57114670 A1 | IV 000 0 RO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date
1 December 2005 (01.12.2005)

AT O 00O

(10) International Publication Number

WO 2005/114670 A1l

(51) International Patent Classification’: G11C 7/10, 16/34

(21) International Application Number:
PCT/US2005/016341

(22) International Filing Date: 9 May 2005 (09.05.2005)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

10/846,289 13 May 2004 (13.05.2004) US

(71) Applicant (for all designated States except US): SAN-
DISK CORPORATION [US/US]; 140 Caspian Court,
Sunnyvale, CA 94089 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): GOROBETS,
Sergey, Anatolievich [RU/GB]; 1Fl, 92 Blackford Av-
enue, Edinburgh EH9 3ES (GB). CONLEY, Kevin, M.
[US/US]; 5983 Alvarado Court, San Jose, CA 95120 (US).

(74) Agents: PARSONS, Gerald, P. et al.; Parsons, Hsue & de
Runtz LLP, 595 Market Street, Suite 1900, San Francisco,
CA 94105 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL,
SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC,
VN, YU, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
7ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SL, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

[Continued on next page]

(54) Title: PIPELINED DATA RELOCATION AND IMPROVED CHIP ARCHITECTURES

Copy Phase @ @ @ @ @ @ @ @

1st Page Data [FB(n)[RBJE[LB PB(m)

2nd Page Data FAgn+1)| HA]E LA] PA(M+1)

3rd Page Data F8(n+2)] RB]EJ LB | PA(m+2) 1

© ®& ® ® ® 6 O ®

Cell Array D gp %
Register A |\ 23 — -~/ =2 =
Register B - -~ - -0

1st Page Data _ FB(n) RB LB PB(m) PB(m)

2nd Page Data FA{n+1) RA LA PA(m+1) PA(m+1)

3rd Page Data FB(n+2) RB LB PA(m+2)

& (57) Abstract: The present invention present methods and architectures for the pipelining of read operation with write operations.
& In particular, methods are presented for pipelining data relocation operations that allow for the checking and correction of data in the
controller prior to its being re-written, but diminish or eliminate the additional time penalty this would normally incur. A number
of architectural improve are described to facilitate these methods, including: introducing two registers on the memory where each is
independently accessible by the controller; allowing a first memory register to be written from while a second register is written to;
introducing two registers on the memory where the contents of the registers can be swapped.

e
=

WO 2005/114670 A1 1IN0 A0VOH0 0T 00000 O O

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

WO 2005/114670 PCT/US2005/016341

PIPELINED DATA RELOCATION AND IMPROVED CHIP
ARCHITECTURES

BACKGROUND OF THE INVENTION

[0001] This invention pertains to the field of semiconductor non-volatile data

storage system architectures and their methods of operation, and has application to
data storage systems based on flash electrically erasable and programmable read-only

memories (EEPROMs) and other types of memory system.

{0002] A common application of flash EEPROM devices is as a mass data storage
subsystem for electronic devices. Such subsystems are commonly implemented as
either removable memory cards that can be inserted into multiple host systems or as
non-removable embedded storage within the host system. In both implementations,

the subsystem includes one or more flash devices and often a subsystem controller.

[0003] Flash EEPROM devices are composed of one or more arrays of transistor
cells, each cell capable of non-volatile storage of one or more bits of data. Thus flash
memory does not require power to retain the data programmed therein. Once
programmed however, a cell must be erased before it can be reprogrammed with a
new data value. These arrays of cells are partitioned into groups to provide for
efficient implementation of read, program and erase functions. A typical flash
memory architecture for mass storage arranges large groups of cells into erasable
blocks, wherein a block contains the smallest number of cells (unit of erase) that are

erasable at one time.

[0004] In one commercial form, each block contains enough cells to store one
sector of user data plus some overhead data related to the user data and/or to the block
in which it is stored. The amount of user data included in a sector is the standard 512
bytes in one class of such memory systems but can be of some other size. Because
the isolation of individual blocks of cells from one another that is required to make
them individually erasable takes space on the integrated circuit chip, another class of

flash memories makes the blocks significantly larger so there is less space required

-1-

WO 2005/114670 PCT/US2005/016341

for such isolation. But since it .is also desired to handle user data in much smaller
sectors, each large block is often further partitioned into individually addressable
pages that are the basic unit for reading and programming user data; although the size
of a write page need not be the same as the size of a read page, in the following they
are treated as being the same in order to simplify the discussion. Each page usually
stores one sector of user data, but a page may store a partial sector or multiple sectors.
A “sector” is used herein to refer to an amount of user data that is transferred to and

from the host as a unit.

[0005] The subsystem controller in a large block system performs a number of
functions including the translation between logical addresses (LBAs) received by the
memory sub-system from a host, and physical block numbers (PBNs) and page
addresses within the memory cell array. This translation often involves use of
intermediate terms for a logical block number (LBN) and logical page. The controller
also manages the low level flash circuit operation through a series of commands that it
issues to the flash memory devices via an interface bus. Another function the
controller performs is to maintain the integrity of data stored to the subsystem through

various means, such as by using an error correction code (ECC).

[0006] Figure 1 shows a typical internal architecture for a flash memory device
131. The primary features include an input/output (I/O) bus 411 and control signals
412 to interface to an external controller, a memory control circuit 450 to control
internal memory operations with registers for command, address and status signals.
One or more arrays 400 of flash EEPROM cells are included, each array having its
own row decoder (XDEC) 401 and column decoder (YDEC) 402, a group of sense
amplifiers and program control circuitry (SA/PROG) 454 and a data register 404.
Presently, the mémory cells usually include one or more conductive ﬂoﬁting gates as
‘storage elements but other long term electron charge storage elements may be used
instead. The memory cell array may be operated with two levels of charge defined for
each storage element to therefore store one bit of data with each element.
Alternatively, more than two storage states may be defined for each storage element,

in which case more than one bit of data is stored in each element.

WO 2005/114670 PCT/US2005/016341

[0007] If desired, a plurality of arrays 400, together with related X decoders, Y
decoders, program/verified circuitry, data registers, and the like are provided, for
example as taught by U.S. Patent 5,890,192, issued March 30, 1999, and assigned to
SanDisk Corporation, the assignee of this application, which is hereby incorporated
by this reference. Related memory system features are described in co-pending patent
application serial no. 09/505,555, filed February 17, 2000 by Kevin Conley et al.,

which application is expressly incorporated herein by this reference.

[0008] The external interface I/O bus 411 and control signals 412 can include the

following:
CS - Chip Select. Used to activate flash memory interface.
RS - Read Strobe. Used to indicate the /O bus is being used to
transfer data from the memory array.
WS - Write Strobe. Used to indicate the /O bus is being used to
transfer data to the memory array.
AS - Address Strobe. . Indicates that the I/O bus is being used to

transfer address information.

AD[7:0] - Address/Data Bus This /O bus is used to transfer data between
controller and the flash memory command,
address and data registers of the memory control
450.

[0009] In addition to these signals, it is also typical that the memory have a means
by which the storage subsystem controller may determine that the memory is busy
performing some task. Such means could include a dedicated signal or a status bit in

an internal memory register that is accessible while the memory is busy.

[0010] This interface is given only as an example as other signal configurations
can be used to give the same functionality. Figure 1 shows only one flash memory

array 400 with its related components, but a multiplicity of such arrays can exist on a

WO 2005/114670 PCT/US2005/016341

single flash memory chip that share a common interface and memory control circuitry
but have separate XDEC 401, YDEC 402, SA/PROG 454 and DATA REG 404
circuitry in order to allow parallel read and program operations. More generally,
there may be one or two additional such data registers typically arranged into the sort
of master slave arrangements developed further in U.S. patent number 6,560,143,
which is hereby incorporated by reference. Another arrangement for a flash memory

architecture using multiple data buffers is described in U.S. patent number 5,822,245.

[0011] Data is transferred from the memory array through the data register 404 to
an external controller via the data registers’ coupling to the /O bus AD[7:0] 411. The
 data register 404 is also coupled with/to the sense amplifier/programming circuit 454.
The data registers 404 can similarly be connected/coupled to the same sense
amplifier/programming circuit 454. The number of elements of the data register
coupled to each sense amplifier/programming circuit element may depend on the
number of bits stored in each storage element of the memory cells, flash EEPROM
cells each containing one or more floating gates as the storage elements. Each storage
element may store a plurality of bits, such as 2 or 4, if the memory cells are operated
in a multi-state mode. Alternatively, the memory cells may be operated in a binary

mode to store one bit of data per storage element.

| [0012] The row decoder 401 decodes row addresses for the array 400 in order to
select the physical page to be accessed. The row decoder 401 receives row addresses
via internal row address lines 419 from the memory control logic 450. A column
decoder 402 receives column addresses via internal column address lines 429 from the

memory control logic 450.

[0013] Figure 2 shows an architecture of a typical non-volatile data storage
system, in this case employing flash memory cells as the storage media. In one form,
this system is encapsulated within a removable card having an electrical connector
extending along one side to provide the host interface when inserted into a receptacle
of a host. Alternatively, the system of Figure 2 may be embedded into a host system
in the form of a permanently installed embedded circuit or otherwise. The system

utilizes a single controller 101 that performs high-level host and memory control

-4-

WO 2005/114670 PCT/US2005/016341

functions. The flash memory media is composed of one or more flash memory
devices, each such device often formed on its own integrated circuit chip. The system
controller and the flash memory are connected by a bus 121 that allows the controller
101 to load command, address, and transfer data to and from the flash memory array.
(The bus 121 includes 412 and 411 of Figure 1.) The controller 101 interfaces with a
host system (not shown) with which user data is transferred to and from the flash
memory array. In the case where the system of Figure 2 is included in a card, the host
interface includes a mating plug and socket assembly (not shown) on the card and
" host equipment. Alternatively, there are removable cards, such as in the xD,
SmartMedia, or MemoryStick formats, that lack a controller and contain only Flash
Memory devices, so that the host system includes the controller 301, which interfaces

the card via Flash Media Interface 302.

[0014] The controller 101 receives a command from the host to read or write one
or more sectors of user data starting at a particular logical address. This address may

or may not align with the first physical page in a block of memory cells.

[0015] In some prior art systems having large capacity memory cell blocks that
- are divided into multiple pages, the data from a block that is not being updated needs
to be copied from the original block to a new block that also contains the new,
updated data being written by the host. In other prior art systems, flags are recorded
with the user data in pages and are used to indicate that pages of data in the original
block that are being superceded by the nery written data are invalid. A mechanism
by which data that partially supercedes data stored in an existing block can be written
without either copying unchanged data from the existing block or programming flags
to pages that have been previously programmed is described in co-pending patent
application “Partial Block Data Programming and Reading Operations in a Non-
Volatile Memory”, serial no. 09/766,436, filed January 19, 2001 by Kevin Conley,

which application is expressly incorporated herein by this reference.

[0016] Non-volatile memory systems of this type are being applied to a number of
applications, particularly when packaged in an enclosed card that is removable

connected with a host system. Current commercial memory card formats include that

WO 2005/114670 PCT/US2005/016341

of the Personal Computer Memory Card International Association (PCMCIA),
CompactFlash (CF), MultiMediaCard (MMC), MemoryStick-Pro, xD-Picture Card,
SmartMedia and Secure Digital (SD). One supplier of these cards is SanDisk
Corporation, assignee of this application. Host systems with which such cards are
used include personal computers, notebook computers, hand held computing devices,
camerés, audio reproducing devices, and the like. Flash EEPROM systems are also

utilized as bulk mass storage embedded in host systems.

[0017] Such non-volatile memory systems include one or more arrays of floating-
gate memory cells and a system controller. The controller manages’ communication
with the host system and operation of the memory cell array to store and retrieve user
data. The memory cells are grouped together into blocks of cells, a block of cells
being the smallest grouping of cells that are simultaneously erasable. Prior to writing
data into one or more blocks of cells, those blocks of cells are erased. User data are
typically transferred between the host and memory array in sectors. A sector of user
data can be any amount that is convenient to handle, preferably less than the capacity
of the memory block, often being equal to the standard disk drive sector size, 512
bytes. In one commercial architecture, the memory system block is sized to store one
- sector of user data plus overhead data, the overhead data including information such
as an error correction code (ECC) for the user data stored in the block, a history of use
of the block, defects and other physical information of the memory cell block.
Various implementations of this type of non-volatile memory system are described in
the following United States patents and pending applications assigned to SanDisk
Corporation, each of which is incorporated herein in its entirety by this reference:
Patents nos. 5,172,338, 5,602,987, 5,315,541, 5,200,959, 5,270,979, 5,428,621,
5,663,901, 5,532,962, 5,430,859 and 5,712,180, and application serial nos.
08/910,947, filed August 7, 1997, and 09/343,328, filed June 30, 1999. Another type
of non-volatile memory system utilizes a larger memory cell block size that stores

multiple sectors of user data.

[0018] One architecture of the memory cell array conveniently forms a block
from one or two rows of memory cells that are within a sub-array or other unit of cells

and which share a common erase gate. United States patents nos. 5,677,872 and

-6-

WO 2005/114670 PCT/US2005/016341

5,712,179 of SanDisk Corporation, which are incorporated herein in their entirety,
give examples of this architecture. Although it is currently most common to store one
bit of data in each floating gate cell by defining only two programmed threshold
levels, the trend is to store more than one bit of data in each cell by establishing more
" than two floating-gate transistor threshold ranges. A memory system that stores two
bits of data per floating gate (four threshold level ranges or states) is currently
available, with three bits per cell (eight threshold level ranges or states) and four bits
per cell (sixteen threshold level ranges) being contemplated for future systems. Of
course, the number of memory cells required to store a sector of data goes down as
the number of bits stored in each cell goes up. This trend, combined with a scaling of
the array resulting from improvements in cell structure and general semiconductor
processing, makes it practical to form a memory cell block in a segmented portion of
arow of cells. The block structure can also be formed to enable selection of operation
of each of the memory cells in two states (one data bit per cell) or in some multiple
such as four states (two data bits per cell), as described in SanDisk Corporation
United States patent no. 5,930,167, which is incorporated herein in its entirety by this

reference.

[0019] In addition to increasing the capacity of such non-volatile memories, there
is a search to also improve such memories by increasing their performance and
decreasing their susceptibility to error. Memories such as those described above that
utilize large block management techniques perform a number of data management of
techniques on the memory’s file system, including garbage collection, in order to use
the memory area more effectively. Such garbage collection schemes involve a data
relocation process including reading data from one (or more) locations in the memory
and re-writing it into another memory location. (In addition to many of the above
incorporated references, garbage collection is discussed further in, for example, “A
125-mm?* 1-Gb NAND Flash Memory With 10-MByte/s Program Speed”, by K.
Imamiya, et al., IEEE Journal of Solid-State Circuits, Vol. 37, No. 11, November
2002, pp. 1493-1501, which is hereby incorporated in its entirety by this reference.)
This data relocation time is a main contributor to all garbage collection routines.

Prior art methods describe the data relocation operation as a consecutive data read,

-

WO 2005/114670 PCT/US2005/016341

then data integrity check and error correction, if necessary, before writing the data to a
new location, so that there is a high constant performance penalty of data transfer and
verification. In the case of data error, additional time must be spent to correct the data

before write.

[0020] Other prior art methods exploit an on-chip copy feature, writing the data
from one location to another without a pre-check of the data integrity. Such a method
is described, for example, in “High Performance 1-Gb NAND Flash Memory With
0.12um Technology”, by J. Lee, et al., IEEE Journal of Solid-State Circuits, Vol. 37,
No. 11, November 2002, pp. 1502-1509, which is hereby incorporated in its entirety
by this reference. The integrity check is done concurrently with the data write so that,
in the case of error, there is a high probability of the need to rewrite the entire block

with a high penalty in performance and time-out/latency.

{0021] An example of a simple copy sequence in the prior art, where the data is
checked/corrected before being reprogrammed, is shown in Figure 3. This shows a
first set of data (DATA 1) sequentially being read from memory 400 into data register
404 (R), then the read of the buffer by the controller (RB), the data being checked and
any errors corrected (EC) in the controller, the writing the checked/corrected data
from the buffer (WB) back to the register 404, from where it is programmed
(Program) back into the memory array 400. After the entire process is complete for
DATA 1, the same steps are sequentially repeated for the next data set DATA 2,
followed by DATA 3 and so on. For each set of data, the entire process is compieted
before it begins for the subsequent data set so that the all of the error correction times

accumulate.

[0022] An example of the timing for data relocation where the data is read from
the memory array 400 into -the register 404, and then read to the buffer in the
controller and concurrently programmed directly back into the memory is described in
U.S. patent number 6,266,273, which is hereby incorporated by reference. This
simple copy sequence, but now with the data checked after the start of programming,
is shown in Figure 4. As shown there, after reading the data set to the register (R), it

is then both read into the controller’s buffer (RB) and written back to the memory

WO 2005/114670 PCT/US2005/016341

array (Program). Once the data set is buffered in the controller, it can then be
checked/corrected for error (E); however, even though there will now be a corrected
set of data in the controller that can be supplied to the host, if there are errors to
correct, these errors are written back to the memory as programming has begun before
the data set has been checked and corrected. As with the process of Figure 3, the
entire process of Figure 4 has to be completed each set of data before it can begin for

the subsequent data set.

[0023] Prior art system flash/EEPROM architectures do not allow independent
access to the data in one on-chip buffer to while another buffer is used for concurrent
read or program operation. Thus, operations that include mixture of reads and writes,

like garbage collection, cannot be pipelined in prior art systems.

SUMMARY OF THE INVENTION

[0024] According to one principal aspect of the present invention, briefly and

generally, a data relocation method is presented which allows the correction of data
errors during garbage collection operations without any penalty to overall
performance and time-out/latency in defect tolerant systems, thereby allowing the
usage of flash memory with higher error rate in performance critical applications. In
a more general aspect of the present invention, improved memory architectures allows
data transfers between controller and the memory concurrently with read and program
operations, thus accelerating complex data operations such as data relocation, or
garbage collection, and write-read back-verify processes, particularly for systems with

high error rate memories.

[0025] The invention describes a method of pipelined relocation of multiple data
portions, where an integrity check and error correction of a current data portion is
done concurrently with the programming of the previous data portion. When multiple
pages (or data portions) are being relocated from one memory location to another
(inside a chip or from one chip to another) the system always reads one data page in
advance. After the advance page read, the system starts programming the previously

read page. While the previously read page is being programmed, the system checks

WO 2005/114670 PCT/US2005/016341

the data integrity of the advance read page and corrects the error if necessary and
transfers it back to the flash memory register. Additionally, the system can also use
the “wait” during the transfer of one data set for correction of the other data set.
Thus, as the data check and correction happens simultaneously with the previous page
programming there is no time penalty in the case of system with high error rate unless
the error correction takes longer than a page programming operation. In this way, the
data relocation pipelining hides error correction operations and the systems no longer
has additional performance penalty when there is a read error. The system then can

use a memory with much higher error rate without compromising the performance.

[0026] In a particular embodiment, a flashYEEPROM memory chip has two
independent data registers, where each register can be used for data access by the
controller while the other is used for program or read operations of data to or from the
memory cell array. Every register has a capacity of up to one memory page and can
be used by individual data transfer commands Read Register and Write. The above
data transfer commands can be executed simultaneously with the flash memory being
programmed or read. The read and program commands are also specific for each
register. This architecture also provides mechanism for internal, on-chip, pipelining

of other complex data operations such as Write-Read Back-Verify.

[0027] In another embodiment, a flash/EEPROM memory chip has two data
registers, where one register can read out data from the memory array while the other
is used for programming operations of data to the memory cell array. Every register
has a capacity of up to one memory page and can be used by individual data transfer
commands Read Register and Write. This architecture also provides mechanism for
internal, on-chip, pipelining of other complex data operations such as Write-Read

Back-Verify.

[0028] In another alternate embodiment, the memory again has two data registers,
but only one can be directly accessed by the controller, while only the other can
directly exchange data with the memory array. By incorporating a swap operation
where the contents of the two registers can be exchanged, the alternated embodiment

can function in a manner largely equivalent the embodiment with two independent

-10-

WO 2005/114670 PCT/US2005/016341

registers. The features of the various architectures can be combines for further

improvements in performance.

[0029] Additional aspects, features and advantages of the present invention are
included in the following description of exemplary embodiments, which description

should be read in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
[0030] Figure 1 is a block diagram of a typical prior art flash EEPROM memory

array with memory control logic, data and address registers.

[0031] Figure 2 illustrates an architecture utilizing memories of Figure 1 with a

system controller.
[0032] Figure 3 shows an example of a simple copy sequence in the prior art.

[0033] Figure 4 shows an example of a copy sequence in the prior art where each

data set is checked after the start of programming.

(0034] Figure 5 illustrates a first memory architecture in which the present

invention can be implemented.

[0035] Figure 6 illustrates a second memory architecture in which the present

invention can be implemented.
[0036] Figure 7 shows features of the embodiment of Figure 6.

[0037] Figure 8 illustrates another memory architecture in which the present

invention can be implemented.

[0038] Figures 9 and 10 illustrate the general concept of pipelining data relocation

operations.
[0039] Figure 11 explains some of the notation used in Figures 13-15, 17, and 18.
[0040] Figure 12 summarizes the operations specific to the different memory

architectures.

-11-

WO 2005/114670 PCT/US2005/016341

[0041] Figures 13-15 illustrate several basic on chip copy functions using aspects

of the present invention.

[0042] Figure 16 shows an embodiment of the present invention based upon the

architecture of Figure 5.

[0043] Figures 17 and 18 isolate aspects of the present invention that may used in

an embodiment based on the architecture of Figure 5.
[0044] Figure 19 shows an embodiment combining aspects of Figures 13 and 14.
[0045] Figure 20 shows a prior art Write-Read back-Verify operation.

[0046] Figure 21 shows a Write-Read back-Verify operation according to the

present invention.
[0047] Figure 22 shows a pipelined chip-to-chip copy process.

[0048] Figure 23 shows the pipelining of on-chip copy processes from multiple

chips, where the copy process on each chip is itself pipelined.

DESCRIPTION OF EXEMPLARY EMBODIMENTS OF THE INVENTION
[0049] In a first aspect, the present invention describes a data rélocation method
that allows correction of data errors during garbage collection operations without any
penalty to overall performance and time-out/latency in defect tolerant systems, and
thus, allows usage of flash memory with higher error rate in performance critical
applications. Other aspects are improved flash chip architectures that allows data
transfers between controller and flash chip concurrently with read and program
operations, thus accelerating complex data operations, like data relocation (garbage
collection) and Write-Read Back-Verify, typical for systems with high error rate

memory.

[0050] The various aspects of the present invention are applicable to non-volatile
memory systems in general. Although the description below, as well as that in the

Background, is given mainly in terms of an EEPROM Flash memory embodiment, the

-12-

WO 2005/114670 PCT/US2005/016341

particular type of storage unit used in the memory array is not particularly important
in the present invention. The particulars of how the storage elements are read, are
written, and store data do not enter in to the main aspects of the present invention and

can be those of any of the various non-volatile systems.

[0051] In a first embodiment, the invention describes the method of pipelined
relocation of multiple data portions, when integrity check and error correction of
current data portion is done concurrently with programming of the previous data
portion. When multiple pages (or data portions) are being relocated from one
memory location to another (inside a chip or from one chip to another) the system
always reads one data page in advance. After the advance page is read, the system
starts programming the previously read page. While the previously read page is being
programmed the system checks the data integrity of the advance read page and
corrects the error if necessary and transfers it back to the flash memory buffer. Thus,
as the data check and correction happens simultaneously with the previous page
programming there is no time penalty in the case of system with high error rate unless
the error correction takes longer than a page programming operation. So the data
relocation pipelining hides error correction operations and the systems no longer has
additional performance penalty when there is a read error. The system then can use a

memory with much higher error rate without compromising the performance.

[0052] In an architecture providing a mechanism for internal, on-chip, pipelining
of complex data .operations such as Write-Read Back-Verify, an exemplary
flash/EEPROM memory chip has two independent data buffers, where each buffer
can be used for data access by the user while the other is used for program or read
operations of data to or from the memory cell array. Every buffer has a capacity of up
to one memory page and can be used by individual data transfer commands Read
Buffer and Write. The above data transfer commands can be executed simultaneously
with flash memory being programmed or read. The read and program commands are

also specific for each buffer.

-13-

WO 2005/114670 PCT/US2005/016341

Flash Memory Architectures

[0053] Figures 5-8 show various architectures that are both aspects of the present
invention themselves and allow other aspects of the present invention to be
implemented. Each of these Figures shows a memory system including a controller
‘111 having one or more data buffers (111, 111a, 111b) connected to a memory 131
having an array 133 of non-volatile memory cells and one or more data registers (135,
135a, 135b). The terms “buffer” and “register” can be taken as largely synonymous
here, but to make the discuss easier to follow, the present discussion will largely use
the convention that “buffer” refers to a buffer or register on the controller, while
“register”’ refers to a buffer or register on the memory. (More accurately, the term
“huffer” usually refers to a part of RAM, or array of RAM cells, while “Register” is
usually used for a set of latches or D-type registers. The exemplary embodiment of
the present invention does use RAM buffers in the controller and sets of latched in the
memory, consist with the use herein. In other embodiments, buffers can be used
instead of registers and vice versa. More specifically, in the present description, the
term “register” or “data register” on the memory will refer to a non-volatile or other
element capable of holding data for sufficient time to allow the needed transfer. This
can be a non-volatile or other element than can hold the data, if needed, for an
extended time, or for only a very short time (on the order of nanoseconds).) As
developed in the following section further, the architectures of Figures 5-8 allow for
the pipelining of read and write operations with advantages such as data relocation
methods that allows correction of data errors without any penalty to overall
performance. Although prior art memories have presented systems allowing for the
pipelining of multiple read operations or the pipelining of multiple write operations,
they have not allowed the sort of pipelining of read and write operations found in the

present invention.

[0054] For example, a read process is composed of two phases, from the array to
the register, then from the register to the buffer on the controller; similarly, a write
process has two phases, from the buffer controller to the register on the chip, then
from the register into the array. By interleaving the phases from one process with the

phases from the other process, the write are read operations have become pipelined.

-14-

WO 2005/114670 PCT/US2005/016341

[0055] The exemplary memory systems uses two data registers or buffers to
organize the data relocation pipelining. Two of the possible hardware (or logicai)
architectures are shown in Figures 5 and 6. Figures 5 and 6 are block diagrams
showing some elements of a non-volatile memory such as that in Figures 1 and 2.
The other elements are suppressed in Figures 5 and 6, as well as Figures 7 and 8, in
order to simplify the discussion, but are shown in more detail in, for example, U.S.
patent applications serial nos. 09/505,555 and 09/703,083 incorporated by reference

above.

[0056] The first system of Figure 5 can use a conventional memory chip with a
single data register for both read and write operations. In this case, the controller 101
has two data buffers, 111-A and 111-B, as is described in commonly assigned co-
pending U.S. patent application number 10/081,375, “Pipelined Parallel Programming
Operation in a Non-Volatile Memory System”, filed February 22, 2002, which is
hereby incorporated by reference. Although both controller buffers are each labeled
as “Sector Buffer” as these typically are designed to a sector of data, other capacities
can be used. (In Figures 5-8, a single memory 131 is shown, corresponding to one of
the memories shown in Figure 2. More generally, the system will contain a number
of memory sections such as 131, but which are not shown here to simplify the

discussion.)

[0057] The parts of the mémory chip 131 explicitly shown in Figure 5 include the
data storage area 133, sense amplifiers 137, and the data register 135. (In practice,
data register 135 may consist of multiple registers, connected in a master-slave
arrangement.) Data register 135 is shown schematically connected to both of the
sector buffers 111-A and 111-B through respective bus 141. The data register 135
will typically communicate with both sector buffers over the same bus from the chip
that is then multiplexed between the two buffers 111-A and 111‘-B in the controller
101, even though the use of independent buses is possible. The data register 135 is

then connected to sense amp 137 along path 145.

[0058] The second system, which is another aspect invention, is illustrated in

Figure 6. It uses a memory chip 131 with two independent data registers 135-A and

-15-

WO 2005/114670 PCT/US2005/016341

135-B. In this case, the controller 101 needs only one data buffer 111 for data
integrity check and error correction, although the twin sector buffers in the controller
of Figure 5 can be combined with the twin data registers of Figure 6 in another
variation of the described embodiments. This exemplary embodiment will be
discussed further below with respect to Figure 7, which represents a number of the
aspects shoWn in Figure 6. As shown in Figure 6, registers 135-A and 135-B can
individually exchange data with memory array 131 over respective paths 145a and
145b and can individually exchange data with controller 111 over respective paths
143a and 143b. As discussed further below with respect to Figure 7, which represents
a number of the aspects shown in Figure 6 in more detail, having the two sets of
independent paths from the pair of data registers 135-A and 135-B are independent
aspects of the present invention which may or may not be combined, depending on
the embodiment. In practice the controller 101 will typically communicate with both
data registers over the same bus from the chip which is then multiplexed between the
two data registers 135-A and 135-B in the memory 131, even though the use of

independent buses is possible.

{0059} The system of Figure 6 as described above schematically can be designed
on a basis of flash memory architecture utilizing two data registers. The architecture
is illustrated in Figure 7. Figure 7 again suppresses other elements shown in Figures 1
and 2, such as error correction and data verification capabilities, which are discussed
in more detail in, for example, U.S. patent applications serial nos. 09/505,555 and
09/703,083 incorporated by reference above. Figure 7 shows a memory chip 131 with
memory array 133, data registers 135-A and 135-B, and sense'ampliﬁers 137 and a
controller 101 with data buffer 111. Data registers 135-A and 135-B are respectively
connectable to the controller 101 by paths 143a and 143b to the bus 141 that connects
the controller to the memory, are respectively connectable to the memory array 133

by paths 143a and 143b, and are connectable to each other via 149.

[0060] The data paths 143a and 145b are new channels to be added to adopt the
improved architecture on the basis of the existing architectures with two data
registers. Although the use of more than one data register on a memory is known in

the prior art, as in some of the references incorporated above or in U.S. patent number

-16-

WO 2005/114670 PCT/US2005/016341

6,560,143, which is hereby incorporated by reference, these are not known to be
connectable for independent data transfer to both the controller (through bus 141) and
the memory array. For example, a typical prior art structure would use a master-slave
arrangement with only register 135-B directly connectable to the controller and
register 135-A to the memory array, so that, for example, in a programming operation,
data from the controller would be assembled in register 135-B and then passed on

through 149 to register 135-A, from which it would be programmed into the array.

[0061] As both of registers 135-A and 135-B can be independently connected, for
example through a multiplexers (not shown), to the sense amplifier 137 and memory
array 133 as well as through bus 141 to controller buffer 111, concuﬁent transfers of
one set of data between either of these registers and the memory while another set of
data can concurrently be transferred from the other register off the memory and into
the controller. Once a set of data is transferred into the controller’s buffer, error
correction, write verify (as discussed below), or other operations can be performed on

it there. The number of such registers could similarly be extended to more than two.

[0062] (By concurrent read and write processes, what is meant is that the
autonomous read and write commands will overlap. In some cases, this can result in
the read and write processes performed in parallel; however, as this is not allowed in
many memory systems, more generally it is taken to mean that the autonomous read
and write commands overlap with a single controller command covering both. For
example, the command for the concurrent read and write would be issued by the
controller and, in response, the programming starts, but is postponed for the read, then
the program continues as directed by the state machine. In the sequences described
below, if the concurrent read and program operations are not possible, then the read
should be done first. In another variation, the read process can interrupt

programming.)

[0063] The new data paths 143a and 145b are independent aspects that can
individually be incorporated. The processes of Figures 13 and 14 are both based on
the architecture of Figure 7, however Figure 14 does not rely upon path 143a, while
Figure 13 does not rely upon path 149,

-17-

WO 2005/114670 PCT/US2005/016341

[0064] Figure 8 shows an alternate embodiment, which is structured similarly to
Figure 7 but lacks the additional data paths 143a and 145b so that only data register 2
135-B is directly connectable to bus 141 and only data register 1 135-A is directly
connectable to the sense amplifiers 137 and memory array 133. In this way, the
structure of Figure 8 is also similar to two register embodiments found in the prior art;
where Figure 8 differs from the prior art is that it is structured allow a data swap along
data path 149 of the contents of register 1 135-A with those of register 2 135-B, as
indicated by the arrows. This data swap capability allows the embodiment of F igure 8
to function equivalently to the embodiment of Figure 7 in many respects, as is
described below with respect to Figure 15. More specifically, the architecture of
Figure 8 again allows for time required for the process of transferring of data to the
controller, checking and correcting it there, and transferring it back to the memory to
be largely hidden. The swap of register contents can be a special command from the .
controller or part of a composite command, such as read/swap/write. The swap
capability can be implemented in many different ways including the case of two shift
data registers, or a third temporary data element, as illustrated on the diagram 12
(OCC-2).

Pipelined Data Relocation Operations

[0065] Figures 9 and 10 illustrate the general concept of pipelining data relocation
operations, with the example of Figure 9 based on a memory without the architectural
improvements described in the preceding section and with Figure 10 using these
improvements. The process of Figure 9 reads one page ahead and does the error
detection and correction in background. The diagram shows an implementation that
be executed in the memory of Figure 1, without using the new architectural features
described in the patent. By reading ahead and rearranging the steps of Figure 1, the
process of Figure 9 allows the error correction and detection phase (EC) for one data
set to be hidden behind other processes. (Additionally, in both Figure 9 and the other
embodiments, the “wait” time, durihg which one data set is being transferred between
the controller and the memory (and which is not shown in the figures), can also be
used for the correction of data.) On Figure 9 example, as well as the following

examples, the page data transfers, page data error detection and correction operations,

-18-

WO 2005/114670 PCT/US2005/016341

or both, can be split into a group of smaller data poriion transfers and error detection
and correction operations. This can be done for convenience in the configurations
with more than one sector (host data portion) per page. In this case, the data is
transferred by one portion at the time, which is then checked for integrity and
corrected if necessary; subsequently, depending on architecture, the correct data can

either be transferred back immediately or by waiting until all the page data is checked.

[0066] Figure 10 again illustrates an on-chip copy sequence that reads a page
ahead and does the error detection and correction in background using features of the
new architectures. The diagram shows an implementation which uses a memory that
allows flash reads and data transfers from data register during programming. As
shown, this allows many of the steps in the relocation of one set of data to be hidden
behind the programming of the preceding data set. Note that by pipelining reads and
writes on the controller side of the system, the rate of data relocation is much
improved with respect to the prior art process of Figure 3. This is now described in

more detail for the various architectural improvements.

[0067] In one aspect of the present invention, this allows a read process to be
performed in parallel with a write process. The read process is taken to include a first
read phase of transferring data from the non-volatile storage section to a first data
registers and a second read phase of transferring data from the first data register to a
data buffer. The write process is taken to include a first write phase of transferring
data from a data buffer to a second of the data registers and a second write phase of
transferring data from the second data register to the non-volatile storage section.
According to this aspect of the present invention, the phases of the read and write

processes can be interleaved with one another.

[0068] In another aspect of the present invention, the present invention presents a
method comprising sequentially performing in a pipelined manner a plurality of data
relocation operations. Each data relocation operations sequentially comprising the
sub-operations of: reading a data set from the storage section to a data register;,
transferring the data set to the controller; checking/correcting the data set; transferring

the data set back to one of the data registers; and programming the data back to the

-19-

WO 2005/114670 PCT/US2005/016341

storage section, wherein the checking/correcting of the data set for one data relocation
operation is performed concurrently with a sub-operation of the following data

relocation operation.

[0069] For any of the embodiments, the data transferred out of the chip to the
controller for the data integrity check and error correction are typically kept in the
source data register. Consequently, when the data has no error, or minor error that is
acceptable, and do not need to be corrected, there is no need to transfer the data back
from the controller’s buffer to the source data register since the data is already on the
memory. Also, similar architectural elements can be used in more complex

architectures with more than two data registers and other data storage elements.

[0070] Figures 13-15 show some of the basic operations using the architectures
described. These basic pieces can be combined into more complex version. For
example, the swap operation of Figures 8 and 15 could be combined with the
additional paths of Figure 7 and even with the multiple buffers in the controller shown
in Figure 5. As is often the case, it is a design choice balancing the question of

complexity against the relative additional gains.

[0071] Figure 11 shows the various elementary operations that are combined into
the processes of Figures 13-15, 17, and 18. The first pair of Figures in Figure 11
show the reading of a data set (Page n) from memory array 133 to Data Register A
135-A using path 145a or 145 and to Data Register B 135-B using path 145b,
operations denoted as FA(n) and FB(n) respectively, where the notation is an
abbreviation of Flash page(n) read to régister A or B). The second pair of Figures in
Figure 11 show the programming of a data set (Page m) to memory array 133 from
Data Register A 135-A using path 1452 or 145 and from Data Register B 135-B using
path 145b, operations denoted as PA(m) and PB(M) respectively. (Although the read
page and write page are taken to be the same size here for ease of discussion, the can

differ in the more general case.)

[0072] The third pair shows a transfer into each of the registers A and B from the
buffer 111 through 143a and 143b (or 141), respectively, which are denoted LA and

-20-

WO 2005/114670 PCT/US2005/016341

LB. The next pair is the transfer in the other direction, from each of the registers A
and B to the buffer 111 through 143a and 143b (or 141), -respectively labeled RA and

RB. Again, the transfers can be done by smaller portions.

[0073] The last row shows transfers between the two registers through 149 (used
in Figures 14 and 15, but not 13) and a swap operation using 149, which is an aspect
of the present invention based on the embodiment of Figure 8 (shown in Figure 15).
The copy from A to B is denoted CAB, the copy from B to A is denoted CBA, and the

swap operation is denoted SW.

[0074] The operations specific to the different memory architectures can be
summarized by referring to Figure 12. The first diagram in Figure 12 shows a prior
art embodiment with two registers, but where only one of the registers can exchange
data with the memory and only the other register can exchange data with the
controller. Any transfer between the controller and the memory must also involve a
transfer between the registers. The second diagram (OCC-1a) in Figure 12 adds the
ability to transfer data between either data register and the buffer (or buffers) of the
controller and will used in the embodiment described with respect to Figure 13. The
third diagram (OCC-1b) in Figure 12 allows both data registers to directly exchange
data with the memory array and will used in the embodiment described with respect to
Figure 14. The last diagram (OCC-2) in Figure 12 allows a data swap between the
registers and will used in the embodiment described with respect to Figure 14. The
swap capability can be implemented in many different ways including the case of two

shift data registers, or a third temporary data storage element.

[0075] Each of Figures 13-15 shows a data relocation operation for three pages of
data, where in each case the data is transferred to the controller to be checked and
corrected as needed before being transferred back to the memory for reprogramming.
In the prior art, this would correspond to the process of Figure 3. As will be seen,
after the first data set, in each case the time needed to transfer each data set to and
from the controller and check it there can be hidden behind the programming of the
preceding data set. (Here, as with the other cases, it should be noted that the data may

not need correction, in which case the check and correct process is reduced to just a

21-

WO 2005/114670 PCT/US2005/016341

data check. Further, if the data is acceptable without correction, it need not be
transferred back as the copy already on the memory can be used.) This results in
same amount of time as in the process of Figure 4, where the data was not
checked/corrected. Further, in some cases, the time need to read the data set from the

memory array into a register can also be hidden.

[0076] Figure 13 shows an on-chip copy sequence with data checking and
correction using the feature of Figure 7 that allows independent access to both data
registers. The top portion of Figure 13 shows the process in a format similar to
Figures 3 and 4, but with the notation of Figure 11. The numbers above correspond to
the different phases shown below under the corresponding number using the notation

from Figure 11 with the process occurring in each page indicated underneath.

[0077] The process starts with the first page being processed through all the steps,
with data page n read to register B, then transferred to the controller, in which
(denoted by the broken line) it is checked (E) and sent back to register B, from which
it is programmed into location m. As the controller can also access register A
directly, once page n is read into register B, page (n+1) can be read into register A
and, once the first page of data is returned and the bus to the controller is open,
transferred to the controller, checked/corrected, and sent back to register A (if the data
have been corrected). This allows for the entire data checking process for second data
page to be hidden behind the programming of first data page. Similarly, the transfer
out, check/correct, and transfer back of the third page is hidden behind the
programming of the second data page. If the process were shown for additional
pages, it can be seen that this pattern would continue, so that for each page after the
first, the time required to check the data of one page is hidden behind the
programming of the previous page. Consequently, after the first set, only time needed
to read out the page to a register and write it back to its new location is seen. This
results in the data checking advantages found in Figure 3 of the prior art, but needing
only the time for data relocation without out the correction process. Note that in this

basic form, data is not transferred between the registers using path 149.

22-

WO 2005/114670 PCT/US2005/016341

[0078] Figure 14 shows an on chip copy sequence where data can be read from
the memory to register B in parallel with writing data from register A to the memory.
This basic version does not require the independent access to register A by the
controller, nor assume the ability to read data from the memory to register A or the
ability to program from register B. The process for the first page is similar to that in
Figure 13, except that in this basic implementation the page is copied into register A
(CBA) for programming back into location m. As data can be read from the memory
to register B concurrently with data being programmed from register A to the
memory, as shown in copy phase 5, once the first page of data has been transferred to
register A, both the programming of the first page and the reading out of the second
page can start. For memories where read and program operations cannot be truly
parallel, it is preferable that the read should be done first, or program operation can be
interrupted by read, and then resumed. Figure 14 illustrates an optimal case where
read and program are parallel, but in this is not essential. More important is the
ability to do those reads and writes independently, without disturbing the neighboring
data register’s data. Of course, the sooner the read operation is complete and the data

can be transferred to the host, the better.

[0079] Because of this parallelism, the reading of the second page of data, its
transferal to the controller, checking and correction, and transferal back to register B
can all be hidden behind the programming of the first data page. (The relative times
for each processes are not to scale, but their relative durations are typical of the
processes in an actual flash memory device. Should the duration of an error
correction process exceed that of the concurrent programming process (say due to
using another memory technology), it will not be totally masked,. but only the excess
duration will be seen.) Similarly, the read, transfer out, check/correct, and transfer
back for each subsequent page will be hidden behind the programming of the
preceding page. Consequently, after the first page, only the time for the copy to
buffer A and the programming back to the memory will be seen. If the independent

access to register A is added, the buffer-to-buffer copy time can also be removed.

[0080] With respect to the process of Figure 14, as noted above in the discussion

of Figure 7, what is meant by at least a portion of reading second data being

223.

WO 2005/114670 PCT/US2005/016341

performed concurrently with writing first data is that the autonomous read and write
commands will overlap. In some cases, this can result in the read and write processes
performed in parallel; however, as this is not allowed in many memory systems, more
generally “concurrently” is taken to mean that the autonomous read and write
commands overlap with a single controller command covering both, although in
principle, the controller can control the sequence by more than one command. (In this
example, the sequence for the 2™ Page data can be FB(n+1) (read before program
case), PA(m) (start programming), RB, E, and finally LB if necessary.) For example,
the command for the concurrent read and write would be issued by the controller and,
in response, the programming starts, but is postponed for the read, then the program
continues as directed by the state machine. In the sequences described below, if the
concurrent read and program operations are not possible, then the read should be done

first. In another variation, the read process can interrupt programming.

[0081] Figure 15 shows an on-chip copy sequence using the swap feature of
Figure 8 that allows the content of the data registers to be exchanged. In this basic
version using the swap aspect of the present invention, data is exchanged directly only
between memory array and data register A, and only data register B can be accessed
directly by the controller. As previously noted, the swap operation can be combined
with these other aspects of the present invention in order to extend the basic,

exemplary embodiments of Figures 13-15.

[0082] For the first data page, the data set is read out to register A (FA(n)), copied
to register B (CAB), transferred out to the controller (RB), checked/corrected (E), and
loaded back into register B (LB). At copy phase 5, the next data page is read out to
register A (FA(n+1)). (If the aspect of the present invention allowing concurrent
transfer from register B and writing to register A, this second read can already have
been performed.) At this point a swap (SW) is performed to exchange the content of
the two registers in response to controller, either as part of a specific swap command
or as part of a composite command. The first data page can then be written back to
the memory while the second page goes through the check/correction process.
Similarly, for each subsequent data page, the transfers between the memory and the

controller and the data check/correction process are hidden between the preceding

-24-

WO 2005/114670 PCT/US2005/016341

page’s reprogramming. Consequently, aside from the first page being relocated, only

the time to read, swap, and reprogram each page is seen.

[0083] Figure 16 shows an embodiment of the present invention based upon the
architecture of Figure 5, where the controller has two data buffers. This is a simple
copy sequence with read and write cache, where the data is checked/corrected before
programming and uses the same notation as that of Figures 3 and 4. Since there are
two buffers in the controller, while the data set in one buffer is undergoing the
check/correct process, the other buffer can be used to transfer data between the
controller and the memory. As shown in Figure 16, the data check and correction
process (E) can be hidden behind these transfers RB and WB. Further, a number of
the controller-memory transfers can be partially (for RB behind R) or completely (for
WB behind Program) hidden. Consequently, even without the additional connections
of Figure 7 or the swap operation of Figure 8, a number of the sub-operations in data
relocation process can be pipelined to increase performance. In particular, the data
check and correct process (as in Figure 16) and as well as the transfer to and from the

controller (as in Figures 13-15) can be hidden behind other processes.

[0084] Figures 17 and 18 isolate aspects of the present invention that may used in
an embodiment based on the architecture of Figure 5 and presents them as in Figures
13-15, but without using the improved architectures of those figures. Of course these
aspects may be combined with the described architectural improvements to further

improve the pipelined data relocation process.

[0085] Figure 17 shows a pipelined on-chip copy sequence using the architecture
of Figure 5, with a single data register and a controller buffer that could hold two data
units. This arrangement allows the data in one buffer to be checked and corrected
while another page of data transfers form the other buffer back to the register. For
example, while the second page of data is being checked (E), the first data page is
transferred back to the memory (LA). The third page‘cah then be read to the free
buffer (RA) so that it can be checked while the second page is transferred back (LA)

to the memory for writing.

.25-

WO 2005/114670 PCT/US2005/016341

[0086] Figure 18 adds a second register to the mémory, but still within the prior
art architecture. This allows for a further increase in performance as more operations
can be hidden. For example, the reading the first data page from the buffer to the
controller (RB) can be hidden behind the reading of the second page into register A
(FA(n+1)), and the transfer back of the second data page (LB) is hidden behind the
programming of the first data page (PA(m)).

[0087] - As noted above, the various aspects of the different embodiments can be
combined to further improve performance. For instance, allowing the controller
independent access to both data registers (as in Figure 13) with parallel read and write
operations (as in Figure 14), the register to register copy (CBA) operation of Figure

14 can be eliminated. The result is shown in Figure 19.

[0088] Except for being programmed to its new location (Program), the time need
for all of the subsequent steps for DATA 2 are masked by the time for writing DATA
1 to its new location, and the time need for all of the subsequent steps for DATA 3 are
masked by the time for writing DATA 2 to its new location. As can be seen in Figure
19, after the first data set, only the time to read each data set from the memory array
133 to one of the registers 135-A or —B and write it back to the memory array is seen.
All transfers to and from the controller, as well as any operations the controller
performs on the data, are hidden. This is a significant savings over the prior art and
also an improvement on the prior art processes of Figure 3. As only the read and
program time is seen, aside from the first data set, the pipelined process of Figure 19
including error correction takes the less time than is shown in Figure 4 for the prior
art’s simple read and rewrite data relocation scheme without a data integrity check

and correction performed entirely on the memory chip.

Write-Read Back-Verify Operation

[0089] Although discussed so far in the context of error correction processes
performed during the data relocation of a garbage collection routine, another
operation that benefits from the improved flash chip architecture is Write-Read
back-Verify operation. The prior art systems, such as shown in Figure 1, utilize the

sequence of flash memory commands shown in Figure 20 to provide multiple

-26-

WO 2005/114670 PCT/US2005/016341

Write-Read Back-Verify operations. In Figure 20, for a given unit of data to written,
the page must first be transferred from the controller to the data register 404 and then
programmed into the memory array 400 (the Write Buffer and Program Page portions,
respectively). To verify the result of the programming, the just programmed contents
must be read back out into the data register (Read Page), transferred back to the
controller (Read Buffer), and verified by the controller (Verify Data). Having only a
single register available for data transfers between itself and the controller, each page

of data must go through this process sequentially.

[0090] The system of Figure 7, which uses the improved memory chip
architecture featuring two independent buffers, can use the two data buffers to
pipeline multiple Write-Read Back-Verify operations. (As with the data relocation
operation, the alternate embodiment of Figure 8 can similarly be used by including the
register swap operation.) The pipelined sequence of operation is illustrated in Figure
21.

[0091] As shown in Figure 21, by having two registers, either of which can be
used to transfer data between both the controller and the memory array, a page of data
can be written from one of the registers 135-A and —B to the array 133 while the other
has its contents transferred to the controller and verified there. This allows the
transfer of one data page to the controller and its verification to occur there while the
subsequent page of data is programmed into the array and, if the additional time is
needed, read back. The saving of time in the Write-Read Back-Verify operations can

be seen by comparing Figures 20 and 21.

Additional Modifications

[0092] In the case of a multi sector per page memory all the above sequences can
be modified to reduce number of reads and programs. For example, when doing a
pipelined data relocation, the system verifies and corrects more than one sector stored
in one data register. The same optimization can be done for the Write-Read
Back-Vernify Operation. Also, if a memory design does not allow concurrent read and
program operations then the above sequences should be modified so that the read

operation is done before the programming of the data in the other buffer.

27-

WO 2005/114670 PCT/US2005/016341

[0093] The various diagrams above show the basic operations of the exemplary
embodiments and it will be understood that appropriate variations will result. For
example, the timing sequences allocate the same amount of time error detection and
correction. For many typical processes, many data sets will have no, or acceptable
amounts, of error and will lonly requiring checking and no correction. For
applications where a higher degree of data integrity can be assumed, the error

correction and detection can be skipped some or all of the time.

[0094] The discussion so far has only considered the controller and a single
memory chip in any detail. The various embodiments can be extended to more
explicitly take account of the multiple memory chips in the same system, as shown in
Figure 2. This includes both on-chip data relocation for more than one chip, as shown
in Figure 22, as well as data relocation from one chip to another, as shown in Figure
23. This discussion applies to both distinct chips and semi-autonomous arrays, or

planes, formed on the same chip.

[0095] Figure 22 shows one example of a chip-to-chip copy sequence that reads
one page ahead and does the error correction and detection in the background before
transferring the data to the second chip where it will be written. The example of
Figure 22 is based on the controller architecture of Figure 5 with two data buffers on
the controller. In case of a program failure, systems frequently retain data in the
buffer in case it is needed for a program retry. Due to the incorporation of this
feature, the writing of the buffer (RB) for the third and fourth data sets are delayed in
order to retain the earlier data sets (the first and second data sets, respectively). This
~ is shown in Figure 22 by the arrows between the end of programming for the first data
set and RB for the third data set, and similarly for the second and fourth data sets.
Alternately, this sequence can be done with a single controller data buffer; then, in
case of error, the data should be re-read again from the source. In any case, after the
first data set, all of the steps except program are hidden behind the write process of

the preceding data set.

[0096] Figure 23 again takes accounts of multiple chips, but by pipelining the on-

chip copy process for two different chips, where the data relocation on each chip is

28

WO 2005/114670 PCT/US2005/016341

itself pipelined. (Note that in this case, for each chip, the data is relocated to a
different location on the same chip, whereas in Figure 22 the data was relocated from
a first chip to a second chip. Also, if the physical chips can be operated/controlled as
the equivalent of a bigger single chip, then all the previous sequences apply.) On
each chip, the data relocation is as in Figure 14, with the read-to-data-register-B in
parallel with program from Register A pipelined copy occurring in each chip. This is
repeated in the top of Figure 23 for a single chip, with the bottom portion of Figure 14
repeated at the bottom of Figure 23. Although the embodiment of Figure 23 is based
on an extension of Figure 14 to two chips, the other single chip embodiments can

similarly be extended to multiple chips.

[0097] The middle portion of Figure 23 shows the process performed for three
pages in a first chip (Chip ‘O, above the line) pipelined with that in a second chip (Chip
1, below the ling). The middle diagrams are in an abbreviated form as show by the
data lines between the top portion and chip 0 in the middle portion: The notation
“R+E+Xf” (Read, Error check and correct, transfer) refers to the combined steps of
FB, RB, E, and LB and the notation “Program” here refers to the combination of CBA
and PA. As shown in the middle portion of Figure 23, when one chip is busy
programming and does not have any data in the controller, the other.chip can execute
the combined steps of the R+E+Xf process. This allows the data relocation in the two
chips (which themselves are pipelined) to be pipelined with each other, where the
arrows again indicate various time dependencies that need to be observed. This can
be extended to more than two chips, although after a certain point the gains of using

multiple chips start to be lost by slowing the process with each of the individual chips.

[0098] In Figure 23, the various data sets (1st page, 2nd page, ...) may be distinct
pages on each chip, if for example two parallel garbage collection operations are
going on in two chips handled by the same controller; that is, the 1st Data Page in
chip 0 is unrelated to the 1st Data Page in chipl. Perhaps more commonly, a given
data set will be related in the multiple chips, for example corresponding to the same
logical construct. That is, the data, say 1st Page Data, spans across both chips on a
per page basis. This occurs when a metablock spans multiple chips, as described in

more detail in U.S. patent application 10/750,157, filed 12/30/2003, which is hereby

.29-

WO 2005/114670 PCT/US2005/016341
incorporated by reference.

[0099] When a given page of data spanning multiple chips is relocated, it is
relocated in all these chips and 1st Page Data on both of chip 0 and chip 1 can follow
the process of Figure 23. This results in the overlapping of programming processes
on the two chips as well as overlapping the data transfer and correction processes with

programming on the same chip and across chips.

[0100] As mentioned above, although the discussion so far has referred mainly to
embodiments using a charge-storing device, such as floating gate EEPROM or
FLASH cells, for the memory device, it can be applied to other embodiments,
including magnetic and optical media. As the particulars of how the storage elements
are read, are written, and store data do not enter into the main aspects of the present
invention, the various aspects of the present invention may be applied to other
memory types, including, but not limited to, sub 0.lum transistors, single electron
transistors, organic/carbon based nano-transistors, and molecular transistors. For
example, NROM and MNOS cells, such as those respectively described in U.S. patent
5,768,192 of Eitan and U.S. patent number 4,630,086 of Sato et al., or magnetic RAM
and FRAM cells, such as those respectively described in U.S. patent 5,991,193 of
Gallagher et al. and U.S. patent number 5,892,706 of Shimizu et al., all of which are

hereby incorporated herein by this reference, could also be used.

[0101] Although the invention has been described with respect to various
exemplary embodiments, it will be understood that the invention is entitled to

protection within the full scope of the appended claims.

-30-

WO 2005/114670 PCT/US2005/016341

IT IS CLAIMED:

L. A memory system, comprising:
a controller; and
a memory, including:
a non-volatile data storage section; and
first and second data registers to temporarily store data,
wherein first data can be transferred between either one of the data registers
and the controller concurrently with transferring seéond data between the other

one of the data registers and the non-volatile data storage section.

2. - The memory system of claim 1, wherein said with transferring
second data between the other one of the data registers and the non-volatile data
storage section is a transfer to the non-volatile data storage section and the first data
can additionally be transferred to said either one of the data registers from the non-

volatile data storage section concurrently with the transferring second data.

3. The memory system of claim 2, wherein the memory
exchanges the contents of the first data register with the contents of the second data

register in response to a command from the controller.

4. The memory system of claim 1, wherein the memory
exchanges the contents of the first data register with the contents of the second data

register in response to a command from the controller.
5. The memory system of any of claims 1-4, wherein the second
data can be operated upon in the controller concurrently with transferring the first data

between said one of the data registers and the non-volatile data storage section.

6. The memory system of claim 5, wherein the controller includes

error correction circuitry and the controller can perform error correction operations

-31-

WO 2005/114670 PCT/US2005/016341

upon the second data concurrently with transferring the first data between said one of

the data registers and the non-volatile data storage section.

7. The memory system of claim 5, wherein the controller can
perform data verification operations upon the second data concurrently with
transferring the first data between said one of the data registers and the non-volatile

data storage section.

8. The memory system of claim 1, wherein said controller
includes a plurality of data buffers and wherein the controller can perform a data
checking operation on the contents of a first of said data buffers concurrently with

transferring data between another of said data buffers and said memory.

9. The memory system of claim 8, wherein said data checking

operation is an error detection and correction operation.

10. The memory system of claim 8, wherein said data checking

operation is program-verify operation.

11. A memory system, comprising:
a controller; and
a memory, including

a non-volatile data storage section;

a first data register connectable to the non-volatile data storage
section to transfer data between the first data register and the non-volatile data
storage section; and

a second data register, connectable to the controller to transfer
data between the second data register and the controller, wherein the memory
exchanges the contents of the first data register with the contents of the second

data register in response to a command from the controller.

-32-

WO 2005/114670 PCT/US2005/016341

12. The memory system'of claim 11, wherein the second data can
be operated upon in the controller concurrently with transferring the first data between

said one of the data registers and the non-volatile data storage section.

13. The memory system of claim 12, wherein the controller .
includes error correction circuitry and the controller can perform error correction
operations upon the second data concurrently with transferring the first data between

said one of the data registers and the non-volatile data storage section.

14. The memory system of claim 12, wherein the controller can
perform data verification operations upon the second data concurrently with
transferring the first data between said one of the data registers and the non-volatile

data storage section.

15. The memory system of claim 11, wherein the exchange the

contents is part of a compound command from the controller

16. The memory system of claim 11, wherein said controller
includes a plurality of data buffers and wherein the controller can perform a data
checking operation on the contents of a first of said data buffers concurrently with

transferring data between another of said data buffers and said memory.

17. The memory system of claim 16, wherein said data checking

operation is an error detection and correction operation.

18. The memory system of claim 16, wherein said data checking

operation is program-verify operation.
19. The memory system of claim 11, further comprising

a third data register connectable to the first data register and the second

data register, whereby the memory exchanges the contents of the first data register

-33.

WO 2005/114670 PCT/US2005/016341

with the contents of the second data register by temporarily storing the contents of one

of the first and second data registers in the third data register.

20. The memory system of claim 11, wherein first data can be
transferred to one of said data registers from the non-volatile data storage section
concurrently with transferring second data from the other one of said data registers to

the non-volatile data storage section.

21. A memory system, comprising:

a controller including a plurality data buffers; and

a memory including a non-volatile data storage section and one or
more data registers, wherein the controller can perform a data checking operation on
the contents of a first of said data buffers while concurrently transferring data between

another of said data buffers and one of said data registers.

22. The memory system of claim 21, wherein said data checking

operation is an error detection and correction operation.

23. The memory system of claim 21, wherein said data checking

operation is program-verify operation.

24. The memory system of claim 21, wherein the controller can
additionally perform a programming operation from said one of said data registers

concurrently with said data checking operation.

24, The memory system of claim 21, wherein the memory includes
a plurality of said data registers and wherein first data can be transferred to one of said
data registers from the non-volatile data storage section concurrently with transferring
second data from the other one of said data registers to the non-volatile data storage

section.

-34-

WO 2005/114670 PCT/US2005/016341

25. A method of operating a memory system comprising a
controller and a memory including first and second data registers and a non-volatile
data storage section, the method comprising:

determining one of said data registers for the transfer of data between
the controller and the memory;

' transferring first data between the memory array and the other of said
data registers; and

transferring second data between said determined one of the data
registers and the controller, wherein at least a portion of the transferring second data

is performed concurrently with said transferring first data.

26. The method of claim 25, wherein said first data is read from the

memory into said other of said data registers.

27. The method of claim 25, wherein said first data is programmed

from said other of said data registers into the memory.

28. The method of either of claims 25 and 27, wherein said second

data is transferred from the controller.

29. The method of either of claims 25-27, wherein said second data

is transferred to the controller.

30. The method of claim 29, further comprising, subsequent to
transferring the second data to the controller:

checking/correcting the second data by the controller.

31. The method of claim 30, wherein said checking/correcting the
second data comprises:
determining the quality of the second data; and
in response to said determining the quality of the second data,

correcting the second data,

-35.

WO 2005/114670 PCT/US2005/016341

the method further comprising:

transferring back the corrected second data from the controller to said
determined one of the data fegisters, wherein the checking/correcting and the
transferring back the second data is performed concurrently with said transferring first

data.

32. A method of operating a memory system comprising a
controller and a memory including first and second data registers and a non-volatile
data storage section, the method comprising:

loading first data into a first of said data registers from either the data
storage section or the controller;

loading second data into the second of said data registers from either
the data storage section or the controller; and

swapping the memory the contents of the first and second data

registers in response to a command from the controller.

33. The method of claim 32, wherein the first data is loaded from
the controller and the second data is loaded from the data storage section, further
comprising, subsequent to said swapping:

transferring the second data from first data register to the controller;
and

checking/correcting the second data by the controller.

34. The method of claim 33, wherein said checking/correcting the
second data comprises:
determining the quality of the second data; and
in response to said determining the quality of the second data,
correcting the second data,
the method further comprising:
transferring back the corrected second data from the controller to the

first data register; and

-36-

WO 2005/114670 PCT/US2005/016341

programming the first data from the second data register to the data
storage section, wherein said checking/correcting the second data and the transferring
the second data to and back from the controller is performed concurrently with said

programming first data.

35. The method claim of 32, the memory system further
comprising a third data register, the swapping the memory the contents of the first and
second data registers comprising:

temporarily storing the contents of one of the first and second

data registers in the third data register.

- 36. A method of operating a memory system comprising a
controller including first and second data buffers and a memory including a non-
volatile data storage section, the method comprising:

performing a data checking operation on first data stored in a first of
the data buffers; and
concurrently transferring second data between the second of the of the

data buffers and the memory.

37. The method of claim 36, wherein said data checking operation

is a error detection and correction operation.

38. The method of claim 36, wherein said data checking operation

is a program verify operation.

39. A method of operating a memory system comprising a
controller and a memory including one or more data registers and a non-volatile data
storage section, the method comprising sequentially performing in a pipelined manner
a plurality of program operations, each of said program operations sequentially
comprising the sub-operations of:

writing a data set from one of said one or more data registers to the

non-volatile data storage section;

-37-

WO 2005/114670 PCT/US2005/016341

reading the data set as written back to one of said one or more data
registers; _

transferring the data set as written back to the controller; and

verifying by the controller of the set data as written,
wherein the verifying of the data set for one programming operation is performed

concurrently with the writing sub-operation of the following programming operation.

40. The method of claim 39, wherein the transferring of the data set
for one programming operation is also performed concurrently with the writing sub-

operation of the following programming operation.

41. A method of operating a memory system comprising a controller
and a memory a plurality of memory chips, each including one or more data registers
and a non-volatile data storage section, the method comprising sequentially
performing in a pipelined manner a plurality of data relocation operations on two or
more of said memory chips, each of said data relocation operations on a given one of
the memory chips sequentially comprising the sub-operations of:

reading a data set from the storage section to one of said one or more
data registers;

transferring the data set to the controller;

checking/correcting the data set, wherein said checking/correcting the
data set includes:

determining the quality of the data set; and
if the quality of the data set is not acceptable, correcting the
data set;

if the data set is corrected, transferring the corrected data set back to
one of said one or more data registers; and

programming the data back to the storage section,
wherein the checking/correcting of a first data set for one data relocation operation in
a first memory chip is performed concurrently with a sub-operation of a second data

set for the following data relocation operation in the first memory chip and

-38-

WO 2005/114670 PCT/US2005/016341

concurrently with a sub-operation of a first data set for the following data relocation

operation in a second memory chip.

42. The method of claim 41, wherein the first data set in the first

memory chip and the first data set in the second memory chip are logically related.

43. The method of claim 42, wherein the first data set in the first
memory chip and the first data set in the second memory chip are part of the same

metablock.

44. The method of claim 41, wherein said sub-operation of the
following data relocation operation is the following data relocation operation’s

programming operation.

45. The method of claim 41, wherein the transferring to and from the
controller of the data set for said one data relocation operation is also performed
concurrently with the programming sub-operation of the following data relocation

operation.
46. The method of claim 41, wherein the reading of the data set for

said one data relocation operation is also performed concurrently with the

programming sub-operation of the following data relocation operation.

-39.

WO 2005/114670

PCT/US2005/016341

1/15
Memory &
412 Control 9(
cS 450 S 5|
RS— € | Flash
] Memory
VXSS > (419 9 Array
CMD Reg. Q 400
Addr Reg.
Status Reg.
? /429
— YDEC
411\ 3 t: —
o SA/ Prog
i \~454
AD[7:0] L > Data Register '
\~404
Flash Flash
Memory Memory
Device 1 Device Elash
Host Controller — Media
0s
Interface — | 291 : 302 Interface
ECC I =Yt 2,
Flash Flash
Memory Memory
Device Device

FiIG._2

PCT/US2005/016341

WO 2005/114670

2/15

[weiboid FANROR ad [d
: 1

AI/E |

| weiboig |H

Em\hmoi mmiﬁm_m a4 _ =]
A

a3l |ayd
v viva
A a3lad

weiboid |Y €viva
Ay Ja3lgH |

weiboid [H ¢ vliva

A _om_m_m_

weiboisd [Hl t+ viva

v viva

gvlva

weibold FaMpDd ad |d Zviva

: [

weibold Famenogad[d] | viva

WO 2005/114670 PCT/US2005/016341

3/15
~ 131 |
Memory Chip
777'A\ — 101 Memory Cell Array [
133
\Controller
Sector Buffer 1 Sense Amplifiers |\ a7
Sector Buffer2 | > Data Register [
7 / N 135
177'3/ 141 2x buffer
— 131
Memory Chip
Memory Cell Array K|
N-133
Sense Amplifiers K|
143a - ~137
111 101 e ﬂ\""5b
N\ [_ Data Register 1 K|
\ Controller U 1354
Sector Buffer ¢) Data Register2 K
/ / N 1358
1417 143b /

OCC-1a combined with OCC-1b

FIG._6

WO 2005/114670

4/15

PCT/US2005/016341

~ 131

Memory Chip

Memory Cell Array

Sense Amplifiers

143a4 14sa—4 1}

Controller

Data Register 1

o4 N

Sector Buffer

Data Register 2

133

~N
N 137

N 135A
— 145b

\ 135B

111\

v / /.
1417 143b /

OCC-1a combined with OCC-1b

FIG._7

Memory Chip

Memory Cell Array |~

i

Sense Amplifiers

\ Controller

Sector Buffer

145—/\8

Data Register 1

149

;‘/{I

(A

Data Register 2)

- 133
/ 137

— 135A

141/

FIG._8

/
1358

PCT/US2005/016341

WO 2005/114670

5/15

| weiboiy

fam

0L "OId

| weiboig _m%_m
AN 3

[wesboid [amBog ad]d

A

!

v viva
gviva

cVvlva

L _Wweiboid [GMEISqad[d] | viva

¥ v1vda
€viva

gd (d ¢Vviva

[_welbod [amBr g ad o
|
]
weibosd [am| S
A
weibold [dM =
weibold [9M

mm..m 8d[d] 1viva

WO 2005/114670 PCT/US2005/016341

6/15

Flash read of page n

- Cell Array to Data Register Aor B
Data Register A
Data RegisterB [
FA(n)
Program data stored in
Cell Array Data Register A or B to
‘) Flash Page m
Data Register A | (]
Data Register B |) .
PA(m) PB(m)
Cell Array
Load Data Register A or B
. by the data stored in
Data Register A {1 — the controller buffer
Data RegisterB. [—»)
LA LB
Cell Array
Read Data Register A or B
to the controller buffer
Data Register A |] ()
DataRegisterB [1] -={_)
RA RB
Copy Data from B to A
Cell Array : Copy Data fromAto B
Data Register A Swap data stored in Data
_ j { Registers Ato B
Data Register B [|
CBA CAB SwW

FIG._11

PCT/US2005/016341

WO 2005/114670

7/15

cl "Old

VS

e1-000

VS

VS

e1-000

. e Joud

PCT/US2005/016341

WO 2005/114670

8/15

L

€L °OI4

(ctwvd g1 ad (z+u)g4
(1+w)vd (1+w)yd v vy (1+u)y4
(wagd (w)gd a1 ay (uyg4
] | e jJe— T} I | | e J— . }» [

| N

J TJVFJAI. » T

prmerrrem—ed

(2+w)vyd

EMEIEEEEr
i

\

(1+W)vd

® ® © ® 6 ® ® @ O

NAlEIRE
A

Eéﬁ
\

® ©®

(w)ad

g1]3|g4d | (u)gad]

® ®

® © 0

eleq obed pig
ejeq abed puz
ejeq abed i1s|

g Je)s1bay
v 1818162y

Rewny 199

ejeq abed pig
eleq abed pug
ejeq abed 1s|

aseyd Adon

PCT/US2005/016341

WO 2005/114670

(z+w)vd a1 ay

vE "OId

(z+u)ad
ejeq abed pig
vad (1+tw)vd (1+w)vd (1+w)vd a1 ad (1+u)g4 ejeq abed pug
vda0 E;E‘ (Wvd (wyd vad g1 ay (u)gd eeqebedis)
w1 1 | . N .] | I r[T' | _Jeo—
g i8s1boy
n.HIJ AF)) nrﬂ - | | nr] [m— [— C) |\ yissibey
— . Reuy 199
 — ~
@ © ® ® 6® ® O o ® ® & & O
wH
o | v
(o))
L (twvd _<m&, £.81]3] a4 |c+uad Bleq abed pig
7 Y
(L+Ww)vd vda0 { 971]3]g4 [(1+u)a4 ejeq abed pug

@

[

A

(w)vd

va0| 871]3]| ad [(u)ad | ereq obed isi

@ ® OO O OO0 OO @ O ki

PCT/US2005/016341

Sl OId

a1 gy MS (2+u)y4 eleq abed pig
vad (L+w)vd (L+w)yd MS a ay MS (1+u)g4 ejeq abed pug
A (Wvd (w)vd MS a1 gy gvo (uvd eregebedisy
. N e O e C O 3 C— giesibey
ﬂ!IJ “) Dv — ﬂ.HJ_u Do v 13)s168y
Bl T — 4 _ _ Aeny (180
@ © ® @ ® ® © ® O® ® 6® © o
Vo)
S
(2+w)yd lvao £ 97]3[94 [MS [[Z+u)v4 ejeq abeq pig
A A
(1+w)yd {ms] £ 97[3]/ 94| MS [(1+u)y4 eleq sbed pug
) A
(W)vd [MmS] g1]3| g4 [avO| (u)v | ereq ebed1s)
® @ © ©®®06 ® OO © ® ®E® @O sk

WO 2005/114670

PCT/US2005/016341

WO 2005/114670

11/15

[weiboig

cc Old

e | = GV
| weiboid ,EE%E;,E
| weiboig %
f welbold [AMEOZH 84 [H|
6L Old
| weiboiyg =Fm_>>_ E1EE _m=
weibolg >_m_>>_m__mm m=
weiboid [am]3]| a4 [H]|
91 'OId4
rm>>: E mm: ﬂ,
weiboid__[am| [3]ed m:
weiboid , _m|>>= | E] mm: _M,
weiboid m>>A EIEEIE]

¥ viva
eviva

¢ vliva

I viva

eviva
¢ viva

I viva

v viva
€ vlva
c¢viva

I viva

PCT/US2005/016341

WO 2005/114670

ZIL "OId

(crwvd v

vd

(c+u)v4

(1+w)yd v

vd (1+u)y4

(Ww)vd

vV

VY

(U)y4

12/15

EFEERBE

@ @

® G 6

| (Z+w)vd

[V1

©)

© ® 66 ® 6

i3

VY |(z+u)v4

(L+w)yd

[V1

®© O

{3

vY [(1+u)y4

(wvd

Y
| V1

® ©® 666060

®

[

A

{3

vH [(U)vd]

OJONONONO,

ejeq ebed pig
eleq abed puz
ejeq abed 15|

v 18)sibay

Reuy j180

eleq abey pig
ejeq ebed puz
ejeq obed i1s|

aseyd Adon

PCT/US2005/016341

WO 2005/114670

8L "OId

(1+w)yd vgD

g1

g4 gavo

(1+u)v4

ejeq abed pug

(W)vd

vad

=l

ay av0 _ (Uv4 ereqebeyqis|

13/15

| I J

J— >

=

=

g 19)s1bay

| i |

) C V Hu = Vv lo)sibay

5

Reny |99

®

®

|

(L+w)yd

®

[va0
]

® © ® ® ® ® O O

B 3

gy |[gavO|(1+uy4

eleq abed puz

[}

A

(W)vd

g0l a1

®

1

)

EIEE

gavol (u)y4] ereq ebeqisi

®OOO® OO © sseudhdon

PCT/US2005/016341

WO 2005/114670

14/15

abey
weiboid

layng
SlIM

Lc "OId

| abed | Joung
weiboid SIIM
eleq |z Jeyng abey g ebed Z layng
Ausp| pesy peay welboid BN
A
\
ejeq | | toyng abeyd | obed L 1oyng
Musp| pesy peay weiboid AIM
eleq | leyng | ebey obed layng
Ausp| peay | pesy weiboid BLIM
A
eleq | leyng | ebeq | obey layng
Alllsp | peay | pesy weibold BIIM

€ 39vd

¢ 39vd

L 39Vvd

¢ 39vd

} 3OVd

£¢ Old

={zrwvd g1 g4 (zrUgad

S va0 (1+w)vd (1+w)yd (1+w)vd a1 ad (1+u)gd

2 ved (Wvd (Wvd (Wvd vEd a1 ad (Wad
>

28— — C joo > 3 C—Je— T O C—)—

m nT.) ﬁrj - T = — | n.m_ | m— [—|

)=

e 1]

©

® ® 6 6

® ® ©® O ®

® 6

L weibo.d IX+3+d
7o) : weiboig { E
W f weibolid ; IX+3+Y
T — =
f Emmmn_ >L IX+3+4
= weiboig >§+m+m
aseyd aseyd
g L (ctwvd vaol [g1]3led (R weibo.d peay
m (L+w)vd vad) t 91 [3[ad](i+u)ad]
m (W)vd jvadl g1(3|ad | (u)ag
=

@

@ ® O0B® 0O ®O® ® 0O

ejeq abed pig
ejeq sbeq pug
ejeq abed 15|

g iasiboy
v lejsifey

Rewy j89

eleq obed pig

ejeq ebed puz 'y

Ch

eleq abed is|

eleq abey pig

ip0

eleq abed puz

Ch

ejeq abey 1|

eleq abed pig
eleq abed puz
eleq abed 15|

aseyd Ado)

INTERNATIONAL SEARCH REPORT

PCT/US2005/016341

IPC

A. CLA_?SIFICATION OF SUBJECT MATTER

G11C7/10 G11C16/34

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 7

Minimum documentation searched (classification sysiem followed by classification symbols)

G11C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the inlernational search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

EP 1 280 161 A (SAMSUNG ELECTRONICS CO., 1-46
LTD) 29 January 2003 (2003-01-29)
the whole document

US 5 862 099 A (GANNAGE ET AL) 1-46
19 January 1999 (1999-01-19)
the whole document

US 6 266 273 B1 (CONLEY KEVIN M ET AL) 6,9,17,
24 July 2001 (2001-07-24) 33,37
the whole document

US 5 969 986 A (WONG ET AL) 1-46
19 October 1999 (1999-10-19)
the whole document

m Further documents are listed in the continuation of box C. Patent family members are listed in annex.

‘A’ document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

‘L* document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone
which is cited to establish the publication date of another
citation or other special reason (as specified)

° Special categories of cited documents :

‘T* later document published after the intemational filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

*X' document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to

'Y' document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the

*0O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu—
other means menls, such combination being obvious tc a person skilled
P document published prior to the international filing date but inthe ar.
later than the priority date claimed *&"' document member of the same patent family
Date of the actual completion of the international search Date of mailing of the intemational search report
10 October 2005 19/10/2005
Name and mailing address of the ISA Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, s

Fax: (+31-70) 340-3016 Czarik, D

Form PCT/ISA/210 (second sheet) (January 2004)

page 1 of 2

INTERNATIONAL SEARCH REPORT

PCT/US2005/016341
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT
Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2002/126528 Al (CONLEY KEVIN M ET AL) 1-46

12 September 2002 (2002-09-12)
cited in the application
the whole document

Form PCT/ISA/210 (continuation of second sheet) (January 2004)

page 2 of 2

INTERNATIONAL SEARCH REPORT

—

Information on patent family members PCT/USZO 05/0 16341
Patent document Publication Patent family Publication

cited in search report date member(s) date

EP 1280161 A 29-01-2003 CN 1399279 A 26-02-2003
JP 2003151291 A 23-05-2003
KR 2003011234 A 07-02-2003
TW 561488 B 11-11-2003
US 2003016562 Al 23-01-2003
US 2003117856 Al 26-06-2003

US 5862099 A 19-01-1999 AU 1952797 A 02-09-1997
WO 9730452 Al 21-08-1997
us 5724303 A 03-03-1998

US 6266273 B1 24-07-2001 AU 8340901 A 04-03-2002
CN 1447976 A 08-10-2003
EP 1312095 A2 21-05-2003
JP 2004507007 T 04-03-2004
TW 511087 B 21-11-2002
WO 0217330 A2 28-02-2002

US 5969986 A 19-10-1999 DE 69920816 D1 11-11-2004
EP 0969479 Al 05-01-2000
JP 2000082295 A 21-03-2000
KR 2000006338 A 25-01-2000
us 6134145 A 17-10-2000

US 2002126528 Al 12-09-2002 CN 1620703 A 25-05-2005
EP 1488429 A2 22-12-2004
JP 2005507129 T 10-03-2005
WO 02099806 A2 12-12-2002
us 6349056 Bl 19-02-2002

Form PCT/ISA/210 (patent family annex) (January 2004)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

