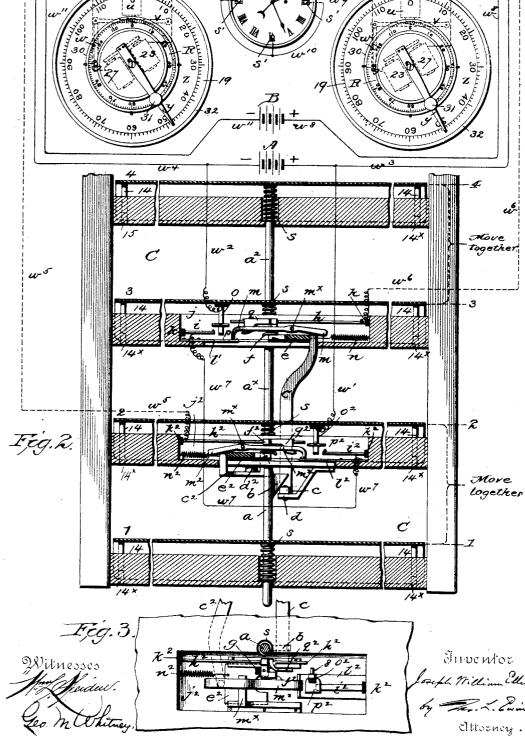

J. W. ELLIS.

ELECTRIC PASSENGER REGISTER AND RECORDER.

No. 540,090.

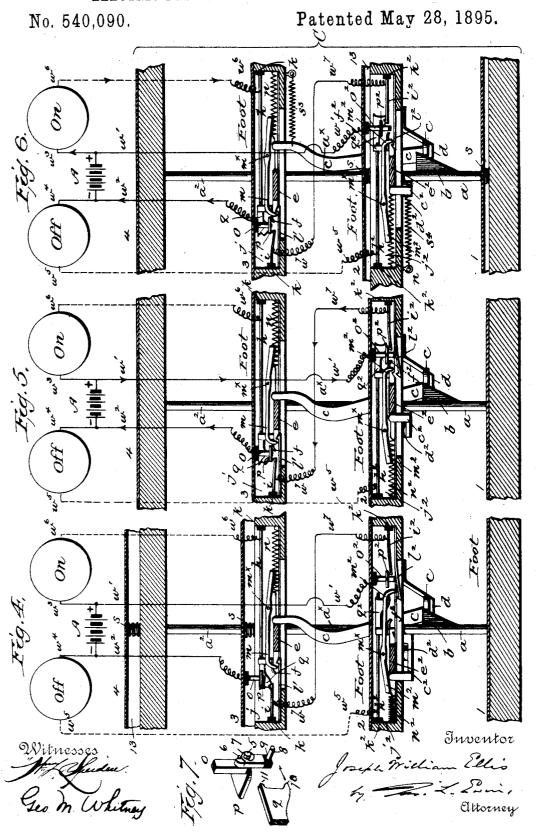
Fig. 1.

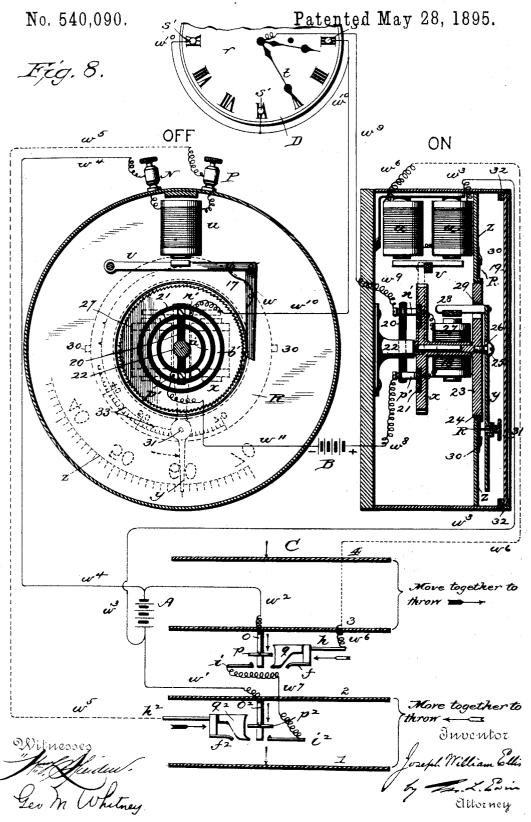
Patented May 28, 1895.



Geo M. Whitney

.


J. W. ELLIS.


J. W. ELLIS.

ELECTRIC PASSENGER REGISTER AND RECORDER.

J. W. ELLIS.

ELECTRIC PASSENGER REGISTER AND RECORDER.

United States Patent Office.

JOSEPH WM. ELLIS, OF ALBANY, NEW YORK.

ELECTRIC PASSENGER REGISTER AND RECORDER.

SPECIFICATION forming part of Letters Patent No. 540,090, dated May 28, 1895.

Application filed January 12, 1895. Serial No. 534,644. (No model.)

To all whom it may concern:

Beitknown that I, JOSEPH WILLIAM ELLIS, a citizen of the United States of America, and a resident of Albany, in the State of New 5 York, have invented a new and useful Improvement in Electric Passenger Registers and Recorders, of which the following is a

specification.

This invention relates to means for "automatically" tallying passengers as they enter and leave a railway car or other public vehicle for the purpose of preserving a reliable indication of the number of such passengers and the duration of their travel, as a check on conductors; and it consists in a novel electric registering and recording system showing the number of passengers carried between given stations as determined by the times of arrival at and departure from such stations, and in certain novel combinations of electrical and mechanical devices, hereinafter described and claimed.

Four sheets of drawings accompany this

specification as part thereof.

Figure 1 of the drawings is a diagrammatic end view, partly in section, showing a railwaycar provided with said registering and recording system. Fig. 2 is a diagrammatic sectional elevation confined to said system, show-30 ing the parts enlarged, with the planes of section at right angles to that of Fig. 1. Fig. 3 is a fragmentary plan view of the second step projected from Fig. 2. Figs. 4, 5, and 6 are diagrams confined to the registering devices, 35 showing successive positions of the parts of what is hereinafter termed the "step mechanism." Fig. 7 is a perspective view showing certain details, and Fig. 8 is a diagram showing a face view of the clock and sectional, 40 rear and edge views, respectively, of the two combined registers and recorders enlarged from Fig. 2.

The same letters and numbers refer to the

same or like parts in all the figures.

My electric registering and recording system is composed of one or more electric batteries, two being shown in the drawings at A and B; a step-mechanism, C, at each entrance to be guarded, which makes and breaks the electric registering circuit; "Off" and "On" combined registers and recorders (so marked on the drawings) and hereinafter termed bars i and h^2 , upon which said contact-bars h and h^2 , and an opposing pair of yielding contact-bars i are rigidly fastened in the end-walls of recesses j j^2 in the wooden steps, beneath the step-plates 3 and 2 respectively, and there insulated as shown at k k^2 , Fig. 2. Spring detents l' and l^2 at the bottoms of the step-

"registers," preferably of one and the same construction; and a clock, D, which makes and breaks a recording circuit common to 55 both registers; together with metallic-circuit-forming wires and electrical connections hereinafter more specifically referred to.

The battery or batteries A and B may be of any approved make, and located in any 60 convenient place or places within or beneath

the car.

Each step-mechanism C comprises two or more stiff plates movable vertically and covering successive steps. Four are shown in 65 the drawings numbered respectively 1, 2, 3, and 4, beginning at the bottom. These "step-plates," as they are hereinafter termed, are depressed by the feet of the passengers getting on and off, and are re-elevated by springs 70 s, as soon as they are relieved from pressure.

In the specific arrangement represented by the drawings, to which the remainder of this description will be confined for clearness, the step-plates 1 and 2 are made to move simul- 75 taneously with each other by a rigid connection a Fig. 1, and the succeeding pair, 3 and 4, are connected with each other in like manner by a rigid connection a² Fig. 1; the electrical devices connected directly with the "Off" 80 register being arranged beneath said stepplate 2, while those connected with the "On, register are arranged beneath said step-plate 3. Said rigid connection a carries a cam bcoacting with one end of a lever c fulcrumed 85at d, and said rigid connection a2 carries a rigid arm a^{\times} , which engages with a cam b^2 , Fig. 1, on a lever c^2 fulcrumed at d^2 , Fig. 2. Said levers c and c^2 act respectively on slides e and e^2 , Figs. 2 to 6, which carry respectively 90 copper contact-pieces f and f^2 . These contact-pieces are insulated from the slides $e e^2$ as at g, Fig. 3, while an electrical connection is preserved between themselves and the respective legs of a circuit, hereinafter de- 95 scribed, by means of stiff wires or "contactbars" h and h^2 , upon which said contactpieces f and f^2 slide. Said contact-bars h and h^2 , and an opposing pair of yielding contact-bars i i^2 are rigidly fastened in the end-walls 100 of recesses j j^2 in the wooden steps, beneath the step-plates 3 and 2 respectively, and there insulated as shown at $k k^2$, Fig. 2. Spring

recesses j and j^2 engage with notches in the bottoms of the slides e and e2 to retain them temporarily in the positions to which they are moved by the levers c and c^2 , as shown at l'5 in Figs. 4 to 6; and tripping levers m and m^2 , pivoted at m^{\times} and acted on by the levers cand c^2 , depress said detents to release the slides, which are retracted by spiral springs n and n^2 when so released. Combined con-1: tact-makers and pushers o and o2, hereinafter termed "keys," are rigidly attached to and insulated from the step-plates 2 and 3 respectively at their upper ends, and coact as pushers with said detents l' and l^2 , as shown at o^2 15 in Figs. 4 and 5. These keys o and o² carry small contact-plates p and p^2 of copper, and are furthermore peculiarly constructed, as shown in Fig. 7. As here shown, the lower end of each key is attached to the upper part 20 of the key by a horizontal pivot 5. The swinging movement of said lower end is limited by a step 6. A spring 7 operates to retain said lower end normally in line with said upper part so as to act as a pusher; and a horizon-25 tal stud-pin 8 is carried by the key and electrically separated from said upper part of the key by insulation 9. Said pins 8 project backward, as shown in Fig. 3, and are acted on by horizontally projecting tappets q and q^2 car-30 ried by said slides e and e^2 insulated therefrom and constructed in common with toe and heel projections, marked 10 and 11 in Fig. 7. The function of these tappets is in certain cases to coact with said pins 8 so as to lift 35 and hold said lower ends of the keys o and o^2 clear of the detents l' l^2 , as at q in Figs. 4, 5, and 6. In other cases they pass above the pins 8, as at q^2 in Fig. 5, and permit the keys to act as pushers, as above described. De-40 pending flanges 12 and 13, Fig. 1, at front and rear, operate to exclude dust, snow and obstructions from beneath each of the stepplates 1, 2, 3, and 4, and assist to stiffen them; and depending stud-pins 14, carried by the 45 step-plates, and guided by vertical holes 14[×]. Fig. 2, bored in the wooden steps, confine the step-plates to vertical movement. Aprons 15, Fig. 1, protect the mechanical connections and motion-transmitting devices in front be-50 tween the steps; and a back-plate 16, Fig. 1, prevents access to them from behind the steps. The clock D is an ordinary time-piece of appropriate make, having its dial-plate r, Figs. 2 and 8, provided with metallic contact-points 55 s' at III, VI, IX, and XII, suitably insulated from the works of the clock, and its minutehand t adapted to coact with said contact points successively to make and break an electric circuit every fifteen minutes; the 6. works of the clock being suitably insulated. As clocks so fitted or constructed for various purposes are old and well known, it is not considered necessary to show such insulation or to more fully show or describe said circuit 65 making and breaking devices, which may be of an approved description.

The construction common to the "On" and I

"Off" registers as aforesaid is shown in Figs. 2 and 8, which see. Each register is provided with a pair of electric terminals P N elec- 70 trically connected with the helixes of an electro-magnet u within the register casing. The armature of the latter is mechanically attached to a lever v which carries a registering pawl w and its spring 17. A ratchet-wheel x is 75 turned step by step by said pawl w, and carries by its arbor 18 an index-hand y in front of a suitably graduated dial-plate z; and said dial-plate and index-hand are exposed to view, as in full lines in Fig. 2, by means of a 80 glass face-plate 19 forming part of the register casing; said pawl-carrying lever v and ratchet wheel x being so proportioned that at each electric impulse said index-hand is turned forward one point, or so as to register 85 an additional unit. Each register is further provided with a second pair of electric terminals P' N', Fig. 2; a pair of brushes p'n', Fig. 8, supported by a brush-holder 20 of insulating material and electrically connected 90 with said terminals P' and N' respectively; a pair of continuous electric contacts a' b' Fig. 8, in the shape of concentric rings, carried by the back of said ratchet-wheel x, together with an interposed insulating ring 21; 95 a stud-shaft 22, Fig. 8, for said ratchet-wheel arbor 18, the latter being made hollow for the purposes of the mechanism now being described; a circular disk 23, within a central opening 24, Fig. 8, in the dial-plate z, inter- 100 posed between the front end of said arbor 18 and the index-hand y, and connected therewith by a shouldered screw 25 embraced in front of its shoulder by a slot 26 in said indexhand; an electro-magnet 27, having its helixes 105 electrically connected with said contacts a' b', and carried by the back of said disk 23 so as to revolve therewith in unison with said index hand; a rigid arm 28, projecting rearwardly from said index-hand through a slot 110 29 in said disk 23, and having the armature of said magnet 27 mechanically attached thereto; clips 30 for holding an annular record-card R surrounding said central opening 24 in the dial-plate z, and attached to the 115 front of said dial-plate; a marker 31, shown in the form of a thumb-screw bored to hold an ever-point lead, which is carried by the index-hand y; and a movable frame 32 for the glass face-plate 25, to give access to the 120 index hand y for turning it to zero, and to the record-card R for removing it and substituting a fresh blank, at the end of each trip. Such blanks should be of moderately stiff paper printed with a reduced fac-simile of the grad- 125 uations on the dial-plate z, as shown in Fig. 2 and in dotted lines in Fig. 8, and can be readily slipped under the free end of the index-hand y and behind the marker 31, and sprung into place behind the clips 30. The electric circuits are shown in Figs. 1, 2,

The electric circuits are shown in Figs. 1, 2, 4, 5, 6, and 8, and are completed by suitable conductors, hereinafter termed wires, as follows: Wires w' and w^2 extend from the keys

540,090

 o^2 and o to the respective poles of the battery A. Wires v^3 and v^4 extend thence to the terminal P of the "On" register and the terminal N of the "Off" register, respectively. From the terminal P of the "Off" register and the terminal N of the "On" register wires w^5 and w^6 extend to the contact-bars h^2 and h respectively; and a wire w^7 connects the contact-bars i and i^2 with each other, completing what may 10 be termed the "step circuits." From the positive pole of the battery B, (Fig. 2) a wire w^8 extends to the terminal P' of the "On" register. The terminal N' of this register is electrically connected by a wire w^9 (through the insulated 15 works of the clock D) with the clock-hand t; said contact-points s' on the clock-dial are connected by wires w^{10} with the terminal P' of the "Off" register; and the terminal N' of the latter is connected by a wire w^{11} with the co negative pole of said battery B, completing the "clock-circuit." The wires $w^{\rm 5}$ and $w^{\rm 6}$ are of greater resistance than the other wires of the step-circuits, being for example of annealed, soft iron while the other wires are of

The parts of the step-mechanism C are shown in their normal positions in Figs. 1 and 2. In this condition of this mechanism, and with the minute hand t between two of 30 the contact points s' of the clock D, all the electric circuits are open, and all parts of the system except the clock-movement are at rest.

The entrance of a passenger, illustrated by Figs. 4, 5, and 6, produces the following ef-35 fects: By stepping on either of the lower stepplates 1 and 2, the passenger's weight depresses both, owing to their rigid mechanical connection a, and their motion is transmitted by the cam b to the lever c, and by the latter 40 to the slide e, interlocking its notched end with the catch-end of the detent l' and at the same time bringing the contact-piece f into a position vertically beneath the contact-plate p preceded by the tappet q which turns up 45 the lower end of the key o, leaving the parts beneath the step-plate 3 as shown in Fig 4. The effects of this movement upon the parts beneath the step-plate 2 are the bringing together of the contact-bar i2 and the contact-50 plate p^2 , and the depression of the detent l^2 by the key o^2 , as in Fig. 4, for purposes which will presently be explained. As an entering passenger gradually transfers his weight from step-plate 1 or step-plate 2 to 55 step-plate 3 or step-plate 4, said step-plates 3 and 4 are depressed, as shown in Fig. 5. The effect of the depression of these step-plates on the electrical devices beneath said stepplate 3 is to simultaneously close two electri-60 cal contacts between the contact-plate p and contact-piece f on the one hand, and between said contact-plate p and the contact-bar i on the other hand. The effects on the devices beneath the step-plate 2 are as follows: The 65 depression of the step-plates 3 and 4, through their rigid mechanical connection a^2 , its arm

causes the latter to throw the slide e^2 into the position in which it is shown in Fig. 5; but the latter is not fastened in this position, owing 70 to the previous depression of the detent a^2 by the key o². An electrical contact is unavoidably closed however at $f^2 p^2$, but is counteracted by the contact previously formed between the contact-plate p^2 and the contact- 75 bar i^2 , and, owing to the greater conductivity of the wires w', w^2 , and w^7 , the electric current flows from the battery A, through said wire w', the key o^2 , contact-plate p^2 , contact-bar i^2 , wire w^7 , contact-bar i, contact-plate p, key o 80 and wire w^2 back to the battery, without any effect on either of the registers. While the passenger's weight is partially supported by the step-plates I and 2 and partially by stepplates 3 and 4 as above, all the step-plates are 85 depressed as in Fig. 5. As the passenger's weight is gradually elevated from the stepplates 1 and 2 these step-plates rise, as in Fig. 6, breaking the electric contacts at $p^2 f^2$ and at $p^2 i^2$ beneath the step-plate 2. Said elec- 90 tric contacts beneath the step-plate 3 remaining closed, the current now flows from the battery A through the wire w^s to the terminal P of the "On" register, Figs. 2 and 8, thence through the helixes of the connected register- 95 ing magnet u, and proceeds from said magnet to the terminal N connected therewith, and, through the wire w^6 , contact-bar h, contactplates f and p, key o and wire w^2 , back to the battery. When said registering magnet u is 100 so energized, its armature is attracted, and motion is transmitted, through the lever v to which said armature is attached, the pawl w carried by said lever, the ratchet-wheel x rotated by said pawl, its arbor 18, and the disk ros 23 rotating therewith, to the index-hand y of said "On" register, causing the latter to indicate or register the entering passenger as an additional unit on the dial-plate z. The current last described will continue to flow 110 until the step-plates 1 and 2, their rigid connections a, the cam b and the lever c have regained their position of rest as in Fig. 2 when by the contact of said lever c with the heel end of the tripping lever m said tripping-lever is 115 caused to depress the detent l', releasing the slide e, and permitting it to be retracted by the spring n, which breaks said contact at p f by the retraction of the contact-piece f with the slide e. Finally, as said entering 120 passenger frees said step-plates 3 and 4, and the latter are re-elevated by their springs s, the key o straightens out by the action of its spring 7, Fig. 7, the slide e^2 and the lever c^2 return to their positions of rest, and the step- 125 mechanism is ready for another actuation by another passenger getting on or one getting off. A departing passenger must of necessity

contact-piece f on the one hand, and between said contact-plate p and the contact-bar i on the other hand. The effects on the devices beneath the step-plate 2 are as follows: The depression of the step-plates 3 and 4, through their rigid mechanical connection α^2 , its arm α^* , and the cam b^2 , actuates the lever c^2 , and in the positions represented in Fig. 2, the tap-

pet q^2 turns up the lower end of the key o^2 as at o, Fig. 4, so as to permit the slide e^2 to interlock at once with the detent 2, preparatory to the succeeding registering contacts, and the respective step-circuits are open at $f p_i f^2$ p^2 , and $i^2 p^2$. As the weight of the passenger becomes divided between the two pairs of step-plates, as in Fig. 5, all the electric contacts of the step-mechanism being closed, 10 the electric current, taking the path of least resistance, again flows from the battery A through the wire w', key o^2 , contact-plate p^2 , contact-bar i^2 , wire w^7 , contact-bar i, contactplate p, key o, and wire w^2 , so as to prevent 15 a false actuation of either register, and as soon as the passenger frees the upper step-plates 3 and 4, as in Fig. 4, the current flows from the battery A through the wire w^4 to the terminal N of the "Off" register, and thence 20 through the helixes of its registering magnet u, its terminal P, the wire w^5 , contact-bar h^2 contact-piece f^2 , contact-plate p^2 , key o^2 , and wire w' back to the battery; the energized registering magnet u of the "Off." register at-25 tracting its armature, and motion being transmitted therefrom to the index-hand y of this register in the manner before described with reference to the registering of an entering passenger by the "On" register, so as to reg-30 ister the departing passenger as an additional unit on the dial z of said "Off" register. Finally, as to this operation, the departing passenger frees the step-plates 1 and 2, and the parts again return to their positions of 35 rest as in Fig. 2.

Should an entering passenger step on either of the step-plates 1 and 2 while one is still supported by a step plate 3 or step-plate 4, the first effect will be as illustrated by Fig. 5 40 and before described; and when said stepplates 3 and 4 are freed, their re-elevation by their springss, accompanied by the retraction of the lever c^2 , is followed immediately by the retraction of the circuit-closing slide e^2 , ow-45 ing to the pusher action of the key o^2 on the detent l2 as in said Fig. 5. Otherwise there would be a false registration of the second passenger on the "Off" register. In like manner any false registration upon the "On" reg-50 ister of a departing passenger closely following another is prevented by the pusher action of the key o on the detent l'. Provision will be made in customary manner to prevent two passengers passing over the steps side by side 55 or in opposite directions at one and the same

Whenever the minute-hand t, Figs. 2 and 8, of the clock D reaches one of the contact points s on the clock-dial r, an electric circuit 60 is closed through both registers; the current flowing from the battery B through the wire w⁸, the terminal P' Fig. 2, of the "On" register, the helixes of the recording magnet 27 of this register, its terminal N', Fig. 2, the wire w⁹, the minute-hand t, the contact-point s', the wires w¹⁰, the terminal P', Fig. 2, of the "Off" register, the helixes of its recording magnet

27, its terminal N', Fig. 2, and the wire w^{ii} , back to said battery B. The effect of this current is to simultaneously reciprocate the 70 index-hands y longitudinally, through the electro-magnets 27 and their armatures and the rigid arms 28, Fig. 8, so as to cause the markers 31 to indicate the end of a timeperiod by a distinctive mark 33 on each rec- 75 ord card R, as shown in dotted lines in the figure last named. Between such marks each marker 31 produces a continuous line, the length of which, or the locations of said marks 33 relatively to the graduations on the record- 80 card, indicates the number of passengers entering or leaving, as the case may be, during a given time-period. Consequently, if the train arrives at a certain station at 3.25 for example, as in Fig. 8, the dial-marks between 85 the two marks 33 corresponding respectively with 3.15 and 3.30 on the record-cards of the respective registers, will indicate the number of passengers entering and leaving at such station.

The levers c and c^2 may be retracted by springs s^3 s^4 , Fig. 6, or the cams b and b^2 may be grooved or slotted so as to be double-acting; as may be preferred. The mechanical devices for transmitting motion to the slides e and e^2 , as a whole, together with other mechanical and electrical details, admit of considerable modification. A system otherwise similar to the one herein described may be arranged for registering passengers only as roothey get on or as they get off; and other like modifications will suggest themselves to those skilled in the art.

The within described system without material modification may also be used at the 105 entrances and exits, either or both, of ferries, places of public amusement, and the like, with any required increase in the capacity of the registering and recording devices.

Having thus described my said improve- 110 ment, I claim as my invention and desire to patent under this specification—

1. An electric registering and recording system comprising a series of vertically movable step-plates, mechanical connections and 115 motion transmitting devices acted on by said step-plates, circuit closers controlled by said transmitting devices, electric circuits closed by the depression of said step-plates subject to such control, two registers having electro- 120 magnetic actuators in circuit with the respective circuit-closers, and provided with recordcards markers and marker-actuating electromagnets, a clock provided with circuit-closing devices including a series of electric con- 125 tacts, and an electric circuit connecting all these contacts with the electro-magnets last named of both registers, substantially as hereinbefore specified.

the helixes of the recording magnet 27 of this register, its terminal N', Fig. 2, the wire w^0 , the minute-hand t, the contact-point s', the wires w^{10} , the terminal P', Fig. 2, of the "Off" key, a contact-plate carried by said key, a register, the helixes of its recording magnet slide carrying a contact-piece movable be-

540,090

neath said contact-plate, a contact-bar in permanent electric connection with said contactpiece, an electric circuit including said contact-plate and said contact-bar, and an elec-

5 tric register in said circuit.

3. The combination, substantially as hereinbefore specified, of a vertically movable step-plate carrying a downwardly projecting key, a contact-plate carried by said key, a 10 slide carrying a contact-piece movable beneath said contact-plate, a detent fastening said slide temporarily in effective position, a contact-bar in permanent electric connection with said contact-piece, an electric circuit in-15 cluding said contact-plate and said contactbar, an electric register in said circuit, and mechanical devices for shifting said slide to close said circuit and for tripping said detent

4. The combination, substantially as hereinbefore specified, of successive vertically movable step-plates, circuit-closing devices beneath each, an electric circuit closed under certain circumstances when both step-plates 25 are depressed, two electric circuits of greater resistance controlled by said circuit-closing devices respectively, and "On" and "Off" registers included in the respective circuits

last named.

5. The combination, substantially as hereinbefore specified, of successive vertically movable step-plates, circuit-closing devices beneath each, comprising downwardly projecting keys carried by the step plates and 35 provided with contact-plates, slides carrying contact-pieces movable beneath said contactplates, and contact-bars in permanent electric connection with said contact-pieces, electric circuits including said contact-plates and 40 said contact-bars, "On" and "Off" registers in said circuits respectively, and mechanical devices transmitting motion from each of said step-plates to the circuit-closing slide beneath

the other step-plate.

6. The combination, substantially as hereinbefore specified, of successive vertically movable step-plates, circuit closing devices beneath each, comprising downwardly projecting keys carried by the step-plates and 50 provided with contact-plates, slides carrying contact-pieces movable beneath said contactplates, contact-bars in permanent electric connection with said contact-pieces, and contact-bars projecting fixedly beneath said con-55 tact-pieces, an electric circuit including the contact-bars last named and said contactplates, two electric circuits of greater resistance including said contact-plates and the contact-bars first named, and "On" and "Off" 60 registers in said circuits of greater resistance,

respectively.

7. The combination, substantially as hereinbefore specified, of successive pairs of vertically movable step-plates, rigid mechanical

connections between the step-plates of each 65 pair, circuit-closing devices beneath one step of each pair, electric circuits controlled by said circuit-closing devices respectively, and "On" and "Off" registers included in the respective circuits.

8. The combination, substantially as hereinbefore specified, of successive keys having pivoted pusher ends, detents acted on by said pusher ends, and circuit-closing slides so freed for retraction, with electric circuits 75 closed by the respective slides, and "On" and "Off" registers in said circuits respectively.

9. The combination, substantially as hereinbefore specified, of a graduated record-card, a revoluble and endwise-movable index-hand 80 carrying a marker, mechanism for revolving said index-hand step by step to register successive units and to record the same, and a clock-controlled mechanism for instantaneously reciprocating said hand endwise peri- 85 odically to indicate by said marker the limits

of given time-periods.

10. The combination, substantially as hereinbefore specified, of a graduated record-card, an index-hand carrying a marker, actuating 90 mechanism for moving said index-hand step by step to register successive units, electromagnetic mechanism for reciprocating said hand periodically, an open electric circuit including the helixes of said electro-magnetic 95 mechanism, and a clock distinct from said actuating mechanism and provided with a series of circuit-closing contacts in said electric cir-

11. The combination, substantially as here- 100 inbefore specified, of an annular record-card, an index-hand revolving concentrically therewith and carrying a marker, mechanism for revolving said index-hand step by step, electro-magnetic mechanism revolving with the 105 index-hand for reciprocating it endwise, an open electric circuit including the helixes of said electro-magnetic mechanism, and a circuit-closing clock in said electric circuit.

12. The combination of an annular record- 110 card, an index-hand revolving concentrically therewith and carrying a marker, mechanism for revolving said index-hand including a wheel on the same arbor provided with a pair of concentric electric contacts, electro-mag- 115 netic mechanism for reciprocating said indexhand endwise, revolving therewith and having its helixes electrically connected with said contacts, a pair of electric brushes coacting with said contacts, an open electric circuit 120 including said brushes, and a circuit-closing device in said electric circuit, substantially as hereinbefore specified.

J. WM. ELLIS.

Witnesses:

Jas. L. Ewin, GEO. M. WHITNEY.