

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2006/0057719 A1

Denning et al.

Mar. 16, 2006 (43) Pub. Date:

(54) CARBOHYDRATE DETERMINANT SELECTION SYSTEM FOR HOMOLOGOUS RECOMBINATION

(76) Inventors: **Chris Denning**, Loughborough (GB); A. John Clark, Midlothian (GB); J. Michael Schiff, Menlo Park, CA (US)

> Correspondence Address: **GERON CORPORATION** 230 CONSTITUTION DRIVE **MENLO PARK, CA 94025**

(21) Appl. No.: 11/219,419

(22) Filed: Sep. 2, 2005

Related U.S. Application Data

- Division of application No. 10/105,963, filed on Mar. 21, 2002.
- (60) Provisional application No. 60/277,811, filed on Mar. 21, 2001. Provisional application No. 60/277,749, filed on Mar. 21, 2001.

Publication Classification

(51) Int. Cl. C12N 5/08

(2006.01)

(57)ABSTRACT

This invention provides a system for selecting a cell that has undergone genetic alteration by homologous recombination from amongst a population of cells that do not have the alteration. The successfully targeted cells are identified and separated according to surface glycosylation that has changed as a result of the homologous recombination. The recombination event may inactivate an endogenous gene, or introduce a transgene, either of which encodes a carbohydrate modulating enzyme, such as $\alpha(1,3)$ galactosyltransferase or $\alpha(1,2)$ fucosyltransferase. Altering carbohydrate modulating enzymes can be done for producing tissue with altered carbohydrate determinants, or as a means for tracking inactivation or insertion of other genetic elements for a variety of purposes.

Figure 1

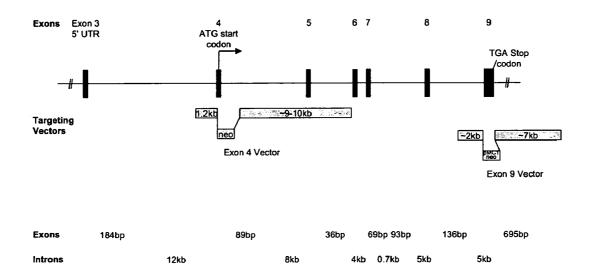
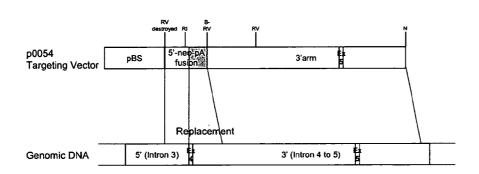
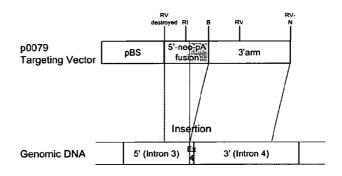
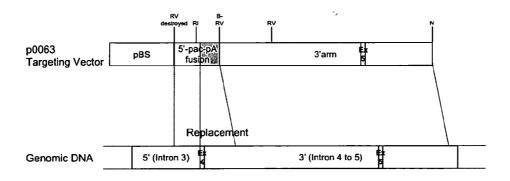





Figure 2

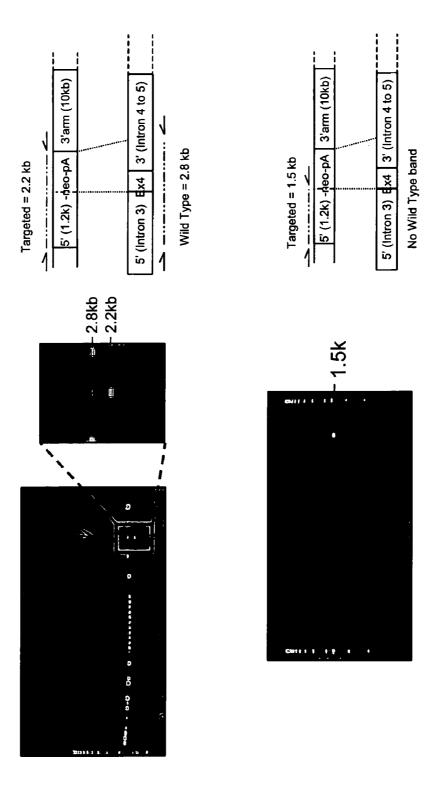
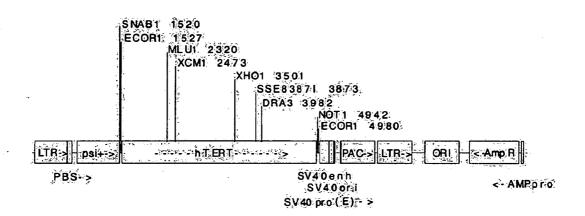
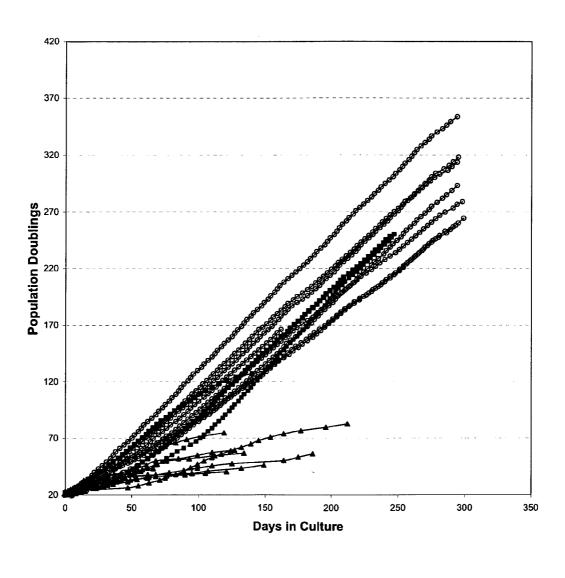
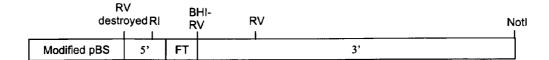
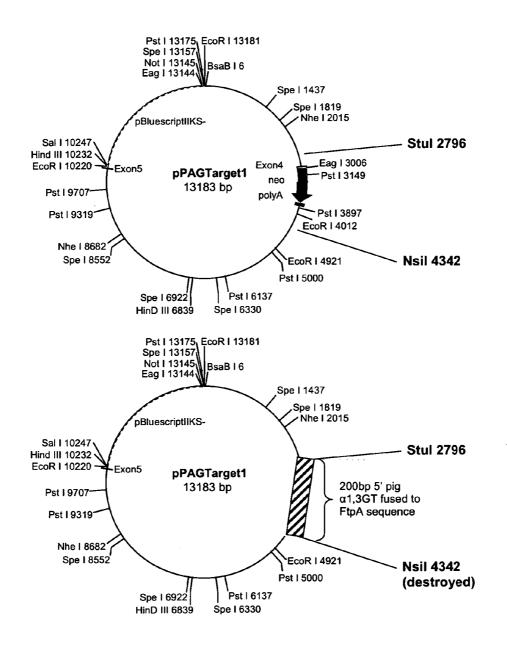


Figure 3

Figure 4

PBABE. hTERT


Figure 5

-8- 1	1	 2-3	2-4		 2-7	
-0- 2	10 —— 2-12			 2-18	——■—— BW6F2	··· #··1-2
2	2 <u>♣</u> EV1A	— <u></u> EV198	— <u></u> €V17b	—— EV3b	 EV24b	

Figure 6

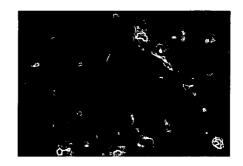
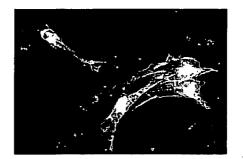
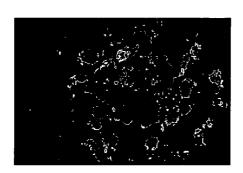


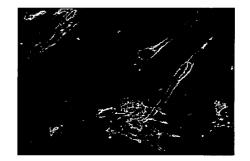
Figure 7

DAPI


UEA-rhodamine

293 human cells




B9 telomerized sheep cells expressing α 1,2FT

C9 telomerized sheep cells expressing α 1,2FT

CARBOHYDRATE DETERMINANT SELECTION SYSTEM FOR HOMOLOGOUS RECOMBINATION

RELATED APPLICATIONS

[0001] This application is a divisional of U.S. Ser. No. 10/105,963, filed Mar. 21, 2002 (pending), through which it claims priority benefit of U.S. provisional patent application 60/277,811, filed Mar. 21, 2001. The priority applications are hereby incorporated herein by reference in its entirety, as are U.S. Ser. No. 60/277,749 and issued U.S. Pat. Nos. 6,147,276, 6,252,133, and 6,261,836.

BACKGROUND

[0002] The acute shortage of human organs for transplantation provides a compelling need for the development of new sources of suitable tissue. An idea of considerable promise is to transplant patents with organs from non-human animals. The main challenge to overcome is rendering foreign tissue immunologically compatible with the patient being treated.

[0003] Tissue from most mammalian species would undergo hyperacute rejection when transplanted into humans. This is because human plasma contains natural antibodies against carbohydrate determinants of the animal tissue, thought to originate through prior immune stimulation by dietary antigen or mucosal microflora. Since the antibodies are pre-formed, rejection occurs within days of the transplant.

[0004] The main target for the natural antibodies mediating rejection is cell-surface oligosaccharides expressing the determinant Gala(1,3)Gal (reviewed by Joziasse et al., Biochim. Biophys. Acta 1455:403, 1999). Humans, apes and Old World monkeys differ from other mammals in that they lack α -galactosyl epitopes in complex oligosaccharides. Other mammals express the Gala(1,3)Gal epitope prominently on the surface of nucleated cells, including hepatic cells, renal cells, and vascular endothelium—which is especially problematic for xenotransplantation of whole organs.

[0005] The Gal α (1,3)Gal epitope is made by a specific enzyme, α (1,3)galactosyltransferase, abbreviated in this disclosure as α 1,3GT. The transferase uses UDP-galactose as a source of galactose, which it transfers specifically to an acceptor oligosaccharide, usually Gal β (1,4)GlcNAc (N-acetyl lactosamine). In mammals that don't express the Gal α (1,3)Gal product, the α 1,3GT locus is inactivated (Gailili et al., Proc. Natl. Acad. Sci. USA 15:7401, 1991). There are frameshift and nonsense mutations within the locus, turning it into a non-functional, processed pseudogene (Laarsen et al., J. Biol. Chem. 265:7055, 1990; Joziasse et al., J. Biol. Chem. 266:6991, 1991).

[0006] In humans, N-acetyl lactosamine acceptor oligosaccharides are processed differently. The enzyme $\alpha(1,2)$ fucosyltransferase builds the N-acetyl lactosamine into Fuc $\alpha(1,2)$ Gal $\beta(1,4)$ GlcNAc, which is blood group H substance. This in turn serves as an acceptor substance for blood group A GlcNAc- transferase, or blood group B Gal-transferase, forming A-substance or B-substance, respectively, depending on the blood type of the individual. Naturally occurring antibodies circulating in the blood are reactive against the alternative carbohydrate determinants that are not self-antigens.

[0007] Larsen et al. (Proc. Natl. Acad. Sci. USA 86:8227, 1989) isolated and characterized a cDNA encoding murine α 1,3GT. Joziasse et al. (J. Biol. Chem. 267:5534, 1992) detected four distinct mRNA transcripts, which predict four different isoforms of the α 1,3GT. The full-length mouse mRNA (including 5' untranslated mRNA) was reported to span at least 35-kb of genomic DNA, distributed over nine exons ranging from 36 base pairs to ~2600 base pairs in length. Numbering in the 5' to 3' direction, the coding region is distributed over Exons 4 to 9. The four transcripts are formed by alternative splicing of the pre- mRNA.

[0008] Joziasse et al. (J. Biol. Chem. 264:14290, 1989) isolated and characterized a cDNA encoding bovine cDNA. The coding sequence was predicted to be a membrane-bound protein with a large glycosylated COOH-terminal domain, a transmembrane domain, and a short NH₂ terminal domain

[0009] The porcine α1,3GT cDNA sequence has been reported from several different laboratories: Strahan et al. (Immunogenetics 41:101, 1995); U.S. Pat. No. 5,821,117; U.S. Pat. No. 5,849,991; and International Patent Application WO 95/28412. The genomic organization of porcine α1,3GT was reported by Katayama et al. (Glycoconjugate J. 15:83, 1998). Again, the coding region spans six exons, conserving the arrangement present in the mouse genome, and extending over nearly 24-kb.

[0010] It has been reported that about 95% of the naturally occurring xenospecific antibody in humans recognize the $Gal\alpha(1,3)Gal$ epitope (McKensie et al., Transpl. Immunol. 2:81, 1994). Antibody in human serum binds specifically to pig endothelial cells in a manner that is inhibitable by $Gal\alpha(1,3)Gal$, or by $Gal\alpha(1,6)Glc$ (melibiose). New age monkeys have the same naturally occurring antibody, and demonstrate hyperacute rejection of pig organ xenotransplants. The rejection reaction can be obviated in experimental animals by infusing the recipient with the free carbohydrate (Ye et al., Transplantation 58:330, 1994), or by adsorbing antibody from the circulation on a column of $Gal\alpha(1,3)Gal$ or melibiose (Cooper et al., Xenotransplantation 3:102, 1996).

[0011] It has been suggested that xenotransplants of pig tissue could provide a source of various tissue components—heart valves, pancreatic islet cells, and perhaps large organs such as livers and kidneys (Cowley, Newsweek, Jan. 1, 2000). If xenotransplants from non-primates into humans is ever to become viable, then techniques need to be developed to prevent Gala(1,3)Gal mediated rejection. Possible genetic manipulation strategies are reviewed by Gustafsson et al. (Immunol. Rev. 141:59, 1994), Sandrin et al. (Frontiers Biosci. 2:e1-11, 1997), and Lavitrano et al. (Forum Genova 9:74, 1999).

[0012] One approach is to prevent the formation of $Gal\alpha(1,3)Gal$ by providing another transferase that competes with $\alpha 1,3GT$ for the N-acetyl lactosamine acceptor. International Patent Application WO 97/12035 (Nextran-Baxter) relates to transgenic animals that express at least one enzyme that masks or reduces the level of the xenoreactive antigens by competing with $\alpha 1,3GT$. The enzymes proposed are $\alpha(1,2)$ fucosyltransferase (that makes H antigen in humans), $\alpha(2,6)$ sialyltransferase, and $\beta(1,3)$ N-acetylglucosaminyltransferase. It is thought that once N-acetyl lactosamine has been converted by one of these transferases, it

can no longer act as an acceptor for $\alpha 1,3$ GT. The xenotransplantation cells of Application WO 97/12035 have at least one enzyme that reduces $Gal\alpha(1,3)Gal$ expression, and also express a complement inhibitor such as CD59, decay accelerating factor (DAF), or membrane cofactor protein (MCP). Expression of human CD59 in transgenic pig organs enhances organ survival in an ex vivo xenogeneic perfusion model (Kroshus et al., Transplantation 61:1513, 1996).

[0013] Another approach is to disassemble Gala(1,3)Gal after it is formed. International Patent Application WO 95/33828 (Diacrin) suggests modifying cells for xenogeneic transplants by treating tissue with an α -glycosidase. Osman et al. (Proc. Natl. Acad. Sci. USA 23:4677, 1997) reported that combined transgenic expression of both α -glycosidase and $\alpha(1,2)$ fucosyltransferase leads to optimal reduction in Galα(1,3)Gal epitope. Splenocytes from mice overexpressing human α-glycosidase showed only a 15-25% reduction in binding of natural human anti-Gala(1,3)Gal antibodies. Mice overexpressing human $\alpha(1,2)$ fucosyltransferase as a transgene showed a reduction of Galα(1,3)Gal epitopes by ~90%. Doubly transfected COS cells expressing both the glycosidase and the transferase showed negligible cell surface staining with anti-Galα(1,3)Gal, and were not susceptible to lysis by human serum containing antibody and complement.

[0014] A further alternative is to prevent $Gal\alpha(1,3)Gal$ expression in the first place. Strahan et al. (Xenotransplantation 2:143, 1995) reported the use of antisense oligonucleotides for inhibiting pig $\alpha 1,3GT$, leading to a partial reduction in expression of the major target for human natural antibodies on pig vascular endothelial cells. Hayashi et al. (Transplant Proc. 29:2213, 1997) reported adenovirusmediated gene transfer of antisense ribozyme for $\alpha 1,3GT$ and $\alpha(1,2)$ fucosyltransferase genes in xenotransplantation.

[0015] U.S. Pat. No. 5,849,991 (Bresatch) describes DNA constructs based on the mouse α 1,3GT sequence. They are designed to disrupt expression of functional α 1,3GT by undergoing homologous recombination across Exon 4, 7, 8, or 9. The constructs contain a selectable marker such as neo^{R} , hyg^{R} or thymidine kinase. It is proposed that such constructs be introduced into mouse embryonic stem (ES) cells, and recovering cells in which at least one α 1,3GT gene is inactivated. Experiments are reported which produced mice that are homozygous for inactivated α 1,3GT, resulting in lack of expression of $\text{Gal}\alpha(1,3)\text{Gal}$ epitope, as determined by specific antibody.

[0016] U.S. Pat. No. 5,821,117 (Austin Research Inst.) report cDNA sequence data for porcine α 1,3GT. This was used to probe a pig genomic DNA library, and two lambda phage clones were obtained that contain different regions of the porcine transferase gene. International Patent Application WO 95/28412 (Biotransplant) also reports cDNA sequence data for porcine α 1,3GT. It is proposed that genomic DNA fragments be isolated from an isogenic DNA library, and used to develop a gene-targeting cassette including a positive or negative selectable marker.

[0017] International Patent Application WO 99/21415 (Stem Cell Sciences, Biotransplant) reports construction of a DNA library from miniature swine. A vector is obtained comprising a pgk-neo cassette, and fragments of the α 1,3GT gene. This is used for homologous recombination to eliminate α 1,3GT activity in porcine embryonic fibroblasts.

Costa et al., Alexion Pharmaceuticals (Xenotransplantion 6:6, 1999) report experiments with transgenic mice expressing the human complement inhibitor CD59. In α 1,3GT knockout mice, the CD59 gene helped prevent human serum-mediated cytolysis. It had a similar effect in mice expressing α (1,2)fucosyltransferase. Combination of all three modifications provided no additional protective effect.

[0018] There have been no reports of the use of $\alpha 1,3GT$ inactivated tissue suitable for xenotransplantation into humans. In view of the paucity of available organs for human transplantation, there is a pressing need to develop further options.

SUMMARY

[0019] This disclosure provides technology for generating animal tissue with carbohydrate antigens that are compatible for transplantation into human patients. The tissue is inactivated homozygously for expression of $\alpha(1,3)$ galactosyltransferase, and comprises a transgene for $\alpha(1,2)$ fucosyltransferase. As a result, cell-surface N-acetyl lactosamine is not converted to the Gal $\alpha(1,3)$ Gal antigen—but converted to Fuc $\alpha(1,2)$ Gal, which is H substance, a self-antigen in humans.

[0020] One embodiment of this invention is a mammalian cell that is homozygous for inactivation of the $\alpha 1,3GT$ gene (which means that the $\alpha 1,3GT$ enzyme is not produced from either allele, whether or not the manner of inactivation is the same on both alleles). The cell also expresses an $\alpha 1,2FT$ transgene, either by integration at a random site, or by replacing at least part of the encoding sequence in the $\alpha 1,3GT$ gene with an $\alpha 1,2FT$ encoding sequence (this means that the $\alpha 1,3GT$ encoding sequence or a portion of it is no longer expressed, whether or not it is still present in the genome). In some cases, the $\alpha 1,2FT$ encoding sequence is placed under control of the endogenous $\alpha 1,3GT$ promoter.

[0021] In a related embodiment, the cells of this invention are adapted to express glycosyl transferase enzymes capable of synthesizing either the A determinant, the B determinant, or both, of the human ABO blood group.

[0022] Another embodiment of this invention is tissue from a mammal that has been genetically modified to be devoid of antibody-detectable $Gal\alpha(1,3)Gal$ determinants that it would otherwise express. The tissue also expresses at least one ABO blood group substance, such as H substance, A substance, B substance, or any combination thereof, and may express other antigens such as Secretor substance or CD59. Another embodiment of this invention is tissue from a mammal that has been genetically modified to expresses $\alpha1,2FT$ de novo, and to suppress expression of endogenous $\alpha1,3GT$.

[0023] A further embodiment of this invention is a non-human mammal that is homozygous for inactivation of the α 1,3GT gene. The mammal also expresses an α 1,2FT transgene, either randomly integrated into the genome, or replacing at least part of the encoding sequence in the α 1,3GT gene. In a related embodiment, the mammal is transgenic for the ABO blood group A-transferase, B-transferase, or both. The genetically modified cells, tissues and animals of this invention can be from any vertebrate or mammalian species, of which sheep and pigs are exemplary.

[0024] Another embodiment of the invention is a process for making genetically modified cells by nuclear transfer. At

least one allele of the $\alpha 1,3 GT$ gene in a donor cell is inactivated or replaced by any effective mechanism, as described later in this disclosure. The donor cell comprises an $\alpha 1,2 FT$ transgene, and optionally has increased telomerase activity to facilitate multiple targeting events or other genetic manipulations in a single generation. Following genetic manipulation, the nucleus of the donor cell is transferred to a recipient cell. Certain cells produced by this method can be used to create an embryo, which can be engrafted the cell into the uterus of a surrogate host to produce a birthed animal. Tissue of this invention can be harvested from the embryo, the birthed animal, or its progeny.

[0025] This invention also provides a system for selecting a cell that has undergone genetic alteration by homologous recombination from amongst a population of cells that do not have the alteration. The successfully targeted cell is identified and separated according to surface glycosylation that has changed as a result of the homologous recombination. The recombination event may inactivate an endogenous gene, or introduce a transgene, either of which may be a carbohydrate modulating enzyme, such as a glycosyltransferase or specific glycosidase in any combination. Altering carbohydrate modulating enzymes can be done for its own sake, or as a means for tracking inactivation of other endogenous genes or insertion of other genetic elements. Exemplary reagents and separation methods for use in this system are provided later in the disclosure. This cell selection system has important advantages for producing genetically altered cell types for a variety of purposes.

[0026] These and other embodiments of the invention will be apparent from the description that follows.

BREIF DESCRIPTION OF THE DRAWINGS

[0027] FIG. 1 is a map showing location of introns in the sheep $\alpha 1,3GT$ gene. Designs are shown for targeting vectors that inactivate the sheep $\alpha 1,3GT$ gene by homologous recombination. Each targeting vector comprises a selectable marker (neo), flanked on one side by an intron sequence of 1-2-kb, and on the other side by an intron sequence of 7-10-kb. A number of vectors have been obtained that target Exon 4, Exon 8, or Exon 9.

[0028] FIG. 2 compares the $\alpha 1,3$ GT gene with three particular $\alpha 1,3$ GT targeting vectors. Top Panel shows the targeting vector designated p0054. Middle Panel shows p0079. Lower Panel shows p0063. These vectors are designed to replace the coding region in Exon 4 (which contain the translation start site) with the selectable marker neo or pac.

[0029] FIG. 3 shows PCR analysis of sheep fetal fibroblasts targeted with the p0054 vector. Top Right Panel maps amplification primers where the expected product is 2.8-kb for native α 1,3GT, and 2.2-kb after homologous recombination. Top Left Panel shows the corresponding amplified product. Lower Right Panel maps amplification primers where there is no expected product before recombination, but a 1.5-kb product after recombination. Lower Left Panel shows the corresponding amplified product. The results show that one of the samples is from a fibroblast that has successfully been targeted—replacing Exon 4 with the selectable marker. Since Exon 4 contains the translation initiation site, this would inactivate the α 1,3GT gene.

[0030] FIG. 4 shows plasmid pGRN145, which causes cells to express telomerase reverse transcriptase (abbreviated here as hTRT), the limiting component of telomerase activity in most mammalian cells. Transcription is under control of the myeloproliferative sarcoma virus (MPSV) promoter.

[0031] FIG. 5 shows the growth profile for primary sheep fibroblasts transduced to express telomerase reverse transcriptase. Each line is a single clone, except BW6F23, which is the parental (untransfected) fibroblast line. ●=telomerase-expressing clones; ▲=telomerase-negative clones; □=clones that were telomerase-negative initially, but became positive later.

[0032] FIG. 6 shows targeting vectors that replace part of the $\alpha 1,3GT$ encoding region with the full-length $\alpha 1,2FT$ sequence. Top Panel shows a modification of the p0054 vector for inactivating the sheep α1,3GT. The human α 1,2FT sequence is flanked by sequence of the α 1,3GT gene that flanks the targeted region in Exon 4. Middle Panel shows a targeting vector for inactivating the pig α 1,3GT gene, replacing the beginning of the encoding region with the drug resistance marker neo. Lower Panel shows an adaptation of the pig vector, with the human α1,2FT encoding sequence between the flanking a1,3GT sequences. Sheep or pig tissue having the α 1,3GT inactivated on both alleles and replaced on at least one allele with α 1,2FT will not form the $Gal\alpha(1,3)Gal$ xenogeneic antigen. In its place, they form Fuca(1,2)Gal, which is H substance, a selfantigen in humans.

[0033] FIG. 7 provides fluorescent micrographs showing expression of the human $\alpha 1,2FT$ gene in sheep fibroblasts does indeed cause cell-surface expression of H substance carbohydrate. Top Panel shows *Ulex Europaeus* (UEA) lectin staining of human 293 cells (a positive control). Middle Left Panel and Middle Right Panel shows staining of telomerized sheep cells of the B9 sheep cell line using DAPI or UEA lectin, respectively. Lower Left Panel and Lower Right Panel show staining for telomerized cells of the C9 sheep cell line using DAPI or UEA lectin, respectively. Both the B9 and C9 lines were lipofected with a vector containing the human $\alpha 1,2FT$ gene. As a result of transfection, the lines now bind the UEA lectin, showing that the $\alpha 1,2FT$ has synthesized H substance.

DETAILED DESCRIPTION

[0034] The cell-surface carbohydrate antigen $Gal\alpha(1, 3)Gal$ is the linchpin for hyperacute rejection of tissue xenografts from animals into humans. For this reason, considerable effort has been made to obtain animal tissue lacking $\alpha(1,3)$ galactosyltransferase ($\alpha(1,3)GT$), which is responsible for the synthesis of this determinant.

[0035] It is a hypothesis of this invention that simply inactivating $\alpha 1,3GT$ expression may be suboptimal for tissue used in xenotransplantation.

[0036] There are two reasons. First, the acceptor substance for the $\alpha 1,3 GT$ enzyme is $Gal\beta(1,4)GlcNAc$ (N-acetyl lactosamine). In the absence of $\alpha 1,3 GT$, the galactose residue is presented at the terminus of the oligosaccharide branch, making it available for galectins of a corresponding specificity. The galectins constitute a family of animal lectins that have been implicated in cell adhesion and migration, tumor

cell recognition, augmentation of immune defense, cytokine production, cytotoxicity, and apoptosis (H.-J. Gabius, Eur. J. Biochem 243:543, 1997; G. A. Rabinovitch, Cell Death Differ.:711, 1999). Galectin-1 and galectin-3 are expressed pathologically in colon cancer, melanoma, fibrosarcoma, lymphoma, leukemia, HTLV-1 infected T cells, and a variety of carcinomas (Perillo et al., J. Mol. Med. 76:402, 1998). It is hypothesized that a graft with unusual density of terminal galactose residues may act as a magnet for inflammatory cells, or for tumor metastases.

[0037] The second reason is that N-acetyl lactosamine is itself an epitope against which humans have naturally occurring antibodies. The antibodies of this specificity are not generally a problem, because they are cold agglutinins not reactive at body temperature. However, their presence indicates that the human immune system is immunologically primed. Display of N-acetyl lactosamine in the context of other foreign antigens on pig tissue may be sufficiently immunogenic to generate antibodies against the epitope that would mediate delayed rejection.

[0038] This invention provides a better alternative: replacing $\alpha 1,3$ GT activity with $\alpha (1,2)$ fucosyltransferase ($\alpha 1,2$ FT) activity. The transplant tissue is homozygously $\alpha 1,3$ GT inactivated, and contains at least one copy of an $\alpha 1,2$ FT encoding region. The $\alpha 1,3$ GT product $\text{Gal}\alpha (1,3)$ Gal is not synthesized. Instead, a normal proportion of the acceptor substrate is fucosylated to H-substance—rendering it inert to pathogenic activity of galectins and naturally occurring antibody in humans, since H substance is a self-antigen. The transplant tissue will have the equivalent histo blood group type O—which in terms of the ABO blood group major cross-match is the universal donor blood type.

[0039] The carbohydrate phenotype can be matched even more closely to that of the patient being treated. H substance synthesized on the tissue is in turn the precursor substance for the A and B blood group transferases. If the tissue contains an expressible copy of the gene for blood group A GlcNAc- transferase, or blood group B Gal-transferase, then it will convert a proportion of the precursor to A substance or B substance respectively. By having the appropriate glycosyltransferase enzymes present in the tissue, then animal tissue for xenotransplantation can be obtained from non-cattharine animals that have tissue type corresponding to blood group A, B, AB, and O.

[0040] This way, a xenograft can be matched exactly according to the ABO type of the patient being treated. In liver transplants, an ABO minor mismatch (such as a type O graft in a type A patient) can cause a graft-versus-host reaction, due to passenger lymphocytes in the transplanted tissue. The compositions and techniques provided in this disclosure make it possible to minimize immunological reaction either way due to mismatch of either the Galo(1, 3)Gal antigen, or the ABO blood group antigens.

[0041] A series of complex genetic modifications of this nature has not previously been achieved in a large animal species. The engineering strategy provided in this description allows the skilled artisan to make all the genetic modifications required to a particular cell line as a matter of routine experimental optimization.

[0042] A particularly efficient manner of achieving α 1,2FT gene replacement animals is to do the manipulations

on a cell line (such as primary fetal fibroblasts) suitable for nuclear transfer and cloning into an animal. The genetic modifications and selection procedures typically involve considerable proliferation of the cells. It has been discovered that increasing telomerase activity in the cells helps preserve telomere length throughout the modifications, keeping the cells in a condition suitable for nuclear transfer. In addition, telomerizing the cell appears to increase the frequency of successfully targeted clones, and the effectiveness of nuclear transfer. It has been discovered that telomerase reverse transcriptase can be used from a different vertebrate species in order to achieve this result.

[0043] An established cell line of animal origin is first transfected with human telomerase reverse transcriptase (hTERT) to extend its replicative capacity, and provide these other beneficial effects. It is then targeted sequentially on each allele to inactivate or replace the $\alpha 1,3 GT$ gene, selecting the cells for correct targeting events. Once all genetic manipulations are complete, the nucleus of the modified cell is transferred to a suitable recipient, and an embryo is formed according to established cloning techniques. Variations and alternatives to this strategy are also effective, as described in the following sections.

Definitions

[0044] For purposes of this disclosure, the term $Gal\alpha(1,3)Gal$ (abbreviated GAL) refers to an oligosaccharide determinant present on endothelial cells and other cells of most non-primate mammals, for which humans have a naturally occurring antibody. The usual structure is $Gal\alpha(1,3)Gal\beta(1,4)GleNAc$, although other forms of $Gal\alpha(1,3)Gal$ specifically detectable by the naturally occurring anti $Gal\alpha(1,3)Gal$ in human serum of B blood type are included. $Gal\alpha(1,3)Gal$ is distinct from the $Gal\alpha(1,3)[Fuc\alpha(1,2)]$ - $Gal\beta(1,4)GleNAc$ determinant characteristic of the human B blood type antigen.

[0045] An "antibody detectable" determinant refers to a determinant that is present in an amount and is sufficiently accessible so that it can be detected by an antibody specific for the determinant in an appropriate immunoassay—such as an agglutination reaction, optionally developed with an antiglobulin reagent, or by immunohistochemistry.

[0046] The term " $\alpha(1,3)$ galactosyltransferase" and the abbreviation " $\alpha1,3$ GT" refer to the enzyme present in non-primate mammals that catalyzes the formation of the Gal $\alpha(1,3)$ Gal determinant by attaching Gal in the $\alpha(1,3)$ position to the Gal $\beta(1,4)$ GlcNAc acceptor. $\alpha1,3$ GT has the Enzyme Commission designation EC 2.4.1.124. $\alpha1,3$ GT is not naturally expressed in humans, and the term does not include the galactosyltransferase that forms the human B blood group antigen.

[0047] The term " $\alpha(1,2)$ fucosyltransferase" and the abbreviation " $\alpha 1,2$ FT" refer to the enzyme present in primate mammals that catalyzes the formation of the Fuc $\alpha(1,2)$ Gal determinant (blood group H substance, a.k.a. ABO precursor substance) by attaching fucose in the $\alpha(1,2)$ position to the acceptor substrate N-acetyl lactosamine. $\alpha 1,2$ FT has the Enzyme Commission designation EC 2.4.1.69. It is also known as FUT1, to distinguish it from Secretor blood group $\alpha(1,2)$ fucosyltransferase (FUT2), and other fucosyltransferases.

[0048] An "acceptor" substance for α 1,3GT or α 1,2FT is a carbohydrate structure that can act as a substrate and

become further glycosylated as a result of transferase activity. Acceptors for α 1,3GT include both Gal β (1,3)GlcNAc and Gal β (1,4)GlcNAc (Basu et al., J. Biol. Chem. 248:1700, 1973; Blake et al., J. Biol. Chem. 256:5387,1981).

[0049] A-transferase is said to be "detectably expressed" by a cell at the mRNA level when mRNA encoding the transferase can be measured in the cell by some suitable technique, such as Northern analysis or PCR-reverse transcriptase. It may also be expressed at the protein level, as detected by a specific antibody or demonstration of the characteristic enzymatic activity. Scientists skilled in the art will recognize that some cells (such as mature red blood cells) do not express any glycosyltransferases, even though they display certain oligosaccharide determinants. Inhibition of $\alpha 1,3$ GT expression is only meaningful in cells capable of expressing other glycosyltransferase enzymes.

[0050] A gene is said to be "inactivated" when it is rendered incapable of transcribing a functional protein. For example, an inactivated gene may be missing necessary transcription or translation control elements, it may be lacking an essential part of the protein encoding region, or the encoding region may be placed out of phase. In another example, the gene may be interrupted by an inserted sequence, or mutated in such a way as to interfere with transcription or translation of the gene product. In a third example, the inactivated gene may produce a translation product that has been altered in such a way that it lacks important enzymatic activity of the native gene product. A gene is also "inactivated" when the normal encoding region is switched with an encoding region for a different gene product with a different biological function.

[0051] In the descriptions of genetic modification and inactivation in this disclosure, it is understood that changes to the genome of a cell are inherited by progeny of the cell, unless further genetic manipulation occurs. Thus, it is possible to select the modified cells, let them proliferate, and then make a subsequent modification to the progeny. A sequence of genetic modifications made to cell and its ancestors are considered equivalent to making all the modifications to the same cell, unless explicitly directed otherwise.

[0052] A cell is said to be "transfected", "genetically transformed", or "genetically altered", when the cell has been introduced with a recombinant polynucleotide, or is the progeny of such a cell. The alteration may (but need not) be integrated into the genome of the cell. Non-limiting examples include the following: 1. A cell containing a vector with a sequence encoding a protein of interest, capable of causing the protein to be expressed by the cell on a transient or inheritable fashion. 2. A cell containing a genetic construct for targeting an endogenous gene (whether or not the gene has been successfully targeted). 3. A cell containing a genetic modification introduced by recombinant means.

[0053] A cell is described as "telomerized" if it has been treated to increase the expression of telomerase reverse transcriptase (TERT) and/or functional telomerase activity by any suitable means beyond the level usually expressed by cells of the same type in the same environment. Methods for telomerizing cells are illustrated in a later section of this disclosure. The term also applies to progeny of the originally treated cell that have inherited the ability to express telomerase at an elevated level.

[0054] The terms "polynucleotide" and "oligonucleotide" are used interchangeably to refer to a polymeric form of nucleotides of any length. Included are genes and gene fragments, mRNA, cDNA, plasmids, vectors, synthetic nucleic acids, targeting constructs, nucleic acid probes, and primers.

[0055] A "control element" or "control sequence" is a nucleotide sequence involved in an interaction of molecules that contributes to the functional regulation of a polynucleotide, such as replication, duplication, transcription, splicing, or translation. Transcriptional control elements include promoters and enhancers.

[0056] The term "embryo" as it is used in this disclosure refers to an organism developing in the uterus of a species of interest at any time after fertilization or intrauterine transfer, not limited to a particular developmental period. The terms "engrafting" or "transplanting", in reference to embryo manipulation, refer to any process known in the art for artificially introducing one or more embryos into the uterus of a female animal.

[0057] The term "tissue" refers to a heterogeneous collection of cells responsible for maintaining one or more physiological functions. Of interest for certain embodiments of this invention are organs suitable for transplantation, such as a whole kidney; however, the term also includes organ fragments and other embodiments, such as a piece of connective tissue, or a collection of cells in a medical support device.

General Techniques

[0058] In general, the practice of this invention can be carried out using standard techniques of genetic engineering, protein manipulation, and cell culture. Textbooks that describe standard laboratory techniques include the current editions of "Molecular Cloning: A Laboratory Manual-"(Sambrook et al.); "Animal Cell Culture" (R. I. Freshney, ed.); the series "Methods in Enzymology" (Academic Press, Inc.); "Current Protocols in Molecular Biology" (F. M. Ausubel et al., eds.); and "Recombinant DNA Methodology II" (R. Wu ed.). Techniques used in raising, purifying and modifying antibodies, and the design and execution of immunoassays, are described in Handbook of Experimental Immunology (D. M. Weir & C. C. Blackwell, eds.); The Immunoassay Handbook (Stockton Press NY); and Methods of Immunological Analysis (Masseyeff et al. eds., Weinheim: VCH Verlags GmbH).

[0059] Texts that describe reproductive techniques and embryo transfer in animals include Manual of the International Embryo Transfer Society: A procedural guide and general information for the use of embryo transfer technology emphasizing sanitary procedures, 3rd ed. (Stringfellow et al., Savoy, I L: International Embryo Transfer Society, Savoy I L); and Embryo transfer in farm animals: A review of techniques and applications (K. J. Betteridge, ed., Agriculture Canada Monographs No. 16, Ottawa, 1977).

[0060] References for human blood group substances include *The Blood Group Antigen Factsbook* (M. E. Reid & C. Lomas-Francis, ed., Academic Press, 1997); and *Blood Cell Biochemistry: Molecular Basis of Human Blood Group Antigens* (J. P. Carton & P. Rouger, eds., Plenum Pub. Corp., 1995). The synthesis of complex oligosaccharides and carbohydrate-specific enzymes are described in *Oligosaccha-*

rides: Their Synthesis and Biological Roles (H. M. I. Osborn & T. J. Khan, Oxford Univ. Press, 2000) and Glycoscience: Synthesis of Oligosaccharides and Glycoconjugates (H. Driguez & J. Thiem, Eds., Springer Verlag, 1999).

[0061] Books on the general aspects of nuclear transfer, animal cloning, and xenotransplantation include *The Second Creation: Dolly and the Age of Biological Control* (I. Wilmut et al., Farrar Straus & Giroux, 2000), and *Xeno: The Promise of Transplanting Animal Organs into Humans* (Cooper & Lanza, Oxford University Press, 2000).

Strategy for Engineering Tissue with Xenocompatible Carbohydrate Antigens

[0062] This invention provides cells, animals, and tissues in which expression of $\alpha 1,3$ GT is eliminated by inactivating the endogenous gene, and expression of $\alpha 1,2$ FT is induced by introducing a transgene into the genome. In order to obtain complete suppression of Gal $\alpha(1,3)$ Gal expression, the $\alpha 1,3$ GT gene needs to be inactivated on both alleles. At least one copy of an expressible $\alpha 1,2$ FT encoding region under control of a suitable promoter is also present to confer the desired phenotype.

[0063] A convenient method to make an animal with all these features is to perform all the genetic manipulations on a cell or cell population that is then used for cloning. To complete all the genetic manipulations, it is usually necessary to take the cell through a number of rounds of proliferation and selection. After the desired genotype has been obtained and selected, a cell selected from the population can be grown into an embryo (if it is an embryonic cell), or used as a donor for nuclear transfer into a suitable recipient cell, which in turn is used to grow the embryo.

[0064] The process can be considerably facilitated by increasing the replicative capacity of the cell population. In particular, increasing the expression of telomerase reverse transcriptase sufficiently increases replicative capacity of the nuclear donor, while minimizing risk of transformation to a malignant phenotype, and conferring other advantages described earlier.

[0065] Using this approach, genetically modified cells can be created in which the $\alpha 1,3GT$ gene is modified either simultaneously or sequentially on both alleles in the same cell line. One method for generating cells modified on both alleles is to use a single targeting vector in combination with a selection process that requires double integration. The double recombination event is statistically rare, but the extended proliferative capacity of the cell population puts batch screening for such an event within the scope of routine experimentation.

[0066] Another method for generating cells modified on both alleles is to use two different targeting constructs. The constructs can each be created with different selection markers that facilitate screening for double integration. For example, the cell can be targeted with a first targeting vector containing a first drug resistance gene, and selected using the corresponding drug. After a round of proliferation, the progeny can then be targeted with a second vector containing a second drug resistance gene, and selected using the second drug. In a variation of this technique, both targeting constructs are used at once, and selection of doubly modified cells is performed in a medium containing both drugs.

[0067] The desired phenotype can be obtained by inactivating both $\alpha 1,3GT$ alleles, and separately introducing an $\alpha 1,2FT$ expression cassette. Alternatively, targeting vectors can be used that removes the $\alpha 1,3GT$ start codon, and inserts the $\alpha 1,2FT$ expression cassette simultaneously. The $\alpha 1,2FT$ encoding region can be provided with its own transcription control elements—or it can be placed under control of the endogenous $\alpha 1,3GT$ promoter, which may help direct expression with an appropriate tissue distribution. Once all these manipulations have been made and verified, the cell can be used for cloning the embryo.

[0068] It is also possible to arrive at the desired phenotype by making some of the genetic modifications, cloning the embryo, and then making further modifications on a cell from the cloned fetus, newborn animal, adult, or subsequent progeny. For example, the $\alpha 1,3GT$ gene can be inactivated or replaced with $\alpha 1,2FT$ on one allele, and an animal cloned. Cells from the clone could then be harvested for inactivating or replacing the second $\alpha 1,3GT$ allele, and recloned. A further option is to arrive at the desired phenotype by interbreeding—for example, by mating an animal with $\alpha 1,3GT$ substituted with $\alpha 1,2FT$ on one allele with another animal having a similar genotype (or with just an inactivated $\alpha 1,3GT$ allele).

Increasing Telomerase Activity in the Nuclear Donor

[0069] Donor cells for genetic manipulation according to this invention are typically nucleated cells of the desired species with a germ line genotype, selected to be easily maintained in culture. Exemplary are primary fibroblast cells, which are relatively easy to prepare from most species. For example, cells are collected from sheep or pig fetuses at about 35 days of gestation, and subjected to mild trypsin/EDTA solution, then cultured in a suitable culture medium. Except where explicitly directed otherwise, the techniques of this invention can be applied to any cell type without restriction, including embryonic cells, primary cells from a fetus, offspring, or adult, and established cell lines from any vertebrate.

[0070] The replicative capacity of the nuclear donor cell is increased by increasing telomerase activity. This assists the cells in maintaining telomere length, thereby expanding the replicative capacity (the number of cell doublings possible before reaching the Hayflick limit and entering crisis). Typically, telomerase activity is modified before inactivation of the target gene, but such modifications are also permitted at a later stage in the procedure.

[0071] Increasing telomerase activity can be accomplished by a number of strategies, including but not limited to the following:

- [0072] a) genetically altering the cell with a nucleotide having an encoding region for telomerase reverse transcriptase (TERT);
- [0073] b) artificially placing TERT protein or telomerase holoenzyme into the cell;
- [0074] c) altering TERT expression from the endogenous gene; or
- [0075] d) altering expression of a telomerase related protein, thereby effectively increasing telomerase activity.

[0076] A convenient method for increasing telomerase activity is to genetically alter the cells so that they express TERT, which is usually the limiting component of telomerase enzyme expression. A TERT gene can be cotransfected with a gene for the telomerase RNA component, or a TERT can be selected that is compatible with the RNA component already expressed by the cell.

[0077] It has been discovered that when cells from large mammals such as sheep and pigs are genetically altered with human TERT, they express increased telomerase activity, which indicates that the hTERT gene product can combine with endogenous RNA component to create a functional enzyme. It is a hypothesis of this invention that combinations of mammalian TERT into the cells of other mammals will often be effective.

[0078] The human TERT gene sequence is provided in U.S. Pat. No. 6,166,178, which also describes the use of TERT to increase replicative capacity of various cell types. The mouse TERT sequence is provided in International Patent Application WO 99/27113. Other publications with telomerase-related sequences include International Patent Application WO 98/21343 (Amgen); WO 98/37181 (Whitehead); WO 98/07838A1 (Mitsubishi); WO 99/01560 (Cambia), and U.S. Pat. No. 5,583,016 (Geron Corp.). U.S. Pat. No. 5,968,506 describes purified telomerase and methods for obtaining it. When TERT is referred to in this description, it is understood to mean a polypeptide comprising a TERT sequence from any mammalian, vertebrate, or other species, with or without alterations, so long as the polypeptide has telomerase activity when associated with telomerase RNA component, as measured by TRAP assay (described below) in the cell line being treated.

[0079] Typically, the vector will comprise a TERT encoding region under control of a heterologous transcription control element that promotes transcription in the intended undifferentiated or differentiated cell line. Sequences that can drive expression of the TERT coding region include viral LTRs, enhancers, and promoters (such as MPSV, SV40, MoLV, CMV, MSCV, HSV TK), eukaryotic promoters (such as β -actin, ubiquitin, elongation factors exemplified by $EF1\alpha$, and PGK) or combinations thereof (for example, the CMV enhancer combined with the β -actin promoter). Expression of a marker gene can optionally be driven by the same promoter that's driving the TERT gene, either as a separate expression cassette, as part of a polycistronic transcript (in which the coding regions of TERT and the marker gene are separated by an IRES sequence, allowing both individual proteins to be made from a single transcript driven by a single promoter), or as part of the same cassette (a fusion between the coding regions of both TERT and the marker gene, producing a protein that provides the functions of both TERT and the marker gene). Transfection and expression of telomerase in human cells is described in Bodnar et al., Science 279:349, 1998 and Jiang et al., Nat. Genet. 21:111, 1999.

[0080] An alternative strategy is to use a vector that substitutes or supplements the promoter in the endogenous TERT gene with a regulatory control element (such as those listed above) that increase expression in the cultured cells. Further illustration of the general strategy of replacing promoters in endogenous genes can be found in U.S. Pat. No. 6,063,630.

[0081] When the nucleus of the telomerized cell is transferred to another cell and used to produce a cloned animal or embryo, the tissue will contain alterations to the genome of the donor cell. The presence of a recombinant TERT gene in a donor cell may have other consequences. Accordingly, it may be desirable to provide a mechanism for removing or otherwise inactivating the recombinant TERT gene once the telomeres have been elongated but before nuclear transfer.

[0082] This can be accomplished by flanking the TERT gene and/or the transcription control element on both sides with recognition sequences for a site-specific recombinase. Suitable are lox sites recognized by Cre recombinase (U.S. Pat. No. 4,959,317), and frt sites recognized by Flp recombinase (U.S. Pat. No. 5,929,301). Other site-specific recombinases include XerC (Becker et al., Curr. Microbiol. 32:232, 1996), XerD (Subramanya et al., EMBO J. 16:5178, 1997), xisF (Genes Dev. 8:75, 1994), and Int recombinase (Kolot et al., Mol. Biol. Reprod. 36:207, 1999; Tirumalai et al., Proc. Natl. Acad. Sci. USA 94:6104, 1997). After all the genetic modifications are made to obtain the desired cellsurface carbohydrate antigens, the cell is treated with the corresponding recombinase (or an expression vector for the recombinase) to excise the TERT cassette before nuclear transfer.

[0083] Also contemplated are vectors in which a particular gene (such as a selectable marker) is flanked by one type of recombinase recognition site, and the TERT gene or control element is flanked with another type of recognition site. An example is the following:

[0084] 5'arm-loxP-frt-neopA-frt-pGK promoter-hTER-TpA-LoxP-3'arm

This allows the drug resistance marker (neo) to be removed from the line after selection using the first recombinase (Flp), while retaining TERT. Further genetic manipulation can then be performed—for example, targeting the other allele of the same gene, possibly using the same vector and selecting for neo again. After all manipulation is complete, the TERT encoding region can be removed using the second recombinase (Cre).

[0085] Another way of obtaining cells with genomic modifications that do not include TERT is to increase telomerase activity without integrating a TERT gene into the genome. For example, TERT can be transiently expressed using a suitable expression system such as adenovirus, or by introducing TERT protein (or the telomerase holoenzyme) directly into the cell. The TERT will be diluted out as the cell divides, but extension of telomeres in the parent cell should increase replicative capacity of the cell line by several doublings.

[0086] Another alternative is to upregulate TERT expression from the endogenous gene by upregulating expression of trans-activating transcriptional regulators. The TERT promoter contains a number of regulator recognition sequences, such as c-Myc, SP1, SRY, HNF-3β, HNF-5, TFIID-MBP, E2F and c-Myb. See International Patent Publication WO 00/46355.

[0087] A further alternative is not to increase TERT expression, but enhance the effective activity of telomerase already present in the cell. This can be done in cells that have an endogenous level of TERT expression, such as in bone

marrow progenitor cells and gonadal tissue. For example, TRF1 and TRF2 are proteins that bind to telomere repeats and regulate access of telomerase (Smogorzewska et al., Mol. Cell Biol. 20:1659, 2000). Decreasing expression of such factors may enhance the ability of telomerase to increase telomere length, thereby increasing replicative capacity of the cell.

[0088] Evidence of increased telomerase expression can be obtained by a variety of techniques, including but not limited to determining gene transcript levels (for example, by Northern or RT-PCR analysis), protein expression (for example, by immunocytochemistry), or telomerase activity (for example, by primer extension assay). Extended lifespan or replicative capacity of the treated cells, while often desirable, need not be positively demonstrated for the invention to be put into practice, except where explicitly required.

[0089] Telomerase activity can be determined, for example, by TRAP assay (Kim et al., Science 266:2011, 1997; Weinrich et al., Nature Genetics 17:498, 1997), or other suitable technique (e.g., U.S. Patent 5,741,677). Evaluation of hTERT expression by RT-PCR or immunoassay can be done by standard methods, using the sequences disclosed in U.S. Pat. No. 6,166,178. The following assay kits are available commercially for research purposes: TRAPeze® XK Telomerase Detection Kit (Cat. s7707; Intergen Co., Purchase NY); TeloTAGGG Telomerase PCR ELISAplus (Cat. 2,013,89; Roche Diagnostics, Indianapolis Ind.); and LightCycler TeloTAGGG hTERT quantification kit (Cat. 3,012,344).

[0090] The cells can also be characterized as to their replicative capacity by passaging cells and monitoring the number of cell doublings. Unmodified fetal fibroblasts will typically grow through a number of doublings until they reach the Hayflick limit, and then enter into senescence. As illustrated in FIG. 5, cells may grow indefinitely if TERT continues to be expressed.

Modifying the Galactosyltransferase Gene

[0091] Once the cell line has been obtained and established in culture, genetic manipulations can be performed to: a) eliminate expression of the endogenous $\alpha 1,3$ GT gene; and b) provide for expression of $\alpha 1,2$ FT to fucosylate the same N-acetyl lactosamine acceptor.

[0092] There is a variety of ways the endogenous $\alpha 1,3GT$ gene can be inactivated. For example, a control element that regulates transcription (such as a promoter or transcription start sequence) can be altered or deleted. Alternatively, the gene can be adapted so that any gene product that is produced lacks the essential features of a glycosyltransferase. The encoding region can be interrupted with stop codons, the encoding region can be placed out-of-phase, or critical portions of the protein may be missing, such as a structural component or a signal peptide for secretion. In another alternative, the gene can be adapted so that the protein product lacks the specificity of $\alpha 1,3GT$ —either because the catalytic site is removed, or because substrate binding specificity has been sufficiently altered so that the enzyme is incapable of synthesizing the $Gal\alpha 1,3Gal$ linkage.

[0093] The α 1,3GT gene can be targeted by homologous recombination, using a vector comprising nucleotide sequence identical or nearly identical to a portion of the gene

of interest, linked to another structure capable of introducing the alteration. Such vectors typically have two regions flanking a region of the genome intended for deletion. Between the flanking regions, there is often an additional segment that becomes inserted in the gene in place of the region that is excised.

[0094] The insert region can include a selectable marker, so that targeted cells can rapidly be separated from untargeted cells. U.S. Pat. No. 5,614,396 describes a method for obtaining a cell containing a desired sequence in the cell's genome, by using a targeting vector having two regions homologous to the targeting sequence, flanking a sequence that is to be inserted, and having a selectable marker. The DNA undergoes homologous recombination at the target site, and recombined cells are recovered under selective culture conditions.

[0095] Positive selection markers include the neo gene, selectable using G418 or kanamycin; the hyg gene, selectable using hygromycin; the pac gene, selectable using puromycin; the gpt gene, selectable using xanthine; and hypoxanthine-phosphoribosyltransferase (HPRT), selectable using hypoxanthine. Negative selection markers include thymidine kinase (tk), selectable using acyclovir or ganciclovir; HPRT, selectable using 6-thioguanine; and cytosine deaminase, selectable using 5-fluoro-cytosine. Markers can also have an intrinsic label, like green fluorescent protein or β-galactosidase, which permit clones of targeted cells to be identified and selected.

[0096] Further methodology for homologous recombination is described in the published literature. U.S. Pat. Nos. 5,464,764 and 5,631,153 provide a double-selection strategy, in which two sequences homologous to the gene target flank a positive selection marker, and a negative selection marker is attached to the 3' terminal of the second flanking region. Homologous integration retains the positive selection marker, but eliminates the negative selection marker, whereas random integration usually retains both markers. Thus, by screening for both markers sequentially or together, cells that have been correctly targeted will be positively selected, and those that have been incorrectly targeted are selected out. U.S. Pat. No. 5,789,215 reports the use of homologous recombinant targeting vectors for modifying the cell genome of mouse embryonic stem cells. See also U.S. Pat. Nos. 5,589,369 and 5,776,774.

[0097] Example 1 illustrates targeting vectors that are capable of inactivating the sheep $\alpha 1,3$ GT gene (SEQ. ID NOs:3 & 4) via homologous recombination. Vectors p0054, p0079, and p0063 (Example 1, **FIG. 2**) are targeted to eliminate Exon 4, which contains the $\alpha 1,3$ GT translation start codon. Other vectors have been obtained that target Exon 8 or Exon 9, which is thought to encode at least part of the $\alpha 1,3$ GT catalytic site. The $\alpha 1,3$ GT gene in other species can be targeted in a similar fashion, using probes having flanking sequence for the $\alpha 1,3$ GT of that species. The bovine and porcine $\alpha 1,3$ GT cDNA sequences are provided in SEQ. ID NOs:5-8.

[0098] The vectors comprise flanking regions identical to the targeted $\alpha 1,3$ GT sequence, one side being about 1 kb, the other being at least 1 or 2 kb, in either order. In between the flanking regions is a selectable marker such as neo, designed to replace one of the Exons in the $\alpha 1,3$ GT coding sequence. The selectable marker genes are not provided with their own

promoter, and require continued translation through the upstream $\alpha 1,3GT$ sequence in order to be expressed. This helps the marker select for properly integrated vector, because vector inserted at a random site will probably not link the marker gene to a suitable promoter, and resistance to the selector drug will not be conferred. In cells that normally express a high level of $\alpha 1,3GT$ and the Gal $\alpha(1,3)G$ al epitope, the $\alpha 1,3GT$ promoter will be highly active and the drug resistance marker will be strongly expressed. Thus, a higher concentration of selector drug can be used to select out cells that have the vector inserted elsewhere.

[0099] The insert region of the targeting vector can also contain an encoding region for $\alpha 1,2FT$. This way, inactivation of the endogenous $\alpha 1,3GT$ gene and integration of the $\alpha 1,2FT$ will occur simultaneously with a successful targeting event. The $\alpha 1,2FT$ gene can be placed in the targeting vector linked to its own promoter, or the targeting vector can be constructed in such a way that the $\alpha 1,2FT$ gene will be placed under control of the endogenous $\alpha 1,3GT$ promoter once integrated.

[0100] Larsen et al. (Proc. Natl. Acad. Sci. USA 86:8227, 1989) describe the molecular cloning, sequence, and expression of human GDP-L-fucose: β -D-galactoside 2- α -L-fucosyltransferase cDNA that can form the H blood group antigen (i.e., α1,2FT). The nucleic acid sequence and encoded protein sequence is shown in SEQ. ID NOs:9 and 10. Wagner, et al. (Transfusion 37:284, 1997) provide allotypic variants of the human α1,2FT. Apoil et al. (Mol. Biol. Evol. 17:337, 2000) describe evolution of the α1,2FT gene in primates, and provide encoding sequences from *Gorilla gorilla, Pan troglodytes, Macaca mulatta*, and other higher primates. Any fucosyltransferase can be used if it converts the N-acetyl lactosamine acceptor to a determinant that is immunologically equivalent to H substance.

[0101] Vectors for replacing the α 1,3GT encoding region in sheep and pigs with the human α 1,2FT are shown in FIG. 6 (Example 4). The target cells are contacted with the targeting vector in such a manner that the vector gets entry into the cell nucleus and effects the intended change. Any suitable method of transfection can be used, such as electroporation and lipofection. The vector can also be truncated for insertion into a viral particle (such as an adenovirus vector) that can then be used to transduce the cells. Examples 2 and 5 illustrate the use of targeting constructs on sheep fibroblast cultures suitable for nuclear transfer.

[0102] As an alternative to homologous recombination, a target gene can be inactivated using triplex- forming oligonucleotides that induce intrachromosomal gene conversion (Luo et al., Proc. Natl. Acad. Sci. USA 97:9003, 2000; Barre et al., Proc. Natl. Acad. Sci. USA 97:3084, 2000). Other techniques and reagents can be found in Inonue et al., J. Virol. 73:7376, 1999; Cole-Strauss et al., Science 273:1386, 1996; Hasty et al., Mol. Cell Biol. 11: 4509,1991; and International Patent Publication WO 98/48005.

[0103] In instances where the α 1,3GT gene has been inactivated without integrating an α 1,2FT encoding region into the genome, a separate manipulation is required to confer the full phenotype. A vector is made for introducing the α 1,2FT region, typically under control of a promoter that is active in an appropriate tissue distribution, such as the native α 1,2FT promoter, or one of the model promoters listed earlier. The expression cassette can then be integrated

into the genome at any location by any appropriate technique, such as homologous recombination, or transduction with a retroviral or DNA viral vector.

Selection and Characterization of Targeted Cells

[0104] Each genetic manipulation can be selected and verified according to genotypic and phenotypic markers.

[0105] Where cells have been transfected with a vector bearing a drug resistance marker, successfully targeted clones can be selected by culturing in a medium containing the corresponding drug. Modification of one or both alleles can be confirmed by PCR of genomic DNA, using primers from flanking endogenous $\alpha 1,3GT$ sequence, showing that the segment length has changed, or using a primer for the inserted sequence in combination with an $\alpha 1,3GT$ primer, showing that the sequence is integrated in the correct region. Southern analysis using probes for flanking endogenous $\alpha 1,3GT$ sequence will show altered restriction analysis, and probes for the inserted sequence will confirm the presence and orientation of the insert. In-situ hybridization of genomic DNA can be used to verify the correct location of the modification.

[0106] Targeted clones can also be selected and verified based on gene transcripts and the resulting cell phenotype. mRNA can be characterized by Northern analysis or RT-PCR. Cells where the α1,3GT gene has been inactivated on both alleles will not express the Galα(1,3)Gal epitope. The determinant can be identified using a specific antibody or lectin. Purified antibody can be obtained from pooled human serum by adsorbing on an affinity column of SynsorbTM 115 (ChemBioMed, Alberta, Canada) or D(+) melibiose (Sigma). An alternative is the "IB4" lectin from Bandeiraea (Griffonia) simplicifolia (Sigma Cat. L 3019) which is specific for a-D-galactosyl residues (Hayes et al., J. Biol. Chem. 25:1904, 1976), and binds both the Galα(1,3)Gal epitope, and B blood group substance.

[0107] Antibody to $Gal\alpha(1,3)Gal$ can be used to select for homozygous knockouts by complement lysis. Targeted cells are combined with a source of the antibody (such as human serum), and a source of complement, (such as fresh plasma from the same species as the cells, or commercially available guinea pig complement). The mixture is incubated at 37° C. for a sufficient period to lyse cells expressing $Gal\alpha(1,3)Gal$ (or halt their growth), using untargeted cells as a control. Surviving cells should have $\alpha 1,3GT$ inactivated on both alleles. Specific antibody or lectin can also be used to isolate homozygous knockout cells by affinity techniques, such as panning, affinity adsorption, or fluorescent-activated cell sorting.

[0108] Incorporation and expression of the α 1,2FT encoding region can be determined using antibody or lectin specific for H substance. *Ulex Europaeus* agglutinin I (UEA-1) is a lectin with affinity for the terminal L-fucose on H substance (Matsumoto et al., Biochim. Biophys. Acta 194:180, 1969). The lectin can be used for immunoseparation of cells in which α 1,2FT is active. Most mature pig and sheep cells do not normally bind UEA-1 (Spencer et al., J. Histochem. Cytochem. 40:1937, 1992; K. J. Fahey, Aust. J. Exp. Biol. Med. Sci. 58:557, 1980). UEA-1 is available from Sigma Chemical Co. or Vector Labs in purified form, labeled with fluorescein or biotin, or insolubilized on beaded agarose. Conrad-Lapostolle et al. (Cell. Biol. Toxicol. 12:189,

1996) describe optimization of UEA-1 magnetic beads for endothelial cell isolation. UEA-1 labeled with a fluorescent tag can be used to separate targeted cells by fluorescence-activated cell sorting.

[0109] Using specific antibody and lectin in appropriate combination, it is possible to select cells with the full α1,3GT negative, α1,2FT positive phenotype without having drug resistance labels in the targeting vectors. For example, the cells can be targeted with a vector that substitutes α 1,2FT for α 1,3GT on one allele, and selected by positive adsorption to UEA-1. The selected cells are expanded, and then targeted with a similar vector to knock out the second allele. The targeted cells are then subject to complement lysis using antibody to the Gala(1,3)Gal determinant in human serum, or depleted of cells binding IB4 lectin. Surviving cells are again expanded, cloned, and analyzed for correct genotype, expression of $\alpha 1,2FT$ mRNA, lack of expression of α1,3GT mRNA, and correct expression of cell surface oligosaccharide determinants. Of course, drug selection, affinity selection, and selection by other criteria can be combined in any effective combination to obtain the phenotype desired.

ABO Transferases and Other Transgenes

[0110] Group H substance formed by $\alpha 1,2FT$ in turn can be used as an acceptor for the human ABO histo blood group transferases, to create the allotypic markers characteristic of a particular ABO blood type. Blood group A-transferase adds GalNAc to the Gal residue on Fuc $\alpha(1,2)$ Gal-GlcNAc, to form GalNAc $\alpha(1,3)$ [Fuc $\alpha(1,2)$]Gal-GlcNAc (A substance). Blood group B-transferase adds Gal instead to form Gal $\alpha(1,3)$ [Fuc $\alpha(1,2)$]Gal-GlcNAc (B substance).

[0111] Certain embodiments of the invention provide animal tissue that not only expresses H substance, but also has at least some of it converted to A or B substance. To provide tissue of the human A blood group, the cells express blood group A-transferase in one or more copies. To provide tissue of the human B blood group, the cells express blood group B-transferase. To provide tissue of the human AB blood group, the cells express both A-transferase and B-transferase.

[0112] The nucleotide and protein sequence of human A-transferase and B-transferase are provided in SEQ. ID NOs:11-14. See also U.S. Pat. Nos. 5,068,191 and 5,326, 857. ABO transferase enzymes of other primate species can be found in Sumiyama et al., Gene 259:75, 2000. The transferase encoding sequence is placed in a vector suitable for introducing a transgene into the cell, for example by homologous recombination or retrovirus transduction. The sequence is linked to transcription control elements that promote expression in the appropriate cell types, such as the homologous transferase promoter, the α 1,3GT promoter, or the α 1,2FT promoter. Cells are then selected for successful targeting, and characterized according to whether they express A or B substance (for example, using antibody from human blood group B or A serum, respectively).

[0113] If desired, the cells can be adapted with other genetic modifications to enhance its suitability for the ultimate purpose. Xenocompatibility can be enhanced by increasing expression of complement inhibitor such as CD59, DAF or MCP (International Patent Application WO 97/12035). It is also believed that tissues or organs contain-

ing cells that are genetically modified to render them incapable of expressing CD40 antigen have lower risk of chronic xenograft rejection (International Patent Application WO 00/39294). Other xenogeneic antigens, such as that identified in WO 00/57912 or histocompatibility markers, can also be deleted or humanized to increase immunocompatibility.

Carbohydrate Tags as a Selection System for Homologous Recombination

[0114] Surface carbohydrate-based cell selection (as described above and illustrated in Example 5) was conceived and developed as a general system for identifying targeted homologous recombination events in any context. The advantages of using carbohydrate determinants as selection markers are multiple:

- [0115] A change in carbohydrate determinant can be generated either by introduction of a new carbohydrate modulating enzyme, or by inactivation of carbohydrate modulating enzyme expressed from an endogenous gene. Where a new transgene is introduced into the cell, it can be a close homolog to a naturally occurring enzyme, thereby minimizing antigenic complications from the protein itself.
- [0116] The strategy of sorting by inactivation of an endogenous carbohydrate modifying enzyme is particularly attractive, because the change is effected only by integration of the vector into the correct locus. This is important, because the frequency of integration into random (non-target) sites can be 10-fold higher than the frequency of correct homologous recombination.
- [0117] Many glycosyltransferases (such as those that create the blood group antigens) are expressed in a wide variety of cell types from the endogenous promoter (Ravn et al., APMIS 108:1, 2000), meaning that inactivation screening can be designed that is not cell-type restricted.
- [0118] A wide variety of lectins is available for robust separation of the cells either by adsorption or fluorescent tagging techniques. Elution of the selected cells can be accomplished under gentle conditions using carbohydrate competitor ligand.
- [0119] Since cell-surface carbohydrate determinants are modulated by enzymes such as a glycosyltransferase or a glycosidase, the density of surface determinants is catalytically (not stochiometrically) related to the amount of protein translation. Increased antigen density may enhance the likelihood of successful antibody or lectin-based separation.

[0120] Negative selection according to this system can be accomplished by designing the targeting vector to interrupt the encoding sequence for the target carbohydrate modulating enzyme with a sequence that prevents transcription or translation of the functional gene product. The targeting vector may optionally include other elements to be introduced into the target site, such as a transgene or recognition sequence for a site-specific recombinase.

[0121] Positive selection according to this system can be accomplished by including in the targeting vector a glycosyltransferase or glycosidase that is not endogenous to the species or phenotype of the cell being targeted. After the targeting reaction, cells are selected for the determinant

created by the encoded modulating enzyme, and then checked for proper integration of the vector. Putting the modulating enzyme into the cell need not be the ultimate objective of targeting, it can just piggyback on the vector as a way of following the reaction. The ultimate objective of targeting could be to inactivate an endogenous gene (which may but need not encode another carbohydrate modulating enzyme). It could also be to introduce another genetic element into a particular locus—such as a different transgene (powered by a different promoter or separated from the enzyme encoding region by an IRES sequence), or a recognition sequence for a site-specific recombinase. Where the enzyme encoding region is present in the targeting vector only for use as selection tag, it can optionally be removed after the targeted cell line is established—for example, by site specific recombination.

[0122] Carbohydrate binding means that detect modulations in carbohydrate determinants include specific antibody (anti-A, present in blood group B serum; anti-B, present in blood group A serum; and anti-Galα(1,3)Gal, present in virtually all human serum). Also included are specific lectins. The following are available commercially: H-specific lectins from Anguilla anguilla, Tetragonolobus pupureas, and Ulex europaeus UEA-1, which of course also binds Galα(1,3)Gal. A-specific lectins from Helix pomatia, Dolichos biflori, Helix aspersa, Phaseolus limensis, and Bandeiraea simplicifolia (IA4). B-specific lectin: Ptilota plumosa, and Bandeiraea simplicifolia (IB4).

[0123] Methods of separation can involve adhering the antibody or lectin to a solid surface, contacting the surface with the cells, and collecting cells that adhere or do not adhere to the solid surface. Other methods of separation involve conjugating the antibody or lectin with a fluorescent, phosphorescent, or other labeling means, contacting the cells with the labeled tag, and then separating tagged from nontagged cells, for example, in a fluorescence-activated cell sorter. Another separation method involves using antibody to bind the distinguishing determinant on the cells, thereby opsonizing them for complement-mediated lysis.

[0124] In principle, this selection system can be used in any eukaryotic cell capable of expressing distinguishable carbohydrate determinants on the cell surface. As illustrated at various places in this disclosure, the system can be employed on cells of most vertebrate or mammalian species.

[0125] An illustrative example of the use of this system is the modification of pluripotent stem cells, such as human embryonic stem cells or germ cells (U.S. Pat. Nos. 6,200, 806 and 6,331,406; International Patent Publications WO 99/20741 and WO 01/51616) or their derivatives (WO 01/81549; WO 01/88104). The cells are first genotyped for ABO blood group by PCR amplification (Lee et al., Forensic Sci. Int. 82:227, 1996). Cells that are AO or BO genotype have the advantage that knocking out the single enzymatically active allele will change the surface phenotype of the cell.

[0126] The ABO locus is then targeted with a vector containing a genetic element to be introduced into the genome of the cell, flanked on either side by portions of the A- or B-transferase genomic sequence. Cells that are successfully targeted are separated by their ability to bind the Helix pomatia lectin for A-substance, or the IB4 lectin for B-substance. Accuracy of the targeting can be confirmed, for

example, by PCR amplification or Southern analysis of genomic DNA. An advantage of this strategy is not only the effective selection of the targeted cells, but the fact that the ABO blood group enzyme is inactivated as a consequence—giving the cells the blood group O phenotype, which makes them universal donor cells with respect to ABO blood group.

[0127] In a variation of this example, positive rather than negative selection is used to follow gene targeting. Cells are selected that have the OO genotype, and targeted at the ABO locus by a vector that introduces A- or B-transferase flanked on each side by site-specific recombinase recognition sequences. Cells are positively selected for binding to Helix pomatia or IB4 lectin. Then the cells are transfected to transiently express the corresponding recombinase enzyme. As a result, the active transferase is excised, and the cells revert to the blood group O phenotype, leaving a single recombinase recognition sequence in the locus. This then can be used to introduce a variety of transgenes into the line by site- specific recombination. It is a theory of this invention that since ABO blood determinants are expressed on most nucleated cells, this site will facilitate stable expression of the transgene—since it may be immune to inactivation that might occur elsewhere in the genome as the cells proliferate and proceed down the differentiation pathway.

[0128] A second illustration of the carbohydrate mediated selection system is the use of fluorescently labeled lectins and single-cell sorting to rapidly obtain cells in which the α 1,3GT gene has been replaced with α 1,2FT.

[0129] Early passage animal cells are transfected by electroporation with 10 μ g NotI linearized p0090 (a promoterless vector that targets the α 1,3GT locus and inserts α 1,2FT; Example 4). Only cells that integrate the α 1,2FT sequences downstream and in-frame to an active promoter will express α 1,2FT protein, and hence present H substance on the cell surface. Following transfection, a period of 24 hours of growth in complete medium is sufficient to allow expression of α 1,2FT and synthesis of H substance on the cell surface (FIG. 7).

[0130] Cells expressing α 1,2FT and synthesizing H substance are isolated by their ability to bind UEA-1 lectin as follows. The transfected culture is washed with HEPES buffer (0.15 M NaCl, p. 01 M HEPES, pH 7.5) and then incubated for 30 min with rhodamine conjugated UEA-1 lectin (Vector Labs), diluted 1:50 in HEPES buffer. Excess lectin is removed by three washes with HEPES buffer. Cells binding the lectin are separated by FACS analysis (Becton Dickenson) such that individual fluorescent cells deposited into single wells of a 96-well plate—thereby avoiding cultures that contain mixed populations of targeted and non-targeted cells. As an alternative to the single-cell sorting technique, the targeted cell population can be seeded at a density of ~50 cells in a 10 cm dish. After growth and expansion, the resulting colonies (>100 cells per colony) are ring-cloned and deposited to 96-well plates for DNA analy-

[0131] The cells are allowed to proliferate in complete growth medium until cultures are subconfluent. At this time, the cells are replica plated; one plate for cryopreservation and later recovery, and the other plate for DNA analysis by PCR. Wild type and targeted α1,3GT alleles are detected using sense (399010, 5'-CAGCTGTGTG GGTATGGGAG GG-3'; SEQ. ID NO:27) and antisense (499006, 5'-CTGM-

CTGAA TGTTTATCCA GGCCATC-3'; SEQ. ID NO:28) PCR primers, yielding products of 3.0-kb and 2.4-kb, respectively. A second PCR screen with primers 399010 (SEQ. ID NO:27) and 399111 (5'-TGACGATGGC TCCG-GAGCCA CAT-3'; SEQ. ID NO:40) produces a fragment of 1.7-kb only in clones that are correctly targeted. Successful targeting can be confirmed by Southern blot analysis.

[0132] The genetically altered cells can then be used for nuclear transfer, establishing additional cell lines, or for any other desirable purpose.

Nuclear Transfer

[0133] Cells that have been successfully targeted and selected according to this invention can be used as nuclear donors by transferring into an enucleated recipient cell.

[0134] Suitable recipient cells include oocytes or any other pluripotent cell that is capable of developing into a fertile embryo after transfer and activation. International Patent Application WO 97/07669 (Roslin Institute) describes quiescent cell populations for nuclear transfer. International Patent Application WO 97/07668 (Roslin Institute) describes inactivated oocytes as cytoplast recipients for nuclear transfer. For purposes of prosecution in the U.S., these patents and patent applications are hereby incorporated herein by reference in their entirety.

[0135] Nuclear transfer methods are particularly effective if the nucleus of the donor cell is quiescent, which can be achieved by culturing the donor cell in a serum-free medium (WO 97/07669). In an exemplary method, the nucleus of a donor cell is transferred into an oocyte that is arrested in the metaphase of the second meiotic division, and subsequently activating the reconstituted cell. Briefly, unfertilized metaphase II oocytes are collected as follows: Female animals are synchronized using progestagen sponges for ~14 days, and induced to superovulate with single injections of follicle- stimulating hormone on two successive days. Ovulation is induced or synchronized with a suitable dose of gonadotrophin-releasing hormone or an analog thereof (e.g., ~8 mg GnRH ReceptalTM, Hoechst, UK) on the following day. The oocytes are recovered by flushing from the oviduct one day later, washed, and enucleated by treating with cytochalasin B and aspirating the nucleus using a glass pipette. Enucleated oocytes are then placed into contact with a single cell that acts as the nucleus donor.

[0136] Fusion of the donor nucleus into the enucleated recipient cell is effected by placing the couplet in a fusion chamber and aligning it between the electrodes. Electrical pulses are then applied to induce fusion, typically a low-voltage AC pulse for several seconds, followed by a plurality of very short high-voltage DC pulses. Following an incubation period, activation is induced by application of an additional electrical pulse. The reconstructed zygote is then cultured for a time before engrafting into a surrogate female. Further details and alternative procedures are described in the patent publications cited above.

[0137] Estrus in the surrogate female is typically synchronized artificially using a suitable combination of inducing agents. Cameron et al. (Aust. Vet. J. 66:314, 1989) discuss synchronization methods and other practical aspects for commercial embryo transfer in pigs. Blum-Reckow et al. (J. Anim. Sci. 69:3335, 1991) report experiments relating to transfer of pig embryos after long-term in vitro culture.

Replacing medium every 12 h during culture improved survival, and pregnancy rate improved if the sexual cycle of recipients was 24 h behind that of the donor.

[0138] The embryos are introduced into the uterus of the recipient female using any suitable technique, including devices adapted for the purpose, or appropriate surgical methods. For example, U.S. Pat. No. 4,326,505 describes surgical procedures for embryo transplants in animals, in which the uterine horn is positioned in the peritoneal cavity proximate to the vaginal wall, a cannula is inserted through the vaginal wall and into the uterine horn, and the embryo is introduced through the cannula. Non-surgical methods include using a suitable device to manipulate the injection port through the folds of the cervix to the bifurcation of the uterus. For example, devices and techniques for porcine non-surgical embryo transfer are reported by Li et al. (J. Anim. Sci. 74:2263, 1996). Wallenhorst et al. (J. Anim. Sci. 77:2327, 1999) describe the effect of transferring pig embryos to different uterine sites.

Preparation and Use of Tissue Expressing ABO Blood Group Determinants

[0139] Once an animal has been obtained that has the desired genetic alterations, tissue can be harvested and characterized.

[0140] The genomic features of the α 1,3GT locus, and expression of α 1,3GT or α 1,2FT transcripts can be verified using criteria already described. Density of Gal α (1,3)Gal and H substance on the cell surface can be determined using specific antibody or lectin in immunocytochemistry or fluorescence labeled flow quantitation methods. Susceptibility of the cells to complement lysis can be determined as follows. Tissue cells from the animal are suspended and labeled with 51 Cr. The labeled targets are combined with diluted human serum as a source of both antibody and complement, and then incubated for several hours at 37° C. Release of the 51 Cr label correlates with density of Gal α (1, 3)Gal on the surface of the target cells. For further details of assays for α 1,3GT inactivation and Gal α (1,3)Gal determination, the reader can consult U.S. Pat. No. 5,849,991.

[0141] If the animal is confirmed to be $\alpha 1,3 GT$ negative and $\alpha 1,2 FT$ positive, it can be used for investigational purposes, or as a source of any tissue type that is desired for xenotransplantation. Possible harvest tissue includes but is not limited to whole organs, such as kidney, liver, heart, lung, eyes, and pancreas; solid tissue, such as skin, cartilage, pancreatic islets, and vasculature of various types; and cell suspensions, such as progenitor cells for regeneration of neural tissue, hematopoietic tissue, hepatocytes, or other cell types.

[0142] If the animal has the α 1,3GT gene replaced with α 1,2FT on both chromosomes, the phenotype should breed true. However, if there is only one α 1,2FT gene, then of course it will segregate in the progeny of the cloned animal according to mendelian genetics. The α 1,2FT positive phenotype can be maintained by testing the phenotype of each offspring, in combination with an appropriate cross-breeding strategy. Alternatively, the α 1,3GT negative α 1,2FT positive parent can be cloned as needed to provide the required amount of tissues and organs for research and commercial use.

[0143] Cells and tissue harvested from α 1,3GT inactivated, α 1,2FT expressing tissue can be tested for compat-

ibility according to standard protocols. Antigen expression can be determined by immunocytochemistry, using the IB4 lectin or antibody obtained from human serum. Compatibility with the potential recipient is assessed in part using recipient's serum to test the tissue for cytochemical staining, or in a cytotoxicity assay. Xenotransplantation can be modeled in non-human animals that do not normally express the $Gal\alpha(1,3)Gal$ antigen, including GAL knockout mice (see Gock et al., Xenotransplantation 7:237, 2000) or cattharine non-human primates.

[0144] The following examples provided as further nonlimiting illustrations of particular embodiments of the invention.

EXAMPLES

Example 1

Construction of Vectors for Inactivating Galactosyltransferase

[0145] This example describes vectors that inactivate the $\alpha(1,3)$ galactosyltransferase ($\alpha(1,3)$) gene by homologous recombination.

[0146] The sequence of the sheep cDNA for $\alpha 1,3GT$ is shown in SEQ. ID NOs:3 & 4. To develop genomic constructs, DNA was isolated from Black Welsh Mountain fetal fibroblasts, and a $\lambda DASHII$ phage library was constructed. Sau3A partially digested genomic DNA was dephosphorylated and ligated to compatible BamHI vector arms (Stratagene). The ligation products were packaged to produce recombinant phage, which were propagated on spi selective XL1-Blue-MRA(P2) bacterial cells. The resulting library had a complexity of 1.4×10^6 recombinants, and was subsequently amplified once. Six phage clones were isolated that spanned Exon-4, Exon-6-7 and Exon-9.

[0147] Recombinant phage designated B, C and G, have been deposited as a pooled sample with the National Collections of Industrial and Marine Bacteria Limited (NCIMB), Aberdeen, U.K, under Accession No. NCIMB 41056. The phage can be separated using the oligonucleotide probes 5'-GGGAGGMGC GMGGTGCA-3' (SEQ. ID NO:15), 5'-CTTGATGGGTTTATCCAGM CA-3' (SEQ. ID NO:16) and 5'-TGATAATCCC AGCAGTATTC-3' (SEQ. ID NO:17), respectively. Each recombinant phage has also been deposited separately with the NCIMB under the following Accession numbers: Clone B, No. 41059; Clone C, No. 41060; and Clone G, No. 41061.

[0148] FIG. 1 maps the sequenced intron regions of α 1,3GT to their positions in the gene. Exon 4 contains the translation start codon. Also shown are designs for exemplary targeting vectors that disrupt gene expression by excising Exons 4 and 9 by homologous recombination.

[0149] Several recombinant vectors were constructed for targeting Exon 4 of the sheep $\alpha 1,3$ GT gene. The vector comprises two regions that are complementary to genomic sequence; a 1.2-kb 5' arm, which includes sequence from Intron 3 leading up to and including the start codon in Exon 4, and a ~9-kb 3' arm that initiates 1.5-kb into Intron 4, continuing to Intron 5. Separating these regions is neo^R-polyA sequence. After homologous recombination, the vector confers neomycin phosphotransferase resistance to the

cells and deletes 1.5-kb of genomic sequence, including the first coding exon of α 1,3GT gene. The entire cassette was cloned into pBlueScriptTM for propagation in DH5 α bacterial cells.

[0150] FIG. 2, Top Panel, shows the vector designated p0054. It was constructed by amplifying a truncated left arm (300 bp, includes EcoRI site) (using primers 199001, 5'-ACGTGGCTCC AAGAATTCTC CAGGCAAGAG TACTGG-3', SEQ. ID NO:18; and 199006, 5'-CATCT-TGTTC MTGGCCGAT CCCATTATTT TCTCCTGGGA AAAGAAAAG-3', with tail complementary to the start of neo coding sequence, SEQ. ID NO:19), and a neo-polyA sequence obtained from Stratagene (using primers 199005, 5'-CTTTTCTTTT CCCAGGAGAA AATAATGGGA TCG-GCCATTG AACAAGATG-3', SEQ. ID NO:20, with tail complementary to left arm; and 199004, 5'-CAGGTC-GACG GATCCGAACA AAC-3', SEQ. ID NO:21). These fragments were used to prime from each other to give a 1.2-kb fusion product. This was ligated to Intron 3 sequence, to extend the left arm, and to -9-kb of 3' sequence to create the right arm, which initiates 1.5-kb into Intron 4, continuing to Intron 5.

[0151] FIG. 2, Middle Panel, shows the promoterless neo-polyA insertion vector designated plasmid p0079. This vector contains the same left arm-neo-polyA fusion as in vector p0054, but with a modified right arm of 3.9-kb. The 3' region comprises a 1.5-kb fragment, generated by PCR (using primers 200011, 5'-CAGATCTAAC GAGGATTCAA TGTCAAAGGA AAAGTGATTC TGTCAAT-3', SEQ. ID NO:22; and 499006, 5'-CTGMCTGAA TGTTTATCCA GGCCATC-3', SEQ. ID NO:23), which extends from the second codon in Exon 4 into Intron 4, replacing the sequence deleted in p0054. The 3' arm was extended by ligation to a 2.4-kb EcoRV downstream fragment.

[0152] FIG. 2, Lower Panel, shows the promoterless pac-polyA replacement vector designated plasmid p0063, also directed towards Exon 4. Construction of this vector was similar as for p0054, except that it contains the pac gene, which codes for puromycin N-acetyltransferase, rather than the neo gene. The pac sequence is available in plasmid pPUR from ClonTech. The oligonucleotide primers used to generate the 5'-pac-polyA fusion were, for the 5' region, 199001 (SEQ. ID NO:18) and 699002 (5'-GCGCACCGTG GGCTTGTACT CGGTCATTAT TTTCTCCTGG GAAAA-GAAAA G-3', SEQ. ID NO:24), with tail complementary to the start of pac coding sequence; and, for pac-polyA, 699004 (5'-GAGAAAATAA TGACCGAGTA CAAGCCCACG GTGC-3' SEQ. ID NO:25), with tail complementary to left arm, and 699005 (5'-CTGGGGATCC AGACATGATA AGATAC-3' SEQ. ID NO:26).

Example 2

Targeting the Galactosyltransferase Gene

[0153] Electroporation conditions were optimized using a β -galactosidase marker plasmid, pCMV-Sport- β gal (Gibco). Using a 0.4 cm cuvette with 3×10^5 cells (0.8 mL, 6 μ g plasmid DNA) and a setting of 250 μ F: 400 Volts (Gene Pulser, BioRad), 10-30% of the surviving fibroblasts stained positive for β -gal expression.

[0154] For targeting the α 1,3GT gene, 10, 25 or 100 μ g of NotI linearized p0054 vector was mixed with 1×10⁷ early

passage Black Welsh Mountain fetal fibroblasts and pulsed. Cells were grown on tissue culture plastic for 24 h before G418 (300 μ g/mL) was applied. After 10-14 days, colonies were isolated.

[0155] FIG. 3 shows the results of site specific recombination detected by PCR amplification. Wild type and targeted α1,3GT alleles were detected using sense (399010, 5'-CAGCTGTGTG GGTATGGGAG GG-3'; SEQ. ID NO:27) and antisense (499006, 5'-CTGMCTGAA TGTT-TATCCA GGCCATC-3'; SEQ. ID NO:28) PCR primers, yielding products of 2.8-kb and 2.2-kb, respectively. A second PCR screen with primers 399010 (SEQ. ID NO:29) and 399005 (5'-AGCCGATTGT CTGTTGTGCC CAGT-CAT-3'; SEQ. ID NO:30) produced a fragment of 1.5-kb only in clones that were correctly targeted. The frequency of site-specific recombination was 1 in 52 (6 in 312) clones in the 1 μg experiment or 1 in 88 (10 in 877) from all electroporations.

[0156] In parallel experiments, sheep fibroblasts were targeted with a vector designed to inactivate the prion protein (PrP) gene. This gene is heavily implicated in disease pathology of spongiform diseases such as scrapie, bovine spongiform encephalopathy, and Creutzfeldt-Jakob disease (CJD). The sheep PrP gene sequence is provided in Goldmann et al., Proc. Natl. Acad. Sci. USA 87:2476, 1990.

[0157] The frequency of site-specific recombination observed in these experiments is shown in Table 1:

TABLE 1

Gene Tar	geting Efficie	ncy in Primar	y Sheep Fibrol	olast Cultures
Parental culture	Target locus	Drug resistant colonies	Targeting events detected	Colonies suitable for nuclear transfer
Black Welsh Black Welsh Finn Dorset	α1, 3GT PrP α1, 3GT	877 533 568	10 (1.1%) 55 (10.3%) 35 (6.2%)	0 (0%) 1 (0.2%) 2 (0.4%)

[0158] Nuclear transfer is typically conducted as follows. Oocytes are harvested from adult female breeding sheep treated with an analogue of gonadotrophin releasing hormone (Buserelin™, given 24 h after sponge removal). The oocytes are stripped of cumulus cells by triturating with a pipette and incubating with hyaluronidase. They are then enucleated by removing the first polar body and metaphase plate. A single targeted nuclear donor cell is introduced under the zona of each oocyte. The cell combination is subject to simultaneous electrofusion and activation (0.25 kV cm⁻¹ AC for 5 sec. to align oocyte and donor cell, followed by 3 pulses of 1.25 kV cm $^{-1}$ DC for 80 μ sec to fuse and activate the reconstructed embryo). The activated cell is maintained in culture overnight at 39° C. Next day, the cells are embedded in agar chips to protect from macrophages, and then transferred to the ligated oviduct of a temporary recipient.

[0159] Estrous is controlled in the temporary recipient by treatment with intravaginal progestagen sponge for 11 to 16 days, with or without subcutaneous or intramuscular injection of 500 i.u. of PMSG. The timing brings the temporary recipients to estrus ~3 days before the oocyte donors. Cells are collected under general anesthesia using barbiturate

followed by gaseous anesthetics. The reproductive tract is exposed by midventral laparotomy; placing ligatures of silk at each uterotubal junction, and embryos are transferred through the fimbriated end of the oviduct. The laparotomy is then closed, and a long-acting antibiotic is administered. The embryos are flushed from the temporary recipient after 6 days, and developing embryos are removed from the agar chip.

[0160] Blastocysts and morula are then transferred into the recipients that will carry the embryo to term. Estrus is controlled by treatment with an intravaginal progestagen sponge for 11 to 16 days, bringing the final recipients to estrus simultaneously with the oocyte donor. The permanent recipients are anesthetized by intravenous barbiturate and gaseous anesthetics, the reproductive tract is exposed by mid-ventral laparotomy, and the oviduct or uterus is temporarily cannulated for transfer of the embryos. Alternatively, three small puncture incisions are made anterior to the udder, and a laparoscope, manipulating forceps and needle are inserted for manipulation of the uterus. The oviduct or uterus is temporarily cannulated for transfer of the embryos, and the incision is sutured closed.

[0161] Recipients of oocytes with a targeted nucleus, engrafted in the manner outlined, were monitored for the status of their pregnancy by subcutaneous ultrasonic scanning on a weekly basis. For animals maintaining their pregnancy, the progress of the fetus is monitored regularly by ultrasound, and brought to term. Results are shown in Table 2. The longest-lived animal born with a PrP knockout survived 12 days.

TABLE 2

Nuclear Transfer f	r Transfer from Gene Targeted Primary Cells Nuclear donor cell						
Stage of Animal Cloning	Parental Finn Dorset	α1, 3GT targeted	PrP targeted				
Reconstructions	126	142	454				
Morula and blastocyst	33	21	43				
Fetuses at day 60	5	5	8				
Lambs at birth; live (dead)	0(2)	0	3(1)				
Lambs alive at 1 week	`ó	0	ìí				

Example 3

Telomerizing Nuclear Donor Cells

[0162] A vector containing an expression cassette for telomerase reverse transcriptase was found to increase functional telomerase activity and replicative capacity in sheep fibroblasts suitable for nuclear transfer.

[0163] FIG. 4 is a map of plasmid pGRN145. It contains sequences encoding telomerase reverse transcriptase (abbreviated here as hTRT) with a consensus Kozak sequence downstream of the myeloproliferative sarcoma virus (MPSV) promoter. It also contains puromycin and hygromycin resistant gene sequences and allows drug selection of the transfected clones.

[0164] Primary sheep fibroblast cell line designated BW6F2 (passage 6, obtained from a Black Welsh sheep) was transfected with linearized pGRN145. The cells were plated

in 96 well plates, and selected using puromycin at 1 μ g/mL. PCR screening with puromycin primers showed that all but one of the selected clones contained the vector sequence.

[0165] Fourteen of the clones were developed into cell lines. hTERT expression was measured in the cloned sheep fibroblasts by Western blot and by immunocytology. Functional telomerase activity was measured by TRAP assay, and was found to be positive in 10 of these clones, compared with the original BW6F2 line.

[0166] In order to determine the replicative capacity of the cloned fibroblast cell lines, the cells were passaged continuously using standard culture conditions.

[0167] FIG. 5 shows the growth curves for these cells. Each line represents a single clone designation, except BW6F23, which is the parental (untransfected) line. The solid circles represent telomerase-expressing clones, and the solid triangles represent telomerase-negative clones. Open squares represent clones that were telomerase-negative initially, but became positive later. All telomerase-negative

cells showed signs of transformation to a malignant phenotype by karyotype analysis, response to serum starvation (0.1% serum for 7 days, followed by resynchronization for 24 h in 10% serum). Telomere length was assessed by extracting DNA from cloned cells using a blotting assay. The DNA was digested with RsaI and HinfI, separated on 0.7% agarose, blotted onto a nylon membrane, and probed with ³²P-labeled (TTAGGG)₃ oligonucleotide.

[0170] It was found that by passage ~150, some clones have telomere shortening (GRN 1-1,2-7 and 2-8), while others show no change (GRN 2-1,2-5 and 2-10), or show elongated telomeres (GRN 2-2). Clones with higher hTERT expression levels (detected by Western blot and immunostaining with 1A4 antibody) maintained their telomere length, while clones with lower hTERT expression levels were typically the ones showing shortened telomeres.

[0171] A summary of results from these experiments is shown in Table 3.

TABLE 3

	_Cha	aracteristics of	Telomerize	d Sheep Fibro	blast Clones	_
Desig- nation	PCR for puromycin gene	TRAP assay (telomerase activity)		Response to serum starvation	Contact inhibition	Karyotype
GRN 1-1	+	-	354	Normal	Normal	Normal
GRN 1-2	+	- → +	289	(p54–56) Normal	(p72) Normal	(p14, p49) Normal
014112	·	•	207	(p50)	(p47)	(p8, p35)
GRN 2-1	+	+	264	Normal	Normal	Normal
				(p50)	(p43)	(p13, p80)
GRN 2-2	+	- → +	294	Normal	Normal	Normal (p30)
				(p48)	(p52)	Abnormal (p90)
GRN 2-3	+	_	37 ^a	n.d.	n.d.	n.d.
GRN 2-4	+	_	75ª	n.d.	n.d.	n.d.
GRN 2-5	+	+	279	Normal	Normal	Normal
				(p54)	(p46)	(p12, p86)
GRN 2-7	+	+	314	Normal	Normal	Normal
				(p62)	(p64)	(p15, p97)
GRN 2-8	+	+	318	Normal	Normal	Normal
			ı c ch	(p60)	(p52–53)	(p15)
GRN 2-10	+	+	166 ^b	n.d.	n.d.	Abnormal
GRN 2-12			293	Normal	Normal	(p13) n.d.
OKN 2-12	+	+	273	(p50)	(p51–53)	II.u.
GRN 2-13	+	+	258	(psu) Normal	(p31–33) Normal	Normal
OR 2-13	-	т.	230	(p47)	(p48–49)	('p16)
GRN 2-18	_	_	83 ^a	Abnormal	n.d.	n.d.
014, 2 10			55	(p18)		
GRN 2-20	+	- → ?	113 ^b	n.d.	n.d.	n.d.

^aCells became senescent

clones became senescent towards the end of the growth curve, as did the parental BW6F2 cells.

[0168] The clones expressing hTERT have been grown through at least 260 population doublings (PDs) and still grow like young cells. Cells transfected with a control plasmid without hTERT cDNA or the transfected cells not expressing hTERT grew less than 83 PDs. The parental cells only replicate through 127 PDs, when they become senescent.

[0169] The hTERT expressing sheep fibroblasts were also analyzed to determine whether or not the hTERT expressing

Example 4

Vectors for Substituting the Galactose Transferase Gene with Fucosyltransferase

[0172] Vectors for substituting the encoding sequence for α 1,2FT into the α 1,3GT behind the endogenous promoter have been made by modifying the knockout vectors for neo (p0054) and puro (p0063).

[0173] FIG. 6, Top Panel, shows a map of the sheep α1,2FT substitution vector. A 1 kb RV-R1 fragment was cloned into KpnI-RI cleaved modified pBS (pBluescriptTM,

^bGrowth curve stopped

Stratagene), hence destroying the original RV site as follows. The 5' arm (gal)-FT fusion, which lacks a polyA site, was produced by PCR. The 5' arm was amplified with primers 199001 (5'-ACGTGGCTCCA AGAATTCTCCA GGCAAGAGTAC TGG-3', SEQ. ID NO:18) and 700001 (5'-CTG ACG ATG GCT CCG GAG CCA CAT TAT TTT CTC CTG GGA AAA GAA MG-3', SEQ. ID NO:31), the latter having complementarity to human α1,2FT.

[0174] The human α1,2FT sequence (GenBank accession NM000148, SEQ. ID NO:9) was amplified from mRNA prepared from the 293 cell line (a permanent line of primary human embryonal kidney transformed by human adenovirus type 5 DNA; ATCC Accession No. CRL-1573). The following primers were used: 700002 (5'-ATA ATG TGG CTC CGG AGC CAT CGT CA-3'; SEQ. ID NO:32) and 700003 (5'-AM GGA TCC TCAAGG CTT AGC CAA TGT CCA GAG T-3'; SEQ. ID NO:33). The products of 0.3 kb and 1.1 kb, respectively, were mixed in a PCR reaction in which they primed from each other to give a 1.4 kb fragment that was cloned into RI-BHI cut vector from above. This fusion has been sequenced and is correct.

[0175] A fragment containing the SV40 poly A site, produced from synthetic oligos (700004, 5'-GAT CCG GGG ATC GGC AAT AAA AAG ACA GAA TAA AAC GCA CGG GTG TTG GGT CGT TTG TTC CTC GAG GTC GAC GAT-3', SEQ. ID NO:34; 700005, 5'-ATC GTC GAC CTC GAG GAA CAA ACG ACC CAA CAC CCG TGC GTT TTA TTC TGT CTT TTT ATT GCC GAT CCC CG-3', SEQ. ID NO:35), was ligated 3' of the FT coding sequence between BHI and RV sites. Finally, to complete the 3' arm of the vector, two separate fragments (a ~7 kb RV-NotI then a 2.4 kb RV) were added. The vector was designated p0090.

[0176] FIG. 6 also shows construction of a pig promoterless α 1,2FT substitution vector. The middle panel of the figure shows pPAGTarget1, a vector comprising porcine a1,3GT sequence for inactivating α 1,3GT in pig cells. The vector is digested with StuI/NsiI to release a small amount of 5 and 3'α1,3GT sequence, and also the neopA cassette. The NsiI site is blunt ended with DNA polymerase. A PCR fragment fusing 5' pig α 1,3GT with α 1,2FT-polyA is then made. Oligonucleotides galF (CCTATGCAAA TTAAGG-TAG AACGCAC, SEQ. ID NO:36) and galR (5'-CTGAC-GATGG CTCCGGAGCC ACATTATTTT CTCCTGGGA AAAGAAAAG-3', SEQ. ID NO:37), with part of the latter being complementary to the α 1,2FT sequence, produce a 200 bp fragment. Oligonucleotides FTF (5'-ATAATGTGG CTCCGGAGC CATCGTCA-3', SEQ. ID NO:38) and FTR (5'-CTCGAGGAA CAAACGACCC AACACCCGTG-3', SEQ. ID NO:39), directed to SV40 poly-A, produce a 1.2 kb α1,2FT poly-A fragment.

[0177] These fragments are fused by PCR, polished with T4 DNA polymerase, 5' phosphorylated, and ligated into the StuI/NsiI polished vector, to produce the targeting vector shown at the bottom of FIG. 5. The vector is linearized with NotI or SaII when used for targeting.

Example 5

α1,2FT Gene Expression in Telomerized Fibroblasts

[0178] Primary Black Welsh fibroblasts (designation BW6F2) were transfected with the hTERT gene as described

in Example 3. The characteristics of telomerized clone GRN1.1 are described in Example 3.

[0179] GRN1.1 cells at passage 5 or 25 were resuscitated into T175 flasks and grown to subconfluency. Cells (2.8× 10^6 , passage 5; 8.3×10^6 , passage 25) were electroporated with 10 μ g of NotI linearized p0054 targeting vector, using a setting of 125 μ F: 350 V in FlowgenTM 0.4 cm/800 μ l cuvettes. Diluted cells were plated to 20×96 well plates. The next day, G418 (600 μ g/mL) was added to the medium to begin the selection process. Cell death appeared after 8-10 days in G418, much longer than when using parental BW6F2 cells. Colonies were observed after ~2 weeks and replica plated (41 colonies from passage 5 cells; 2 colonies from passage 25 cells) on day 20 of selection.

[0180] PCR analysis was conducted on DNA isolated from selected colonies. One correct targeting event (clone B9) was detected from the passage 5 electroporation. This clone and eight non-targeted clones were resuscitated in 24 well plates. All clones grew to confluency. The B9 (correctly targeted) cell line, and the C9 cell line (one of the eight containing randomly integrated α 1,3GT) grew fastest. Clones B9 and C9 have been karyotyped, and both are 54XY.

[0181] Thus, telomerized sheep fibroblasts were successfully targeted with the promoterless neo $\alpha 1,3$ GT targeting vector, p0054. The targeted clone (B9) has been expanded, and retains a stable karyotype. This clone exists as a pure population of targeted cells and continues to grow at passage 17 (~80 doublings). Successfully targeted clones can be used for replacing the $\alpha 1,3$ GT gene on the other allele with $\alpha 1,2$ FT, using the targeting vectors obtained in Example 4.

[0182] To ensure that the α 1,2FT encoding sequence in the fusion vector produces functional enzyme, the α 1,2FT sequence was PCR'ed and subcloned between the NheI and BamHI sites of pEGFP—C1 (ClonTech), thereby replacing the GFP sequence in the vector to form a pCMV- α 1,2FT-pA cassette. This plasmid was designated p105. The vector was transfected into the B9 and C9 telomerized α 1,3GT- targeted lines by lipofection. After 48 h, the cells were washed in PBS and fixed in cold acetone for 10 min at 4° C. Samples were washed in Hepes buffer (0.15 M NaCl, 0.01 M Hepes, pH 7.5) and incubated with UEA-1 rhodamine (Vector Labs) diluted 1:50 in Hepes buffer. After washing in Hepes buffer, the samples were mounted in DAPI containing Vector Shield

[0183] FIG. 7 shows the results. Normally, sheep fibroblasts do not stain with the UEA-1 lectin, since they do not bear H substance. Staining of human 293 cells is shown here as a positive control. As a result of transfection, both the B9 and C9 sheep cell lines now specifically bind UEA-1, showing that expression of the human α 1,2FT gene in sheep fibroblasts does indeed cause synthesis of H substance carbohydrate on the cell surface.

[0184] The compositions and procedures provided in the description can be effectively modified by those skilled in the art without departing from the spirit of the invention embodied in the claims that follow.

Sequence Data

[0185]

TABLE 4

	Sequences	<u>listed in this Disclosure</u>
SEQ. ID	Designation	Reference
1	Human Telomerase Reverse Transcriptase cDNA sequence	GenBank Accession NM 003219 U.S. Pat. No. 6,166,178
2	Human Telomerase Reverse Transcriptase amino acid sequence	GenBank Accession NM 003219 U.S. Pat. No. 6,166,178
3	Sheep α 1,3GT cDNA sequence	This Disclosure.
4	Sheep $\alpha 1,3 \mathrm{GT}$ amino acid sequence	This Disclosure.
5	Bovine α 1,3GT cDNA sequence	GenBank Accession J04989 Joziasse et al. "Bovine $\alpha 1$ -> 3- galactosyltransferase" J. Biol. Chem. 264, 14290 (1989)
6	Bovine $\alpha 1,3 \text{GT}$ amino acid sequence	GenBank Accession P14769 Joziasse et al. (1989), supra.
7	Pig α 1,3GT cDNA sequence	GenBank Accession L36152 Sus scrofa alpha-1,3-galactosyltransferase mRNA. Strahan et al. "cDNA sequence and chromosome localization of pig $\alpha 1$,3 galactosyltransferase" Immunogenetics 41, 101 (1995) See also GenBank Accession L36535 Sandrin et al. "Characterization of cDNA clones for porcine a(1,3)galactosyltransferase" Xenotransplantation (1994)
8	Pig α 1,3GT amino acid sequence	GenBank Accession L36152 Strahan et al., supra.
9	Human α 1,2FT (FUT1) cDNA sequence	Larsen, et al. "Molecular cloning, sequence, and expression of a human GDP-L-fucose:beta-D-galactoside 2-alpha-L-fucosyltransferase cDNA that can form the H blood group antigen" Proc. Natl. Acad. Sci. USA 87, 6674 (1990) GenBank Accession NM 000148
10	Human α 1,2FT (FUT1) amino acid sequence	Larsen, et al., supra. GenBank Accession NM 000148
11	Human Fuc- α 1,2Gal- α 1,3GalNAc (Blood Group A) transferase cDNA sequence	Yamamoto, et al. "Cloning and characterization of DNA complementary to human UDP-GalNAc:Fuc- α 1,2Gal- α 1,3GalNAc transferase" J. Biol. Chem. 265:1146-1151 (1989) GenBank Accession J05175
12	Human Blood Group A-transferase amino acid sequence	Yamamoto, et al., supra. GenBank Accession J05175
13	Human Fuc- α 1,2Gal- α 1,3Gal (Blood Group B) transferase cDNA sequence	Yamamoto. "Homo sapiens B-specific alpha 1 -> 3 galactosyltransferase (ABO) mRNA, ABO-*B101 allele, complete cds." (direct submission) GenBank Accession AF134414
14	Human Blood Group B-transferase amino acid sequence	Yamamoto, supra. GenBank Accession AF134414
15 to 40	Probes and PCR primers	This Invention.

[0186]

<160> NUMBER OF SEQ ID NOS: 40 <210> SEQ ID NO 1 <211> LENGTH: 4015 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (56)..(3454) <400> SEOUENCE: 1 gcagcgctgc gtcctgctgc gcacgtggga agccctggcc ccggccaccc ccgcg atg 5.8 ceg ege get eee ege tge ega gee gtg ege tee etg etg ege age eae 106 Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser His 10 tac cgc gag gtg ctg ccg ctg gcc acg ttc gtg cgg cgc ctg ggg ccc 154 Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly Pro 25 cag ggc tgg cgg ctg gtg cag cgc ggg gac ccg gcg gct ttc cgc gcg 202 Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg Ala 35 40 ctg gtg gcc cag tgc ctg gtg tgc gtg ccc tgg gac gca cgg ccg ccc 250 Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro Pro 55 60 ccc gcc gcc ccc tcc ttc cgc cag gtg tcc tgc ctg aag gag ctg gtg Pro Ala Ala Pro Ser Phe Arg Gln Val Ser Cys Leu Lys Glu Leu Val 298 70 75 gcc cga gtg ctg cag agg ctg tgc gag cgc gcg aag aac gtg ctg 346 Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys Asn Val Leu gcc ttc ggc ttc gcg ctg ctg gac ggc gcc cgc ggg ggc ccc ccc gag Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly Pro Pro Glu 394 gcc ttc acc acc agc gtg cgc agc tac ctg ccc aac acg gtg acc gac Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr Val Thr Asp gca ctg cgg ggg agc ggg gcg tgg ggg ctg ctg ctg cgc cgc gtg ggc Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Arg Arg Val Gly 490 538 gac gac gtg ctg gtt cac ctg ctg gca cgc tgc gcg ctc ttt gtg ctg Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu Phe Val Leu 150 gtg gct ccc agc tgc gcc tac cag gtg tgc ggg ccg ccg ctg tac cag Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro Leu Tyr Gln 586 165 170

ctc ggc gct gcc act cag gcc cgg ccc ccg cca cac gct agt gga ccc

Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala Ser Gly Pro
180 185 190

cga agg cgt ctg gga tgc gaa cgg gcc tgg aac cat agc gtc agg gag

Arg Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser Val Arg Glu

gec ggg gtc ccc ctg ggc ctg cca gcc ccg ggt gcg agg agg cgc ggg

Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg Arg Gly

205

200

215

634

682

730

SEQUENCE LISTING

					ctg Leu									778
					cgg Arg									826
					gga Gly									874
					gaa Glu 280									922
					cac His									970
					cgg Arg									1018
					acc Thr									1066
_		_	_		tcc Ser			_		_			-	1114
					ctc Leu 360									1162
					ccc Pro									1210
					ctg Leu									1258
					ctc Leu									1306
					ggt Gly									1354
					gag Glu 440									1402
_	_		_	_	agc Ser	-		 _						1450
					ctg Leu									1498
					ctc Leu									1546
	_		_	_	tcg Ser	_	_	 _	_		_	_	-	1594
					ctg Leu 520									1642

-																		
													gcc Ala				1690	
													agg Arg				1738	
													ttt Phe				1786	
	-	-	-		-	_	-		-				aga Arg 590	_		_	1834	
													gtc Val				1882	
													cgc Arg				1930	
													tac Tyr				1978	
	Ala	Arg	Thr	Phe 645	Arg	Arg	Glu	Lys	Arg 650	Ala	Glu	Arg	ctc Leu	Thr 655	Ser	Arg	2026	
	Val	Lys	Ala 660	Leu	Phe	Ser	Val	Leu 665	Asn	Tyr	Glu	Arg	gcg Ala 670	Arg	Arg	Pro	2074	
	Gly	Leu 675	Leu	Gly	Ala	Ser	Val 680	Leu	Gly	Leu	Asp	Asp 685	atc Ile	His	Arg	Ala	2122	
	Trp 690	Arg	Thr	Phe	Val	Leu 695	Arg	Val	Arg	Āla	Gln 700	Asp	ccg Pro	Pro	Pro	Glu 705	2170	
	Leu	Tyr	Phe	Val	L y s 710	Val	Asp	Val	Thr	Gly 715	Ala	Tyr	gac Asp	Thr	Ile 720	Pro	2218	
	Gln	Asp	Arg	Leu 725	Thr	Glu	Val	Ile	Ala 730	Ser	Ile	Ile	aaa Lys	Pro 735	Gln	Asn	2266	
	Thr	Tyr	Cys 740	Val	Arg	Arg	Tyr	Ala 745	Val	Val	Gln	Lys		Āla	His	Gly	2314	
	His	Val 755	Arg	Lys	Ala	Phe	L y s 760	Ser	His	Val	Ser	Thr 765	Leu	Thr	Asp	Leu	2362	
	Gln 770	Pro	Tyr	Met	Arg	Gln 775	Phe	Val	Ala	His	Leu 780	Gln	gag Glu	Thr	Ser	Pro 785	2410	
	Leu	Arg	Āsp	Åla	Val 790	Val	Ile	Ğlü	Gln	Ser 795	Ser	Ser	Leu	Asn	Glu 800	Ala	2458	
	Ser	Ser	Gly	Leu 805	Phe	Asp	Val	Phe	Leu 810	Arg	Phe	Met	tgc Cys	His 815	His	Ala	2506	
													999 Gly 830				2554	

ggc tcc atc ctc tcc acg ctg ctc tgc agc ctg tgc tac ggc gac atg Gly Ser Ile Leu Ser Thr Leu Leu Cys Ser Leu Cys Tyr Gly Asp Met 835 840 845	2602
gag aac aag ctg ttt gcg ggg att cgg cgg gac ggg ctg ctc ctg cgt Glu Asn Lys Leu Phe Ala Gly Ile Arg Arg Asp Gly Leu Leu Arg 850 855 860 865	2650
ttg gtg gat gat ttc ttg ttg gtg aca cct cac ctc acc cac gcg aaa Leu Val Asp Asp Phe Leu Leu Val Thr Pro His Leu Thr His Ala Lys 870 875 880	2698
acc ttc ctc agg acc ctg gtc cga ggt gtc cct gag tat ggc tgc gtg Thr Phe Leu Arg Thr Leu Val Arg Gly Val Pro Glu Tyr Gly Cys Val 885 890 895	2746
gtg aac ttg cgg aag aca gtg gtg aac ttc cct gta gaa gac gag gcc Val Asn Leu Arg Lys Thr Val Val Asn Phe Pro Val Glu Asp Glu Ala 900 905 910	2794
ctg ggt ggc acg gct ttt gtt cag atg ccg gcc cac ggc cta ttc ccc Leu Gly Gly Thr Ala Phe Val Gln Met Pro Ala His Gly Leu Phe Pro 915 920 925	2842
tgg tgc ggc ctg ctg ctg gat acc cgg acc ctg gag gtg cag agc gac Trp Cys Gly Leu Leu Leu Asp Thr Arg Thr Leu Glu Val Gln Ser Asp 930 935 940 945	2890
tac tcc agc tat gcc cgg acc tcc atc aga gcc agt ctc acc ttc aac Tyr Ser Ser Tyr Ala Arg Thr Ser Ile Arg Ala Ser Leu Thr Phe Asn 950 955 960	2938
cgc ggc ttc aag gct ggg agg aac atg cgt cgc aaa ctc ttt ggg gtc Arg Gly Phe Lys Ala Gly Arg Asn Met Arg Arg Lys Leu Phe Gly Val 965 970 975	2986
ttg cgg ctg aag tgt cac agc ctg ttt ctg gat ttg cag gtg aac agc Leu Arg Leu Lys Cys His Ser Leu Phe Leu Asp Leu Gln Val Asn Ser 980 985 990	3034
ctc cag acg gtg tgc acc aac atc tac aag atc ctc ctg ctg cag gcg Leu Gln Thr Val Cys Thr Asn Ile Tyr Lys Ile Leu Leu Gln Ala 995 1000 1005	3082
tac agg ttt cac gca tgt gtg ctg cag ctc cca ttt cat cag caa Tyr Arg Phe His Ala Cys Val Leu Gln Leu Pro Phe His Gln Gln 1010 1015 1020	3127
gtt tgg aag aac ccc aca ttt ttc ctg cgc gtc atc tct gac acg Val Trp Lys Asn Pro Thr Phe Phe Leu Arg Val Ile Ser Asp Thr 1025 1030 1035	3172
gcc tcc ctc tgc tac tcc atc ctg aaa gcc aag aac gca ggg atg Ala Ser Leu Cys Tyr Ser Ile Leu Lys Ala Lys Asn Ala Gly Met 1040 1045 1050	3217
tcg ctg ggg gcc aag ggc gcc gcc ggc cct ctg ccc tcc gag gcc Ser Leu Gly Ala Lys Gly Ala Ala Gly Pro Leu Pro Ser Glu Ala 1055 1060 1065	3262
gtg cag tgg ctg tgc cac caa gca ttc ctg ctc aag ctg act cga Val Gln Trp Leu Cys His Gln Ala Phe Leu Leu Lys Leu Thr Arg 1070 1075 1080	3307
cac cgt gtc acc tac gtg cca ctc ctg ggg tca ctc agg aca gcc His Arg Val Thr Tyr Val Pro Leu Leu Gly Ser Leu Arg Thr Ala 1085 1090 1095	3352
cag acg cag ctg agt cgg aag ctc ccg ggg acg acg ctg act gcc Gln Thr Gln Leu Ser Arg Lys Leu Pro Gly Thr Thr Leu Thr Ala 1100 1105 1110	3397
ctg gag gcc gca gcc aac ccg gca ctg ccc tca gac ttc aag acc Leu Glu Ala Ala Ala Asn Pro Ala Leu Pro Ser Asp Phe Lys Thr 1115 1120 1125	3442

atc ctg gac tga tggccacccg cccacagcca ggccgagagc agacaccagc Ile Leu Asp 1130	3494
agccctgtca cgccgggctc tacgtcccag ggagggaggg gcggcccaca cccaggccc	3554
caccgctggg agtctgaggc ctgagtgagt gtttggccga ggcctgcatg tccggctgaa	a 3614
ggctgagtgt ccggctgagg cctgagcgag tgtccagcca agggctgagt gtccagcaca	a 3674
cctgccgtct tcacttcccc acaggctggc gctcggctcc accccagggc cagcttttcc	3734
tcaccaggag cccggcttcc actccccaca taggaatagt ccatccccag attcgccat	3794
gttcacccct cgccctgccc tcctttgcct tccaccccca ccatccaggt ggagaccct	3854
agaaggaccc tgggagctct gggaatttgg agtgaccaaa ggtgtgccct gtacacagg	3914
gaggaccctg cacctggatg ggggtccctg tgggtcaaat tggggggagg tgctgtggg	a 3974
gtaaaatact gaatatatga gtttttcagt tttgaaaaaa a	4015
<210> SEQ ID NO 2 <211> LENGTH: 1132 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 2	
Met Pro Arg Ala Pro Arg Cys Arg Ala Val Arg Ser Leu Leu Arg Ser 1 5 15	
His Tyr Arg Glu Val Leu Pro Leu Ala Thr Phe Val Arg Arg Leu Gly 20 25 30	
Pro Gln Gly Trp Arg Leu Val Gln Arg Gly Asp Pro Ala Ala Phe Arg 35 40 45	
Ala Leu Val Ala Gln Cys Leu Val Cys Val Pro Trp Asp Ala Arg Pro 50 60	
Pro Pro Ala Ala Pro Ser Phe Arg Gln Val Ser Cys Leu Lys Glu Leu 65 70 75 80	
Val Ala Arg Val Leu Gln Arg Leu Cys Glu Arg Gly Ala Lys Asn Val 85 90 95	
Leu Ala Phe Gly Phe Ala Leu Leu Asp Gly Ala Arg Gly Gly Pro Pro 100 105 110	
Glu Ala Phe Thr Thr Ser Val Arg Ser Tyr Leu Pro Asn Thr Val Thr 115 120 120 125	
Asp Ala Leu Arg Gly Ser Gly Ala Trp Gly Leu Leu Leu Arg Arg Val	
Gly Asp Asp Val Leu Val His Leu Leu Ala Arg Cys Ala Leu Phe Val 145 150 155 160	
Leu Val Ala Pro Ser Cys Ala Tyr Gln Val Cys Gly Pro Pro Leu Tyr 165 170 175	
Gln Leu Gly Ala Ala Thr Gln Ala Arg Pro Pro Pro His Ala Ser Gly 180 185 190	
Pro Arg Arg Leu Gly Cys Glu Arg Ala Trp Asn His Ser Val Arg 195 200 205	
Glu Ala Gly Val Pro Leu Gly Leu Pro Ala Pro Gly Ala Arg Arg Arg 210 215 220	
Gly Gly Ser Ala Ser Arg Ser Leu Pro Leu Pro Lys Arg Pro Arg Arg 225 230 235 240	

Gly	Ala	Ala	Pro	Glu 245	Pro	Glu	Arg	Thr	Pro 250	Val	Gly	Gln	Gly	Ser 255	Trp
Ala	His	Pro	Gly 260	Arg	Thr	Arg	Gly	Pro 265	Ser	Asp	Arg	Gly	Phe 270	Cys	Val
Val	Ser	Pro 275	Ala	Arg	Pro	Ala	Glu 280	Glu	Ala	Thr	Ser	Leu 285	Glu	Gly	Ala
Leu	Ser 290	Gly	Thr	Arg	His	Ser 295	His	Pro	Ser	Val	Gly 300	Arg	Gln	His	His
Ala 305	Gly	Pro	Pro	Ser	Thr 310	Ser	Arg	Pro	Pro	Arg 315	Pro	Trp	Asp	Thr	Pro 320
Cys	Pro	Pro	Val	Ty r 325	Ala	Glu	Thr	Lys	His 330	Phe	Leu	Tyr	Ser	Ser 335	Gly
Asp	Lys	Glu	Gln 340	Leu	Arg	Pro	Ser	Phe 345	Leu	Leu	Ser	Ser	Leu 350	Arg	Pro
Ser	Leu	Thr 355	Gly	Ala	Arg	Arg	Leu 360	Val	Glu	Thr	Ile	Phe 365	Leu	Gly	Ser
Arg	Pro 370	Trp	Met	Pro	Gly	Thr 375	Pro	Arg	Arg	Leu	Pro 380	Arg	Leu	Pro	Gln
Arg 385	Tyr	Trp	Gln	Met	Arg 390	Pro	Leu	Phe	Leu	Glu 395	Leu	Leu	Gly	Asn	His 400
Ala	Gln	Cys	Pro	Ty r 405	Gly	Val	Leu	Leu	Lys 410	Thr	His	Cys	Pro	Leu 415	Arg
Ala	Ala	Val	Thr 420	Pro	Ala	Ala	Gly	Val 425	Cys	Ala	Arg	Glu	Lys 430	Pro	Gln
Gly	Ser	Val 435	Ala	Ala	Pro	Glu	Glu 440	Glu	Asp	Thr	Asp	Pro 445	Arg	Arg	Leu
Val	Gln 450	Leu	Leu	Arg	Gln	His 455	Ser	Ser	Pro	Trp	Gln 460	Val	Tyr	Gly	Phe
Val 465	Arg	Ala	Сув	Leu	Arg 470	Arg	Leu	Val	Pro	Pro 475	Gly	Leu	Trp	Gly	Ser 480
Arg	His	Asn	Glu	Arg 485	Arg	Phe	Leu	Arg	Asn 490	Thr	Lys	Lys	Phe	Ile 495	Ser
Leu	Gly	Lys	His 500	Ala	Lys	Leu	Ser	Leu 505	Gln	Glu	Leu	Thr	Trp 510	Lys	Met
Ser	Val	Arg 515	Asp	Суѕ	Ala	Trp	Leu 520	Arg	Arg	Ser	Pro	Gly 525	Val	Gly	Cys
Val	Pro 530	Ala	Ala	Glu	His	Arg 535	Leu	Arg	Glu	Glu	Ile 540	Leu	Ala	Lys	Phe
Leu 545	His	Trp	Leu	Met	Ser 550	Val	Tyr	Val	Val	Glu 555	Leu	Leu	Arg	Ser	Phe 560
Phe	Tyr	Val	Thr	Glu 565	Thr	Thr	Phe	Gln	L y s 570	Asn	Arg	Leu	Phe	Phe 575	Tyr
Arg	Lys	Ser	Val 580	Trp	Ser	Lys	Leu	Gln 585	Ser	Ile	Gly	Ile	Arg 590	Gln	His
	_	595			Leu		600					605		_	
	610				Pro	615					620		_		
Pro 625	Lys	Pro	Asp	Gly	Leu 630	Arg	Pro	Ile	Val	Asn 635	Met	Asp	Tyr	Val	Val 640
Gly	Ala	Arg	Thr	Phe	Arg	Arg	Glu	Lys	Arg	Ala	Glu	Arg	Leu	Thr	Ser

	645	650	655
Arg Val Lys Ala		Val Leu Asn T 665	yr Glu Arg Ala Arg Arg 670
Pro Gly Leu Leu	Gly Ala Ser	Val Leu Gly L	eu Asp Asp Ile His Arg
675		680	685
Ala Trp Arg Thr	Phe Val Leu	Arg Val Arg A	la Gln Asp Pro Pro Pro
690	695		700
Glu Leu Tyr Phe	Val Lys Val		ly Ala Tyr Asp Thr Ile
705	710		15 720
Pro Gln Asp Arg	Leu Thr Glu	Val Ile Ala S	er Ile Ile Lys Pro Gln
	725	730	735
Asn Thr Tyr Cys		Tyr Ala Val V	al Gln L y s Ala Ala His
740		745	750
Gly His Val Arg	Lys Ala Phe	Lys Ser His V	al Ser Thr Leu Thr Asp
755		760	765
Leu Gln Pro Tyr	Met Arg Gln	Phe Val Ala H	is Leu Gln Glu Thr Ser
770	775		780
Pro Leu Arg Asp	Ala Val Val		er Ser Ser Leu Asn Glu
785	790		95 800
Ala Ser Ser Gly	Leu Phe Asp	Val Phe Leu A	rg Phe Met Cys His His
	805	810	815
Ala Val Arg Ile	Arg Gly Lys	Ser Tyr Val G	In Cys Gln Gly Ile Pro
820		825	830
Gln Gly Ser Ile	Leu Ser Thr	Leu Leu Cys S	er Leu Cys Tyr Gly Asp
835		840	845
Met Glu Asn Lys	Leu Phe Ala	Gly Ile Arg A	rg Asp Gly Leu Leu Leu
850	855		860
865	870	8	ro His Leu Thr His Ala 75 880
	885	890	al Pro Glu Tyr Gly Cys 895
900	-	905	he Pro Val Glu Asp Glu 910
915		920	ro Ala His Gly Leu Phe 925
930	935	-	hr Leu Glu Val Gln Ser 940
945	950	9	rg Ala Ser Leu Thr Phe 55 960
	965	970	rg Arg Lys Leu Phe Gly 975
Val Leu Arg Leu		Ser Leu Phe L	eu Asp Leu Gln Val Asn
980		985	990
Ser Leu Gln Thr	Val Cys Thr	Asn Ile Tyr	Lys Ile Leu Leu Gln
995		1000	1005
Ala Tyr Arg Ph	e His Ala Cy	s Val Leu Gln	Leu Pro Phe His Gln
1010	10	15	1020
Gln Val Trp Ly	s Asn Pro Th	r Phe Phe Leu	Arg Val Ile Ser Asp
1025		30	1035
Thr Ala Ser Le	u Cys Tyr Se 10		Ala Lys Asn Ala Gly 1050

Met	Ser 1055		ı Gly	7 Ala	Lys	Gly 1060		a Al	a Gl	y P		Leu 1065	Pro	Ser	Glu	
Ala	Val 1070		Tr	Leu	Cys	His 1075		n Al	a Ph	ıe L		Leu 1080	Lys	Leu	Thr	
Arg	His 1085		y Vai	l Thr	Tyr	Val 1090		o Le	eu L∈	eu G		Ser 1095	Leu	Arg	Thr	
Ala	Gln 1100		Glr	ı Leu	Ser	Arg 1105		s Le	eu Pr	:0 G	_	Thr 1110	Thr	Leu	Thr	
Ala	Leu 1115		ı Ala	a Ala	Ala	Asn 1120		o Al	a Le	eu P		Ser 1125	Asp	Phe	Lys	
Thr	Ile 1130		ı Asp)												
<211 <212 <213 <220 <221 <222	<pre><210> SEQ ID NO 3 <211> LENGTH: 1303 <212> TYPE: DNA <213> ORGANISM: Ovis aries <220> FEATURE: <221> NAME/KEY: CDS <222> LOCATION: (194)(1303)</pre> <pre><400> SEQUENCE: 3</pre>															
agco	gagg	ac g	laad	cggg	g ag	ccgaç	ıgct	ccg	gcca	ıgcc	cc	cagco	ıcgc	ccaç	cttctg	60
caga	itcag	ga g	ıtcaç	gaacg	c tg	cacct	tcg	ctt	ccto	cca	gc	cctgo	ctc	cttc	tgcaaa	120
acg	gaget	ca a	taga	actt	g gt	acttt	tgc	ctt	ttac	tct	gg	gagga	ıgag	aago	agacga	180
tgaç	ga ga	aa a		1et A		tc aa al Ly										229
						gtt g Val V										277
					Trp	ata a Ile A 35										325
				Ile		aag g Lys G										373
						gat g Asp G										421
						aag c Lys I	eu :									469
						gtg a Val T							Āla			517
					Tyr .	aac a Asn <i>A</i> 115						p Asp				565
						ggc c Gly I										613
						gag t Glu E									Phe	661

-continued																	
	_	_			_	_	atc Ile			_			_	_	_		709
							ctg Leu										757
							agg Arg 195										805
							atc Ile										853
							gtg Val										901
							tcg Ser										949
							ttt Phe										997
	-						gaa Glu 275		_					_	-		1045
							cag Gln										1093
					-	-	aag L y s			-		-	-				1141
							aag L y s										1189
							tgc C y s										1237
							atg Met 355										1285
	-	_		aac Asn	gtc Val	tga											1303
	<211 <212	l> LE 2> TY	NGTH		59	s ari	ies										
	<400)> SE	QUE	ICE:	4												
	Met 1	Asn	Val	Lys	Gly 5	Lys	Val	Ile	Leu	Ser 10	Met	Leu	Val	Val	Ser 15	Thr	
	Val	Ile	Val	Val 20	Phe	Trp	Glu	Tyr	Ile 25	His	Ser	Pro	Glu	Gly 30	Ser	Leu	
	Phe	Trp	Ile 35	Asn	Pro	Ser	Arg	Asn 40	Pro	Glu	Val	Ser	Gly 45	Gly	Ser	Ser	
	Ile	Gln	Lys	Gly	Trp	Trp	Phe	Pro	Arg	Trp	Phe	Asn	Asn	Gly	Tyr	Gln	

0.5					, 0					, ,					
Lys	Ser	Lys	Leu	L y s 85	Leu	Ser	Asp	Trp	Phe 90	Asn	Pro	Phe	Lys	Arg 95	Pro
Glu	Val	Val	Thr 100	Met	Thr	Asp	Trp	Lys 105	Ala	Pro	Val	Val	Trp	Glu	Gly
Thr	Tyr	Asn 115	Arg	Ala	Val	Leu	Asp 120	Asp	Tyr	Tyr	Ala	L y s 125	Gln	Lys	Ile
Thr	Val 130	Gly	Leu	Thr	Val	Phe 135	Ala	Val	Gly	Arg	Ty r 140	Ile	Glu	His	Tyr
Leu 145	Glu	Glu	Phe	Leu	Thr 150	Ser	Ala	Asn	Lys	His 155	Phe	Met	Val	Gly	His 160
Arg	Val	Ile	Phe	Ty r 165	Val	Met	Val	Asp	Asp 170	Val	Ser	Arg	Met	Pro 175	Leu
Ile	Glu	Leu	Gly 180	Pro	Leu	Arg	Ser	Phe 185	Lys	Val	Phe	Glu	Val 190	Lys	Pro
Glu	Arg	Arg 195	Trp	Gln	Asp	Val	Ser 200	Met	Val	Arg	Met	L y s 205	Thr	Ile	Gly
Glu	His 210	Ile	Val	Ala	His	Ile 215	Gln	Arg	Glu	Val	Asp 220	Phe	Leu	Phe	Cys
Met 225	Asp	Val	Asp	Gln	Val 230	Phe	Gln	Asp	Glu	Phe 235	Gly	Val	Glu	Thr	Leu 240
Gly	Glu	Ser	Val	Ala 245	Gln	Leu	Gln	Ala	Trp 250	Trp	Tyr	Lys	Ala	Asp 255	Pro
Asp	Glu	Phe	Thr 260	Tyr	Glu	Arg	Arg	Lys 265	Glu	Ser	Ala	Ala	Ty r 270	Ile	Pro
Phe	Gly	Glu 275	Gly	Asp	Phe	Tyr	Ty r 280	His	Ala	Ala	Ile	Phe 285	Gly	Gly	Thr
Pro	Thr 290	Gln	Val	Leu	Asn	Ile 295	Thr	Gln	Glu	Cys	Phe 300	Lys	Gly	Ile	Leu
L y s 305	Asp	Lys	Lys	Asn	Asp 310	Ile	Glu	Ala	Gln	Trp 315	His	Asp	Glu	Ser	His 320
Leu	Asn	Lys	Tyr	Phe 325	Leu	Leu	Asn	Lys	Pro 330	Thr	Lys	Ile	Leu	Ser 335	Pro
Glu	Tyr	Cys	Trp 340	Asp	Tyr	His	Ile	Gly 345	Leu	Pro	Ala	Asp	Ile 350	Lys	Leu
Val	Lys	Met 355	Ser	Trp	Gln	Thr	L y s 360	Glu	Tyr	Asn	Val	Val 365	Arg	Asn	Asn
Val															
<211 <212 <213 <220 <221	l> LE 2> TY 3> OF 0> FE l> NA	EQ II ENGTH PE: RGANI EATUF AME/F	I: 16 DNA SM: RE: KEY:	Bos CDS			5)								
<400)> SE	QUEN	ICE:	5											
ccg	gggg	ccg (ggcc	gagct	tg g	gagc	gtcga	a gco	ccgct	gcc	cago	egeed	ege o	egget	ccctc
gaga	ccct	ega d	ccgc	cgcc	cc g	gagga	agago	c cc	ggcg	gaag	gaaq	gacgo	gga q	gaga	ıgcggc
acad	aaaq	gaa d	ccgg	cacgo	cc c	gegg	ggata	gg	gagga	aggc	agc	gagad	ega o	ctgtt	aagga

Glu Glu Asp Glu Asp Val Asp Glu Glu Lys Glu Gln Arg Lys Glu Asp 65 70 75 80

-concinted	
agccgaggac gccgccgggg agccgaggcg ccggccagcc cccagcgcgc ccagcttctg	240
cggatcaggg aaaccacgtg tcctcaagtg gccagccagc tgtccccaag aggaacttgc	300
ctggcatttg cacggaaaga cgagacactt cacaaaatca acggagtcag aaggctgcac	360
cttcgcttcc tcccagccct gcctccttct gcagaacgga gctcagtaga acttggtact	420
tttgcctttt actctaggag gagagaagca gacgatgagg agaaaata atg aat gtc Met Asn Val 1	477
aaa gga aaa gtg att ctg tca atg ctg gtt gtc tca act gtc att gtt Lys Gly Lys Val Ile Leu Ser Met Leu Val Val Ser Thr Val Ile Val 5 10 15	525
gtg ttt tgg gaa tat atc cac agc cca gaa ggc tct ttg ttc tgg ata Val Phe Trp Glu Tyr Ile His Ser Pro Glu Gly Ser Leu Phe Trp Ile 20 25 30 35	573
aac cca tca aga aac cca gaa gtt ggt ggc agc agc att cag aag ggc Asn Pro Ser Arg Asn Pro Glu Val Gly Gly Ser Ser Ile Gln Lys Gly 40 45 50	621
tgg tgg ctt ccg aga tgg ttt aac aat ggt tac cat gaa gaa gat gga Trp Trp Leu Pro Arg Trp Phe Asn Asn Gly Tyr His Glu Glu Asp Gly 55 60 65	669
gac ata aac gaa gaa aag gaa caa aga aac gaa gac gaa agc aag ctt Asp Ile Asn Glu Glu Lys Glu Gln Arg Asn Glu Asp Glu Ser Lys Leu 70 75 80	717
aag cta tcg gac tgg ttc aac cca ttt aaa cgc ccc gag gtt gtg acc Lys Leu Ser Asp Trp Phe Asn Pro Phe Lys Arg Pro Glu Val Val Thr 85 90 95	765
atg acg aag tgg aag gct cca gtg gtg tgg gaa ggc act tac aac aga Met Thr Lys Trp Lys Ala Pro Val Val Trp Glu Gly Thr Tyr Asn Arg 100 105 110 115	813
gcc gtc tta gac aat tat tat gcc aag cag aaa att acc gtc ggc ctg Ala Val Leu Asp Asn Tyr Tyr Ala Lys Gln Lys Ile Thr Val Gly Leu 120 125 130	861
acg gtt ttc gcc gtc gga aga tac att gag cat tac ttg gag gag ttc Thr Val Phe Ala Val Gly Arg Tyr Ile Glu His Tyr Leu Glu Glu Phe 135 140 145	909
tta acg tct gct aat aag cac ttc atg gtg ggc cac cca gtc atc ttt Leu Thr Ser Ala Asn Lys His Phe Met Val Gly His Pro Val Ile Phe 150 155 160	957
tat atc atg gta gat gat gtc tcc agg atg cct ttg ata gag ttg ggt Tyr Ile Met Val Asp Asp Val Ser Arg Met Pro Leu Ile Glu Leu Gly 165 170 175	1005
cct ctg cgc tcc ttc aaa gtg ttt aag atc aag cct gag aag agg tgg Pro Leu Arg Ser Phe Lys Val Phe Lys Ile Lys Pro Glu Lys Arg Trp 180 185 190 195	1053
cag gac atc agc atg atg cgc atg aag act atc ggg gag cac att gtg Gln Asp Ile Ser Met Met Arg Met Lys Thr Ile Gly Glu His Ile Val 200 205 210	1101
gcc cac atc cag cat gag gtt gac ttc ctt ttc tgc atg gat gtg gac Ala His Ile Gln His Glu Val Asp Phe Leu Phe Cys Met Asp Val Asp 215 220 225	1149
cag gtc ttc caa gac aag ttt ggg gtg gag acc ctg ggc gag tcg gtg Gln Val Phe Gln Asp Lys Phe Gly Val Glu Thr Leu Gly Glu Ser Val 230 235 240	1197
gcc cag cta caa gcc tgg tgg tac aag gca gat ccc aat gac ttc acc Ala Gln Leu Gln Ala Trp Trp Tyr Lys Ala Asp Pro Asn Asp Phe Thr 245 250 255	1245

											-	con	tin	ued		
	gag Glu															1293
	ttt Phe															1341
	aac Asn			_	-	-						_	-	-		1389
	gac Asp															1437
	ctt Leu 325															1485
	tat Tyr															1533
	cag Gln												tga			1575
cttt	gtgo	ca c	jtaca	attt	et ga	aatti	tgaga	a gaç	gtati	tatt	ct					1617
<211 <212 <213)> SE l> LE 2> TY 3> OF	NGTH PE:	: 36 PRT	8 Bos	taur	rus										
	Asn				T 170	77 - 1	Tlo	Lon	cor	Mo+	T 011	77 n l	77 n 1	202	Thr	
1	Abii	vai	цур	5 5	пуъ	vai	116	Leu	10	Mec	Leu	vai	vai	15	1111	
	Ile		20				_	25					30			
Pne	Trp	35	Asn	Pro	Ser	Arg	Asn 40	Pro	GIU	Val	GIŻ	45	Ser	Ser	lle	
	Lys 50	_	_			55		_			60					
65	Asp	GIY	Asp	IIe	70	GIU	GIU	ьуs	GIU	75	Arg	Asn	GIU	Asp	80	
Ser	Lys	Leu	Lys	Leu 85	Ser	Asp	Trp	Phe	Asn 90	Pro	Phe	Lys	Arg	Pro 95	Glu	
Val	Val	Thr	Met 100	Thr	Lys	Trp	Lys	Ala 105	Pro	Val	Val	Trp	Glu 110	Gly	Thr	
Tyr	Asn	Arg 115	Ala	Val	Leu	Asp	Asn 120	Tyr	Tyr	Ala	Lys	Gln 125	Lys	Ile	Thr	
Val	Gly 130	Leu	Thr	Val	Phe	Ala 135	Val	Gly	Arg	Tyr	Ile 140	Glu	His	Tyr	Leu	
Glu 145	Glu	Phe	Leu	Thr	Ser 150	Ala	Asn	Lys	His	Phe 155	Met	Val	Gly	His	Pro 160	
Val	Ile	Phe	Tyr	Ile 165	Met	Val	Asp	Asp	Val 170	Ser	Arg	Met	Pro	Leu 175	Ile	
Glu	Leu	Gly	Pro 180	Leu	Arg	Ser	Phe	L y s 185	Val	Phe	Lys	Ile	L y s 190	Pro	Glu	
Lys	Arg	Trp 195	Gln	Asp	Ile	Ser	Met 200	Met	Arg	Met	Lys	Thr 205	Ile	Gly	Glu	

210	His Ile Gl 21		Val A	sp Phe 220	Leu Ph	e Cys	Met	
Asp Val Asp Gln 225	Val Phe Gl 230	n Asp Lys		ly Val	Glu Th	r Leu	Gly 240	
Glu Ser Val Ala	Gln Leu Gl 245	n Ala Trp	Trp T	yr Lys	Ala As	p Pro 255	Asn	
Asp Phe Thr Tyr 260	Glu Arg Ar	g L y s Glu 265		ala Ala	Tyr I1 27		Phe	
Gly Glu Gly Asp 275	Phe Tyr Ty	r His Ala 280	Ala I	le Phe	Gly Gl 285	y Thr	Pro	
Thr Gln Val Leu 290	Asn Ile Th		Cys P	he Lys 300	Gly Il	e Leu	Lys	
Asp Lys Lys Asn	Asp Ile Gl 310	u Ala Gln	_	is Asp 15	Glu Se	r His	Leu 320	
Asn Lys Tyr Phe	Leu Leu As 325	n L y s Pro	Thr L	ys Ile	Leu Se	r Pro 335	Glu	
Tyr Cys Trp Asp 340	Tyr His Il	e Gly Leu 345		ala Asp	Ile Ly 35		Val	
Lys Met Ser Trp 355	Gln Thr Ly	s Glu Ty r 360	Asn V	al Val	Arg As	n Asn	Val	
<pre><210> SEQ ID NO <211> LENGTH: 12 <212> TYPE: DNA <213> ORGANISM: <220> FEATURE: <221> NAME/KEY:</pre>	69 Sus scrofa							
<222> LOCATION:	(16)(113	1)						
<222> LOCATION: <400> SEQUENCE:		1)						
	7	tc aaa gg				er Met		51
<400> SEQUENCE:	7 a atg aat g Met Asn V 1 gta atg gt	tc aaa gg al L y s Gl 5 t gtg ttt	y Arg '	Val Val	L Leu S 1 atc aa	er Met 0 c agc	cca	51 99
<pre><400> SEQUENCE: catgaggaga aaata ctt gtc tca act Leu Val Ser Thr</pre>	7 a atg aat g Met Asn V 1 gta atg gt Val Met Va ttc tgg at	tc aaa gg al Lys Gl 5 t gtg ttt l Val Phe 20 a tac cag	y Arg tgg g Trp G	Val Val maa tac lu Tyr	Leu S 1 atc aa Ile As 25 cca ga	er Met 0 c agc n Ser a gtt	cca Pro	
<pre><400> SEQUENCE: catgaggaga aaata ctt gtc tca act Leu Val Ser Thr</pre>	7 a atg aat g Met Asn V 1 gta atg gt Val Met Va ttc tgg at Phe Trp I1 35 agg ggc tg	tc aaa gg al Lys Gl 5 t gtg ttt l Val Phe 20 a tac cag e Tyr Gln g tgg ttt	tgg g Trp G tca a Ser L	val val gaa tac glu Tyr aaa aac ys Asn 40 agc tgg	Leu S 1 atc aa Ile As 25 cca ga Pro Gl	er Met 0 c agc n Ser a gtt u Val	cca Pro ggc Gly	99
<pre><400> SEQUENCE: catgaggaga aaata ctt gtc tca act Leu Val Ser Thr</pre>	7 a atg aat g Met Asn V 1 gta atg gt Val Met Va ttc tgg at Phe Trp I1 agg ggc tg Arg Gly Tr 50 cac gaa ga	tc aaa gg al Lys Gl 5 t gtg ttt l Val Phe 20 a tac cag e Tyr Gln g tgg ttt p Trp Phe a gaa gaa	y Arg ' tgg gg Trp G tca a Ser L ccg a Pro S gct a	Val Val (aa tac ilu Tyr (aa aac ys Asn 40 (gc tgg er Trp 5	L Leu S 1 atc aa Ile As 25 cca ga Pro Gl ttt aa Phe As aac ga	er Med 0 c agc n Ser a gtt u Val c aat n Asn a aag	cca Pro ggc Gly ggg Gly 60	99
<pre><400> SEQUENCE: catgaggaga aaata ctt gtc tca act Leu Val Ser Thr</pre>	7 a atg aat g Met Asn V 1 gta atg gt Val Met Va ttc tgg at Phe Trp Il agg ggc tg Arg Gly Tr 50 cac gaa ga His Glu Gl 65 gac aac ag	tc aaa gg al Lys Gl 5 t gtg ttt l Val Phe 20 a tac cag e Tyr Gln g tgg ttt p Trp Phe a gaa gac u Glu Asp	tgg gg Trp G tca a Ser L ccg a Pro S gct a Ala I 70 ctt c	Val Val aa tac clu Tyr aa aac ys Asn 40 gc tgg cer Trp 5 ta ggc tle Gly	L Leu S 1 atc aa Ile As 25 cca ga Pro Gl ttt aa Phe As aac ga Asn Gl gtg ga	er Met 0 c agc n Ser a gtt u Val c aat n Asn a aag u Lys 75 c tgg p Trp	cca Pro ggc Gly ggg Gly 60 gaa Glu	99 147 195
<pre><400> SEQUENCE: catgaggaga aaata ctt gtc tca act Leu Val Ser Thr</pre>	7 a atg aat g Met Asn V 1 gta atg gt Val Met Va ttc tgg at Phe Trp II 35 agg ggc tg Arg Gly Tr 50 cac gaa ga His Glu Gl 65 gac aac ag Asp Asn Ar	tc aaa gg al Lys Gl 5 t gtg ttt l Val Phe 20 a tac cag e Tyr Gln g tgg ttt p Trp Phe a gaa gac u Glu Asp a gga gag g Gly Glu 85 g gtc gtg	tgg gg Trp G tca a Ser L ccg a Pro S gct a Ala I 70 ctt cc	Val Val aa tac du Tyr aa aac ys Asn 40 gc tgg trp ta ggc tta ggc tle Gly ccg cta ro Leu tta acc	atc aa Ile As 25 cca ga Pro Gl ttt aa Phe As aac ga Asn Gl gtg ga Val As 90 aga tg	er Met 0 c agc n Ser a gtt u Val c aat n Asn a aag u Lys 75 c tgg p Trp g aag	cca Pro ggc Gly ggg Gly 60 gaa Glu	99 147 195 243
<pre><400> SEQUENCE: catgaggaga aaata ctt gtc tca act Leu Val Ser Thr 15 gaa ggt tct ttg Glu Gly Ser Leu 30 agc agt gct cag Ser Ser Ala Gln 45 act cac agt tac Thr His Ser Tyr caa aga aaa gaa Gln Arg Lys Glu 80 aat cct gag aaa Asn Pro Glu Lys</pre>	7 a atg aat g Met Asn V 1 gta atg gt Val Met Va ttc tgg at Phe Trp I1 35 agg ggc tg Arg Gly Tr 50 cac gaa ga His Glu Gl 65 gac aac ag Asp Asn Ar cgc cca ga Arg Pro Gl gaa ggc ac	tc aaa gg al Lys Gl 5 t gtg ttt l Val Phe 20 a tac cag e Tyr Gln g tgg ttt p Trp Phe a gaa gac u Glu Asp a gga gag g Gly Glu 85 g gtc gtg u Val Val 100 t tac aac r Tyr Asn	tgg gg Trp G tca a Ser L ccg a Pro S gct a Ala I 70 ctt c Leu P acc a Thr I	Val Val aa tac lu Tyr aa aac ys Asn 40 gc tgg ter Trp ta ggc tgc cle Gly cc cta ro Leu ta acc le Thr	atc aa Ile As 25 cca ga Pro Gl ttt aa Phe As aac ga Asn Gl gtg ga Val As 90 aga tg Arg Tr 105 tta ga	er Met 0 c agc n Ser a gtt u Val c aat n Asn a aag u Lys 75 c tgg p Trp g aag p Lys t aat	cca Pro ggc Gly ggg Gly 60 gaa Glu ttt Phe	99 147 195 243 291

							-
-co	n	+	7	n	11	_	\sim

												con	tin	ued		
125					130					135					140	
	tac Tyr															483
	ttc Phe															531
	tcc Ser		_		_			_			_	_				579
	ttt Phe 190			_			_				-		_	_	-	627
_	atg Met	_							_	-			_			675
	gac Asp															723
	ggg															771
	tac Tyr															819
	gca Ala 270															867
	att Ile															915
	ttc Phe															963
	cat His	-	-	_				_								1011
	aaa Lys					-		_		_					_	1059
	gtg Val 350															1107
	Leu							ctt	taaa	ttg 1	tgcc	agca	gt tt	tet	gaatt	1161
tga	aagaq	gta t	tact	tctg	gc t	actt	ctcc	a ga	gaag	tagc	act	taati	ttt á	acti	ttaaa	a 1221
aaa	atact	taa d	caaa	atac	ca a	caca	gtaa	g ta	cata	ttat	tct	taati	t			1269
<21 <21	0> SE 1> LE 2> TY 3> OF	ENGTH	I: 37	71	scr	ofa										
<40	0> SE	EQUEN	ICE:	8												
Met 1	Asn	Val	Lys	Gly 5	Arg	Val	Val	Leu	Ser 10	Met	Leu	Leu	Val	Ser 15	Thr	

Val Met Val Val Phe Trp Glu Tyr Ile Asn Ser Pro Glu Gly Ser Leu 20 30Phe Trp Ile Tyr Gln Ser Lys Asn Pro Glu Val Gly Ser Ser Ala Gln Arg Gly Trp Trp Phe Pro Ser Trp Phe Asn Asn Gly Thr His Ser Tyr His Glu Glu Glu Asp Ala Ile Gly Asn Glu Lys Glu Gln Arg Lys Glu 65 7070757580 Asp Asn Arg Gly Glu Leu Pro Leu Val Asp Trp Phe Asn Pro Glu Lys Arg Pro Glu Val Val Thr Ile Thr Arg Trp Lys Ala Pro Val Val Trp Glu Gly Thr Tyr Asn Arg Ala Val Leu Asp Asn Tyr Tyr Ala Lys Gln Lys Ile Thr Val Gly Leu Thr Val Phe Ala Val Gly Arg Tyr Ile Glu His Tyr Leu Glu Glu Phe Leu Ile Ser Ala Asn Thr Tyr Phe Met Val Gly His Lys Val Ile Phe Tyr Ile Met Val Asp Asp Ile Ser Arg Met Pro Leu Ile Glu Leu Gly Pro Leu Arg Ser Phe Lys Val Phe Glu Ile Lys Ser Glu Lys Arg Trp Gln Asp Ile Ser Met Met Arg Met Lys Thr 200 Ile Gly Glu His Ile Leu Ala His Ile Gln His Glu Val Asp Phe Leu 215 Phe Cys Met Asp Val Asp Gln Val Phe Gln Asn Asn Phe Gly Val Glu 225 230 235 240Thr Leu Gly Gln Ser Val Ala Gln Leu Gln Ala Trp Trp Tyr Lys Ala His Pro Asp Glu Phe Thr Tyr Glu Arg Arg Lys Glu Ser Ala Ala Tyr 265 Ile Pro Phe Gly Gln Gly Asp Phe Tyr Tyr His Ala Ala Ile Phe Gly 280 Gly Thr Pro Thr Gln Val Leu Asn Ile Thr Gln Glu Cys Phe Lys Gly Ile Leu Gln Asp Lys Glu Asn Asp Ile Glu Ala Glu Trp His Asp Glu 305 $$ 310 $$ 310 $$ 315 $$ 320 Ser Pro Glu Tyr Cys Trp Asp Tyr His Ile Gly Met Ser Val Asp Ile Arg Ile Val Lys Ile Ala Trp Gln Lys Lys Glu Tyr Asn Leu Val Arg Asn Asn Ile 370 <210> SEQ ID NO 9

<211> LENGTH: 3373

<212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<220> FEATURE:

	1> NA 2> LO				4)	(1201	1)										
<40)> SI	EQUE	ICE:	9													
gcc.	tggc	gtt	ccag	gggc	gg c	cgga	tgtg	g cct	gaat	ttg	cgg	aggg-	tgc (gata	eggeca	60	
cga	aaag	egg (actg	tgga [.]	tc t	gcca	cctg	c aaq	gcago	ctcg	gcc	_		ctc Leu		115	
					tgc Cys 10											163	
					cat His											211	
		_		_	tgt Cys		-	-	-							259	
					ccg Pro											307	
					cct Pro											355	
					ggt Gly 90											403	
					aac Asn											451	
					ccg Pro											499	
	-		-	_	cgc Arg	-	-				_	_			-	547	
	-	_			tac Tyr		-	_		-			_	-		595	
					tct Ser 170											643	
					acc Thr											691	
					ctc Leu											739	
					cac His											787	
					ggt Gl y											835	
					cgg Arg 250											883	
cc	agc	aac	ggc	atg	gag	tgg	tgt	aaa	gaa	aac	atc	gac	acc	tcc	cag	931	

-continued	
Thr Ser Asn Gly Met Glu Trp Cys Lys Glu Asn Ile Asp Thr Ser Gln 265 270 275	
ggc gat gtg acg ttt gct ggc gat gga cag gag gct aca ccg tgg aaa Gly Asp Val Thr Phe Ala Gly Asp Gly Gln Glu Ala Thr Pro Trp Lys 280 285 290	979
gac ttt gcc ctg ctc aca cag tgc aac cac acc att atg acc att ggc Asp Phe Ala Leu Leu Thr Gln Cys Asn His Thr Ile Met Thr Ile Gly 295 300 305	1027
acc ttc ggc ttc tgg gct gcc tac ctg gct ggc gga gac act gtc tac Thr Phe Gly Phe Trp Ala Ala Tyr Leu Ala Gly Gly Asp Thr Val Tyr 310 315 320	1075
ctg gcc aac ttc acc ctg cca gac tct gag ttc ctg aag atc ttt aag Leu Ala Asn Phe Thr Leu Pro Asp Ser Glu Phe Leu Lys Ile Phe Lys 325 330 340	1123
ccg gag gcg gcc ttc ctg ccc gag tgg gtg ggc att aat gca gac ttg Pro Glu Ala Ala Phe Leu Pro Glu Trp Val Gly Ile Asn Ala Asp Leu 345 350 355	1171
tct cca ctc tgg aca ttg gct aag cct tga gagccaggga gactttctga Ser Pro Leu Trp Thr Leu Ala Lys Pro 360 365	1221
agtagcctga tctttctaga gccagcagta cgtggcttca gaggcctggc atcttctgga	1281
gaagcttgtg gtgttcctga agcaaatggg tgcccgtatc cagagtgatt ctagttggga	1341
gagttggaga gaagggggac gtttctggaa ctgtctgaat attctagaac tagcaaaaca	1401
tottttcctg atggctggca ggcagttcta gaagccacag tgcccacctg ctcttcccag	1461
cccatatcta cagtacttcc agatggctgc ccccaggaat ggggaactct ccctctggtc	1521
tactctagaa gaggggttac ttctcccctg ggtcctccaa agactgaagg agcatatgat	1581
tgctccagag caagcattca ccaagtcccc ttctgtgttt ctggagtgat tctagaggga	1641
gacttgttct agagaggacc aggtttgatg cctgtgaaga accctgcagg gcccttatgg	1701
acaggatggg gttctggaaa tccagataac taaggtgaag aatcttttta gtttttttt	1761
tttttttttg gagacagggt ctcgctctgt tgcccaggct ggagtgcagt ggcgtgatct	1821
tggctcactg caacttccgc ctcctgtgtt caagcgattc tcctgtctca gcctcctgag	1881
tagatgggac tacaggcaca ggccattatg cctggctaat ttttgtattt ttagtagaga	1941
cagggtttca ccatgttggc cgggatggtc tcgatctcct gaccttgtca tccacctgtc	2001
ttggcctccc aaagtgctgg gattactggc atgagccact gtgcccagcc cggatatttt	2061
tttttaatta tttatttatt tatttattta ttgagacgga gtcttgctct gtagcccagg	2121
ccagagtgca gtggcgcgat ctcagctcac tgcaagctct gcctcccggg ttcatgccat	2181
tetgeeteag ceteetgagt agetgggaet acaggegeee geeaccaege eeggetaatt	2241
ttttttgtat ttttagtaga gacggggttt catcgtgtta accaggatgg tctcgatctc	2301
ctgacctcgt gatctgccca cctcggcctc ccacagtgct gggattaccg gcgtgagcca	2361
ccatgcctgg cccggataat ttttttaat ttttgtagag acgaggtctt gtgatattgc	2421
ccaggetgtt etteaactee tgggeteaag eagteeteee acettggeet eccagaatge	2481
tgggtttata gatgtgagcc agcacaccgg gccaagtgaa gaatctaatg aatgtgcaac	2541
ctaattgtag catctaatga atgttccacc attgctggaa aaattgagat ggaaaacaaa	2601
ccatctctag ttggccagcg tcttgctctg ttcacagtct ctggaaaagc tggggtagtt	2661
ggtgagcaga gcgggactct gtccaacaag ccccacagcc cctcaaagac ttttttttgt	2721

ttgttttgag cagacaggct	aaaatgtgaa cgtggggtga	gggatcactg ccaaaatggt	2781
acagettetg gageagaact	ttccagggat ccagggacac	tttttttaa agctcataaa	2841
ctgccaagag ctccatatat	tgggtgtgag ttcaggttgc	ctctcacaat gaaggaagtt	2901
ggtctttgtc tgcaggtggg	ctgctgaggg tctgggatct	gttttctgga agtgtgcagg	2961
tataaacaca ccctctgtgc	ttgtgacaaa ctggcaggta	ccgtgctcat tgctaaccac	3021
tgtctgtccc tgaactccca	gaaccactac atctggcttt	gggcaggtct gagataaaac	3081
gatctaaagg taggcagacc	ctggacccag cctcagatcc	aggcaggagc acgaggtctg	3141
gccaaggtgg acggggttgt	cgagatctca ggagcccctt	gctgtttttt ggagggtgaa	3201
agaagaaacc ttaaacatag	tcagctctga tcacatcccc	tgtctactca tccagacccc	3261
atgcctgtag gcttatcagg	gagttacagt tacaattgtt	acagtactgt tcccaactca	3321
gctgccacgg gtgagagagc	aggaggtatg aattaaaagt	ctacagcact aa	3373
<210> SEQ ID NO 10 <211> LENGTH: 365 <212> TYPE: PRT <213> ORGANISM: Homo s	sapiens		
<400> SEQUENCE: 10			
Met Trp Leu Arg Ser Hi 1 5	is Arg Gln Leu Cys Leu 10	Ala Phe Leu Leu Val 15	
Cys Val Leu Ser Val II	le Phe Phe Leu His Ile 25	His Gln Asp Ser Phe 30	
Pro His Gly Leu Gly Le	eu Ser Ile Leu Cys Pro 40	Asp Arg Arg Leu Val	
Thr Pro Pro Val Ala II	le Phe Cys Leu Pro Gly 55	Thr Ala Met Gly Pro 60	
Asn Ala Ser Ser Ser Cy 65 70	ys Pro Gln His Pro Ala 75	Ser Leu Ser Gly Thr 80	
Trp Thr Val Tyr Pro As	sn Gly Arg Phe Gly Asn 90	Gln Met Gly Gln Tyr 95	
Ala Thr Leu Leu Ala Le 100	eu Ala Gln Leu Asn Gly 105	Arg Arg Ala Phe Ile 110	
Leu Pro Ala Met His Al 115	la Ala Leu Ala Pro Val 120	Phe Arg Ile Thr Leu 125	
Pro Val Leu Ala Pro Gl 130	lu Val Asp Ser Arg Thr 135	Pro Trp Arg Glu Leu 140	
Gln Leu His Asp Trp Me 145	et Ser Glu Glu Tyr Ala 50 155	Asp Leu Arg Asp Pro 160	
Phe Leu Lys Leu Ser Gl	ly Phe Pro Cys Ser Trp 170	Thr Phe Phe His His 175	
Leu Arg Glu Gln Ile Ar 180	rg Arg Glu Phe Thr Leu 185	His Asp His Leu Arg 190	
Glu Glu Ala Gln Ser Va 195	al Leu Gl y Gln Leu Arg 200	Leu Gly Arg Thr Gly 205	
Asp Arg Pro Arg Thr Ph 210	ne Val Gly Val His Val 215	Arg Arg Gly Asp Tyr 220	
Leu Gln Val Met Pro Gl 225 23	ln Arg Trp Lys Gly Val 30 235	Val Gly Asp Ser Ala 240	

Tyr Leu	Arg	Gln	Ala	Met	Asp	Trp	Phe	Arg	Ala	Arg	His	Glu	Ala	Pro		
			245					250					255			
Val Phe	val	Val 260	Thr	Ser	Asn	Gly	Met 265	Glu	Trp	Cys	Lys	Glu 270	Asn	Ile		
Asp Thr		Gln	Gly	Asp	Val		Phe	Ala	Gly	Asp	_	Gln	Glu	Ala		
The Dec	275	T	n an	Dho	חות	280	Tou	mh s	Cln	Crra	285	ui a	mh v	Tlo		
Thr Pro		пур	Ash	FIIE	295	Leu	Leu	IIII	GIII	300	Abii	пть	1111	TIE		
Met Thr	Ile	Gly	Thr	Phe 310	Gly	Phe	Trp	Ala	Ala 315	Tyr	Leu	Ala	Gly	Gly 320		
Asp Thr	Val	Tyr	Leu		Asn	Phe	Thr	Leu		Asp	Ser	Glu	Phe			
-		•	325					330		-			335			
Lys Ile	Phe	Lys 340	Pro	Glu	Ala	Ala	Phe 345	Leu	Pro	Glu	Trp	Val 350	Gly	Ile		
Asn Ala	_	Leu	Ser	Pro	Leu	_	Thr	Leu	Ala	Lys						
	355					360					365					
<210> S																
<212> T <213> O	YPE:	DNA		o sar	oiens	5										
<220> F <221> N	EATU	RE:			. –											
<222> L				(10	062)											
<400> S	EQUE	ICE:	11													
atg gcc Met Ala															48	
1			5	-				10	-		-	-	15			
ctt cga Leu Arg		Met					Ile					Val			96	
		20					25	,				30				
ggt tac Gly Tyr	Gly					Arg					Gly				144	
aaa ===	35	+~-	a+~	a a ±	a++	40	a = -	aa±	422	a a ±	45 a+a	ga	c~~	a+~	100	
arg ggg Arg Gly															192	
tog ttg	CCA	agg	ato	a+c		ccc	cac	CCA	aad	a+a	cta	aca	cca	taa	240	
Ser Leu															240	
aag gat	gta	ctc	at.a		acc	cct	taa	cta		ccc	at.t	atic	taa		288	
Lys Asp															200	
ggc aca	ttc	aac		qac	atc	ctc	aac		caq	ttc	aga	ctc		aac	336	
Gly Thr																
acc acc	att	ggg	tta	act	gtg	ttt	gcc	atc	aag	aaa	tac	gtg	gct	ttc	384	
Thr Thr																
ctg aag															432	
Leu Lys		Phe	Leu	Glu	Thr 135	Ala	Glu	Lys	His	Phe 140	Met	Val	Gly	His		
cgt gto															480	
Arg Val 145	His	Tyr	Tyr	Val 150	Phe	Thr	Asp	Gln	Leu 155	Ala	Ala	Val	Pro	Arg 160		
gtg acg	ctg	ggg	acc	ggt	cgg	cag	ctg	tca	gtg	ctg	gag	gtg	cgc	gcc	528	

Leu Gly Thr Gly Arg Gln Leu Ser Val Leu Glu Val Arg Ala 165 170 175	
egc tgg cag gac gtg tcc atg cgc cgc atg gag atg atc agt Arg Trp Gln Asp Val Ser Met Arg Arg Met Glu Met Ile Ser 180 185 190	576
egc gag cgg cgc ttc ctc agc gag gtg gat tac ctg gtg tgc 62 Cys Glu Arg Arg Phe Leu Ser Glu Val Asp Tyr Leu Val Cys 195 200 205	624
gtg gac atg gag ttc cgc gac cac gtg ggc gtg gag atc ctg 7al Asp Met Glu Phe Arg Asp His Val Gly Val Glu Ile Leu 215 220	672
retg ttc ggc acc ctg cac ccc ggc ttc tac gga agc agc cgg 72 Leu Phe Gly Thr Leu His Pro Gly Phe Tyr Gly Ser Ser Arg 230 235 240	720
tc acc tac gag cgc cgg ccc cag tcc cag gcc tac atc ccc Phe Thr Tyr Glu Arg Arg Pro Gln Ser Gln Ala Tyr Ile Pro 245 250 255	768
gag ggc gat ttc tac tac ctg ggg ggg ttc ttc ggg ggg tcg Slu Gly Asp Phe Tyr Tyr Leu Gly Gly Phe Phe Gly Gly Ser 260 265 270	816
gag gtg cag cgg ctc acc agg gcc tgc cac cag gcc atg atg 86 Glu Val Gln Arg Leu Thr Arg Ala Cys His Gln Ala Met Met 275 280 285	864
cag gcc aac ggc atc gag gcc gtg tgg cac gac gag agc cac 91 Gln Ala Asn Gly Ile Glu Ala Val Trp His Asp Glu Ser His 295 300	912
aag tac ctg ctg cgc cac aaa ccc acc aag gtg ctc tcc ccc Lys Tyr Leu Leu Arg His Lys Pro Thr Lys Val Leu Ser Pro 310 315 320	960
ttg tgg gac cag cag ctg ctg ggc tgg ccc gcc gtc ctg agg 100 Leu Trp Asp Gln Gln Leu Leu Gly Trp Pro Ala Val Leu Arg 325 330 335	.008
agg ttc act gcg gtg ccc aag aac cac cag gcg gtc cgg aac 105 Arg Phe Thr Ala Val Pro Lys Asn His Gln Ala Val Arg Asn 340 345 350	.056
106	.062
Q ID NO 12 IGTH: 353 WE: PRT PANISM: Homo sapiens	
QUENCE: 12	
Glu Val Leu Arg Thr Leu Ala Gly Lys Pro Lys Cys His Ala 5 10 15	
Pro Met Ile Leu Phe Leu Ile Met Leu Val Leu Phe 20 25 30	
Gly Val Leu Ser Pro Arg Ser Leu Met Pro Gly Ser Leu Glu 55 40 45	
Phe Cys Met Ala Val Arg Glu Pro Asp His Leu Gln Arg Val	
55 60	
Pro Arg Met Val Tyr Pro Gln Pro Lys Val Leu Thr Pro Trp 70 75 80	

Gly	Thr	Phe	Asn 100	Ile	Asp	Ile	Leu	Asn 105	Glu	Gln	Phe	Arg	Leu 110	Gln	Asn	
Thr	Thr	Ile 115	Gly	Leu	Thr	Val	Phe 120	Ala	Ile	Lys	Lys	Ty r 125	Val	Ala	Phe	
Leu	Lys 130	Leu	Phe	Leu	Glu	Thr 135	Ala	Glu	Lys	His	Phe	Met	Val	Gly	His	
Arg 145	Val	His	Tyr	Tyr	Val 150	Phe	Thr	Asp	Gln	Leu 155	Ala	Ala	Val	Pro	Arg 160	
	Thr	Leu	Gly	Thr		Arg	Gln	Leu	Ser 170		Leu	Glu	Val	Arg 175		
Tyr	Lys	Arg	_		Asp	Val	Ser			Arg	Met	Glu			Ser	
Asp	Phe		180 Glu	Arg	Arg	Phe		185 Ser	Glu	Val	Asp		190 Leu	Val	Cys	
Val	Asp	195 Val	Asp	Met	Glu	Phe	200 Arg	Asp	His	Val	Gly	205 Val	Glu	Ile	Leu	ı
Thr	210 Pro	Leu	Phe	Gly	Thr	215 Leu	His	Pro	Gly	Phe	220 Ty r	Gly	Ser	Ser	Arg	r
225 Glu	Ala	Phe	Thr	Tvr	230 Glu	Arg	Ara	Pro	Gln	235 Ser	Gln	Ala	Tvr	Ile	240 Pro	
				245		Tyr			250					255		
			260					265					270			
Val	Gln	Glu 275	Val	Gln	Arg	Leu	Thr 280	Arg	Ala	Cys	His	Gln 285	Ala	Met	Met	
Val	Asp 290	Gln	Ala	Asn	Gly	Ile 295	Glu	Ala	Val	Trp	His 300	Asp	Glu	Ser	His	
Leu 305	Asn	Lys	Tyr	Leu	Leu 310	Arg	His	Lys	Pro	Thr 315	Lys	Val	Leu	Ser	Pro 320	
Glu	Tyr	Leu	Trp	Asp 325	Gln	Gln	Leu	Leu	Gly 330	Trp	Pro	Ala	Val	Leu 335	Arg	ſ
Lys	Leu	Arg	Phe 340	Thr	Ala	Val	Pro	L y s 345	Asn	His	Gln	Ala	Val 350	Arg	Asn	
Pro																
<211 <212 <213 <220 <221	0> SE 1> LE 2> TY 3> OF 0> FE 1> NA 2> LO	ENGTH PE: RGANI EATUF AME/F	I: 10 DNA SM: RE: REY:	Homo		piens 065)	5									
)> SE			. ,	`	ĺ										
						acg Thr										
						ttc Phe										
						ccc Pro										
						gtt Val 55										

		cca Pro													240	
		gat Asp													288	
		acg Thr													336	
		acc Thr 115													384	
		aag Lys													432	
		gtc Val													480	
		acg Thr													528	
		aag Lys													576	
		ttc Phe 195													624	
		gac Asp													672	
-		ccg Pro	_			_			-				-	-	720	
		gcc Ala													768	
		gac Asp													816	
		caa Gln 275		Val	Gln	Leu	Thr	Arg	Ala	Cys	His				864	
		gac Asp													912	
		aac Asn													960	
		tac Tyr	_		_	 _	_	_				-	-	_	1008	
		ctg Leu													1056	
	ccg Pro	tga													1065	

Asn Pro

-continued

<210> SEO ID NO 14 <211> LENGTH: 354 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEQUENCE: 14 Met Ala Glu Val Leu Arg Thr Leu Ala Gly Lys Pro Lys Cys His Ala Leu Arg Pro Met Ile Leu Phe Leu Ile Met Leu Val Leu Val Leu Phe 20 25 30 Gly Tyr Gly Val Leu Ser Pro Arg Ser Leu Met Pro Gly Ser Leu Glu Arg Gly Phe Cys Met Ala Val Arg Glu Pro Asp His Leu Gln Arg Val Ser Leu Pro Arg Met Val Tyr Pro Gln Pro Lys Val Leu Thr Pro Cys Arg Lys Asp Val Leu Val Val Thr Pro Trp Leu Ala Pro Ile Val Trp Glu Gly Thr Phe Asn Ile Asp Ile Leu Asn Glu Gln Phe Arg Leu Gln Asn Thr Thr Ile Gly Leu Thr Val Phe Ala Ile Lys Lys Tyr Val Ala Phe Leu Lys Leu Phe Leu Glu Thr Ala Glu Lys His Phe Met Val Gly $130 \\ 135 \\ 140 \\ 140$ His Arg Val His Tyr Tyr Val Phe Thr Asp Gln Pro Ala Ala Val Pro 145 150 155 160Arg Val Thr Leu Gly Thr Gly Arg Gln Leu Ser Val Leu Glu Val Gly 165 \$170\$Ala Tyr Lys Arg Trp Gln Asp Val Ser Met Arg Arg Met Glu Met Ile 185 Ser Asp Phe Cys Glu Arg Arg Phe Leu Ser Glu Val Asp Tyr Leu Val Cys Val Asp Val Asp Met Glu Phe Arg Asp His Val Gly Val Glu Ile 215 Leu Thr Pro Leu Phe Gly Thr Leu His Pro Ser Phe Tyr Gly Ser Ser 235 Arg Glu Ala Phe Thr Tyr Glu Arg Arg Pro Gln Ser Gln Ala Tyr Ile Pro Lys Asp Glu Gly Asp Phe Tyr Tyr Met Gly Ala Phe Phe Gly Gly Ser Val Gln Glu Val Gln Arg Leu Thr Arg Ala Cys His Gln Ala Met 280 Met Val Asp Gln Ala Asn Gly Ile Glu Ala Val Trp His Asp Glu Ser His Leu Asn Lys Tyr Leu Leu Arg His Lys Pro Thr Lys Val Leu Ser Pro Glu Tyr Leu Trp Asp Gln Gln Leu Leu Gly Trp Pro Ala Val Leu Arg Lys Leu Arg Phe Thr Ala Val Pro Lys Asn His Gln Ala Val Arg

```
<210> SEO ID NO 15
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: probes and primers
<400> SEQUENCE: 15
gggaggaagc gaaggtgca
                                                                         19
<210> SEQ ID NO 16
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: probes and primers
<400> SEQUENCE: 16
cttgatgggt ttatccagaa ca
                                                                         22
<210> SEQ ID NO 17
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: probes and primers
<400> SEQUENCE: 17
tgataatccc agcagtattc
<210> SEQ ID NO 18
<211> LENGTH: 36
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: probes and primers
<400> SEQUENCE: 18
acgtggctcc aagaattctc caggcaagag tactgg
                                                                         36
<210> SEQ ID NO 19
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: probes and primers
<400> SEQUENCE: 19
catcttgttc aatggccgat cccattattt tctcctggga aaagaaaag
                                                                         49
<210> SEQ ID NO 20
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: probes and primers
<400> SEQUENCE: 20
cttttctttt cccaggagaa aataatggga tcggccattg aacaagatg
                                                                         49
<210> SEQ ID NO 21
<211> LENGTH: 23
<212> TYPE: DNA
```

<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: probes and primers	
<400> SEQUENCE: 21	
caggtcgacg gatccgaaca aac	23
<210> SEQ ID NO 22 <211> LENGTH: 47	
<211> HENGTH: 47 <212> TYPE: DNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: probes and primers	
<400> SEQUENCE: 22	
cagatctaac gaggattcaa tgtcaaagga aaagtgattc tgtcaat	47
<210> SEQ ID NO 23	
<211> LENGTH: 27 <212> TYPE: DNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: probes and primers	
<400> SEQUENCE: 23	
ctgaactgaa tgtttatcca ggccatc	27
<210> SEQ ID NO 24	
<211> LENGTH: 51 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: probes and primers</pre>	
<400> SEQUENCE: 24	
gcgcaccgtg ggcttgtact cggtcattat tttctcctgg gaaaagaaaa	51
<210> SEQ ID NO 25	
<211> LENGTH: 34 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: probes and primers</pre>	
<400> SEQUENCE: 25	
gagaaaataa tgaccgagta caagcccacg gtgc	34
<210> SEQ ID NO 26	
<211> LENGTH: 26	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: probes and primers</pre>	
<400> SEQUENCE: 26	
ctggggatcc agacatgata agatac	26
<210> SEQ ID NO 27	
<211> LENGTH: 22	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: probes and primers	

<400> SEQUENCE: 27	
cagctgtgtg ggtatgggag gg	22
<210> SEQ ID NO 28 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: probes and primers	
<400> SEQUENCE: 28	
ctgaactgaa tgtttatcca ggccatc	27
<210> SEQ ID NO 29 <211> LENGTH: 22 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: probes and primers	
<400> SEQUENCE: 29	
cagctgtgtg ggtatgggag gg	22
<210> SEQ ID NO 30 <211> LENGTH: 27 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: probes and primers	
<400> SEQUENCE: 30	
agccgattgt ctgttgtgcc cagtcat	27
<210> SEQ ID NO 31 <211> LENGTH: 48 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: probes and primers	
<400> SEQUENCE: 31	
ctgacgatgg ctccggagcc acattatttt ctcctgggaa aagaaaag	48
<210> SEQ ID NO 32 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: probes and primers	
<400> SEQUENCE: 32	
ataatgtggc tccggagcca tcgtca	26
<210> SEQ ID NO 33 <211> LENGTH: 34 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: probes and primers	
<400> SEQUENCE: 33	
aaaggatcct caaggcttag ccaatgtcca gagt	34

<210> SEQ ID NO 34 <211> LENGTH: 75 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: probes and primers <400> SEQUENCE: 34	
gatccgggga tcggcaataa aaagacagaa taaaacgcac gggtgttggg tcgtttgttc	60
ctcgaggtcg acgat	75
<210> SEQ ID NO 35 <211> LENGTH: 71 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: probes and primers <400> SEQUENCE: 35	
atcgtcgacc tcgaggaaca aacgacccaa cacccgtgcg ttttattctg tctttttatt	60
gccgatcccc g	71
<210> SEQ ID NO 36 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: probes and primers	
<400> SEQUENCE: 36	
cctatgcaaa ttaaggtaga acgcac	26
<210> SEQ ID NO 37 <211> LENGTH: 48 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: probes and primers	
<400> SEQUENCE: 37	
ctgacgatgg ctccggagcc acattatttt ctcctgggaa aagaaaag	48
<210> SEQ ID NO 38 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: probes and primers	
<400> SEQUENCE: 38	
ataatgtggc tccggagcca tcgtca	26
<210> SEQ ID NO 39 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: probes and primers	
<400> SEQUENCE: 39	
ctcgaggaac aaacgaccca acacccgtg	29

```
<210> SEQ ID NO 40
<211> LENCTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: probes and primers
<400> SEQUENCE: 40
tgacgatggc tccggagcca cat
```

The invention claimed is:

- 1. A method for selecting a mammalian cell that has undergone a genetic alteration by homologous recombination from amongst a population of cells that do not have said alteration, comprising separating cells according to a surface carbohydrate determinant that has changed as a result of the homologous recombination.
- 2. The method of claim 1, wherein the homologous recombination inactivates an endogenous gene in the cell that encodes an enzyme affecting a surface carbohydrate determinant.
- 3. The method of claim 1, wherein the homologous recombination introduces a transgene into the genome of the cell that encodes an enzyme affecting a surface carbohydrate determinant.
- **4.** The method of claim 1, wherein the homologous recombination introduces a site-specific recombinase recognition sequence into the cell.
- 5. The method of claim 2, wherein the homologous recombination also introduces a transgene into the genome of the cell that that encodes an enzyme affecting a surface carbohydrate determinant.
- **6**. The method of claim 2, wherein the endogenous gene encodes a glycosyltransferase, but the transgene does not.
- 7. The method of claim 3, wherein the transgene encodes a glycosyltransferase, but the endogenous gene does not.
- **8**. The method of claim 5, wherein both the endogenous gene and the transgene encode different glycosyltransferases.
- 9. The method of claim 2, wherein the endogenous gene encodes $\alpha(1,3)$ galactosyltransferase ($\alpha(1,3)$ GT), A-transferase, or B-transferase.
- 10. The method of claim 3, wherein the transgene encodes $\alpha(1,2)$ fucosyltransferase ($\alpha(1,2)$ FT), A-transferase, or B-transferase.
- 11. The method of claim 5, wherein the endogenous gene encodes α 1,3GT, and the transgene encodes α 1,2FT.

12. The method of claim 1, further comprising removing the transgene from the cell having the genetic alteration subsequent to separating it from cells without the genetic alteration.

23

- 13. The method of claim 1, comprising combining the cell population with antibody and complement, such that the antibody binds to a glycosylation determinant present only on cells without the genetic alteration and thereby opsonizes the cells for complement lysis.
- 14. The method of claim 1, comprising labeling cells with an antibody specific for a glycosylation determinant present only on cells without the genetic alteration, and removing cells that have bound the lectin or antibody.
- 15. The method of claim 1, comprising labeling cells with an lectin specific for a glycosylation determinant present only on cells without the genetic alteration, and removing cells that have bound the lectin or antibody.
- **16**. The method of claim 15, wherein the cells are labeled with fluorescently conjugated UEA-1 lectin, *Helix pomatia* lectin, or IB4 lectin.
- 17. The method of claim 15, comprising sorting single cells from the population into separate wells of a microtiter plate.
- 18. The method of claims 17, comprising labeling cells with an antibody or lectin specific for a glycosylation determinant present only on the cell that has the genetic alteration, and collecting the cell that has bound the lectin or antibody.
- 19. The method of claim 1, wherein the cell population is a population of human pluripotent stem cells.
- 20. The method of claim 1, wherein the cell population is a population of non-human cells suitable as donors for nuclear transfer into recipient cells of the same species.

* * * * *