发明名称 改进的导管排出泄漏探测系统
摘要
一种绝缘导管的泄漏探测器，该导管装有加压热空气，该探测器包括：套管，它固定在导管绝缘层的圆周切口上，因此形成了由导管中泄漏出来的热空气的容器；歧管，它在其内限定出了管道，该管道与热空气容器相连通；及盖，它把热敏金属丝固定到位于管道端部处的歧管上，因此来自热空气容器中的热空气直接撞击热敏金属丝。
1. 一种用来输送高温加压空气的金属导管，所述导管具有围绕锥形的绝缘层以及绝缘外壳，该壳体位于所述绝缘层上，其改进包括：

由柔性材料形成的套管，它沿着圆周方向缠绕在所述导管的一部分上，由此在一部分所述套管和所述绝缘壳体之间产生了空间；

所述套管具有在其中所限定的孔，其中，所述孔与所述空间相连通。

2. 如权利要求1所述的改进，还包括：

衬垫，它具有在其中所限定的孔，该衬垫设置在面对所述绝缘壳体的、所述套管的侧部上，所述衬垫中的所述孔与所述套管中的所述孔相对准，从而加固了靠近所述套管中的所述孔的所述套管区域；

所述衬垫粘附到所述套管的内表面上。

3. 如权利要求2所述的改进，其特征在于，所述套管由纤维玻璃形成，该纤维玻璃通过硅橡胶化合物浸渍过。

4. 如权利要求3所述的改进，其特征在于，所述套管由多层所述纤维玻璃形成，该纤维玻璃通过硅橡胶化合物浸渍过。

5. 如权利要求4所述的改进，其特征在于，所述衬垫由硅橡胶化合物形成。

6. 如权利要求5所述的改进，其特征在于，所述衬垫的硬度测定器读数为30到50。

7. 如权利要求2所述的改进，其特征在于，一部分所述衬垫支撑在所述绝缘壳体上，此外，在其中限定出所述孔的该部分所述衬垫没有支撑在所述绝缘壳体上，由此在所述空间和所述套管中的所述孔之间保持连通。

8. 如权利要求2所述的改进，其特征在于，当所述套管缠绕在所述导管周围上时，所述套管的端部在舌状物和槽式接合中接合在一起。

9. 如权利要求2所述的改进，其特征在于，所述套管的横截面包括凸出的中部，该中部在它的相对侧上具有两个台肩。
10. 如权利要求2所述的改进，其特征在于，所述套箍绕着所述导管固定在一部分所述导管上，该部分所述导管具有通过所述绝缘壳体的圆周切口。

11. 如权利要求9所述的改进，其特征在于，通过把耐热带缠绕在所述导管和所述套箍的所述台肩上，使所述套箍固定到所述导管上。

12. 如权利要求11所述的改进，还包括：

歧管体，设置在邻近所述孔的所述套箍上，该孔在所述套箍中限定出，所述歧管体在其内限定出“Y”形管道；及

盖，它设置在所述歧管体的顶部上并且固定于其中，所述盖在其中限定出两个通道，以固定一对对温度敏感的金属丝。

13. 如权利要求12所述的改进，其特征在于，所述“Y”形管道的支腿从所述歧管体的底部中出来并且与在所述套箍中所限定的所述孔连通，此外，所述“Y”形管道的臂从与所述套箍相对的所述歧管体的顶部出来。

14. 如权利要求13所述的改进，其特征在于，所述盖把所述一对对温度敏感的金属丝保持在所述出口孔中，这些出口孔限定在所述歧管体的顶部中。

15. 如权利要求13所述的改进，其特征在于，所述歧管体和所述盖由硅橡胶化合物形成。

16. 如权利要求13所述的改进，其特征在于，所述歧管体和所述盖由金属形成。

17. 如权利要求14所述的改进，其特征在于，所述盖在其内限定出一个或者多个孔，用于安装一个或者多个柱，这些柱限定在所述歧管体的顶部上以把所述盖固定到其上。

18. 如权利要求12所述的改进，其特征在于，所述歧管体具有弯曲的底部，该底部的半径与所述套箍的所述凸出部分的外部半径相匹配。

19. 如权利要求12所述的改进，其特征在于，所述歧管的底表面被成形成与所述套箍的外表面的轮廓相匹配。
20. 如权利要求 19 所述的改进，其特征在于，所述歧管体的轮廓底部具有：凸出部，它用来安装所述套箍的凸出中部；及两个台肩，它们支撑着在所述套箍上所限定的台肩上。

21. 如权利要求 20 所述的改进，其特征在于，所述歧管体还包括两个翼，这两个翼沿着邻近所述台肩的所述歧管体的边缘限定。

22. 如权利要求 21 所述的改进，其特征在于，借助把耐热带缠绕在所述导管、所述套箍和所述翼上，使所述歧管体固定到所述套箍上；而所述翼在所述歧管体上限定。

23. 如权利要求 15 所述的改进，其特征在于，所述歧管体的硬度测定器读数为 65 到 85，所述盖的硬度测定器读数为 30 到 50。

24. 一种用来输送高温加压空气的金属导管，所述导管具有在周围缠绕的绝缘层以及绝缘壳体，该绝缘壳体位于所述绝缘层上，其改进包括：

由柔性材料形成的套箍，它沿着圆周方向缠绕在一部分所述导管上，由此在一部分所述套箍和所述绝缘壳体之间产生了空间；

所述套箍具有在其中所限定出的孔，其中，所述孔与所述空间相连通；

衬垫，它具有在其中所限定的孔，该衬垫设置在面对所述绝缘壳体的、所述套箍的侧部上，所述衬垫中的所述孔与所述套箍中的所述孔对准，从而加固了靠近所述套箍中的所述孔的所述套箍区域；

所述衬垫粘附到所述套箍的内表面上；

歧管体，设置在邻近所述孔的所述套箍上，该孔限定在所述套箍中，所述歧管体在其内限定出“Y”形管道；及

盖，它设置在所述歧管体的顶部上并且固定于其中，所述盖在其中限定出两个通道，以固定一对对温度敏感的金属丝。

25. 一种提高传感器的温度探测能力的方法，该传感器包括一对对热敏敏感的金属丝，以探测来自导管的热空气泄漏量，所述导管缠绕有绝缘层，该绝缘层由绝缘壳体来覆盖，该方法包括这些步骤：

在所述绝缘壳体中形成圆周切口；
把具有凸出部的套箍固定到所述绝缘壳体的所述切口上，所述套
箍的所述凸出部分在所述套箍和所述绝缘壳体之间产生了空间，所述
套箍限定一孔，该孔与所述空间相连通；

把歧管体固定到在所述壳体中所限定的所述孔上，所述歧管体限
定出一个或者多个管道，这些管道与在所述套箍中所限定的所述孔相
连通；及

把一个或者多个对热量敏感的金属丝固定在与所述套箍相对的、
所述一个或者多个管道的端部处。

26. 如权利要求 25 所述的方法，其特征在于，所述套箍和所述歧
管体由硅橡胶化合物形成。

27. 如权利要求 25 所述的方法，其特征在于，固定一个或者多个
对热量敏感的金属丝的所述步骤还包括这些步骤：

把盖固定到所述歧管体的表面上，所述一个或者多个管道从所述
歧管体中出来，所述盖具有在其内所限定出的一个或者多个通道，以
安装所述一个或者多个对温度敏感的金属丝，所述盖把所述一个或者
多个对温度敏感的金属丝保持在所述一个或者多个管道的端部的合适
位置上。

28. 如权利要求 25 所述的方法，其特征在于，用按扣式附件把所
述盖固定到所述歧管体上。

29. 如权利要求 25 所述的方法，其特征在于，使用热敏带把所述
套箍固定到所述导管上。

30. 如权利要求 25 所述的方法，其特征在于，使用热敏带把所述
歧管固定到所述套箍上。
改进的导管排出泄漏探测系统

技术领域

本发明涉及一种航空和航天领域，本发明尤其涉及一种喷气式现代飞机，该飞机使用来自发动机的、热压缩的放气流以实现各种飞机上的功能。

背景技术

在现有技术中公知的是，使使用来自发动机的高温放气以用于现代飞机中的各种目的。典型地，在发动机的机翼前沿和尾翼上，使用从发动机中排出的热空气流来提供防冰功能，并且空调装置也使用该热空气流来把新鲜空气供给到客舱中。因此，放气一定得从发动机输送到飞机的其他区域中，典型地，使用一些绝缘金属导管来实现这个，这些金属导管的直径为 1.00"到 4.00"，并且长度为 6"到 120"。导管中的空气可以使压力达到 450psig 并且温度为 1200°F，而一般情况下压力为 45psig 且温度为 660°F。

载有发动机放气的这些导管被绝缘，以防止损害飞机。绝缘层缠绕在导管的外部圆周上。这个绝缘层可以由商品名为 Q-Felt®的材料形成，该材料由在科罗拉多州丹佛的 Johns-Manville 公司制造。该绝缘层可以是导管的外部温度从 660°F 降低到大约 400°F 或者更小。然后，把纤维玻璃浸渍的硅橡胶、有织纹的金属箔或者纤维玻璃浸渍过的聚酰亚胺树脂绝缘壳体缠绕在导管的外部，以具有绝缘层。

所述的那些导管可以从内部金属导管的裂缝中产生泄漏。如果这些裂缝没有被探测到，那么可以导致导管产生灾难性的失效。因此，需要在这些传感器沿着导管的长度进行设置，以探测导管的任何泄漏。

现有技术的泄漏探测系统包括通风盘，该通风盘是一种在其中具有孔的盘，它允许热空气流离开硅橡胶、有织纹的箔或者聚酰亚胺树脂绝缘壳体。如果导管产生了裂缝，那么热放气将从金属导管壁通过
绝缘层流到通风盘，然后通过通风盘中的孔。通风盘孔设计成自热空气流以圆锥形射束进行扩散，该热空气流撞击在一对热探测金属丝上，这些金属丝大约隔开 1.0"，并且设置在距离导管的外圆周大约 1.00"到 1.75"处。热探测金属丝为商品名为 Firewire®的的那种并且由 Kidde Graviner Limited of the United Kingdom 制造。当露出到预定温度时，该热探测金属丝改变它们的电特性。在用于飞机中的典型现有技术系统中，当金属丝露出到大约 255°F 的温度时，探测线路会失败。需要在警报提供到飞机的飞行员之前，使靠近导管的该对金属丝的两个金属丝露出到这个温度中，以防止假警报。

理想的是，泄漏探测器可以探测到在金属导管中通过裂缝的泄漏情况，该裂缝具有直径为 5mm 的孔的等同面积。实际上，已发现，现有技术的泄漏探测系统不能探测到这些泄漏。现有技术设计失败的主要原因是，没有足够的空气流通过通风盘孔。这导致热空气流没有足够的温度来使热探测金属丝信错。首先，通过金属导管的泄漏的热空气的温度明显减小了，因为热空气通过了绝缘层。第二，绝缘层阻塞位于硅橡胶、有织纹的箔或者聚酰亚胺树脂绝缘壳体下方的、从泄漏位置到通风盘孔的热空气通道。此外发现，到空气通过位于通风盘孔和传感器金属丝之间的距离时，它已经下降到刚好小于 255°F 的温度，这个温度是使泄漏探测金属丝信错所需要的温度。

因此，希望能改进泄漏探测系统的设计，以便能够成功地探测到通过金属导管中的裂缝的泄漏量，该裂缝具有直径为 5mm 的孔的相同面积。还希望这种新设计可以经济地改进到现有飞机中。尤其地，希望使用相同的现有传感器金属丝，并且不需要拆去现有绝缘层并且不需要使这些导管进行再绝缘以安装改进的泄漏探测系统。

发明内容

为了产生具有足够大速度的空气流，流体动力学的定律规定需要空气压力和体积。如果足够大的空气压力存在于较小容积中时，那么，一旦该体积很快变空，空气流速不会得到保持。如果具有足够的空气量而没有压力，那么实际上空气不会从高压环境到达低压环境。
当金属导管产生了裂缝时，那么热空气从导管内部泄漏到绝缘层中。绝缘层借助下面方法来改变热空气泄漏的特性：1）吸收热能并且降低空气温度；2）由于压力降低而减少有效压力；3）借助使空气在导管长度上的金属导管和绝缘层之间的环状空间中进行扩散来减少体积。

在本发明的第一实施例中，这个问题通过下面方法来解决：在空气通过绝缘层之后，把降低的空气重新收集到空气容器中。这个通过下面方法来实现：在沿着导管长度上的一个或者多个位置上沿着圆周方向切割绝缘壳体 360 度。圆周切口通过安装 U 形套箍来盖住，该套箍由多层硅橡胶浸渍过的纤维玻璃布来形成，该布在每个圆周切口上被对中并且在两端上密封到绝缘壳体上。套箍重新收集降低的热空气的泄漏量，并且用作空气容器。与通风盘中的孔相类似的、尺寸大小和形状适当的通风孔被设置来使空气对着现有的传感器金属丝。通风孔由套箍内部上的硅橡胶衬垫来支撑，从而空气通过通风孔的流向稳定。一旦套箍填充有空气，那么套箍内的压力开始升高。当来自导管内的裂缝的流动和通过通风孔的流动到达稳定状态情况时，压力将到达稳定状态值。

就本发明的第一实施例而言，根据套箍中的通风孔和传感器金属丝之间的距离，已发现，尽管具有稳定的空气流以足以使探测器犯错的温度从通风孔中排出，但是一旦作为通风孔和传感器金属丝之间的运动结果而到达传感器金属丝，该空气仍然没有足够的热量，由于喷嘴喷射器效果与导管周围的大气进行混合。

因此，在本发明的第二优选实施例中，歧管被加到到套箍和传器金属丝之间，以把直接来自通风孔的热空气流导向到传感器金属丝中，而不会使热量损失到大气环境中。优选实施例的这种设计包括，加入歧管体和歧管盖，该歧管盖安装在套箍的顶部上，并且与套箍中的通风孔相一致。歧管体设置成把来自歧管中的一个管道的热空气输送到“Y”中，在 Y 那里，把管道分成两个管道，这些管道直接通到传感器金属丝中。借助把盖安装到歧管体上实现热空气撞击，歧管体
把每个传感器金属丝固定在通道槽中。用于每个传感器金属丝的、盖中的通道槽设计成与两个管槽中的一致的轴相对准，该两个管槽从Y延伸通过限位。同样地，热气直接从通风孔流到传感器金属丝中，同时具有足够的热量使传感器金属丝受热。

附图说明

图 1 画出了套管的侧视图、横剖视图和等角图。
图 2 画出了衬垫的俯视图、侧视图和等角图。
图 3 画出了歧管体的俯视图、底视图、侧视图、横剖视图和等角图。
图 4 画出了盖的顶视图、侧视图和等角图。
图 5 画出了本发明的分解视图，它示出了套管、歧管和盖及相互之间的相对移动。
图 6 画出了安装在导管中的本发明优选实施例。

具体实施方式

与本发明一起使用的典型导管组件 2、示出在图 6 中，并且包括内金属导管 3，该导管 3 典型地由钢形成并且直径为 1.00”到 4.00”，该导管借助绝缘层 4 来覆盖，并且借助外绝缘壳体 5 来固定。绝缘层 4 和外绝缘壳体 5 由前面所讨论过的材料形成。

图 1 画出了本发明的套管 10 的部分。套管 10 沿着圆周方向设置在导管组件 2 的外绝缘壳体 5 的周围，如图 6 所示。优选地，套管 10 由多层玻璃丝布形成，该布通过硅胶浸渍过，并且在优选的实施例中，使用三层来避免套管 10 由于在安装时聚集中产生的破裂。在把套管 10 固定到导管组件 2 上之前，绕着导管组件 2 沿着圆周方向切割出至少外绝缘壳体 5。可以除去少量外绝缘壳体 5 以外绝缘壳体 5 在外绝缘壳体 5 中形成窄间隙。

为了把套管 10 固定到导管组件 2 上，因此沿着圆周方向把套管 10 设置成绕着导管组件 2 的该部分，在该部分的导管组件 2 中，形成外绝缘壳体 5 内的切口，舌状物和槽装置 11 如图 1 所示在套管 10 的端部相接合。
图 1. 截面 A-A 示出了套箍 10 的横剖视图，它示出了凸出的中间部分 15，而一些台肩 12 位于它的每一侧上。台肩 12 靠在导管组件 2 的外绝缘壳体 5 上，而凸出的中部 15 保持在绝缘壳体 5 上，因此在那里的下方限定出了环形空间。借助用耐热的、硅橡胶化合物带 13 来缠绕台肩 12 和外绝缘壳体 5 的邻近区域，使套箍 10 固定到导管 2 上，如图 6 所示。合适的耐热、硅橡胶带 13 的一个例子的商品名为 MOX-Tape™，并且由加利福尼亚的 Arlon corporation of Santa Ana 所制造。可以使用把套箍 10 固定到导管组件 2 上的任何公知方法来代替耐热带 13，只要通过绝缘层 4 到套箍 10 下方空间的空气通道没有受到限制就行。套箍 10 应该设置在导管组件 2 上，因此孔 14 相对于现有传感器金属丝 8 可以方便地取向，以致空气排出孔 14 影响两个传感器金属丝 8。

由于导管组件 2 的内金属部分 3 内的压力可以到达 45psi，因此可以期望到，产生于套箍 10 和导管组件 2 之间的空间内的压力也可以承受相同压力。其结果是，套箍 10 的中部 15 由于弯曲而可以变形，而产生这种弯曲的原因在于，在套箍 10 内的空间内形成了压力。其结果是，当套箍 10 的中部 15 进行变形时，孔 14 可以不把从中排出的空气导向成撞击到传感器金属丝 8 中。因此，为了有助于使孔 14 保持指向传感器金属丝 8，因此在位于套箍 10 与导管组件 2 的外绝缘壳体 5 之间的套箍 10 的内部上设置了衬垫 20。衬垫 20 设置有：两个 “支腿” 26，这些支腿靠在导管组件 2 的外表面上；及通道 24，它位于这些支腿 26 之间，该通道设置来允许套箍 10 所产生的空间内的加压空气到达孔 22 的下侧。使用现有技术中的任何方法如 Dow-Corning 销售的室温硫化硅橡胶（RTV）胶粘剂，把衬垫 20 粘附到套箍 10 的内表面上。衬垫 20 由弹性硅橡胶化合物形成，硬度测量器测得该化合物的硬度为 30 到 50 肖氏硬度，因此衬垫 20 可以套箍 10 的内径相一致。当处于套箍 10 内部的适当位置上时，衬垫 20 中的孔 22 应该与套箍 10 内的孔 14 对准，以致空气可以从套箍 10 所产生的空间流过通道 24、孔 22，并且从孔 14 中出来。
套箍 10 和衬垫 20 的结构包括本发明的一个实施例，只要传感器金属丝 8 足够靠近套箍 10 的外表面，该实施例就起作用，以致在撞击传感器金属丝 8 以移动传感器时，从孔 14 中驱出的空气具有足够的热量。该温度接近 255°F。如果传感器金属丝 8 太远离导管 2 从而被排出空气移走，那么可以使用本发明的第二和优选实施例。

本发明的优选实施例包括已经讨论过的套箍 10 和衬垫 20、及歧管体 30 和盖 40。歧管体 30 安装在图 3 的各个视图中和图 6 的相应位置上。歧管 30 是硅橡胶化合物块体，该块体在其中限定出了一些通道，从而把来自套箍 10 的孔 14 中的空气直接输送到传感器金属丝 8 中，这些金属丝 8 借助盖 40 中的通道 42 来固定在歧管体 30 的顶部上。

歧管体 30 在它的底部提供有限定的半径 33，当处于导管组件 2 上的合适位置上时，该半径 33 与套箍 10 的外径相匹配。当然，半径 33 根据套箍 10 安装于其上的导管组件 2 的尺寸大小进行变化。歧管体 30 的底部也是形成与套箍 10 的外形相匹配。歧管体 30 底部上的一些台肩 37 位于套箍 10 上的台肩 12 中，通道 37 安装套箍 10 的凸出中部 15。在位于底部的歧管体 30 的外边缘上所限定的翼 36 延伸通过套箍 10 的外边缘，并且通过使用耐热带 13 把歧管体 30 固定到套箍 10 上，其中该耐热带 13 是用来把套箍 10 固定到导管组件 2 的外侧上的那种耐热带。

在歧管 30 内限定管道 34，当歧管体 30 设置在套箍 10 上时，该管道 34 与套箍 10 中的孔 14 对准。管道 34 分成两个独立的管道 32，这两个管道 32 延伸到歧管体 30 的顶部中并且通过形成于其上的孔 31 来露出，因此在歧管体 30 的内部中形成了 Y 形管道。传感器金属丝 8 固定在盖 40 的通道 42 中，该通道 42 把它们锁紧到直接位于孔 31 上方的合适位置上。在歧管体 30 的顶部上所限定出的一些柱 38 用来把盖 40 保持在合适位置上并且使传感器金属丝 8 正确地与歧管 30 中的孔 31 对准，因此当热空气被迫通过温度低得多的环境时，允许来自管道 32 中的热空气直接撞击在传感器金属丝 8 上，而没有现有技术中所出现的热量损失。
在盖 40 中所限定的孔 44 与设置在歧管体 30 顶部上的柱 38 相配合，从而形成了按扣式装置，以便把盖 40 牢牢地固定到歧管体 30 顶部上的合适位置上，而不必使用工具。歧管体 30 优选地由硅橡胶化合物形成，该化合物的硬度为 65 到 85。此外，歧管体 30 可以由其它材料如铝形成，但是一定得小心的是，避免过大的热量通过歧管体 30 的金属体来传递，从而例如降低了从孔 31 出来的热空气的温度。此外，优选的是，盖 40 软于歧管体 30，而歧管体 30 的硬度为 30 到 50 肖氏硬度，因此可以从按扣式柱 38 中拆下盖而不会损坏歧管体。

这种设计的实验在实验室中可以进行，其中原始的现有技术通风盘设计和这里所公开的本发明实施例的设计在导管组件中安装成相互邻近。大约为 0.025”宽 × 1.25”长的部分切口形成在导管组件 2 的金属部分 3 中，以模拟裂缝类失效，该失效的区域等于 5mm 直径的孔，导管组件 2 的金属部分 3 被加压。通过原始通风盘的空气流不能探测到，而通过套箍 10 中的通风孔 14 的空气流在 5psi 到 40psi 的导管压力范围内具有较大速度。测量由套箍 10 所产生的空间内的压力，发现该压力大约为导管组件 2 的金属部分 3 内的压力的 12%。与套箍 10 内的容积相结合的压力可以看见，并且提供了通过套箍 10 的通风孔 14 的可测量空气流，因此实现了本发明的目的。

这里所公开的这些实施例当然是示例性的，并且不是用来限制本发明范围。把各种零件固定在本发明上的替换材料、方法及套箍、歧管体和盖的不同结构和形状也落入本发明的范围内。
图5

分解图
图6