (S) and the second safety is
of the form (0/S), the result of the binding is undefined.

61. The computer-readable medium of claim 50, wherein
if the first safety is of the form (S) and the second safety is
of the form (MS/M) and a match function (match(Mo,
M)) is defined, the result of the binding is equated to a cut
function (cut(Mg, M)).

62. The computer-readable medium of claim 50, wherein
if the first safety is of the form (S) and the second safety is
of the form (MS/M) and a match function (match(Mo,
M)) is not defined, the result of the binding is undefined.

63. The computer-readable medium of claim 50, wherein
if the first safety is of the form (S) and the second safety is
of the form ((So-S)/M), the result of the binding is equated
to a choice safety (S/M)+(S/M)).

64. The computer-readable medium of claim 50, wherein
if the first safety is of the form (S) and the second safety is
of the form (S&S)/M), the result of the binding is equated
to a menu safety (S/M)&(S/M)).

65. The computer-readable medium of claim 50, wherein
if the first safety is of the form (S) and the second safety is
of the form (SIS)/M), the result of the binding is equated
to a menu safety (So/M)&(S/M)).

66. The computer-readable medium of claim 50, wherein
if the first safety is of the form (S) and the second safety is
of the form (rec(K).S/M), the result of the binding is equated
to a recursion safety (rec(K).(S/M)).

k k k k k

