
(19) United States
US 200700 16551A1

(12) Patent Application Publication (10) Pub. No.: US 2007/0016551A1
Bigus et al. (43) Pub. Date: Jan. 18, 2007

(54) OBJECTORIENTED FRAMEWORK FOR
GENERC ADAPTIVE CONTROL

(76) Inventors: Joseph Phillip Bigus, Rochester, MN
(US); Joseph L. Hellerstein, Ossining,
NY (US); Sujay Parekh, White Plains,
NY (US); Jeffrey Robert Pilgrim,
Rochester, MN (US); Donald A.
Schlosnagle, Rochester, MN (US);
Mark S. Squillante, Pound Ridge, NY
(US); Jayram S. Thathachar, San
Jose, CA (US)

Correspondence Address:
F. CHAU & ASSOCIATES, LLC
13O WOODBURY ROAD
WOODBURY, NY 11797 (US)

(21) Appl. No.: 11/524,622

(22) Filed: Sep. 21, 2006

Related U.S. Application Data

(63) Continuation of application No. 10/059,665, filed on
Jan. 29, 2002, now Pat. No. 7,120,621.

Administrator

Controller
Parameters

Service Level
Requirements

Publication Classification

(51) Int. Cl.
G06F 7700 (2006.01)
G06F 7/30 (2006.01)

(52) U.S. Cl. .. 707/1

(57) ABSTRACT

A system and method are described for constructing and
implementing generic Software agents for automated tuning
of computer systems and applications. The framework
defines the modules and interfaces to allow agents to be
created in a modular fashion. The specifics of the target
system are captured by adaptors that provide a uniform
interface to the target system. Data in the agent is managed
by a metric manager, and controller modules implement the
desired control algorithms. The modular structure and com
mon interfaces allow for the construction of generic agents
that are applicable to a wide variety of target systems, and
can use a wide variety of control algorithms.

f40

101S Tuning
Control Output

Controller adjustments Controlled
(AutoTune Agent) Target(s)

Workload metricS X.

Configuration metrics

Service level metricS

I "?INH

US 2007/001.6551A1 Patent Application Publication Jan. 18, 2007 Sheet 1 of 8

US 2007/001.6551A1 Patent Application Publication Jan. 18, 2007 Sheet 2 of 8

? '0IH

sal? fior,

||| 10 || ||

06

8 "?I H

US 2007/001.6551A1

088048 068

Patent Application Publication Jan. 18, 2007 Sheet 3 of 8

† 'BIJ

US 2007/001.6551A1 Patent Application Publication Jan. 18, 2007 Sheet 4 of 8

029 0#9

US 2007/001.6551A1

099

)SS000Id
999

099

069089049
Patent Application Publication Jan. 18, 2007 Sheet 5 of 8

()SS000Id

9 "?INH Z ddwyI ddwyZ ddwI ddwy

US 2007/001.6551A1

visº- 089
019

Patent Application Publication Jan. 18, 2007 Sheet 6 of 8

1. ‘50IH

US 2007/001.6551A1

()e)

9ABIS

08).

06.A,

Patent Application Publication

Jan. 18, 2007 Sheet 8 of 8 US 2007/001.6551A1 Patent Application Publication

028

US 2007/001.6551A1

OBJECTORIENTED FRAMEWORK FOR
GENERC ADAPTIVE CONTROL

CROSS-REFERENCE TO RELATED
APPLICATION

0001. This application is a Continuation of U.S. patent
application Ser. No. 10/059,665, filed on Jan. 29, 2002,
which is fully incorporated herein by reference.

BACKGROUND OF THE INVENTION

0002) 1. Technical Field
0003. The present invention relates generally to the per
formance of computer systems and, in particular, to a system
and method for automated performance tuning of computer
systems and applications in a generic, application-indepen
dent manner.

0004 2. Description of Related Art

0005 There has been a tremendous growth in the com
plexity of distributed and networked systems in the past few
years. In large part, this can be attributed to the exploitation
of client-server architectures and other paradigms of distrib
uted computing. Such computer systems and Software (oper
ating systems, middle ware and applications) have become
so complex that it is difficult to configure them for optimal
performance.

0006 Complex applications such as databases (e.g.,
ORACLE, DB2), message queuing systems (e.g.,
MQSERIES) and application servers (e.g., WEBSPHERE,
DOMINO) have literally tens and hundreds of parameters
that control their configuration, behavior and performance
(DOMINO/DB2 admin guide). The behavior of such a
complex system is also governed by the dynamic loads that
are placed on the system by the system users. It takes
considerable expertise to set individual parameters, and it is
even more challenging to understand the interaction between
parameters and the resultant effect on the behavior and
performance of the system. Another factor that increases the
difficulty of administering these systems is that such systems
can be very dynamic and therefore may require constant
monitoring and adjustment of their parameters, for instance
if the workloads change over time.

0007 Thus, the total cost of ownership (TCO) of the
particular system may increase not only due to the cost of
hiring expert help, but also due to potentially lost revenue if
the system is not configured properly. To reduce the TCO
and the burden on system administrators, many software
vendors are now turning to Software agents to help manage
the complexity of administering these complex systems.

0008 Software agents are very well suited to the task of
controlling Such systems. Prior expert knowledge could be
incorporated once and for all in the agent, thereby reducing
the need for expertise by the end-user. In addition, the
Software agent can be more closely tied to the system and
can perform even closer monitoring and updating than
humanly possible. Recent advances in the fields of Control
Theory, Optimization, Operations Research and Artificial
Intelligence provide a wealth of algorithms and techniques
to dynamically tune the behavior of complex systems, even
in the absence of much expert knowledge.

Jan. 18, 2007

0009. A variety of target-specific or “customized auto
mated tuning systems” (CATS) have been developed.
Examples include systems by: (1) Abdelzaher et al., as
described in “End-host Architecture for QoS-Adaptive
Communication.” IEEE Real-time Technology and Appli
cations Symposium, Denver, Colo., June 1998, the disclo
sure of which is incorporated by reference herein; and (2)
Aman et al., as described in "Adaptive algorithms for
managing a distributed data processing workload.” IBM
Systems Journal, Vol. 36, No. 2, 1997, the disclosure of
which is incorporated by reference herein. The system of
Abdelzaher et al. controls quality of service for the delivery
of multimedia using task priorities in a communications
Subsystem. The system of Aman et al. provides a means by
which administrators specify response time and throughput
goals to achieve in MVS (Multiple Virtual Storage) systems
using MVS-specific mechanisms to achieve these goals.
0010. The concept of “tuning seeks to improve service
levels by adjusting existing resource allocations. To accom
plish the preceding requires access to metrics and to the
controls that determine resource allocations. In general,
there are three classes of metrics, as follows: (1) “configu
ration metrics” that describe performance related features of
the target that are not changed by adjusting tuning controls,
Such as, for example, line speeds, processor speeds, and
memory sizes; (2) “workload metrics” that characterize the
load on the target, Such as, for example, arrival rates and
service times; and (3) “service level metrics” that charac
terize the performance delivered, such as, for example,
response times, queue lengths, and throughputs.
0011 “Tuning controls are parameters that adjust target
resource allocations and hence change the target's perfor
mance characteristics. We give a few examples. LOTUS
NOTES, an e-mail system and application framework, has a
large set of controls. Among these are: NSF BufferPoolSize
for managing memory, Server MaxSessions for controlling
admission to the server, and Server SessionTimeout for
regulating the number of idle users. In Web-based applica
tions that Support differentiated services, there are tuning
controls that determine routing fractions by service class and
server type. MQ SERIES, a reliable transport mechanism in
distributed systems, has controls for storage allocations and
assigning priorities. Database products (e.g., IBM's DB/2)
expose controls for sort indices and allocating buffer pool
S17S.

0012 CATS require that metrics and tuning controls be
identified in advance so that mechanisms for their interpre
tation and adjustment can be incorporated into the auto
mated tuning system. Thus, CATS construction and main
tenance still require considerable expertise. With the advent
of the Internet, Software systems and their components
evolve rapidly, as do the workloads that they process. Thus,
it may well be that automated tuning systems must be
updated on a rate approaching that at which tuning occurs.
Under Such circumstances, the value of automated tuning is
severely diminished.
0013 The prior art related to automated tuning has
mostly focused on developing specific algorithms and archi
tectures that are very tightly coupled to the target system
(i.e., the system being controlled). In Such cases, the algo
rithms cannot be easily reapplied to other systems, nor can
other control schemes be inserted into the proposed archi
tecture.

US 2007/001.6551A1

0014 Existing prior art for target-independent automated
tuning does not consider architectural Support for access to
the metrics and controls. Realizing generic, automated tun
ing requires well defined interfaces so that a generic auto
mated tuning system can access the data required from the
target. Previous work has ignored these considerations. The
search for appropriate settings of tuning controls is facili
tated by exposing information about the semantics of met
rics and the operation of tuning controls. In particular, it is
helpful for the target to place metrics into the categories of
configuration, workload, and service level. These designa
tions can aid the construction of a generic system model.
Further, there should be a way to express the directional
effects of tuning control adjustments since having Such
knowledge reduces the complexity of the search for appro
priate settings of tuning controls. Past work has not focused
on these concerns.

SUMMARY OF THE INVENTION

0.015 The problems stated above, as well as other related
problems of the prior art, are solved by the present invention,
an object-oriented framework for generic adaptive control.
The present invention may be applied to one or more target
systems, such as, for example, one or more computer
systems in a network.
0016 Advantageously, the present invention provides a
flexible software architecture for the creation of generic
automated tuning agents (GATA), which are software agents
that are made of one or more controller modules (also
referred to herein as “Autotune Controllers'), and one or
more target system (application) adaptors (also referred to
herein as “Autotune Adaptors'). Moreover, the invention
allows a user to specify the interfaces between the agents
components (controllers and adaptors) so that other compo
nents can be substituted in a plug-and-play manner. Also, the
present invention provides interfaces that allow the control
lers to be interconnected in an arbitrarily complex manner,
allowing for the implementation (and composition) of any
computable control strategy. Further, the present invention
provides a mechanism to allow agents created in the frame
work to be interconnected and to communicate with each
other to form a potentially complex network and/or hierar
chy of Software agents. Additionally, the present invention
provides customizer interfaces that allow optional and flex
ible manual monitoring and intervention where necessary.
0017. This architecture allows the implementation of
many control strategies in the generic framework. Moreover,
it allows the control strategy to be implemented in a modular
fashion so that it is not necessarily tied to the target system.
The modularity further allows the same control strategy to
be easily applied to different target systems. The architecture
is flexible enough to implement strategies requiring multiple
controllers. In addition, it enables inter-agent communica
tion that leverages the existing infrastructure (without
requiring additional coding). This allows us to construct
complex agent networks for controlling complex, distributed
systems.

0018. According to an aspect of the present invention,
there is provided a tuning system for automatically tuning
one or more target systems. A metric manager manages at
least one set of metrics corresponding to the one or more
target systems. One or more controllers implement one or

Jan. 18, 2007

more control strategies based upon the at least one set of
metrics. The one or more control strategies are independent
of a particular architecture of any of the one or more target
systems. One or more adaptors interface with the one or
more target systems with respect to the one or more control
strategies. At least one of the one or more adaptors is specific
to a corresponding one of the one or more target systems.
0019. According to another aspect of the present inven
tion, the tuning system further comprises at least one cus
tomizer for receiving user inputs for customizing at least one
of the metric manager, the one or more controllers, and the
one or more adaptors. The at least one customizer is a
graphical user interface.
0020. According to yet another aspect of the present
invention, the one or more controllers comprise a master
controller for resolving conflicts between the one or more
control strategies.
0021 1. According to still another aspect of the present
invention, the tuning system has a capability of invoking
other tuning systems to form a hierarchical tuning system
with respect to the one or more target systems.

0022. 2. According to a further aspect of the present
invention, the tuning system and the other tuning systems
operate cooperatively to implement the one or more
control strategies.

0023. 3. According to a yet further aspect of the present
invention, at least some of the one or more controllers are
modular and have a capability of being deleted from the
tuning system, modified, or replaced.

0024. 4. According to a still further aspect of the present
invention, at least Some of the one or more adaptors are
modular and have a capability of being deleted from the
tuning system, modified, or replaced.

These and other aspects, features and advantages of the
present invention will become apparent from the follow
ing detailed description of preferred embodiments, which
is to be read in connection with the accompanying draw
1ngS.

BRIEF DESCRIPTION OF THE DRAWINGS

0025 FIG. 1 is a block diagram depicting a typical
operating environment to which a software agent according
to the present invention may be applied, according to an
illustrative embodiment of the present invention;
0026 FIG. 2 is a block diagram illustrating the compo
nents comprising a software agent and interconnections
corresponding thereto, according to an illustrative embodi
ment of the present invention;
0027 FIG. 3 is a tree illustrating a Metrics type hierarchy,
according to an illustrative embodiment of the present
invention;
0028 FIG. 4 is a block diagram illustrating a simple
agent for controlling a single application using a single
control method, according to an illustrative embodiment of
the present invention;
0029 FIG. 5 is a block diagram illustrating how multiple
control strategies can be included in a single agent, accord
ing to an illustrative embodiment of the present invention;

US 2007/001.6551A1

0030 FIG. 6 is a block diagram depicting a hierarchical
control configuration, according to an illustrative embodi
ment of the present invention;
0031 FIG. 7 is a block diagram of an agent that is part of
the hierarchical control configuration of FIG. 6, according to
an illustrative embodiment of the present invention; and
0032 FIG. 8 is a flow diagram illustrating a method for
creating an Autotune Software agent, according to an illus
trative embodiment of the present invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

0033 FIG. 1 is a block diagram depicting a typical
operating environment to which a software agent according
to the present invention may be applied, according to an
illustrative embodiment of the present invention. The agent
110 receives information from a human (or software) admin
istrator entity 120 in terms of the desired service-level
requirements, as well as various parameters affecting the
controller's operation. Other inputs to the agent 110 are
received from the target application 130 itself, in terms of
the configuration, workload and service level metrics, as
discussed herein above. Using these inputs, the agent 110
computes the control settings for the target system or sys
tems 130. These control settings are then passed on to the
target system 130. Thus, we see that the agent 110 operates
in a closed loop with respect to the target system 130. FIG.
1 also shows that the behavior of the target system 130 is
governed by the workload imposed on it by the users 140.
A final aspect of FIG. 1 is that the administrator 120, in
addition to providing the controller parameters, has access to
metrics related to the controller's operation. This can be
used to monitor the automated agent 110, to ensure that it is
behaving properly and to measure the efficiency of its
operation.

0034. The internal components of such an agent are
outlined in FIG. 2. In particular, FIG. 2 is a block diagram
illustrating the components comprising a software agent and
interconnections corresponding thereto, according to an
illustrative embodiment of the present invention. We call
this agent architecture an Autotune Agent.
0035. The software agent of FIG. 2 includes: a master
Autotune Controller 210; one or more slave Autotune Con
trollers (hereinafter “slave Autotune Controller') 220; one or
more Autotune Adaptors (hereinafter “Autotune Adaptor)
230; a repository 250; a metric manager 240; an adminis
trator application programming interface (API) 265; cus
tomizers 270, 280, and 290. The software agent of FIG. 2
interacts with one or more target systems and/or one or more
other Autotune Agents (hereinafter interchangeably referred
to as “target system” or “other Autotune Agent to illustrate
that a software agent according to the present invention may
interact with other agents as well as target systems which are
not other agents) 260. The preceding illustrates that an
Autotune agent can itself be a target system of another
Autotune agent.

0036) An Autotune Agent can be composed of one or
more Autotune Controllers and one or more Autotune Adap
tors. When there are multiple Autotune Controllers in the
agent, one of them is designated the Master Controller 210
and is responsible for generating the final control action.

Jan. 18, 2007

Depending on the control algorithm, the Master Controller
210 may use any of the other (Slave) Controllers 220 as
subroutines to help determine the desired control action.
0037 FIG. 3 is a tree illustrating the type hierarchy of
Metrics, according to an illustrative embodiment of the
present invention. Metrics 390 are divided into read-only
370 and read/write metrics 380. In the illustrative embodi
ment of the present invention described herein, configura
tion 310, workload 320 and service level 330 metrics are
read-only, whereas the Tuning Control 340 metrics are
considered read/write metrics. Of course, other arrange
ments may be employed, while maintaining the spirit and
Scope of the present invention
0038 Metrics are managed through the Metric Manager
240. This entity provides interfaces to add, delete and list
(getMetric() in FIG. 2) the set of Metrics known to the
agent. The Metric Manager 240 allows the Administrator,
via the customizer 280 or the Administrator API 265, to
select a Subset of the known metrics to be logged to the
repository 250, which can be used for logging purposes. The
Metric Manager 240 provides a set of miscellaneous func
tions such as selecting the logging destination and enabling/
disabling the logging function.
0.039 The Autotune Adaptor 230 is the interface of the
Agent to the target application(s) 260. Each Autotune Adap
tor 230 defines the set of Metrics that it knows about. This
set can be obtained by querying the Autotune Adaptor 230
(getMetrics() in FIG. 2). For the read-only metrics, the
Autotune Adaptor 230 provides a means of getting the latest
value of those metrics from the target system 260 (process.(
) in FIG. 2). For the Tuning Control metrics, the Autotune
Adaptor 230 provides a means to set the value of that tuning
control on the target system 260 (setControl () in FIG. 2).
The Autotune Adaptor 230 is target-specific, and provides an
abstraction so that the control algorithm itself need not be
directly tied to a particular target system. In order to apply
the same control algorithm to another target system, one
need only Substitute an Autotune Adaptor for that target
system. Note that the target system 260 can be any external
entity including, for example, another Autotune Agent. This
property allows us to build a chain of agents, which we will
utilize later to build an agent hierarchy.
0040. An Autotune Controller 210, 220 implements a
control strategy. The Autotune Controller 210, 220 obtains
all metrics of interest from the Metric Manager (using
getMetric(t)). The Autotune Controller 210, 220 provides
mechanisms to compute errors (deviations from the desired
service level), compute new control values and to set those
control values (by invoking the corresponding Autotune
Adaptor 230 component via setControl()).
0041)
0.042
0.043)
0044)
0045 3. Compute new control value (this implements
control algorithm)

A typical control loop is as follows:
1. If (synchronous mode), then:
a. Invoke synchronous adaptors

2. Compute errors from desired service level

0046 4. If (current controller is the Master Autotune
Controller 210), then:

0047
0.048 5. Repeat

a. set the control value

US 2007/001.6551A1

0049. It is to be appreciated that step 2 immediately
above (compute errors) is an optional step. While most
control algorithms operate on the error, there are some that
do not operate on the error. Of course, other variations are
possible and readily contemplated by one of ordinary skill in
the related art.

0050. The Autotune Adaptors 230 may operate in a
synchronous or asynchronous manner. “Synchronous
means that the Autotune Adaptor 230 is invoked just prior to
computing the new control value. In asynchronous mode,
the Autotune Adaptor 230 is assumed to be invoked on its
own at Some other (user-defined) frequency to obtain the
latest Metric values. This feature allows us to implement
Autotune controllers where the control frequency is not the
same as the sensing frequency.

0051. In computing errors from the desired service level,
the Autotune controller may access any of the Metrics
known to the Metric Manager 240, as necessary.

0.052 The user-interface for each of the components
(Metric Manager 240, Autotune Adaptor 230, Autotune
Controllers 210, 220) is provided through Customizers 270,
280, 290. Customizers are entities that provide a GUI to the
low-level details of each component. In the illustrative
embodiments described herein, there is one Customizer for
each element that is part of an agent. Of course, other
arrangements are possible, including, but not limited to one
Customizer for each type of element (e.g., Autotune con
troller, adaptor, and so forth) that is part of an agent. In the
case of the Metric Manager 240, for example, Customizers
allow a user to specify which metrics are to be logged, the
location of the log file, and so forth. In the case of an
Autotune Controller, they allow us to set the control fre
quency, select the Master Autotune Controller, etc. For the
Autotune Adaptor 230, we may choose the operation mode:
synchronous/asynchronous and also set the tuning control
manually (in case we do not want the automated agent to
operate). The Customizers 270, 280, 290 also provide a way
to expose the available Metrics to the user, so that real-time
monitoring may be performed.

0053 We now provide concrete examples of how this
framework can be used to easily create software agents for
controlling a wide variety of computer systems. In order to
instantiate a particular agent, one needs the following com
ponents: Autotune Adaptors for each target system, and one
(or more) control algorithms.

0054 FIG. 4 is a block diagram illustrating a simple
agent for controlling a single application using a single
control method, according to an illustrative embodiment of
the present invention. The software agent of FIG. 4 includes:
a single Autotune Controller 410; an Autotune Adaptor 460;
a repository 450; a metric manager 440; an administrator
API 465; customizers 470,480, and 490. The software agent
of FIG. 4 interacts with a target systems or other Autotune
Agents (hereinafter interchangeably referred to as “target
system” or “other Autotune Agent) 460.

0.055 The basic agent creation process for a scenario with
a single target system and a single control algorithm (as in
FIG. 4) is shown with respect to FIG. 8 below.

Jan. 18, 2007

0056. The same Agent, using the same control strategy
can be targeted to a different system simply by replacing the
current Adaptor component with that for the new target
system. This enables reuse of existing knowledge. Similarly,
the control algorithm can be easily changed by replacing the
Controller module.

0057 FIG. 5 is a block diagram illustrating how multiple
control strategies can be included in a single agent, accord
ing to an illustrative embodiment of the present invention.

0.058. The software agent of FIG. 5 includes: a master
Autotune Controller 510; one or more slave Autotune Con
trollers (hereinafter “slave Autotune Controller) 520; an
Autotune Adaptor 560; a repository 550; a metric manager
540; an administrator API 565; customizers 570, 280, and
290. The software agent of FIG. 5 interacts with a target
system or another Autotune Agent (hereinafter interchange
ably referred to as “target system” or “other Autotune
Agent”) 560.

0059 Here, the master Autotune Controller 510 imple
ments the top-level control strategy that utilizes multiple
lower-level control strategies to compute the control value.
This agent can be created as described with respect to FIG.
8 below.

0060 FIG. 6 is a block diagram depicting a hierarchical
control configuration, according to an illustrative embodi
ment of the present invention. Here, the “US Autotune
agent'610 in turn invokes the “East coast'620 and “West
coast'630 Autotune agents, and these in turn invoke their
subordinates 640, 650, 660, 670. The subordinates 640, 650,
660, and 670 respectively control/manage app 1681, app
2682, app 3683, and app 4684. This hierarchy can be
implemented by a controller at each level of the hierarchy.

0061 FIG. 7 is a block diagram of an agent that is part of
the hierarchical control configuration of FIG. 6, according to
an illustrative embodiment of the present invention. In
particular, a controller (a master Autotune hierarchical con
troller 710) at an internal node of the hierarchy is depicted
in FIG. 7. In the embodiment, it is interesting to note that for
the higher-level agents, the target system is one of the
lower-level agents. This recursion is made possible by an
Autotune Agent Adaptor 730 that provides the standard
Adaptor interface to another Autotune Agent 760. This
example illustrates the full generality of our framework, and
illustrates that we can easily build complex chains of agents
and controllers using the same framework. In addition to the
master Autotune hierarchical controller 710, the Autotune
Agent Adaptor 730, and the another Autotune Agent 760, the
embodiment of FIG. 7 further includes: one or more slave
Autotune Controllers (hereinafter “slave Autotune Control
ler”) 720; a repository 750; a metric manager 740; an
administrator API 765: customizers 770, 780, and 790.

0062 FIG. 8 is a flow diagram illustrating a method for
creating an Autotune agent, according to an illustrative
embodiment of the present invention. It is to be appreciated
that some of the steps of the method of FIG. 8 state
“specify/create with respect to certain elements of the
Autotune agent. This allows a user to either create the
element or use a currently existing element, depending on
the needs of the user and the tuning to be performed on the
target system.

US 2007/001.6551A1

0063. One or more Autotune Adaptors are specified/
created (step 820). It is then determined whether the agent
is to employ more than one control strategy or control
algorithm (step 830). If so, then 1 through N (ND2) Autotune
Controllers are specified/created (step 840), and the method
proceeds to step 860. Otherwise, a single Autotune control
ler is specified/created (step 850), and the method proceeds
to step 870.
0064. At steps 860 and 870, control parameters are
selected/generated via one or more customizers. Both of
steps 860 and 870 may include selecting parameters such as,
for example, a controller frequency, synchronous/asynchro
nous mode, logging metrics, and so forth. However, step 860
must include selecting a master Autotune Controller from
among the 1 through NAutotune controllers.
0065. It is to be appreciated that the present invention
provides a generic, automated tuning system. Advanta
geously, the present invention does not require experts to
incorporate detailed knowledge of a target system into the
tuning system. rather, the present invention may learn the
target's performance characteristics. This may include hav
ing a generic automated tuning system according to the
present invention exploit prior knowledge of the target
system, when such knowledge is available, reliable, and
durable.

0.066 Although the illustrative embodiments have been
described herein with reference to the accompanying draw
ings, it is to be understood that the present system and
method is not limited to those precise embodiments, and that
various other changes and modifications may be affected
therein by one skilled in the art without departing from the
Scope or spirit of the invention. All Such changes and
modifications are intended to be included within the scope of
the invention as defined by the appended claims.

What is claimed is:
1. A computer-based tuning system for automatically

tuning one or more target systems, comprising:

a metric manager for managing at least one set of metrics
corresponding to the one or more target systems;

one or more controllers for implementing one or more
control strategies for adaptively tuning performance
characteristics of the one or more target systems based
upon the at least one set of metrics, wherein the one or
more control strategies are independent of a particular
architecture of any of the one or more target systems,
and

one or more adaptors providing an abstract interface to the
one or more target systems with respect to the one or
more control strategies, wherein at least one of the one
or more adaptors is specific to a corresponding one of
the one or more target systems,

wherein the one or more controllers invoke the one or
more adaptors (i) to obtain metric values from the one
or more target systems to compute tuning control
values, and (ii) to tune the one or more target systems
using the computed tuning control values.

2. The tuning system of claim 1, wherein each of the one
or more control strategies corresponds to a separate com
puter program.

Jan. 18, 2007

3. The tuning system of claim 1, wherein said one or more
controllers comprise a master controller for resolving con
flicts between the one or more control strategies.

4. The tuning system of claim 1, wherein the set of metrics
comprise read-only metrics and read/write metrics.

5. The tuning system of claim 4, wherein said one or more
adaptors directly obtain latest values of the read-only met
rics from the one or more target systems.

6. The tuning system of claim 4, wherein said one or more
adaptors set values corresponding to the read/write metrics
on the one or more target systems.

7. The tuning system of claim 1, wherein said metric
manager has a capability of adding, deleting, and listing the
at least one set of metrics.

8. The tuning system of claim 1, wherein the tuning
system has a capability of invoking other tuning systems to
form a hierarchical tuning system with respect to the one or
more target systems.

9. The tuning system of claim 8, wherein the tuning
system and the other tuning systems operate cooperatively to
implement the one or more control strategies.

10. The tuning system of claim 1, further comprising an
administrator application programming interface (API) for
specifying service-level requirements of the one or more
target systems.

11. The tuning system of claim 1, further comprising an
administrator application programming interface (API) for
monitoring an operation of the tuning system.

12. The tuning system of claim 1, wherein said metric
manager is capable of receiving an input specifying at least
a Subset of metrics to be stored from among the at least one
set of metrics.

13. The tuning system of claim 1, wherein more than one
of the one or more controllers is employed in a given
application of the tuning system to a given one of the one or
more target systems.

14. The tuning system of claim 1, wherein at least some
of the one or more controllers are modular and have a
capability of being deleted from the tuning system, modi
fied, or replaced.

15. The tuning system of claim 1, wherein at least some
of the one or more adaptors are modular and have a
capability of being deleted from the tuning system, modi
fied, or replaced.

16. The tuning system of claim 1, further comprising a
shared facility for logging metric changes.

17. A computer-implemented method for automatically
tuning one or more target systems, comprising the steps of

managing at least one set of metrics corresponding to the
one or more target systems;

providing one or more controllers for implementing one
or more control strategies for adaptively tuning perfor
mance characteristics of the one or more target systems
based upon the at least one set of metrics, wherein the
one or more control strategies are independent of a
particular architecture of any of the one or more target
systems;

providing one or more adaptors providing an abstract
interface to the one or more target systems with respect
to the one or more control strategies, wherein at least
one of the one or more adaptors is specific to a
corresponding one of the one or more target systems;
and

US 2007/001.6551A1

automatically invoking the one or more adaptors (i) to
obtain metric values from the one or more target
systems to compute tuning control values, and (ii) to
tune the one or more target systems using the computed
tuning control values.

18. A computer-based tuning system for automatically
tuning one or more target systems, comprising:

a metric manager for managing at least one set of metrics
corresponding to the one or more target systems;

one or more controllers for implementing one or more
control strategies for adaptively tuning performance
characteristics of the one or more target systems based
upon the at least one set of metrics, wherein the one or

Jan. 18, 2007

more control strategies are independent of a particular
architecture of any of the-one or more target systems;
and

one or more adaptors for abstractly interfacing with the
one or more target systems with respect to the one or
more control strategies, wherein at least one of the one
or more adaptors is specific to a corresponding one of
the one or more target systems;

wherein the one or more control strategies invoke the one
or more adaptors to adaptively tune the performance
characteristics of the one or more target systems to set
control parameters for adjusting resource allocations of
the one or more target systems.

k k k k k

