
(19) United States 
US 20080 104509A1 

(12) Patent Application Publication (10) Pub. No.: US 2008/0104509 A1 
Walker (43) Pub. Date: May 1, 2008 

(54) METHOD AND SYSTEM FOR DYNAMIC 
FLOWING DATA TO AN ARBTRARY PATH 
DEFINED BY A PAGE DESCRIPTION 
LANGUAGE 

(75) Inventor: James R. Walker, Maineville, OH 
(US) 

Correspondence Address: 
MACMILLAN SOBANSKI & TODD, LLC 
ONE MARITIME PLAZA FIFTH FLOOR 
72O WATER STREET 
TOLEDO, OH 43604-1619 (US) 

(73) Assignee: Tesseron Ltd. 

(21) Appl. No.: 11/973,290 

Oct. 5, 2007 (22) Filed: 

12 

JOB TICKET 

(62) 

(60) 

(51) 

(52) 

(57) 

Related U.S. Application Data 

Division of application No. 09/436,749, filed on Nov. 
9, 1999, now Pat. No. 7,315,979. 

Provisional application No. 60/107,583, filed on Nov. 
9, 1998. 

Publication Classification 

Int. C. 
G06F 7/00 (2006.01) 
U.S. Cl. .............................................................. 71.5/276 

ABSTRACT 

Improvements to a method for flowing variable data, Such as 
text data, image data, bar code data, and the like, into a path 
of a template defined by a PDL specification in a high-speed 
printing operation. 

-- 

Ge. 
(3 

(9) 

PDL FILES 
y 

14 

  

  

  

    



Patent Application Publication May 1, 2008 Sheet 1 of 18 US 2008/0104.509 A1 

8-8-8-3- 

S 

  

    

  

  

  

  

  

  



Patent Application Publication May 1, 2008 Sheet 2 of 18 US 2008/0104509 A1 

- are nor - - - a we u- m a sma - aros - - m -- - - , , , , 

PagedescriptionLanguageFile) 
ACCeSSMethod=FTP 

32 S FilePath=C:\formsWierd.pd 
-- (MergeFile) 

48 N-FillRule=EvenOddRule 
so-DrawPath=True 

12-- ACCeSSMethodEFTP 

Wrap- 44 
Shape - S - 42 

(Shapel-6 

40-45 - FilePath=C:\data\info.txt 

greeting 
In a world of interactive media and virtual reality Variable On-Demand 
digital printing holds a competitive advantage over traditional and less 

| flexible technologies. ? 
54 

Varis' products meet customized printing demands / 
on the tightest deadlines with breakthrough electronics, industry standard: 
software and a philosophy that Customer needs drive printing Solotions, 
not the other way around. 



Patent Application Publication May 1, 2008 Sheet 3 of 18 US 2008/O104509 A1 

(62 m 

\ a'- 64 

y1 
l t 

53 

FG, 4 

F.G. 5 

  



Patent Application Publication May 1, 2008 Sheet 4 of 18 US 2008/O104509 A1 

58 

<<weetely>> cuta4-seaže 
(37 

65 
(69 - 

FG. (3 



Patent Application Publication May 1, 2008 Sheet 5 of 18 US 2008/0104.509 A1 

53 

l, 
<<yreezeta > avaz-Saae 

  



Patent Application Publication May 1, 2008 Sheet 6 of 18 US 2008/O104509 A1 

34 

FG. 9 
  



Patent Application Publication May 1, 2008 Sheet 7 of 18 US 2008/O104509 A1 

"FLATTEN PATH-N-1OO 

ALIGN COORDINATESYSTEM WITHATTRIBUTE STRIN 1O2 

ROTATE BOUNDARY INTO COORDNATESYSTEM OF ATTRIBUTESTRING-104 

APPLY GRAPHICS STATE TOTEST DATA TO CALCULATEDIMENSIONS OF WORD BITMAPS 1O6 

LOCATE HIGHEST POINT OF PATH BOUNDARY AND APPLY TOP MARGIN 1O8 

DEFINE RECTANGULAR INSERTION AREA 11O 

OVERLAY INSERTION AREA ONTO PATHBOUNDARY-N-112 

APPLYFLOWRULE TO DETERMINEBETWEEN WHICH ADJACENT 114 
INTERSECTION POINTS TO RECIEVE WORD BITMAPS 

APPLY LEFT/RIGHTMARGINSTODETERMINETEXT PLACEMENT AREA-16 

INSERT WORLD BITMAPS INTOTEXT PLACEMENT AREA (BY CREATING RENDERING COMMANDS THAT ARE 
ADDED TO THE DISPLAY LIST) UNTIL CALCULATED AVAILABLE WIDTHIS SMALLER THAN WIDTH OF NEXT WORLD 

BITMAP TO INSERT 

APPLY LINESPACING, CREATENEXTRECTANGULAR INSERTION AREA AND OVERLAYNEXT INSERTION 
AREA ONTO PATHBOUNDARY 

118 

122 12O 

BELOWBOTTOM Y 
MARGINOR FINISHED END 

WITH WORD 
BITMAPS2 

124 

F.G. 11 

  

  

    

    

  

  

    

    

  

  



Patent Application Publication May 1, 2008 Sheet 8 of 18 US 2008/O104509 A1 

23 

7a detazavtate. 
24ea 72aufen 04 2-anta-F2, 
ad aue, fa you eae dee, 4e 

4easus, a text concealed see 

feat, 74 wo 

FG, 12 

    

  

  

  



Patent Application Publication May 1, 2008 Sheet 9 of 18 US 2008/O104509 A1 

(PageDescriptionLanguageFile)--S 126 128 
FilePath - /usr/jobs/books/jungleps-S 

(MergeFiles)--s 
arties 

rikkitxt 

(names-S 14-6 
FilePath = /usr/jobs/books/names.txts-S 13O 
MergeType = delimited 
MergeHeader = yes 
RecordDelimiter = "Wn' 
FieldDelimiter = '' 
PageSelectField = book 
DoGlobalSubstitution = False 
DoGlobalSubstitution = True 
AtEndCfFile= Restart 

(rikkitxt-S 148 132 FilePath=/usr/jobs/books/rikkitxt-S 
MergeType = field 
MergeHeader = no 
AtEndCfFile = Restart 
SmartOuotes True 
FieldDelimiter = i 
PageBreakDelimiter = r 
Paragraph.Delimiter = G) 
DOGlobalSubstitution F True 

(MergeFiles:substitution-S 15O 
Mowgli's = <<name1p)> 
Mowgli = <<name1>> 
Teddy's = <<name1p>> 
Teddy = <<name1>> 

Justify = left 
Overflow = path 
Margins = 0.10 in 
Drawpath = Fals 142 
Paragraphindent = 0in 
ParagraphAdjust = 0.10in 
MinPageBreakLines = 15 
PageBreakLineAdjust = 1 in 14-O 
Filirule = EvenOddRule-S 

Serializers) 
pagenumber = numeric 510 start-3 step riz ValueField startpagenum 

(DataField) 
rpic1 = A 

F.G. 14 

  



Patent Application Publication May 1, 2008 Sheet 10 of 18 

171 { 
156A-17 

173 

156B 

Rikki-Tikki-Tawi 
G-154 
i 
- 154 

9. the hole where he went in-15 RedEye called to Winkle-Sina-154 
Hear what little Red-Eye saith:@-154 
"Nag, come up and dance with death!"G-154 
-- 154 

5. to eye and head to head-2 
(Keep the measure, Nao -154 
This shall end when one is dead;a-154 
(At thy pleasure, Nag.)0-1154. 154 
Turn for turn and twist for twist 
(Run and hide thee, Nag)@-154 
Hah! The hooded Death has missed!@- 154 
(Woe betide thee, Nag')(a)-1-154 
(a)- 154 
i 
(a)- 154 
This is the story of the great war that Rikki-tikki-tavi fought 
single-handed, through the bathrooms of the bungalow in 
Segowlee cantonment, Darzee, the Tailorbird, helped him, and 
Chuchundra, the musk-rat, who never comes out into the middle of 
the floor, but always creeps round by the wall, gave him advice, 
but Rikki-tikki did the real fighting. 
(a)-1-154 
He was a mongoose, rather like a little cat in his fur and his 
tail, but quite like a weasel in his head and his habits. His 
eyes and the end of his restless nose were pink. He could scratch 
himself anywhere he pleased with any leg, front or back, that he 
chose to use. He could fluff up his tail till it looked like a 
bottle brush, and his war cry as he scuttled through the long 
grass was: "Rikk-tikk-tikki-tikki-tchk!" 
@-154 
One day, a high summer flood washed him out of the burrow 
where he lived with his father and mother, and carried him, 
kicking and clucking, down a roadside ditch. He found a little 
wisp of grass floating there, and clung to it till he lost his 
senses. When he revived, he was lying in the hot sun on the 
middle of a garden path, very draggled indeed, and a small boy was 
saying, "Here's a dead mongoose. Let's have a funeral." 
(a)- 154 
"No," said his mother, "let's take him in and dry him. 
Perhaps he isn't really dead." 

(a)- 154 
They took him into the house, and a big man picked him up 
between his finger and thumb and said he was not dead but half 
choked, So they wrapped him in cotton wool and warmed him over a 
little fire, and he opened his eyes and sneezed. 
(a)-/-154 
"Now," said the big man (he was an Englishman who had just 
moved into the bungalow), "don't frighten him, and we'll see what 
he'll do." 

F.G. 15A 

US 2008/O104509 A1 

  



Patent Application Publication May 1, 2008 Sheet 11 of 18 US 2008/O104509 A1 

(a) - 154 
It is the hardest thing in the world to frighten amongoose, 
because he is eaten up from nose to tail with curiosity. The 
motto of all the mongoose family is "Run and find out," and 
Rikki-tikki was a true mongoose. He looked at the cotton wool, 
decided that it was not good to eat, ran all round the table, sat 
up and put his fur in order, scratched himself, and jumped on the 
small boy's shoulder. 

(a) -- 154 193 

"Don't be frightened, Teddy," said his father. "That's his 
way of making friends." 193 
(2-1154 "Ouch! He's tickling under my chin," said Teddy. 
(2,154 
Rikki-tikki looked down between the boy's collar and neck, 
snuffed at his ear, and climbed down to the floor, where he sat 
rubbing his nose. 193 
(2/154 P "Good gracious," said Teddy's mother, "and that's a wild 
creature! I suppose he's so tame because we've been kind to him." 

G2 - 154 o s 193 
"All mongooses are like that," said her husband. "If Teddy 
doesn't pick him up by the tail, or try to put him in a cage, 
he'll run in and out of the house all day long, Let's give him 
something to eat." 

(a) -/-154 
They gave him a little piece of raw meat. Rikki-tikki liked 
it immensely, and when it was finished he went out into the 
veranda and sat in the sunshine and fluffed up his fur to make it 
dry to the roots. Then he felt better. 
G-1-154 
"There are more things to find out about this house," he 
said to himself, "than all my family could find out in all their 
lives. I shall certainly stay and find out." 
G-1-154 
He spent all that day roaming over the house. He nearly 
drowned himself in the bath-tubs, put his nose into the ink on a 
writing table, anfburned it on the end of the big man's cigar, 
for he climbed up in the big man's lap to see how writing was. 
done. At the nightfall he ran into Teddy's nursery to watch how 
kerosene lamps were lighted, and when Teddy went to bed 
Rikki-tikki climbed up too. But he was a restless companion, 
because he had to get up and attend to every noise all through the 
night, and find out what made it. Teddy's mother and father came 
in, the last thing, to look at their boy, and Rikki-tikki was 
awake on the pillow. "I don't like that," said Teddy's mother, 
"He may bite the child." "He'll do no such thing," said the 
father. "Teddy's safer with that little beast than if he had a 
bloodhound to watch him. If a snake came into the nursery now--" 

1sap--S 
But Teddy's mother wouldn't think of anything so awful. 
(a)-1-154 

F.G. 153 

  



Patent Application Publication May 1, 2008 Sheet 12 of 18 US 2008/O104509 A1 

166 
17O <<rityxi>> textic wrap-path fall) 

164 166 168 
172 <<rikkitxt textc padjust=0 wrap-path fally 

a1 1 N 178 Sargs 66 168 
16 

182 <<pic2"wrap=path text dropcap 
164 166-1 168 <<rikkitxt>>wrap-path all 

-1 
1901 164 1 66 

The Jungle Book-162 

<pagenumbere> textc 12-16O 
YaSN 

164 166 

F.G. 16 

  



Patent Application Publication May 1, 2008 Sheet 13 of 18 

The Jungle Book 2-162 

US 2008/O104509 A1 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

: This is the story of the great war that Rikki-tikki-tavi fought 
single-handed, through the bathrooms of the bungalow in 

Rikki-Tikki-Tavi 2 - 172 

At the hole where he went in 
Red-Eye called to Wrinkle-Skin. 
Hear what little Red-Eye saith. 

"Nag, come up and dance with death!" 

Eye to eye and head to head, 
(Keep the measure, Nag.) 

This shall end when one is dead 
(At thy pleasure, Nag) 

Turn for turn and twist for twist 
(Run and hide thee, Nag.) 

Hah! The hooded Death has missed 
(Woe betide thee, Nagl) 

Segowlee cantonment. Darzee, the Tailorbird, helped him, and 
Chuchundra, the musk-rat, who never comes out into the middle of 
the floor, but always creeps round by the wall, gave him advice, 
but Rikki-tikki did the real fighting. 

F.G. 17A 

  



Patent Application Publication May 1, 2008 Sheet 14 of 18 US 2008/O104509 A1 

The Jungle Book 

He was a mongoose, rather like a little cat in his fur and 
his tail, but quite like a weasel in his head and his habits. 
His eyes and the end of his restless nose were pink. He 
could scratch himself anywhere he pleased with any leg, 
front or back, that he chose to use. He could fluff up his 
tail till it looked like a bottle brush, and his war cry as he 
Scuttled through the long grass was: 
"Rikk-tikk-tikki-tiikki-tchk" 

One day, a high summer flood washed him out of the 
burrow where he lived with his father and mother, and 
carried him, kicking and clucking, down a roadside ditch. 
He found a little wisp of grass floating there, and clung to 
it till he lost his senses. When he revived, he was lying in 
the hot sun on the middle of a garden path, very draggled 
indeed, and a small boy was saying, "Here's a dead 
mongoose. Let's have a funeral." 

"No," said his mother, "let's take him in and dry him. 
Perhaps he isn't really dead." 

They took him into the house, and a big man picked him 
up between his finger and thumb and said he was not 
dead but half choked. So they wrapped him in cotton 
wool and warmed him over a little fire, and he opened 
his eyes and sneezed. 

"Now," said the big man (he was an Englishman who had 
just moved into the bungalow), "don't frighten him, and 
we'll see what he'll do." 

F.G. 173 

  



Patent Application Publication May 1, 2008 Sheet 15 of 18 US 2008/0104.509 A1 

The Jungle Book 

It is the hardest thing in the world to frighten a 
mongoose, because he is eaten up from nose to tail with 
curiosity. The motto of all the mongoose family is "Run 
and find out," and Rikki-tikki was a true mongoose. He 
looked at the cotton wool, decided that it was not good to 
eat, ran all round the table, sat up and put his fur in order, 
scratched himself, and jumped on the small boy's 
shoulder. 

184 188 
- - - - 1-1 ge 

"Don't be frightened, Ranen," 
said his father. "That's his way of 
making friends." 

"Ouch! He's tickling under my 
chin," said Ranen. 

Yo-Y195 
Rikki-tiikki looked down between 
the boy's collar and neck, snuffed 
at his ear, and climbed down to 
the floor, where he sat rubbing 
his nose. 195 

187 NS - - - - - - "Good gracious." si?ters 
mother," and that's a wild creature I Suppose he's so 
tame because we've been kind to him." 

"All mongooses are like that," said her husband. "If 
Ranen doesn't pick him up by the tail, or try to put him in 

Ya cage, he'll run in and out of the house all day long. Let's 

FIG. 17C 

  



Patent Application Publication May 1, 2008 Sheet 16 of 18 US 2008/O104509 A1 

The Jungle Book 

Rikki-Tikki-Tayi 

At the hole where he went in 
Red-Eye called to Wrinkle-Skin. 
Hear what little Red-Eye saith: 

'Nag, come up and dance with death!" 

Eye to eye and head to head, 
(Keep the measure, Nag.) 

This shall end when one is dead 
(At thy pleasure, Nag) 

Turn for turn and twist for twist 
(Run and hide thee, Nag.) 

Hah! The hooded Death has missed 
(Woe betide thee, Nagl) 

This is the story of the great war that Rikki-tikki-tavi fought 
single-handed, through the bathrooms of the bungalow in 
Segowlee cantonment. Darzee, the Tailorbird, helped him, and 
Chuchundra, the musk-rat, who never comes out into the middle of 
the floor, but always creeps round by the wall, gave him advice, 
but Rikki-tikki did the real fighting. 

105 

FIG. 18A 

  



Patent Application Publication May 1, 2008 Sheet 17 of 18 US 2008/O104509 A1 

The Jungle Book 

He was a mongoose, rather like a little cat in his fur and 
his tail, but quite like a weasel in his head and his habits. 
His eyes and the end of his restless nose were pink. He 
could scratch himself anywhere he pleased with any leg, 
front or back, that he chose to use. He could fluff up his 
tail till it looked like a bottle brush, and his war cry as he 
scuttled through the long grass was: 
"Rikk-tikk-tikki-tikki-tchk" 

One day, a high summer flood washed him out of the 
burrow where he lived with his father and mother, and 
carried him, kicking and clucking, down a roadside ditch. 
He found a little wisp of grass floating there, and clung to 
it till he lost his senses. When he revived, he was lying in 
the hot sun on the middle of a garden path, very draggled 
indeed, and a small boy was saying, "Here's a dead 
mongoose. Let's have a funeral." 

"No," said his mother, "let's take him in and dry him. 
Perhaps he isn't really dead." 

They took him into the house, and a big man picked him 
up between his finger and thumb and said he was not 
dead but half choked. So they wrapped him in cotton 
wool and warmed him over a little fire, and he opened 
his eyes and sneezed. 

"Now," said the big man (he was an Englishman who had 
just moved into the bungalow), "don't frighten him, and 
we'll see what he'll do." 

FIG. 183 

  



Patent Application Publication May 1, 2008 Sheet 18 of 18 US 2008/O104509 A1 

The Jungle Book 

It is the hardest thing in the world to frighten a 
mongoose, because he is eaten up from nose to tail with 
curiosity. The motto of all the mongoose family is "Run 
and find out," and Rikki-tikki was a true mongoose. He 
looked at the cotton wool, decided that it was not good to 
eat, ran all round the table, sat up and put his fur in order, 
scratched himself, and jumped on the small boy's 
shoulder. 

said his father. "That's his way o 
making friends." 

"Ouch! He's tickling under my 
chin," said Ranen. 

| Rikki-tikki looked down between 
the boy's collar and neck, snuffed 
at his ear, and climbed down to 
the floor, where he sat rubbing 
his nose. 

"Good gracious," said Ranen's 
mother," and that's a wild creature! I suppose he's So 
tame because we've been kind to him." 

"All mongooses are like that," said her husband. "If 
Ranen doesn't pick him up by the tail, or try to put him in 
a cage, he'll run in and out of the house all day long. Let's 

F.G. 18C 

  



US 2008/01 04509 A1 

METHOD AND SYSTEM FOR DYNAMIC 
FLOWING DATA TO AN ARBTRARY PATH 

DEFINED BY A PAGE DESCRIPTION LANGUAGE 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

0001. This application is a divisional of U.S. patent 
application Ser. No. 09/436,749, filed Nov. 9, 1999, which 
claimed the benefit of U.S. Provisional Application No. 
60/107,583, filed Nov. 9, 1998. The disclosures of both 
applications are incorporated herein by reference. 

BACKGROUND OF THE INVENTION 

0002 This invention relates in general to the high speed 
printing industry, and more particularly a system and method 
for flowing variable data into a page description language 
file in a high speed printing environment. 
0003. Application programs, such as word processors, 
illustrators, and computer-aided design systems are software 
packages used to create a document (text and graphics) on 
a computer screen and to simultaneously generate a page 
description language (“PDL) specification, which is to be 
transferred to the printer or to any other type of raster or 
output device for creating a hard copy or copies of the 
document. Alternatively, a PDL specification can be gener 
ated by a programmer without the assistance of an applica 
tion program. 
0004 The printer executes the PDL specification to gen 
erate a bitmap of the document, or a raster-data representa 
tion of a document, and eventually transfers the bitmap or 
raster-data to the physical medium. A typical PDL language, 
such as PostScript (a registered trademark of Adobe Corpo 
ration) defines a page of the document as containing a 
number of data areas, where each data area contains either 
graphic or alpha-numeric data. Each data area is defined by 
a "graphic state,” which is a collection of parameters for 
controlling the representation and appearance of text and 
graphics. For example, the graphic state can include a set of 
text attributes Such as Scale-factor, type-font, etc. In Post 
Script, an example of a PDL command used to build a 
graphic state can be: twenty rotate\Times-Roman findfont 14 
scalefont and setfont. Examples of PDL commands used to 
define the graphic or alpha-numeric data that is displayed in 
the data area include: 00 moveto and (ABC) show. The 
entire group of PDL commands used to define a document 
is hereinafter referred to as the “PDL specification.” 
0005. In variable data printing each printed document 
shares a common template and there is at least one area in 
the template that changes for each printing of the template. 
Typical PDL languages are not designed for high-speed 
variable data printing because, with PDL languages and 
PDL interpreters, even if a single item of data in the 
document changes, an entirely new PDL specification must 
be created and interpreted. For example, if one-hundred 
thousand copies of a mass-mailing advertisement were to be 
printed (i.e., each copy of which is identical except for the 
mailing address), it is typically necessary to generate a new 
PDL specification for each copy to be printed. Hence, to 
generate one-hundred thousand advertisements, it would be 
necessary to generate one-hundred thousand PDL specifi 
cations, even though each advertisement is virtually the 
same except for the variable data area. The processing time 

May 1, 2008 

required to interpret and render one-hundred thousand PDL 
specifications is enormous, significantly slowing the entire 
printing system. 
0006 Furthermore, typical PDL languages do not include 
any text or data flowing capabilities. These features are 
usually implemented by the application program, and when 
Such an application program flows data (such as text) into a 
PDL document, the calculations to determine where to place 
the data are completed prior to the generation of the PDL 
specification. Accordingly, variable data cannot be flowed 
into a template document without creating a new PDL 
specification for each document. Accordingly, there is a need 
for a high-speed printing operation having the ability to 
merge variable data into a template defined by a PDL 
specification; in particular, having the ability to flow vari 
able data into a template path defined by PDL specification 
in a high-speed printing operation. 

SUMMARY OF THE INVENTION 

0007. It is an object of this invention to provide a system 
and method for flowing variable data (such as text data, 
image data, bar code data and the like) into a path of a 
template defined by a PDL specification in a high-speed 
printing operation. It is a further object of this invention to 
provide the ability to generate a plurality of merged bitmaps, 
which are each essentially a copy of a template, except for 
at least one portion of the template that contains an arbitrary 
path. In that path, each merged bitmap can contain a 
different set of variable data merged into it. The template is 
defined by a page description language, and the page 
description language only needs to be processed or inter 
preted once before creating all of the merged bitmaps, thus 
providing an extremely high-speed variable data printing 
operation. 
0008 The computer implemented method for flowing 
data into an arbitrary path defined by a page description 
language specification ("PDL specification') generally com 
prises the steps of processing (interpreting) the PDL speci 
fication to produce a template; designating a path defined in 
the PDL specification as a wrapping path; associating a 
block of variable data with the wrapping path; and merging 
variable data, according to the path boundary and according 
to a predefined flow rule, into a copy of the template. 
0009. The method of this invention is accomplished by 
executing a control task in conjunction with a PDL inter 
preter program. The control task generates a template dis 
play list based upon the PDL commands in the PDL speci 
fication. The display list includes a plurality of rendering 
commands, where each rendering command designates a 
particular data area or object to be rendered, the graphics 
state to be applied to the data area and the offset address at 
which the rendered object, if any, in the data area is to be 
overwritten onto the final bit map. The graphic states for 
each data area are set forth in the PDL specification, and 
pertain to the print attributes that describe how particular 
graphic or alpha-numeric data is to appear on the printed 
page. These attributes can include the size, font, position, 
orientation, location, and the like. 
0010 The control task, during the PDL interpretation 
procedure, monitors the data areas defined by the PDL 
specification to watch for variable data paths defined by the 
PDL code. If the control task identifies a path as being a 



US 2008/01 04509 A1 

variable data path, it reserves the graphic states associated 
with that variable data path in a cache or memory, and then 
moves on to the next data area defined in the PDL specifi 
cation, preferably without allowing the path data to be added 
to the template display list. 
0011. Once the interpreter program completes its inter 
pretation of the PDL specification, the control task saves the 
template display list in memory without dispatching a bit 
map of the template to the printer. Subsequently, a merge 
task is initiated which accesses a variable data record from 
a merge file; associates the variable data record to a par 
ticular variable data path; creates representations of the 
variable data, Such as rendering commands according to the 
reserved graphic states pertaining to that particular variable 
data path, according to the boundary of the particular 
variable data path and according to a predefined flow rule: 
and then generates a merged bitmap by processing the 
template display list and the variable data rendering com 
mands. The final merged bitmap may then be dispatched to 
the printer. This merge task is repeated for each variable data 
record in the merge file associated with that particular 
variable data path to create a plurality of the merged 
bitmaps. 
0012 Thus, the PDL specification of the template need 
only be interpreted once, saving significant processing time 
for the variable printing operation, because the reserved 
graphic states may be utilized over and over again to create 
the flowed data bitmap for each variable data record con 
tained in the merge file. 
0013 How the control task identifies a particular PDL 
path defined in the PDL specification as being unique, i.e., 
as being identified as a wrapping path, is an important step 
in the above process. This is accomplished by providing a 
text command in the PDL specification that defines one or 
more characters that are recognized by the control task as 
being special characters, as opposed to merely being char 
acters that are to be included on the printed page. The control 
task monitors all text strings defined by the PDL specifica 
tion for Such special characters, and responsive to a detec 
tion of the special character in the text string defined by the 
text command, the control task identifies the path command 
that has a predetermined relationship with the text command 
in the PDL specification. This predetermined relationship 
can be satisfied by the first path command to follow the text 
command in the PDL specification or by the path command 
that is “grouped with the text command in the PDL 
specification. 
0014. In one embodiment of this invention, the characters 
“<<” and “a s” are used as part of a special text string to 
define an area as a variable data area. And if that special text 
string also includes the string wrap then the control task will 
recognize that the very next path command appearing in the 
PDL specification will be a unique path, in this case a path 
for flowing variable text bitmaps into. 
0.015 Various aspects of this invention will become 
apparent to those skilled in the art from the following 
detailed description of the preferred embodiment, when read 
in light of the accompanying drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0016 FIG. 1 is a is a schematic, block-diagram repre 
sentation of a high-speed printing system according to this 
invention; 

May 1, 2008 

0017 FIG. 2 is a first example of a job ticket file for use 
with this invention; 

0018 FIG. 3 is a second example of a merge file for use 
with this invention; 

0019 FIG. 4 is a graphical representation of data con 
tained in a first example PDL specification for use with this 
invention; 
0020 FIG. 5 is a graphical representation of a process 
step of this invention operating on data contained in the PDL 
specification of FIG. 4; 
0021 FIG. 6 is a graphical representation of a process 
step of this invention following the process step of FIG. 5; 
0022 FIG. 7 is a graphical representation of a process 
step of this invention following the process steps of FIGS. 
5 and 6: 
0023 FIG. 8 is a graphical representation of a process 
step of this invention following the process steps of FIGS. 
5 and 6: 

0024 FIG. 9 is an example of a merged document created 
by the process and system of this invention; 
0025 FIG. 10 is an example of a merged document 
created by the process and system of this invention; 
0026 FIG. 11 is a flow chart representation of a process 
of this invention; 

0027 FIG. 12 is an example of a merged document 
created by the process and system of this invention; 
0028 FIG. 13 is an example of a merged document 
created by the process and system of this invention; 
0029 FIG. 14 is a second example of a job ticket file for 
use with this invention; 

0030 FIGS. 15A and 15B are a second example of a 
merge file for use with this invention; 
0031 FIG. 16 is a graphical representation of data con 
tained in a second example PDL specification for use with 
this invention; 

0032 FIGS. 17A-17C are graphical representations of 
process steps of this invention operating on data contained 
in the PDL specification of FIG. 16, the job ticket of FIG. 14 
and the merge files of FIGS. 15A-15B; and 
0033 FIGS. 18A-18C are examples of merged pages 
created by the process of this invention using the PDL 
specification of FIG. 16, the job ticket of FIG. 14 and the 
merge files of FIGS. 15A-15B. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

0034. As shown in FIG. 1, a system for performing the 
method of this invention includes a printer controller 10 
having access to a job ticket file 12, a page description 
language (“PDL) file 14, a source of variable data such as 
a merge file 16, and an optional printer configuration file 18. 
The system also contains an operator control terminal 20 for 
providing operator controls such as indicating the name and 
path of the job ticket file 12 for the specific print job. 



US 2008/01 04509 A1 

0035. The job ticket file 12 contains the guidelines for the 
print job which can include the names and locations of the 
PDL file(s) 14, the merge file(s) 16, the configuration file(s) 
18, etc.; and may also include special instructions pertaining 
to features such as data wrapping, described below. The PDL 
file 14 is preferably a PostScript(R) (registered TM of Adobe 
Systems, Inc.) specification created by an application pro 
gram, Such as a word processor, illustrator, or computer 
aided design system. The merge file 16 contains platform 
independent data, Such as text data, image data, bar-code 
data and the like, which is to be merged into a template 
bitmap defined by the PDL file during the merging task, as 
will be described in detail below. The configuration file 18 
defines the print engines and post processing equipment and 
other options to be executed. 
0.036 Initially, the path and name of the job ticket file 12 
are specified by the operator using the operator control 
terminal 20. The printer controller 10 retrieves the job ticket 
file 12 and then retrieves the PDL files 14 and merge files 16 
that are specified in the job ticket file. Next the controller 10 
initiates a control task 22 in conjunction with a page 
description code interpreter program. 

0037. The control task interprets the PDL specification 
from the PDL file 14 and monitors data areas defined in the 
PDL specification to watch for areas defined by the speci 
fication to become variable. If the control task identifies a 
data area as being a variable data area, it reserves the graphic 
states 23 of that variable data area in memory 24 and then 
moves on to the next data area defined by the PDL speci 
fication, usually without allowing any data defined by the 
variable data area to be added to the template bitmap. 
Preferably, the control task 22 will also create a font cache 
(an entire set of character bitmaps generated according to the 
reserved graphic states) for the reserved graphic states, 
which will be linked to the reserved graphic states in 
memory 24. Once the control task completes its processing 
of the PDL specification, the control task saves the template 
bitmap 25 in memory 26. 

0038. The control task 22 may also create a template 
display list 25 of static data defined by the PDL file 14. The 
display list 25 will include a plurality of rendering com 
mands, where each rendering command designates a par 
ticular static data area or object to be rendered, the graphics 
state to be applied to the static data area and the offset 
address at which the rendered object, if any, in the static data 
area is to be overwritten onto the final bit map. As mentioned 
above, the graphic states for each data area are set forth in 
the PDL specification, and pertain to the print attributes that 
describe how particular graphic- or alpha-numeric data is to 
appear on the printed page. Once the control task completes 
its processing of the PDL specification, the control task may 
save the template display list 25 in memory 26. If the PDL 
file 14 does not include code for any static data, the control 
task may generate an empty template display list 25 or may 
decide not to create a template display list at all. 

0.039 Next, a merge task 28, having access to the variable 
data records 17 from the merge file 16, is executed to apply 
the reserved graphics states 23 and associated font cache to 
the variable data records 17, creating rendering commands 
for that variable data record as defined by the graphic states. 
The merge task 28 retrieves a copy 25 of the template 
display list 25 from the memory 26 and merges the variable 

May 1, 2008 

data rendering commands with the template display list to 
create a merged display list 30. Finally, the controller 10 
performs a rendering task 32 to render the merged display 
list 30 into a plurality of bitmap bands 34 for dispatching to 
at least one print engine 36. 

0040. A method for performing the above control task 
and merge task is described in U.S. Pat. No. 5,729,665 
entitled “Method of Utilizing Variable Data Fields with a 
Page Description Language, the disclosure of which is 
incorporated herein by reference. A method and system 
architecture for performing the above merging, banding and 
dispatching operations are respectively described in U.S. 
Pat. Nos. 5,594,860 and 5,796,930, the disclosures of which 
are also incorporated herein by reference. 

0041. A first embodiment of this invention is illustrated 
by way of example in FIGS. 2-10. As illustrated in FIG. 2, 
the job ticket file 12 can contain a file path 38 for deter 
mining the location and name of the PDL file, and can 
contain a file path 40 for determining the location and name 
of the merge file. The job ticket file 12 can also contain a 
descriptive name of a path 42, in this case, named "Shape.” 
for identifying a name of a path in the PDL file that is to have 
variable data flowed into it during the merge task. The 
variable data to be flowed into the path, text data in this case, 
will be taken from the file designated by the file path 40 of 
the merge file. In this case the merge file is named “info 
...text.” The group header 44"Wrap' indicates that the group 
is defining a Wrapping path. After the Wrapping path 
“Shape' has been defined in the job ticket file, a second 
group header 46"Shape can be thereafter defined in the 
job ticket file to provide information about the wrap path; 
such as defining the fill rule 48 to be used in the wrapping 
operation, and Such as defining a path drawing rule 50, i.e., 
whether the path is to be drawn in the final rendered image. 
Other definable wrapping commands for the particular path 
“Shape' can include defining the top, bottom or side mar 
gins, defining the justification, setting the number of paths to 
flow the data into, defining an overflow path, etc. A complete 
description of the different elements that can be defined for 
the wrapping path in the job ticket file is described in detail 
in the Appendix, below. 

0042. As illustrated in FIG. 3, the merge file 16 is a 
platform-independent data file that contains the “variable' 
data to be merged into the path defined in the PDL speci 
fication. The merge file can contain a field name 52, corre 
sponding to a field name that will be defined in the PDL 
specification, which is associated with a particular variable 
data path. The merge file will also contain a number of 
variable data blocks 54, text blocks in this case, correspond 
ing to the field name 52. One variable data block 54 will be 
merged into the variable data path, defined in the PDL 
specification, at a time. 

0043. As illustrated in FIG. 4, the designer will utilize an 
application program to create a document containing a path 
56 and attribute data, such as an attribute string 58, to be 
associated with the path 56. The application program will 
then be directed to create a PDL specification of the docu 
ment by the designer. The attribute string 58 contains a field 
name 60 surrounded by special characters, “ss” and 
">>, a wrap attribute command string 62, and a path 
identifier 64. The PDL specification generated by the appli 
cation program will include the graphic states of the attribute 



US 2008/01 04509 A1 

string 58. These graphic states can include the font size (i.e., 
10 point), the type-font (i.e., Script) the orientation (i.e., 
angled upwardly at 50) and the like. 

0044 As discussed above, and referring again to FIGS. 
1-4, the control task 22 will execute a PDL interpreter 
program to interpret the PDL specification created by the 
application program to generate a template bitmap 25 of the 
document, and to also monitor for any variable data paths 
defined in the PDL specification. 

0045. In the preferred embodiment, the control task 22 
monitors for variable data areas defined by the PDL speci 
fication by monitoring for special characters in the text 
strings defined by text commands in the PDL specification. 
As shown in FIG. 4, the special characters “<<” and “a c” 
surround the field name 60. The control task, upon identi 
fying the special characters in the text command for the 
attribute string will thus know that the attribute string 58 is 
defining a variable data area, and is not merely defining a 
text string to appear on the printed page (the attribute string 
will not appear on the final printed page unless the control 
task is directed to by the job ticket file). The field name 60 
Surrounded by the special characters identifies the associated 
field name 52 present in the merge file 16. During the 
processing of the text command for the attribute string 58, 
the control task will also monitor for the wrap string 62 
within the attribute string, which also includes the path 
identifier string 64 associated therewith. If found, the control 
task will know that a path defined in the PDL specification 
that has a predetermined relationship with the text command 
for the attribute string will be a wrapping path, where the 
wrapping path has the wrapping attributes defined in the job 
ticket file 12 for the particular group header 44 and descrip 
tive name of a path 42 matching the path identifier string 64 
set forth in the attribute string 58. 
0046 Preferably, the predetermined relationship is satis 
fied by the first path command to follow the text command 
for the attribute string in the PDL specification. This can be 
accomplished by using the application program to sequen 
tially type the attribute string 58 and then draw the path 56, 
such that the path command will be the first path command 
to follow the text command in the PDL specification created 
by the application program. Alternatively the predetermined 
relationship can be satisfied by the path command that is 
“grouped with the text command for the attribute string in 
the PDL specification. This can be accomplished by using a 
“GROUP tool as provided by many application programs 
to group the attribute string 58 and path 56 together. It will 
be apparent to one of ordinary skill in the art that there are 
many similar predetermined relationships available between 
the text command for the attribute string and the path 
command for the wrapping path that can be established in 
the PDL specification, all of which fall within the scope of 
this invention. 

0047 Thus, during the execution of the PDL interpreter 
program, the control task 22 will match the wrap attribute 
command string 62 and path identifier 64 with the group 
header 44 and descriptive name of the path 42 defined in the 
job ticket file 12. Once the attribute string 58 is identified as 
defining a variable data path by the control task 22, the 
control task will save the graphic states 23 of the attribute 
string 58 in memory. The control task may also create a font 
cache according to the graphic states 23, and store the font 

May 1, 2008 

cache along with the graphic states in memory 24. The 
control task will also save the field name 60 along with the 
graphic states 23 in memory so that the particular graphic 
states can be matched to the blocks of text data in the merge 
file 16 under the matching field name 52, as will be 
described below. The merge task 28 will apply these graphic 
states 23 and associated font cache to the variable data 54 
prior to merging and flowing the variable data into the path 
56. 

0048. Once the control task 22 has identified the path as 
being a variable data path, and has reserved the graphic 
states 23 of the attribute string 58 associated with the path 
in memory 24, the control task 22 advances to the next data 
area in the PDL specification, preferably without allowing 
the attribute string data or the path to be added to the 
template display list 25 stored in memory 26. And once the 
PDL interpreter program has completed interpreting the 
PDL specification, the control task 22 then passes authority 
to the merge task 28. 

0049. The merge task 28 first accesses a set of the saved 
graphic states 23 and identifies the field name 60 associated 
with these graphic states. The merge task 28 then accesses 
the merge file 16 and searches the merge file for a field name 
52 matching the field name 60 associated with the graphic 
states. The merge task then accesses a variable data block 54 
associated with the field name 52 and then generates ren 
dering commands for the variable data block according to 
the graphic states 23, the predefined flow rule 48 and the 
boundary of the path 56. The predefined flow rule 48 may or 
may not be defined by the job ticket file 12. Accordingly, 
when the rendering command is executed the bit map data 
defined by the rendering command will flow within the path 
56 according to a predefined flow rule. 

0050. As shown in FIG. 11, and as illustrated in FIGS. 
5-10, a method for merging and flowing the variable text 
data into the path 56 is as follows: as indicated in step 100 
and illustrated in FIG. 5, preferably the control task will first 
“flatten the path, which involves breaking the complex path 
56 (which may contain ellipses and curves) into a series of 
simple straight lines 64 (i.e., converting the path into a series 
of “move to” and “line to commands). Each straight line 64 
will comprise a particular portion of a boundary 65, into 
which the variable data is to be positioned. Alternatively, it 
is within the scope of the present invention to have the path 
56 itself define the boundary into which the variable data is 
to be positioned. As will be described below, the extent of 
the boundary may also be defined, in part, by the designation 
of margins, or the creation of additional paths, etc. As 
indicated in step 102 and as also illustrated in FIG. 5, a 
horizontal axis 67 of a coordinate system 69 will be aligned 
with the attribute string 58. As indicated in step 104 and as 
illustrated in FIG. 6, a new equivalent boundary 65" is 
created, whose coordinates are those of the original bound 
ary 65, but rotated into the same coordinate system 69 as the 
attribute string 58 (for example, as shown in FIG. 5, the 
attribute string 58 is rotated a negative 50° in the document, 
and therefore, in FIG. 6 the boundary 65 is rotated by a 
positive 50). 

0051. As indicated in step 106, the stored graphic states 
23 (e.g., font-type and point size) are applied to a variable 
data block 54 to be merged into the boundary 65' and to 
calculate the dimensions of a plurality of word bitmaps, the 



US 2008/01 04509 A1 

word bitmaps being defined by a collection of characters 
separated from the rest of the data by white space characters 
(e.g., a space, tab, new line, etc.). The dimensions of 
paragraphs can be calculated by defining a paragraph as a 
collection of word bitmaps separated from other paragraphs 
by “new line' characters. Assuming that the text flow 
direction will be from top to bottom and left to right, as 
indicated in step 108 and as illustrated in FIGS. 7 and 8, the 
“top” or highest point 66 of the path 65" is determined and 
a top margin 68 is applied to the boundary 65' by measuring 
a distance downward from the highest point 66 of the 
boundary. The top margin 68 can be pre-defined, defined in 
the job ticket file 12, or by any other sufficient means. 
0.052 As indicated in step 110 and illustrated in FIGS. 7 
and 8, a rectangular insertion area 70 is defined, having a 
vertical height corresponding to the calculated vertical 
height of the bitmap representation of the first word (the 
point size of the text) to be flowed into the boundary 65", and 
having a top horizontal border 72 abutting the top margin 68. 
As indicated in step 112, this insertion area 70 will be 
overlayed onto the entire boundary 65' at that present 
vertical level to establish at least one intersection point 74. 
As indicated in step 114, only those areas between adjacent 
intersection points 74 will be considered valid candidates for 
receiving the bitmap representations of the text data. If there 
are more than two intersection points present within the 
insertion area, then the particular flow rule being utilized 
will determine between which of the intersection points that 
the bitmap representations of the text data will be inserted. 
As illustrated in FIGS. 7 and 8, when only two intersection 
points are established, the bitmap representations of the text 
data will typically be inserted therebetween. 
0053. Once two adjacent intersection points 74 are deter 
mined to be candidates for receiving bitmap representations 
of the text data, as indicated in step 116 and illustrated in 
FIG. 8, left and right margins will then be measured 
inwardly from each of the intersection points 74 to define 
left and right borders 77 within the rectangular insertion area 
70. Between the left and right borders 77, therefore, is 
defined a text placement area 78 for merging the bitmap 
representations of the text data therein. The left and right 
margins 76 can be pre-defined, defined in the job ticket file 
12, or determined by any other sufficient means. 
0054 As indicated in step 118, the rendering commands 

to create the bitmap representations of a word of the text data 
as merged into the text placement area are created and added 
to the display list 25, depending upon whether the calculated 
width of the bitmap is equal to or less than the available 
width calculated to remain in the text placement area. The 
rendering commands will define the proper orientation of the 
bitmap representation of the word rotated back into the 
original orientation of the attribute string. 
0055 As illustrated in FIG. 8, in the first text placement 
area 78, bitmap representations of the words “in” and “a” 
were able to fit therewithin, however, the bitmap represen 
tation of the word “world' was too wide for the remaining 
width. Accordingly, in the final merged bitmap only the 
bitmaps representing the words “in” and “a” will be ren 
dered into the first text placement area 78. If no word 
bitmaps are capable of fitting within the text placement area, 
then the area is left blank. 

0056. As indicated in step 120 and illustrated in FIG. 8, 
a line-spacing 79 is measured below the present insertion 

May 1, 2008 

area and then the next rectangular insertion area 80 is created 
and overlayed onto the boundary 65" below the line-spacing 
79 in the same manner as defined above for the first 
rectangular insertion area 70. As indicated in step 122., if the 
new insertion area extends below the lowest point of the 
boundary 65 (or below the bottom margin) or if there are no 
more words to insert, then the merging process for this 
particular boundary and text block is finished as shown in 
step 124. If the insertion area does not extend below the 
lowest point of the boundary and there are more bitmaps 
representing words to insert, then the process returns to step 
114, described above. Essentially, steps 114-122 will be 
repeated thereafter until step 124 is reached. As illustrated in 
FIG. 8, bitmaps representing the words “world' and "of 
were able to be rendered into the second rectangular inser 
tion area 80 and bitmaps representing the words “interactive, 
'media' and “and” were able to rendered into third rect 
angular insertion area 82. 
0057 Subsequent to step 122, the merge task will then 
search for additional variable data areas or variable data 
paths in which to merge variable data blocks. If no more of 
such variable data areas or variable data paths exist for the 
particular document, then the merged display list 30 is 
transferred to the rendering task 32, as described above, to 
generate the bitmap bands 34 for printing. FIG. 9 illustrates 
the entire block of text 54 from the merge file 16 formatted 
according to the above process and merged into the path 56 
to create a first finished document 84. FIG. 10 illustrates the 
appearance of the next block of text 54 from the merge file 
16 formatted according to the above process and merged into 
the path 56 to create a second finished document 86. 
0.058 Preferably, in the above step 118, the height of the 
rectangular insertion area is determined by the dimensions 
calculated for the first word bitmap. And if, for whatever 
reason, a next word bitmap is calculated to be higher than the 
first or previous word bitmap, and higher than all other word 
bitmaps inserted thus far into a particular text placement 
area, then the entire rectangular insertion area is thrown out, 
and steps 116 and 118 are repeated again for the higher 
rectangular insertion area generated according to this higher 
word bitmap. 
0059. As discussed above, a number fill rules are avail 
able for flowing the word bitmaps into the boundary. 
Accordingly, the merge task can mark the path intersections 
74 as “positive.'"negative' or “neutral based upon whether 
the path enters and leaves from the top or the bottom of the 
insertion area, or whether it enters and exits the insertion 
area from the same direction. All of the available fill rules 
will be apparent to one of ordinary skill in the art, and are 
thus within the scope of this invention. 
0060. As discussed above, text flowing into the boundary 
65 will continue until it is determined that there are no more 
word bitmaps to flow into the boundary or until it is 
determined that there is no more text areas available to flow 
the word bitmaps into. In the case of the latter, it is within 
the scope of the invention to define a path as an “overflow” 
path for continuing the flowing of the text therein, until this 
overflow path runs out of room. This overflowing process 
can continue until once again it is determined that there are 
no more text areas to flow text into. Text can also flowed into 
more than one path at a time. 
0061 For illustration, as shown in FIG. 12, if the job 
ticket file defines the number of flow paths as two, and the 



US 2008/01 04509 A1 

two flow paths are the circle and square paths, designated as 
numerals 88 and 90, respectively; then the two paths essen 
tially comprise one boundary, and text will flow directly 
from the circle path 88 into the square path 90. Note that the 
2nd through 8th lines of text flow from the circle path 88 
directly into the square path 90. But when the text reaches 
the end of the square path 90, the flowing operation stops 
because the area within the two flow paths has been used up. 
Accordingly, as illustrated in FIG. 13, if an “overflow path’ 
is designated in the job ticket file to be the triangle path 92, 
the text flowing will continue into the triangle path 92 until 
there is no more text to be merged or until the path runs out 
of additional room. 

0062. The operation of this invention is illustrated by way 
of a second example as shown in FIGS. 14-18. This second 
example illustrates the use of this invention in constructing 
a book having variable text and picture placement, where a 
character name presented in the book may also be custom 
ized. Once customized, the text and pictures will flow into 
the pages of the book regardless of the size differences 
between the substituted character names. For example, if a 
Substituted character name is substantially longer or shorter 
than the original character name in the text, the text and 
pictures will flow throughout the book such that no notice 
able gaps or overflows are detectable. In order to perform 
such a task, this invention allows a plurality of different 
merge files or data items to be flowed into a single path; this 
invention allows text to flow around pictures that are 
inserted into the path; and by utilizing special delimiters 
within the merge file, the merged task is able to recognize 
points in the merge data where the graphic states to be 
applied to such merge data are to be changed in accordance 
with a next attribute string in the PDL Specification. This is 
all explained in detail as follows: 
0063 As illustrated in FIG. 14, the job ticket file 12 
contains a group header, “PageDescriptionLanguageFile 
126 specifying the file path(s) defined thereunder as deter 

mining the locations of the template PDL files. In the 
present example, the template PDL file path 128 defines the 
location of the template (PostScript) file jungle.ps’ as 
shown graphically in FIG. 16. Next, the job ticket file 12 lists 
a group header, “MergeFiles 144 specifying the labels 
(“names' and “rikkitxt) of the merge files to be accessed by 
the merge task. The group header “names 146 is thereafter 
defined in the job ticket file to provide information about the 
merge file “names.txt located in the file path 130. As 
indicated by the definitions following the group header 
“names 146, this merge file is a delimited merge file where 
the record delimiters are /n and the field delimiters are . 
In this merge file, the definition DoGlobalSubstitution is set 
to FALSE, which indicates that substitutions of the text 
within the merge file are not to be performed by the merge 
task during the merging operation. The group header “rik 
kitxt 148 provides information about the merge file “rik 
ki.txt located in the file path 132. The MergeType definition 
is set to “field', which indicates that the merge file only 
contains a single record, and therefore requires no record 
delineations. The MergeHeader definition is set as NO. 
which indicates that the merge file will not include a merge 
header (because there is only one record in the merge file). 
As also defined under the “rikkitxt group header is that 
the field delimiter will be it character, the page break 
delimiter will be the - character and the paragraph delim 
iter will be the (a character. Finally, the definition DoGlo 

May 1, 2008 

balSubstitution is set to TRUE which means the merge task 
is to look for text phrases within the rikki.txt merge file and 
replace them with variable data as defined in the job ticket 
file as follows. 

0064. The group header 150"mergefile:substitution” 
establishes the global substitutions for the “rikki.txt merge 
file as described above. Accordingly, within the body of the 
“rikki.txt merge file, every instance of the name Mowgli is 
to be changed to the variable data name listed under the 
“name 1” heading (which is present in the “names' merge 
file-not shown). Furthermore, any occurrence of the name 
Teddy within the “rikki.txt merge file will be replaced with 
the same variable data name as listed under the “name 1” 
heading in the “names' merge file. This substitution is 
preferably performed by the merge text when creating 
bitmaps for the merge data in the “rikki.txt merge file that 
are to be merged into the template defined in the jungle.ps' 
file (FIG. 16). 
0065. The next group header 136"Wrap' in the job 
ticket file 12 contains a descriptive name of a path 134 (in 
this case, named “path') for identifying a name of a path in 
the PDL file that is to have variable data flowed into it during 
the merge task. The group header 136"Wrap' indicates that 
the group is defining a wrapping path. After the wrapping 
path “path' has been defined in the job ticket file, a next 
group header 138"path is thereafter defined to provide 
information about the wrap path, such as defining the 
FillRule 140 as using the even/odd rule, defining the Draw 
Path definition as FALSE 142 to indicate that the path is not 
to be drawn. The other definable wrapping commands for 
the particular path “path’ are described in detail in the 
appendix below. 
0066 Although not shown in FIG. 14, the job ticket file 
12 includes attribute definitions defining the print job as a 
book job, which directs the merge task to repeatedly access 
templates and flow bitmaps into the path(s) in the templates 
until the merge task reaches the end of the merge file. 
0067. As illustrated in FIGS. 15A and 15B, the merge file 
“rikki.txt 16 is a platform independent data file that contains 
the variable data to be merged into the path defined in the 
PDL specification (FIG. 16). In the present example, this 
merge file does not contain a field name because the Merge 
Header definition in the job ticket file 12 was set to NO. In 
the present example, the mergefile is a single data record 
consisting of the text of the Rikki-Tikki-Tavi story of the 
Jungle Book. Paragraph delimiters 154 ((a) are placed at 
selected points within the text to inform the merge task 
where to start a new paragraph during the merging opera 
tion. Field delimiters 156 (ii) are also placed in selected 
areas of the text to indicate to the merge task when a 
particular field of the merge file has ended and a next field 
of the merge file is to begin. The use of the field delimiters 
156 will be described in greater detail below. 
0068 As illustrated in FIG. 16, the designer will utilize 
an application program to create a template document 157 
containing a path 158 and several attribute data strings 160. 
As discussed above, the designer will associate the attribute 
data strings 160 with the path 158 by assuring that the path 
158 is the first path drawn after the insertion of the attribute 
data strings 160 or by using a "GROUP feature of the 
application program to group the attribute data strings 160 
with the path 158. As also shown in FIG. 16, the template 



US 2008/01 04509 A1 

document 157 also contains static data 162 which will 
remain constant during every printing of the merged docu 
ment. Once the template document 157 has been created, the 
application program will then be directed to create at PDL 
specification 14 of the document. Each attribute string 160 
contains a field name 164 Surrounded by special characters, 
a wrap attribute command string 166, and a path identifier 
168 if the attribute data is to be associated with a path. The 
PDL specification generated by the application program will 
include the graphic states of the attribute strings. For 
example, the graphic states for first attribute string 170 
include a bold/italics font attribute and a larger point size 
attribute; the graphic states for second attribute string 172 
include an italics font attribute and a smaller point size 
attribute than the first attribute string; the graphic states for 
third attribute string 178 include a standard font attribute, 
etc. 

0069. As discussed above, referring to FIG. 1 and FIGS. 
14-17, the control task 22 will execute a PDL interpreter 
program to interpret the PDL specification created by the 
application program to generate a template bit map 25 of the 
template document 157, and to also monitor for any variable 
data paths defined in the PDL specification 14. During the 
execution of the PDL interpreter program, the control task 
22 will match the path identifier 168 in each wrap attribute 
command string 166 with the group header 136 and descrip 
tive name of the path 134 defined in the job ticket file 12. 
Once the attribute string 166 is identified as defining a 
variable data path by the control task 22, the control task will 
save the graphic states 23 of the attribute string 166 in 
memory (which is preferably a stack). The control task may 
also create a font cache according to the graphic states 23, 
and store the font cache along with the graphic states to 
memory 24. The control task will also link the graphic states 
23 with the merge file defined by the job ticket file having 
a name matching the field name 164 (“rikitxt for the first, 
second, third and fifth attributes strings 170, 172, 178, 182 
and 190). The merge task 28 will apply these saved graphic 
states 23 and the associated font cache to the variable data 
prior to merging and flowing the variable data into the path 
158. 

0070. Once the control task 22 has identified the path as 
being a variable data path; and it has reserved the graphic 
states 23 of the attribute strings 166 associated with the path 
in memory 24, the control task 22 advances to the next data 
area in the PDL specification, preferably without allowing 
the attribute strings or the path to be added to the template 
display list 25 stored in memory 26. Once the PDL inter 
preter program has completed interpreting the PDL specifi 
cation, the control task 22 then passes authority to the merge 
task 28. 

0071. The merge task 28 first accesses a first set of 
graphic states 23 from memory 24 and identifies the par 
ticular field name 164 associated with these graphic states. 
The merge task 28 then accesses the merge file 16 associated 
with this field name and graphic States. The merge task then 
accesses a variable data block associated with a first variable 
data block in the merge file and then generates rendering 
commands for the variable data block according to the 
graphic states 23, the predefined flow rule 140 and the 
boundary of the path 158. 
0072. As illustrated in FIGS. 17A-17C, a method for 
merging and flowing the text data in the merge file into the 

May 1, 2008 

path 158 of the document 157 to create the variable length 
book is as follows. Upon initiation, the merge task will first 
access the saved graphic states and attributes associated with 
the first attribute string 170 defined in the PDL specification. 
As shown in FIG. 16, the field name is “rikkitxt” and the 
path associated with the attribute string 170 is the path 158 
(because the path 158 is the first path created after the 
attribute string 170). Referring to FIG. 14, the merge task 
matches the field name “rikkitxt 164 in the first attribute 
string 170 with the group header 148, and accesses the 
merge file identified by the path 132. As shown in FIG. 15A, 
a first text-block 171 is taken from the beginning of the 
mergefile until a first field delimiter 156a is encountered. 
The saved graphic states 23 associated with the first attribute 
string 170 are applied to this text block to create a bit map 
for the text block which is then flowed into the path 158 as 
shown by numeral 172 in FIG. 17A. Note that the attribute 
string 170 included an attribute command “textc.” which 
caused the control task to add an additional text centering 
attribute to the saved graphic states 23. Accordingly, the bit 
map 172 associated with the text string and applied graphic 
states is centered in the path 158. The paragraph delimiter 
154 in the mergefile causes the merge task to add a line space 
after the insertion of the bit map 172. 
0073. Because the merge task reaches the first field 
delimiter 156a in the mergefile, the merge task refers back 
to memory to retrieve the reserved graphic states 23 attrib 
uted to the second attribute string 172. The field name 164 
identified by the second attribute string 172 is “rikkitxt” as 
in the first attribute string 170; and therefore, the merge task 
will again refer to the mergefile 152 when retrieving variable 
data to insert into the path. It is should be apparent to those 
of ordinary skill in the art that the field name 164 may also 
refer to a different merge file and the merge task would thus 
access data from the different merge file. As with the first 
attribute string 170, the second attribute string 172 includes 
the additional attribute commands such as "textc' and 
“padjust=0.” Referring again to FIG. 15A, the merge task 
will access the next block of data 173 between the first field 
delimiter 156a and the second field delimiter 156b. The 
merge task will then apply the graphic states 23 correspond 
ing to the second attribute string 172 to this text data to form 
the bit map data block 174 to be merged into the path 158. 
Once this bit map block has been merged into the document, 
the merge task accesses the graphic states associated with 
the next attribute string 178 from memory. 
0074 Because the field name 164 in the third attribute 
string 178 is “rikkitxt as with the first two attribute strings, 
the merge task will refer back to the mergefile 152 and will 
extract the block of data 179 after the second field delimiter 
156b and before the third field delimiter 156c. The graphic 
states 23 associated with the third attribute string 178 will be 
applied to this text data to create bit map data which is 
merged and flowed into the path 158 according to the steps 
described herein. Once the merge text reaches the end of the 
path 158, the merge task will know to access another copy 
of the template from memory because a “book' attributes 
have been predefined in the job ticket file. The second 
template bit map is indicated in FIG. 17B. Note that the 
block of text flows beyond the path 158 of the second 
template bitmap shown in FIG. 17B and into the path 158 of 
the third template bitmap shown in FIG. 17C. Once this 
block 180 has been mapped and the merge task reaches the 
third field delimiter 156c., the merged task refers back to the 



US 2008/01 04509 A1 

graphics states 23 in memory to obtain the graphic states 
associated with the fourth attribute string 182. 
0075 The field name 164 in this attribute string 182 
refers to “rpic1, which is defined in the job ticket file as a 
bit map of a picture to be inserted at this point. Note that this 
attribute string also includes additional attribute commands: 
“text 1” and “dropcap’. This indicates that the picture bit 
map is to have left justification and is to be treated as a 
drop-cap character. As shown in FIG. 17C, the picture 
bitmap is inserted into the path 158 with left justification 
after the block of bit map data 180. If the drop-cap command 
had not been specified in the attribute string, the next block 
of data would be inserted at point 185 after the picture bit 
map. However, it is often desirable to include pictures within 
the text of a book and then have text appear to flow around 
the picture. Accordingly, the drop-cap attribute definition 
indicates to the merged text to treat the bit map defined in the 
attribute string as a drop-cap character. When the merged 
task sees this command, after inserting the picture 183 into 
the path 158 the merged task adds the boundary 184 of the 
picture to the path 158 and then moves the insertion point of 
the next bit map data to the beginning 186 of the picture bit 
map 183. However, because the boundary 184 of the picture 
bit map 183 has been combined with the boundary 158 of the 
path, the next insertion point will be at point 188 to the right 
of the picture bit map. 
0.076 Once this step is completed, the merge task will 
access the graphic States 23 associated with the next attribute 
string 190 from memory. The field name “rikkitxt 164 in 
this next attribute string 190 indicates to the merge task to 
access data again from the merge file 152. Referring to FIG. 
15C, the next point to access data for the merge file is the 
block of data indicated by numeral 192, between the third 
and fourth field delimiters 156c. 156d. The graphic states 23 
of this next attribute string 190 will be applied to this block 
of data 192 and the bit maps will thus be flowed into the path 
158 as discussed above. This block of data 192 is the first 
block including a character name Teddy which the job 
ticket directs as needing to be replaced by a variable data 
name from the names.txt merge file as discussed above. In 
the present example, the first variable name listed in the 
names.txt merge file is “Ranen.” Accordingly, merge file 
will replace all instances 193 within the block of data 192 
where the name Teddy appears with the Ranen bitmaps 
195 in the printed document. This process will continue until 
the merge task reaches the end of the mergefile 152, indi 
cating to the merge task that the book has been created. 
FIGS. 18A-18C illustrate the appearance of the pages of the 
book as prepared in the example described above. 
0.077 Accordingly, this invention provides capability of 
identifying particular paths defined in a page description 
language as data flowing paths, and provides the capability 
for flowing data within Such paths. In addition, the present 
invention allows the user to specify margin, paragraph 
formatting, fill rules, and justification parameters on a path 
by path basis. 
0078 Having described the invention in detail and by 
reference to the drawings, it will be apparent to one of 
ordinary skill in the art that variations and modifications are 
possible without departing from the scope of the invention 
as defined on the following claims. 
0079 The following appendix provides a compilation of 

text wrapping commands and parameter definitions that can 

May 1, 2008 

be specified in the job ticket file 12. Each entry provides the 
particular command header, the syntax for the command, 
any relevant remarks for the use of the command, examples, 
etc. As will be apparent to one of ordinary skill in the art, it 
is within the scope of this invention to include the means to 
provide for any of the attributes, or similar attributes, as 
defined in the Appendix. 

APPENDIX 

0080 COMMAND HEADER=Wrap 
0081. A group that provides a list of tags which you 
create to describe the text flowing (wrap) path(s) to be 
used in the print job. Each tag will become a user 
defined group of additional information about the wrap 
path. 

0082 Syntax wrap 
0.083 < Path Tag X.d 
0084 < Path Tag Yid 
0085 < Path Tag ZD 

0086 Remarks Optional. Each tag that appears under 
this Wrap group will optionally become a new group 
name in a Succeeding section of the Job Ticket. 

0087 Explanation < Path Tax XD 
0088 Create a descriptive name for a wrap path 
used in the print job. 

0089. Note: Fields on a template that you wish to be 
flowed into a particular path will use a field attribute of 
the format: 

0090 <<fieldname>> wrap=<name> 
0091 The <name> argument of the wrap attribute 
must match a path tag listed in the Wrap group. 

0092. Example Wrap 
0.093 Circle 
0094 Square 
0.095 Triangle 

0.096 COMMAND HEADER=< Path Tagd 
0097. A user-defined tag name for a group that pro 
vides information about the wrap path and corresponds 
to the descriptive tag that you create under the initial 
Wrap group. 

0.098 Syntax < Path Tagd 
0099 Baseline Adjust= 
0100 Bottom Margin= 
0101 Clobber Path= 
0102 Draw Path= 
0.103 Enforce paragraph Spacing= 
0104 Fill Rule= 
0105 Fit Last Name= 
0106 
01.07 

Justify = 
Left Margin= 



US 2008/01 04509 A1 

0108 
01.09 
0110 
0111 
0112 
0113 
0114 
0115 
0116 Top Margin= 

0.117 Remarks A separate < Patho group defines p group 
path information for each descriptive tag listed under the 
initial Wrap group. 
0118 If a < Path Tag group is not defined for a 
path listed under the Wrap group, that path will 
receive the default values for all of the < Path Tag 
elements. 

0119 Explanation < Path Tag> 
ake the descript1Ve tag under the 11t1a 0120 Take the descripti g under the initial 

Wrap group and writeithereas a group name within 
the brackets. 

0121 Baseline Adjust= 
0122 (See the Baseline Adjust Element Descrip 
tion) 

0123. Bottom Margin= 
0.124 (See the Bottom Margin Element Descrip 
tion) 

0.125 Clobber Path= 
0126 (See the Clobber Path Element Description) 

O127 Draw Path= 
0128 (See the Draw Path Element Description) 

Margins= 
Min Paragraph Lines= 
Number Of Paths = 

Overflow = 

Paragraph Adjust= 
Reverse Flow = 

Reverse Path= 

Right Margin= 

0129. Enforce Paragraph Spacing= 
0.130 (See the Enforce Paragraph Spacing ele 
ment description) 

0131 Fill Rule= 
0132 (See the Fill Rule Element Description) 

0.133 Fit Last Line= 
0.134 (See the Fit Last Line Element Description) 

0135) Justify = 
0.136 (See the Justify Element Description) 

0.137 Left Margin= 
0138 (See the Left Margin Element Description) 

0139 Margins= 
0140 (See the Margins Element Description) 

0.141 MinParagraph Lines= 
0.142 (See the Minparagraph Lines Element 
Description) 

May 1, 2008 

0143. Number Of Paths= 
0144 (See the Number of Paths Element Descrip 
tion) 

0145. Overflow = 
0146 (See the Overflow Element Description) 

0147 Paragraph Adjust= 
0148 (See the Paragraph Adjust Element Descrip 
tion) 

0149 Paragraph Indent= 
0150 (See the Paragraph Indent Element Descrip 
tion) 

0151 Reverse Flow = 
0152 (See the Reverse Flow Element Description) 

0153 Reverse Path= 
0154 (See the Reverse Path Element Description) 

O155 Right Margin= 
0156 (See the Right Margin Element Description) 

0157 Top Margin= 
0158 (See the Top Margin Element Description) 

0159. Examples Circle 
0160 Fill Rule=EvenOddRule 
0.161 Draw Path=False 
0162. Overflow =Square 

0163 Square 
0164. FillRule=WindingRule 
0.165 DrawPath=True 
0166 Overflow =Triangle 

0167 Triangle 
0.168 FillRule=EvenOddRule 
0169 DrawPath=False 
0170 Overflow =Square 

0171 Square 
0172 FillRule=WindingRule 
0173 DrawPath=True 
0.174. Overflow =Triangle 

0175 Triangle 
0176 FillRule=EvenOddRule 
0177 DrawPath False 

0.178 PARAMETER=Baseline Adjust 
0.179 An element that determines the adjustments 
made to each baseline of text drawn within the path. 

0180 Syntax Baseline Adjust= 
<BaseAdjustNumes Unit Types 

0181 See Also Paragraph Adjust, Enforce Paragraph 
Spacing. 



US 2008/01 04509 A1 

0182 Remarks Optional. 
0183 By default, the process will space successive 
text lines at 120% of the font size. For example, a 
12-point font will have the next baseline set at 14.4 
points (120%X12) from the previous baseline. The 
Baseline Adjust element defines an offset from this 
default value. 

0.184 Apositive Baseline Adjust value increases the 
space between each baseline of text (essentially, mov 
ing the next line of text down). A negative value 
decreases the space between each baseline of text 
(essentially, moving the next line of text up). 

0185. The default value for Baseline Adjust is 0. 
0186 Explanation <Base AdjustNum-> 

0187 Enter the number of units. 
0188 <Unit Typed 
0189 Optional. Enter the abbreviation to identify the 
unit type if the unit type for Baseline Adjust is differ 
ent from the default unit type defined in the Units 
element. Possible values are: 

0.190 cm for centimeters 
0191 dots for dots 
0.192 ft for feet 
0193 in for inch (default value) 
0194 mm for millimeter 
0.195 pts for points 

0196. Example Baseline Adjust=1 pt 
0.197 PARAMETER=Bottom Margin 
0198 An element that specifies the distance from the 
bottom of the path at which to stop flowing text. 

0199 Syntax 
<BottomMarginNum-> <Unit Types 

0200 See Also Margins, Overflow. 
0201 Remarks Options. 
0202 NOTE: A non-zero value for the Bottom Margin 
element overrides (for the bottom margin only) the value 
set in the Margins elements. 

Bottom Margin= 

0203 For example, if Margins=1 in and Bottom 
Margin=2 in, the path will have 1-inch margins on the 
top, left, and right sides but will have a 2-inch margin 
on the bottom side. 

0204 The default value for Bottom Margin is 0. 
0205 Explanation <Bottom MarginNumid 

0206 Enter the number of units. 
0207 <UnitTyped 
0208 Optional. Enter the abbreviation to identify the 
unit type if the unit type for Bottom Margin is differ 
ent from the default unit type defined in the Units 
element. Possible values are: 

0209 cm for centimeters 

May 1, 2008 

0210 dots for dots 
0211 ft for feet 
0212 in for inch (default value) 
0213 mm for millimeter 
0214 pts for points 

0215 Example Bottom Margin=3 mm 
0216 PARAMETER=Clobber Path 

0217. An element that specifies if two adjacent ON 
areas separated by a path segment are treated as one area 
when determining text flow. 

0218 Syntax ClobberPath=True/False 
0219. See Also FillRule 
0220 Remarks Optional 

0221. This element affects the way in which text is 
flowed in adjacent ON areas. It applies only to paths 
defined with FillRule=WindingRule. 

0222. If ClobberPath is set to True, text is flowed 
across the two adjacent ON areas as if they were one 
area. In this case, only the "outer margins of the 
combined areas would be recognized. Text flow 
would be continuous across the “inner margins 
where the path segment intersects the adjacent areas. 

0223 If ClobberPath is set to False, text is flowed 
separately into each area. 

0224. The default value of ClobberPath is True. 
0225 Explanation {True/False} 

0226. If two adjacent ON areas are to be treated as 
one area, type True. 

0227. If two adjacent ON areas are to be maintained 
separately, type False. 

0228. Example ClobberPath=False 
0229. PARAMETER=DrawPath 

0230. An element that determines if the wrap path is 
actually drawn on the template. 

0231. Syntax DrawPath={True/False} 
0232 Remarks Optional. 

0233. The default value for DrawPath is True. 
0234 Explanation {True/False} 

0235 If the wrap path is to be drawn on the template, 
type True. 

0236. If the wrap path is NOT to be drawn on the 
template, type False. Example DrawPath=False 

0237 PARAMETER=EnforceParagraphSpacing 
0238 An element that determines if the next paragraph 
will always start at a distance of the Paragraph Adjust 
value from any previous paragraphs that were set. 

0239 Syntax EnforceParagraphSpacing={True/False 
0240 See Also Baseline Adjust, Paragraph Adjust. 
0241 Remarks Optional. 



US 2008/01 04509 A1 

0242. If the text flowed into your path contains blank 
paragraphs, this element determines how the blank 
paragraphs are to be handled. 

0243 If you want your next paragraph to start at a 
distance of the Paragraph Adjust value from your pre 
vious text paragraph (thereby, "skipping any blank 
paragraphs and permitting text to continue to flow), 
set the EnforceParagraphSpacing value to True. 

0244 If you want the blank paragraphs to be allotted 
the appropriate space defined in Paragraph Adjust, set 
the EnforceParagraphSpacing value to False. 

0245 The default value for EnforceParagraphSpac 
ing is False. 

0246 Explanation {True/False 
0247 If the next non-blank paragraph should start at 
a distance of the Paragraph Adjust value from any 
previous paragraphs that were set, type True. 

0248 If blank paragraphs are to be allocated their 
appropriate paragraph space, type False. 

0249 Example EnforceParagraphSpacing=True 
0250 PARAMETER = FillRule 
0251 An element that provides the rules used to deter 
mine which areas of the path should have text flowed 
into them and which areas should be blank. 

0252 Syntax FillRule={WindingRulelEvenOddRule} 
0253 See Also ClobberPath, ReversePath. 
0254 Remarks Optional. 

0255 Text is flowed into an area enclosed by 
(“inside') the current path. If a path is simple, it is 
clear which areas are inside the path. However, if a 
path is complex (for example, intersecting itself or 
having one Subpath that encloses another), it is not as 
apparent which areas are inside. One of two fill rules 
will be used to determine which areas lie inside a path. 

0256 The FillRule element defines if the non-zero 
winding rule (WindingRule) or the even-odd rule 
(EvenOddRule) will be used for the current path. 

0257 The non-zero winding rule determines whether 
a given area along the proposed flow line is inside the 
path (and thus receives text) by examining the places 
where a path segment crosses the flow line. Path seg 
ments that cross (intersect) the flow line from top to 
bottom are given a direction of 1. Path segments that 
cross (intersect) the flow line from bottom to top are 
given a direction of -1. Path segments that do not 
fully cross the flow line (for example, entering and 
exiting the top of the flow line) are given a direction of 
ZO. 

0258 An on-going sum of all crossings is calculated 
from left to right, If the sum of all crossings to that 
point is Zero, the area (immediately to the right) is 
outside the path. If the sum is non-Zero, the area is 
inside the path and will receive text. 

0259 The even-odd rule determines whether a given 
area long the proposed flow line is inside the path (and 
thus receives text) by counting the number of times a 

May 1, 2008 

path segment crosses the flow line. Path segments that 
fully cross (intersect) the flow line are given a score of 
1. Path segments that do not fully cross the flow line 
are given a score of Zero. 

0260 An on-going sum of all crossings is calculated 
from left to right. If the sum of all crossings to that 
point is even, the area (immediately to the right) is 
outside the path. If the sum is odd, the area is inside 
the path and will receive text. 

0261 The default value for FillRule is WindingRule. 
0262 Explanation {Winding Rule/EvenOddRule} 

0263. If the winding rule will determine which areas 
lie inside a path, type Winding Rule. 

0264. If the even-odd rule will determine which areas 
lie inside a path, type EvenOddRule. 

0265 Example FillRule=EvenOddRule 
0266 PARAMETER=FitLastLine 

0267 An element that determines if the Fitjustification 
rule is applied to the last line of every paragraph. 

0268 Syntax FitLastLine={True/False} 
0269. See Also Justify 
0270 Remarks Optional. 
0271 The FitIastLine element applies only to paths 
defined with Justify=Fit. 

0272. If FitLastLine is set to True, the text on the last 
line will be forced to fit flush on the left and the right. 
Since the last line of a paragraph may often contain 
less text than the other lines in a paragraph, this jus 
tification will often result in more white space 
between text on the last line. 

0273 The default value for FitLastLine is False. 
0274 Explanation {True/False} 

0275 If the last line of every paragraph should be 
aligned at both the left side and the right side of the 
path, type True. 

0276. If the last line of every paragraph should not be 
forced to fit flush left and flush right, type False. 

0277 Example FitLastLine=False 
0278 PARAMETER=Justify 

0279 An element that specifies the type of justification p type of 
(horizontal alignment) to be applied to each line of text 
drawn in the path. 

0280 Syntax Justify = <JustifyRule> 

0281 See Also FitLastLine 
0282 Remarks Optional. 
0283 The default value for Justify is Left. 

0284 Explanation <JustifyRule> 
0285 Enter the type of justification (horizontal align 
ment) to be applied to each line of text drawn in the 
path. Possible values are: 



US 2008/01 04509 A1 

0286 Left (Default value) Text is aligned from the 
left side of the path. 

0287 Right Text is aligned from the right side of the 
path. 

0288 Center Text is centered between the left side 
and right side of the path. 

0289 Fit Text is aligned at both the left side and right 
side of the path. 

0290 Example Justify=Center 
0291 PARAMETER = LeftMargin 
0292 An element that specifies the distance from the 
left side of the path at which to start flowing text. 

0293 Syntax LeftMargin= 
<LeftMarginNumid <UnitTyped 

0294 See Also Margins 
0295 Remarks Optional. 
0296 NOTE: A non-zero value for the LeftMargin ele 
ment overrides (for the left margin only) the value set in 
the Margins elements. 
0297 For example, if Margins=1 in and LeftMar 
gin=2 in, the path will have 1-inch margins on the 
bottom, top, and right sides but will have a 2-inch 
margin on the left side. 

0298. A default value for LeftMargin is 0. 
0299| Explanation <LeftMarginNum-> 

0300 Enter the number of units. 
0301 <UnitTyped 
0302 Optional. Enter the abbreviation to identify the 
unit type if the unit type for LeftMargin is different 
from the default unit type defined in the Units ele 
ment. Possible values are: 

0303 cm for centimeters 
0304 dots for dots 
0305 ft for feet 
0306 in for inch (default value) 
0307 mm for millimeter 
0308 pts for points 

0309 Example LeftMargin=5 mm 
0310 PARAMETER=Margins 

0311. An element that specifies the same text margins 
for all four sides of the path (top, bottom, left, and right). 

0312 Syntax 
Types 

0313 See Also Bottom Margin, LeftMargin, Right Mar 
gin, TopMargin 

0314 Remarks Optional. 

Margins = <MarginsNum-> <Unit 

0315 Note: The value for the Margins element will be 
overridden on an individual margin basis by any non 

May 1, 2008 

Zero value defined for the other specific margin 
attributes (BottomMargin, LeftMargin, RightMargin, 
and TopMargin). 
0316 For example, if Margins = 1 in and TopMar 
gin=2 in, the path will have 1-inch margins on the 
bottom, left, and right sides but will have a 2-inch 
margin on the top. 

0317. The default value for Margins is 0. 
0318 Explanation <MarginsNum-> 

03.19 Enter the number of units. 
0320 <UnitTyped 
0321 Optional. Enter the abbreviation to identify the 
unit type if the unit type for Margins is different from 
the default unit type defined in the Units element. 
Possible values are: 

0322 cm for centimeters 
0323 dots for dots 
0324 ft for feet 
0325 in for inch (default value) 
0326 mm for millimeter 
0327 pts for points 

0328 Example Margins = 6 mm 
0329 PARAMETER=MinParagraphLines 

0330. An element that specifies the minimum number 
of lines of a paragraph to be set before the paragraph is 
allowed to be split between path areas. 

0331 Syntax MinParagraphLines = <MinLinesNum-> 
0332 See Also NumberOfPaths. Overflow. 
0333 Remarks Optional. 

0334 If the minimum number of lines of a paragraph 
defined here cannot be set consecutively in a path 
area, the entire paragraph will be moved down to the 
next scanline that allows the specified number of lines 
to be set consecutively. 

0335 The default value for MinParagraphLines is 1. 
0336 Explanation <MinLinesNumid 
0337 Enter the integer representing the minimum 
number of lines of a paragraph to be set before split 
ting between path areas is permitted. 

0338 Example MinParagraphLines=2 
0339 PARAMETER=NumberOfPaths 

0340 An element that determines how many postscript 
paths on the template are concatenated and treated as 
one path. 

0341 Syntax NumberOfPaths = <PathsNumid 
0342 See Also MinParagraphLines. Overflow. 
0343 Remarks Optional. 

0344. This element is used to combine multiple paths 
drawn on the template and to treat them as a single 



US 2008/01 04509 A1 

path. The path to be combined will be determined by 
the order in which they were drawn. 

0345 The default value for NumberOfPaths is 1. 
0346 Explanation <PathsNumid 

0347 Enter the integer representing the number of 
paths to be combined. 

0348 Example NumberOfPaths=2 
0349 Illustration See FIG. 12 and corresponding 
description above 

0350 PARAMETER = Overflow 
0351. An element that specifies the name (tag) of the 
wrap path that will receive overflow text from the current 
wrap path being described. 

0352 Syntax Overflow = <PathTag> 
0353. See Also MinParagraph Lines, NumberOfPaths. 
0354 Remarks Optional. 

0355 This element defines the use of an overflow 
feature. When overflow is available, if the current path 
has no more space into which text can flow, the text 
will continue to flow into the path named in this ele 
ment. 

0356. NOTE: If the Overflow element references a wrap 
path that is not named under the Wrap group, the print 
job will be aborted. 
0357 If the Overflow element is not defined, the sys 
tem will assume that no overflow will occur for the 
current path being described. Therefore, text will flow 
into the current path until it is filled. No overflow text 
will be printed. 

0358 Explanation <PathTag> 
0359 Enter the descriptive tag of the path into which 
overflow text from the current path will flow. This 
value should correspond to a descriptive tag that you 
created under the initial Wrap group. 

0360 Example Overflow =Square 
0361 Illustration See FIG. 13 and the corresponding 
description above. 

0362 PARAMETER = Paragraph Adjust 
0363 An element that determines the distance to adjust 
the baseline for the start of the next paragraph within the 
path. 

0364 Syntax ParagraphAdjust= 
< ParagraphadjustNum-> <Unit Types 

0365. See Also Baseline Adjust, Enforce Paragraph 
Spacing. 

0366 Remarks Optional. 
0367 The Paragraph Adjust value overrides the 
Baseline Adjust value only for the first baseline of text 
in each paragraph. 

0368. A position Paragraph Adjust value increases 
the vertical space between the last baseline of text in 
each paragraph and the start of the next paragraph 

May 1, 2008 

(essentially, moving the start of the next paragraph 
down). A negative value decreases the vertical space 
between the last baseline of text in each paragraph and 
the start of the next paragraph (essentially, moving the 
start of the next paragraph up). 

0369 The default value for Paragraph Adjust is 0. 
0370 Explanation < ParagraphadjustNum-> Enter the 
number of units. 

0371 <UnitTyped 
0372 Optional. Enter the abbreviation to identify the 
unit type if the unit type for Paragraph Adjust is dif 
ferent from the default unit type defined in the Units 
element. Possible values are: 

0373 cm for centimeters 
0374 dots for dots 
0375 ft for feet 
0376 in for inch (default value) 
0377 mm for millimeter 
0378 pts for points 

0379 Example Paragraph Adjust = 6 pts 
0380 PARAMETER=Paragraphlindent 

0381 An element that specifies the indentation from the 
left margin for the first line of every paragraph in the 
path. 

0382 Syntax Paragraphlindent= 
< ParagraphlindentNum-> <UnitTypes 

0383 See Also Paragraph Adjust 
0384 Remarks Optional. 
0385 The default value for Paragraphlindent is 0. 

0386 Explanation < ParagraphlindentNum-> 
0387 Enter the number of units. 
0388 <UnitTyped 
0389 Optional. Enter the abbreviation to identify the 
unit type if the unit type for Paragraphlindent is differ 
ent from the default unit type defined in the Units 
element. Possible values are: 

0390 cm for centimeters 
0391 dots for dots 
0392 ft for feet 
0393 in for inch (default value) 
0394 mm for millimeter 
0395 pts for points 

0396 Example Paragraphlindent=0.5 in 
0397 PARAMETER=Reverseflow 

0398 An element that determines if the text will be 
flowed from bottom to top in the current path. 

0399 Syntax ReverseFlow ={True/False} 
0400 See Also FillRule 



US 2008/01 04509 A1 

0401 Remarks Optional. 
0402. The default value for ReverseFlow is False. 

0403 Explanation {True/False} 
04.04 If the text will be flowed from bottom to top, 
type True. 

04.05 If the text will be flowed from top to bottom, 
type False. 

04.06 Example ReverseFlow =True 
04.07 PARAMETER=ReversePath 
0408 An element that determines if the ON/OFF des 
ignations for areas in the path will be reversed. 

04.09 Syntax ReversePath=True/False 
0410 See Also FillRule 
0411 Remarks Optional. 

0412. The ReversePath element applies only to paths 
defined with FillRule=EvenOddRule. 

0413 If ReversePath is set for True, the areas origi 
nally marked as ON based on the EvenOddRule cal 
culation will be set to OFF and the areas originally 
marked as OFF based on the EvenOddRule calcula 
tion will be set to ON. 

0414. If ReversePath is set to False, the EvenOd 
dRule calculations will be retained. 

0415. The default value for Reversepath is False. 
0416 Explanation {True/False) 

0417. If the ON/OFF designations for areas in the 
path will be reversed, type True. 

0418 If the ON/OFF designations for areas in the 
path will be retained, type False. 

0419 Example ReversePath=True 
0420 PARAMETER = RightMargin 

0421. An element that specifies the distance from the 
side of the path at which to stop flowing text. 

0422 Syntax RightMargin= 
<RightMarginNum-> <UnitTypes 

0423 See Also Margins 
0424 Remarks Optional. 
0425 NOTE: A non-zero value for the RightMargin 
element overrides (for the right margin only) the value 
set in the Margins element. For example, if Margins = 1 
in and RightMargin=2 in, the path will have 1-inch 
margins on the bottom, top, and left sides but will have a 
2-inch margin on the right side. 

0426. The default value for RightMargin is 0. 
0427 Explanation <RightMarginNum-> 

0428 Enter the number of units. 
0429 <UnitTyped 

14 
May 1, 2008 

0430 Optional. Enter the abbreviation to identify the 
unit type if the unit type for RightMargin is different 
from the default unit type defined in the Units ele 
ment. Possible values are: 

0431 cm for centimeters 
0432 dots for dots 
0433 ft for feet 
0434 in for inch (default value) 
0435 mm for millimeter 
0436 pts for points 

0437. Example RightMargin=5 mm 
0438 PARAMETER=TopMargin 

0439 An element that specifies the distance from the 
top of the path at which to start flowing text. 

0440 Syntax 
<TopMarginNumo -unitTypes 

0441 See Also Margins 
0442 Remarks Optional. 
0443 NOTE: A non-zero value for the TopMargin ele 
ment overrides (for the top margin only) the value set in 
the Margins element. 

TopMargin= 

0444 For example, if Margins = 1 in and TopMar 
gin=2 in, the path will have 1-inch margins on the 
bottom, left, and right sides but will have a 2-inch 
margin on the top side. 

0445. The default value for TopMargin is 0. 
0446. Explanation <TopMarginNum-> 

0447 Enter the number of units. 
0448 <UnitTyped 
0449 Optional. Enter the abbreviation to identify the 
unit type if the unit type for TopMargin is different 
from the default unit type defined in the Units ele 
ment. Possible values are: 

0450 cm for centimeters 
0451 dots for dots 
0452 ft for feet 
0453 in for inch (default value) 
0454 mm for millimeter 
0455 pts for points 

0456. Example TopMargin=0.25 in 
0457. The principle and mode of operation of this inven 
tion have been explained and illustrated in its preferred 
embodiment. However, it must be understood that this inven 
tion may be practiced otherwise than as specifically explained 
and illustrated without departing from its spirit or scope. 
What is claimed is: 

1. A method for generating a multi-page document, Such as 
a book, comprising the steps of 

(a) accessing a page description language file, the page 
description language file defining at least a boundary; 



US 2008/01 04509 A1 

(b) accessing a text file external to page description lan 
guage file; 

(c) associating the boundary with the text file; 
(d) accessing an attribute defining an aspect of the appear 

ance of text data in a bitmap image; 
(e) generating bitmap representations oftext data in the text 

file and, during the generating step, applying the 
attribute to the text data; 

(f) creating a page of the book by flowing the bitmap 
representations of the text data into the boundary until 
the bitmap representations fill the boundary; and 

(g) creating a next page of the book by flowing the remain 
der of the bitmap representations of the text data into the 
boundary until the remainder of bitmap representations 
fill the boundary. 

2. The method of claim 1, wherein the creating step (g) is 
repeated for all of the remainder of bitmap representations. 

3. The method of claim 1, wherein the page description 
language file and the text file are defined in a job file external 
to the page description language file and the text file, and the 
method further includes the step of prior to step (a), process 
ing the job file to identify the external page description lan 
guage file and the external text file. 

4. The method of claim 1, further comprising the step of (h) 
dispatching the page and the next page to a printer. 

5. The method of claim 1, wherein the attribute is defined in 
the page description language file. 

15 
May 1, 2008 

6. The method of claim 5, wherein the attribute defined in 
the page description language file is associated with the 
boundary. 

7. The method of claim 6, wherein the boundary is defined 
by a path command and attribute is associated with a string 
command linked to the path command. 

8. The method of claim 7, wherein the attribute is part of a 
graphic state associated with the String command. 

9. The method of claim 1, wherein the attribute is defined in 
a file external to the page description language file. 

10. The method of claim 9, wherein the attribute is defined 
in a job file. 

11. The method of claim 1, wherein the text file includes a 
plurality of text blocks separated by delimiters. 

12. The method of claim 11, wherein the generating step (e) 
applies different attributes to at least two of the plurality of 
text blocks. 

13. The method of claim 11, wherein at least one of the 
creating steps (f) and (g) include a step of flowing a bitmap of 
an artistic image between at least two of the plurality of text 
blocks. 

14. The method of claim 13, wherein the method further 
includes the step of redefining the boundary for the page into 
which the bitmap of the artistic image has been flowed to 
include a perimeter of the artistic image. 

15. The method of claim 1, wherein the text data is modi 
fied prior to the generating step (g) to insert personal infor 
mation associated with an intended recipient of the multi 
page document into the text data. 


