特許協力条約に基づいて公開された国際出願

国際特許分類 :
C07C 27/14 (2006.01)
 C07C 47/22 (2006.01)
 B01J 35/10 (2006.01)
 C07C 45/35 (2006.01)

国際出願番号 : PCT/JP2013/059304
国際公開日 : 2013年10月3日 (03.10.2013)
国際公開番号 : WO 2013/147041 A1

発明の名称: 固定床多管式反応器を用いてのアクリレインおよびアクリアル酸の製造方法

発明の詳細: 提案する方法は、アクリレインおよびアクリアル酸の製造に適用される固定床多管式反応器を使用するもので、反応管内に形成する反応帯を用いる方法を特徴とする。
発明の名称:
固定床多管式反応器を用いてのアクロレインおよびアクリル酸の製造方法

技術分野

[0001] 本発明は、固定床多管式反応器を用いてのプロピレンの接触気相酸化反応によるアクロレインおよびアクリル酸の製造方法に関する。より詳しくいえば、本発明は、反応管内に複数の触媒層を有する固定床多管式反応器を用いて、プロピレンの接触気相酸化反応によりアクロレインおよびアクリル酸を製造する方法に関する。

背景技術

[0002] 工業的規模での接触気相酸化反応には、触媒を充填した反応管に原料化合物を含むガスを流通させて反応を行う固定床反応器が広く用いられている。中でも、プロピレン、プロパン、イソブチレン等を原料化合物とした接触気相酸化反応による（メタ）アクロレインおよび（メタ）アクリル酸の製造においては、触媒として固体粒子形状の不均一系触媒が充填された固定床多管式反応器を用い、接触気相酸化反応が広く使用されている。そこで使用される固体粒子形状の不均一系触媒としては、活性成分を一定の幾何学的形状に成形した成形触媒（非担持型触媒）あるいは成形触媒と同じような幾何学的形状を有する担体材料に活性成分を被覆した担持触媒が一般的である（特許文献1）。

[0003] このような固体粒子形状の不均一系触媒を充填した固定床多管式反応器を用いて、プロピレンの接触気相酸化反応によりアクロレインおよびアクリル酸を高収率で製造するための方法が種々提案されている。そのような提案の大部分は、該反応で使用されるモリブデンおよびピスマスを主成分とするモリブデン—ピスマス系触媒に関するものであって、その組成、形状、物性ならびに製造方法に関するものが多い（特許文献2および3等）。また、固定床多管式反応器の各反応管への触媒の充填仕様に関するものもいくつか提案
されている（特許文献4、5、6および7）。

先行技術文献

特許文献

[0004] 特許文献1：特開2003-1094号公報
特許文献2：特開2003-220334号公報
特許文献3：特開2005-186065号公報
特許文献4：特開2001-48817号公報
特許文献5：特表2008-535784号公報
特許文献6：特開2008-231044号公報
特許文献7：特開2005-187460号公報

発明の概要

発明が解決しようとする課題

[0005] しかしながら、このような従来公知の方法はいずれも、工業的規模での実施の場合、目的とするアクリレインおよびアクリル酸の収率や触媒寿命等の面において、なお改善の余地を残すものである。

[0006] 本発明が解決すべき課題は、プロピレンの接触気相酸化を行うにあたり、高い収率を維持しながら、長期間にわたる安定的な連続操作が可能なアクリレインおよびアクリル酸の製造方法を提供することにある。

課題を解決するための手段

[0007] 本発明者らは、かかる課題を解決するべく、接触気相酸化に使用する触媒ならびに固定床多管式反応器の各反応管への触媒の充填仕様について詳細に検討を行った結果、モリブデン、ビスマスおよび鉄を必須成分とした触媒であって、細孔径分布が異なる少なくとも2種の触媒を、固定床多管式反応器の各反応管に充填した場合に、目的生成物の収率や触媒寿命などの性能に好影響が生ずることを見出した。斯くして、本発明によれば、モリブデン、ビスマスおよび鉄の各酸化物および/またはこれらのうちの少なくとも2つの元素の複合酸化物を必須の触媒活性成分として含む少なくとも2種の触媒一
— 該少なくとも 2 種の触媒は、細孔直径が 0.03～0.3 μm 未満の範囲にある細孔により占められる細孔容積の全細孔容積に対する割合（D1）と、細孔直径が 0.3～3 μm の範囲にある細孔により占められる細孔容積の全細孔容積に対する割合（D2）との比（D1/D2）を異にしている。これら少なくとも 2 種の

発明の効果

本発明に従い、固定床多管式反応器の各反応管に上記のような仕様で触媒を充填することによって、以下の効果が得られる。

1）高収率でアクロレインおよびアクリル酸が得られる。

2）触媒を長期間安定して使用することができる。

3）高原料濃度、高空間速度などのような高負荷条件下での反応においてもアクロレインおよびアクリル酸を安定して高収率で得られる。

発明を実施するための形態

以下、本発明について詳細に説明するが、本発明の範囲は以下の説明内容には制限されず、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。

本発明は、固定床多管式反応器を用いてプロピレンを分子状酸素により接触気相酸化することによってアクロレインおよびアクリル酸を製造する方法であって、触媒としては、モリブデン、ビスマスおよび鉄の各酸化物および一部はこれらのうちの少なくとも 2 つの元素の複合酸化物を必須の触媒活性成分として含む少なくとも 2 種の触媒を用いる。これら少なくとも 2 種の触媒は、細孔直径が 0.03～0.3 μm 未満の範囲にある細孔により占められる細孔容積の全細孔容積に対する割合（D1）と、細孔直径が 0.3～3 μm の範囲にある細孔により占められる細孔容積の全細孔容積に対する割合（D2）との比（D1/D2）を異にしている。これら少なくとも 2 種の
触媒は、固定床多管式反応器の各反応管に管軸方向に少なくとも2つの反応帯が形成されるように充填される。

[0011]本発明に使用できる固定床多管式反応器としては、触媒が前記仕様で充填されていること以外は、一般的な接触気相酸化用の固定床多管式反応器を用いることができ、特に限定されるものではない。例えば、シングルリアクター、タンデムリアクターなど、従来公知のものを適宜利用することができる。

[0012]本発明に使用できる気相酸化触媒としては、触媒活性成分としてモリブデン、ビスマスおよび鉄を必須成分とする触媒であって、下記一般式（1）
\[\text{Mo}_{12} \text{Bi}_a \text{Fe}_b \text{A}_c \text{B}_d \text{C}_e \text{D}_f \text{O}_x \]

（ここで、Moはモリブデン、Biはビスマス、Feは鉄、Aはコバルトおよびニッケルからなる群より選ばれる少なくとも1種の元素、Bはアルカリ金属、アルカリ土類金属およびタリウムからなる群より選ばれる少なくとも1種の元素、Cはタングステン、ケイ素、アルミニウム、ジルコニウムおよびチタンからなる群より選ばれる少なくとも1種の元素、Dはリン、テルル、アンチモン、スズ、セリウム、鉛、ニオブ、マンガン、砒素、ホウ素および亜鉛からなる群より選ばれる少なくとも1種の元素、そしてOは酸素であり、a、b、c、d、e、fおよびxはそれぞれBi、Fe、A、B、C、DおよびOの原子比を表し、0 < a ≤ 10、0 < b ≤ 20、2 ≤ c ≤ 20、0 < d ≤ 10、0 ≤ e ≤ 30そして0 ≤ f ≤ 4であり、xはそれぞれの元素の酸化状態によって定まる数値である。）

で表される触媒活性成分を含む触媒が好適である。上記一般式（1）において、Bがアルカリ金属から選ばれた少なくとも1種の元素であり、0.1 ≤ a ≤ 8、0.1 ≤ b ≤ 10、2 ≤ c ≤ 12そして0.1 < d ≤ 3であるものが好ましい。

[0013]本発明の触媒は、この種の触媒の調製に一般的に用いられる方法、例えば下記するような方法、を用いて製造することができる。

[0014]本発明で使用できる触媒活性成分の出発原料については特段の制限はない。
例として、各成分元素を含む酸化物、水酸化物または塩類（アンモニウム塩、硝酸塩、炭酸塩、硫酸塩、塩化物、有機酸塩）など、それらの水溶液またはゾル、複数の成分元素を含む化合物、あるいは、これらの組み合わせ、などを用いることができる。中でも、アンモニウム塩や硝酸塩が好適に用いられる。

001 5 先ず、これら触媒活性成分の出発原料を、例えば、水に溶解あるいは懸濁させて、水溶液あるいは水性スラリー（以下、「出発原料混合液」と記すこともある。）を調製する。

001 6 これら出発原料混合液は、この種の触媒に一般に用いられている方法により調製することができ、例えば、上記触媒活性成分の出発原料の各々を含む水溶液あるいは水性スラリーをつくり、これらを順次混合すればよい。また、一つの触媒活性成分の出発原料について複数の水溶液あるいは水性スラリーをつくり、これらを分割して混合することもできる。触媒活性成分の出発原料の混合条件（混合順序、速度、圧力、pH等）については特に制限ではない。

こうして得られた出発原料混合液は、加熱処理した液状のままで従来慣用の担持工程で使用される。あるいは、該出発原料混合液から加熱や減圧など各種方法による乾燥工程（1次乾燥工程）を経て固体状の触媒前駆体をつくり、これを後述の担持工程または成形工程で使用することができる。

001 7 1次乾燥工程における加熱乾燥によって触媒前駆体を得る方法としては、例えば、出発原料混合液を蒸発乾固してケーキ状の触媒前駆体を得る方法、スプレードライヤー、ドラムドライヤー等を用いて粉末状の触媒前駆体を得る方法、箱型乾燥機、トンネル型乾燥機等を用いて気流中で加熱してブロック状またはフレーク状の触媒前駆体を得る方法などがある。また、一旦、出発原料混合液を蒸発乾固して得られたケーキ状の固体物をさらに箱型乾燥機、トンネル型乾燥機等を用いて気流中で加熱処理することによってブロック状またはフレーク状の触媒前駆体を得る方法も採用できる。

1次乾燥工程において、減圧により乾燥させて固体状の触媒前駆体を得る方
法としては、例えば、真空乾燥機を用いて、ブロック状または粉末状の触媒前駆体を得る方法などを挙げることができる。
また、前記 1 次乾燥工程により得られた固体状の触媒前駆体を、引き続き焼成してこれを触媒前駆体とすることもできる。
このようにして得られた触媒前駆体は、必要に応じて粉碎や分級を行い適度な粒度の粉体状の触媒前駆体とすることもできる。この場合、触媒前駆体の粉体の粒度は、特に限定されないが、後述の成形工程における成形性に優れる点で、500 μm以下であり、好ましくは300 μm以下であり、さらに好ましくは150 μm以下である。
本発明で使用できる触媒は、成形触媒または担持触媒として使用できる。成形触媒および担持触媒は、それぞれ次の方法により製造される。
成形触媒は、前記触媒前駆体および前記触媒前駆体と粉体状の不活性担体との混合物を押し出し成形法や打錠成形法などに従って一定の形状に成形することにより得られる。
押し出し成形法や打錠成形法等の場合、その形状に特に制限はなく、球状、円柱状、リング状、不定形などのいずれの形状でもよい。もちろん球状の場合、真球である必要はなく実質的に球状であればよい。円柱状およびリング状についても同様に断面形状は真円である必要は無く、実質的に円形であればよい。

[0018] 担持触媒は、例えば、一定の形状を有する所望の不活性担体に、出発原料混合液を乾燥させずに水溶液あるいは水性スラリーのまま、加熱しながら塗布あるいは付着させて乾燥担持させることから成る蒸発乾固法、あるいは、前記触媒前駆体の粉体や、それをさらに乾燥または焼成した粉体を不活性担体に担持させることから成る造粒法にしたがって製造することができる。中でも、特に特開昭 63-200839号公報に記載の遺心流動コーティング法、特開平 10-28877号公報に記載の転動造粒法、特開 2004-136267号公報に記載のロックミキサー法を用いて不活性担体に担持する造粒法が好ましい。
成形触媒や担持触媒で使用される不活性担体の例としては、アルミナ、シリカ、シリカアルミナ、チャタニア、マグネシア、アラキト、レイト、シリカ－マグネシア、炭化ケイ素、窒化ケイ素、ゼオライト等が挙げられる。成形触媒では粉体状の不活性担体を使用すればよく、その粒度は特に限定されないが、成形性に優れる点で500 μm以下のものが好適であり、300 μm以下が好ましく、150 μm以下がさらに好ましい。担持触媒では、上記不活性担体物質を用いて一定の形状に成型された担体が使用されるが、その形状についても特に制限はなく、球状、円柱状、リング状など公知のいずれの形状であってもよい。

成形工程および担持工程においては、成形性および担持性を向上させるための補助剤やバインダーを用いることができる。具体例としては、エチレングリコール、グリセリン、プロピオン酸、マレイン酸、ベンジルアルコール、ブチルアルコールまたはフェノール類などのような有機化合物のほか、氷、硝酸、硝酸アンモニウム、炭酸アンモニウム、尿素などが挙げられる。

また、本発明の触媒には機械的強度を向上させる目的で、補強材として一般に知られているガラス纖維、セラミック繊維など、あるいは、シリカ、アルミナ、炭化珪素、窒化珪素などのような無機質材料から成る繊維を添加してもよい。これらの無機繊維の添加方法については、特に制限はなく、触媒中に無機繊維が均一に分散した状態で含有されるようにし得るものであれば、いずれの方法も用いることができる。例えば、出発原料混合液に無機繊維を添加しても、あるいは成型工程で固体状の触媒前駆体と無機繊維を混合してもよい。

上記成形工程で得られた成形体あるいは担持工程で得られた担持体は、必要により2次乾燥工程を経たのち、焼成工程に送られる。
2次乾燥工程では、成形体あるいは担持体を、一般的に使用される箱型乾燥機、トンネル型乾燥機等を用いて分子状酸素含有ガスや分子状窒素、二酸化炭素などのような不活性ガスあるいはこれらの混合物などの雰囲気下で加熱
することによって乾燥する。具体的には、100～350℃、好ましくは130～300℃、さらに好ましくは150～250℃の乾燥温度で、1〜4時間、好ましくは2〜20時間、さらに好ましくは3〜16時間乾燥する。

焼成工程において用いる焼成炉には特に制限はなく、一般的に使用される箱型焼成炉あるいはトンネル型焼成炉等を用いればよい。焼成温度は350〜600℃、好ましくは400〜550℃、更に好ましくは420〜500℃であり、焼成時間は1〜15時間、好ましくは2〜10時間である。焼成は、空気雰囲気下、空気流通下、不活性ガス（例えば、分子状窒素、二酸化炭素など）雰囲気下、あるいは不活性ガス流通下などで行う。分子状酸素含有ガス雰囲気下での焼成が好ましい。分子状酸素含有ガスとしては空気が好適に用いられる。

また、焼成は前記2次乾燥工程後に、あるいは2次乾燥工程を経ずに、行ってもよい。なお、予め焼成した触媒活性成分を触媒前駆体として用いた担持体の場合は、必ずしも焼成工程は必要なく、担持工程で補助剤やバインダー等を使用した場合に、それらが除去できれば前記した2次乾燥工程のみでもよい。
モニッム根を含む物質を添加することから成る。アンモニッム根のモル数/硝酸根のモル数の比を1.0以上とすれば、D1/D2比は比較的大きくなる。該比を0.8未満にすれば、D1/D2比は比較的小さくなる。

1次乾燥工程における乾燥条件で調整する上記方法（2）のうち、固形物の大きさによる方法では、固形物の任意の2端の距離を最長で30mm、好ましくは20mm未満の範囲になるように調整すれば、D1/D2比を比較的小さくでき、30mm以上、好ましくは50mm以上の範囲になるように調製すれば、D1/D2比を比較的大きくできる。また、上記方法（2）のうち、雰囲気ガスの種類や流量による方法では、乾燥機に導入される分子状酸素濃度5～25%の雰囲気ガスの量V（L（標準状態）/分）と、前記出発原料混合液の質量W（kg）あるいは出発原料混合液を蒸発乾固して得たケーネ状の固形物の質量との比（V/W）を調整することから成る。例えば、1次乾燥工程における雰囲気ガスとしての分子状酸素含有ガス量と、出発原料混合液の質量あるいは出発原料混合液を蒸発乾固して得たケーヌ状の固形物の質量との比（V/W）を400以上、好ましくは500以上の範囲になるように調節すれば、D1/D2比を比較的小さくでき、該比（V/W）を200未満、好ましくは100未満の範囲になるように調節すれば、D1/D2比を比較的大きくできる。

また、粉碎工程における、触媒前駆体の粉体の粒径を調整する上記方法（3）では、粉体の粒径を50μm未満、好ましくは20μm未満とすれば、D1/D2比を比較的大きくでき、該粒径を100μm以上、好ましくは150μm以上とすれば、D1/D2比を比較的小さくできる。

触媒活性成分中の細孔径分布を調整するための上記（1）、（2）および（3）の方法は、いずれかひとつによって実施してもよいし、2つまたは3つを組み合わせて実施することもできる。

本発明においては、細孔直径が0.03～0.3μm未満の範囲にある細孔により占められる細孔容積の全細孔容積に対する割合（D1）と、細孔直径が0.3～3μmの範囲にある細孔により占められる細孔容積の全細孔容積
に対する割合 \(D_2 \) との比 \(D_1 / D_2 \) を異にする少なくとも2種の触媒を、固定床多管式反応器の各反応管に、管軸方向に層を形成するように充填すること以外に、触媒の充填および配置について特に制限されるものではない。

[0024] 本発明において、固定床多管式反応器の各反応管のガス入口側に \(D_1 / D_2 \) 比の小さい触媒を充填し、ガス出口側に \(D_1 / D_2 \) 比の大きい触媒を充填した場合には、\(D_1 / D_2 \) 比が一定の場合に比べて、目的生成物であるアクロレインおよびアクリル酸の収率が向上するという効果が得られる。また、固定床多管式反応器の各反応管のガス入口側に \(D_1 / D_2 \) 比の大きい触媒を充填し、ガス出口側に \(D_1 / D_2 \) 比の小さい触媒を充填した場合には、\(D_1 / D_2 \) 比が一定の場合に比べて、触媒寿命が向上するという効果が得られる。本発明によれば、このように \(D_1 / D_2 \) 比の異なる複数個の触媒を反応管中に配列することによって、目的生成物であるアクロレインおよびアクリル酸の収率を向上させ、あるいは、触媒寿命を向上させることができる。

[0025] 本発明によれば、触媒寿命の延長効果もさることながら、アクロレインおよびアクリル酸収率の非常に大きな向上効果が得られることからみて、固定床多管式反応器の各反応管のガス入口側に \(D_1 / D_2 \) 比の小さい触媒が充填され、ガス出口側に \(D_1 / D_2 \) 比の大きい触媒が充填された配置が好ましい。

[0026] 本発明においては、\(D_1 / D_2 \) 比は0.1～0.8であればよく、好ましくは0.2～0.6であり、より好ましくは0.3～0.5である。

[0027] また、反応帯の数も、特に限定されないが、工業的には2または3程度にすることで十分目的とする効果を得ることができる。触媒層の分割比については、酸化反応条件や各層に充填された触媒の組成、形状、サイズなどによって最適値が左右されるため一概に特定できないので、全体としての最適な活性および選択率が得られるように適宜選択すればよい。

[0028] 尚、固定床多管式反応器の各反応管に3つ以上の反応帯を形成するように触媒を充填する場合には、必ずしも、\(D_1 / D_2 \) 比がガス入口側からガス出
口に向かって順次大きくなるように配置したり、D1/D2比がガス入口側からガス出口に向かって順次小さくなるように配置する必要はない。その反応帯の少なくとも2つにおいて、充填された触媒の細孔径分布が上記の関係になるように配置されていればよい。一旦小さくなった後に大きくなるように充填する配置や、ガス入口側からガス出口側に向かってD1/D2比が一旦大きくなった後に小さくなるように充填する配置でも、本発明の目的は達成される。

[0029] 本発明においては、プロピレンを、分子状酸素または分子状酸素含有ガスにより接触気相酸化して、アクリレインおよびアクリル酸を製造するに際して、気相酸化触媒が各反応管に上記の仕様で充填された固定床多管式反応器が使用される。反応原料は、プロピレンまたはプロピレン含有ガスである。

[0030] 本発明の方法は、例えばプロピレンを出発原料とする2工程の接触気相酸化によるアクリル酸の製造における第1工程として、好適に適用できる。反応原料であるプロピレンについては特に制限はなく、例えば、ポリマー、レーダーコメックルグレードのプロピレン、あるいは、プロパンの脱水素反応や酸化脱水素反応によって得られるプロピレン含有の混合ガスも使用可能であり、この混合ガスに必要に応じて、空気または酸素などを添加して使用することもできる。

本発明の方法では、反応条件には特に制限はなく、この種の反応に一般に用いられている条件であればいずれも実施することが可能である。例えば、通常の反応原料ガス（例えば、1〜15容量％、好ましくは4〜12容量％のプロピレン、0.5〜25容量％、好ましくは2〜20容量％の分子状酸素、0〜30容量％、好ましくは0〜25容量％の水蒸気、そして残部が窒素などの不活性ガスからなる混合ガス）を、280〜430℃、好ましくは280〜400℃の温度範囲で、0.1〜1.0MPaの反応圧力下で、100〜600hr⁻¹（標準状態）、好ましくは120〜300hr⁻¹（標準状態）のプロピレン空間速度で、酸化触媒に接触させればよい。

[0031] 以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれによ
り何ら限定されるものではない。なお、以下では、便宜上、「質量部」を単に「部」と記することがある。なお、転化率および収率は以下の式により算定した。

転化率（モル%）

\[
\text{転化率（モル%）} = \left(\frac{\text{反応したプロピレンのモル数}}{\text{供給したプロピレンのモル数}} \right) \times 100
\]

収率（モル%）

\[
\text{収率（モル%）} = \left(\frac{\text{生成したアクリレインおよびアクリル酸のモル数}}{\text{供給したプロピレンのモル数}} \right) \times 100
\]

細孔容積及び細孔径分布の測定

なお、本発明における触媒の細孔容積及び細孔径分布は、水銀圧入式ボロシメーター（商品名：AutoPore IV 9500、micromeritics社製）を用い、平均昇圧速度0.005～0.3 MPa/秒で昇圧し、細孔径0.003～200 μmの範囲について、触媒単位質量あたりの細孔容積及び細孔径分布として測定した。

触媒製造例１：触媒（1）の調製

イオン交換水500部に硝酸コパリート341部および硝酸ニッケル82部を溶解した。また、硝酸第二鉄92部および硝酸ビスマス128部を65重量％の硝酸75部とイオン交換水300部とからなる硝酸水溶液に溶解した。別に、イオン交換水1500部にパラモリブデン酸アンモニウム400部およびパラタングステン酸アンモニウム5.1部を添加し、攪拌しながら溶解した。得られた水溶液に上記別途調製した2つの水溶液を滴下しながら混合し、次いで硝酸カリウム1.9部をイオン交換水300部に溶解した水溶液を添加し、懸濁液を得た。得られた懸濁液を加熱下に粘土状になるまで挙拌した後、自然冷却し、塊状の図形物を得た。得られた図形物50 k gをトンネル型乾燥機に搬入し、空気を流量2500 L（標準状態）/分で乾燥機内に導入した（V/W=50）。185℃で15時間乾燥後に、300 μm以
下に粉砕し、触媒前駆体粉体を得た。転動造粒機に平均粒径5.0μmのアルミナ球状担体340部を投入し、次いで結合剤としての20質量%の硝酸アンモニウム水溶液とともに、触媒粉体を徐々に投入して担体に担持させた後、空気雰囲気下470℃で6時間熱処理をして触媒(1)を得た。この触媒(1)の酸素および担体を除く金属元素組成は次のとおりであった。

触媒(1)～(5)の調製条件、担持量およびD1/D2比を表1に示した。
実施例1

全長3000mmで内径25mmの鋼鉄製反応管24本、および、これを覆う熱媒体を流すためのシェルからなる反応器を鉛直方向に用意した。反応ガス入口側から出口側に向かって、先ず触媒(2)を層長900mmとなるように、次いで触媒(1)を層長2000mmとなるように、反応管上部より順次落下させることによって、全層長が2900mmの反応帯を反応管内に充填した。

実施例2

実施例1において、反応ガス入口側から出口側に向かって、先ず触媒(1)を層長800mmとなるように、次いで触媒(2)を層長2100mmとなるように、順次充填したこと以外は実施例1と同様にプロピレンの酸化反応を実施した。結果を表2に示した。

実施例3

実施例1において、反応ガス入口側から出口側に向かって、先ず触媒(3)を層長600mmとなるように、次いで触媒(2)を層長700mmとなるように、さらに触媒(3)を層長1600mmとなるように、順次充填したこと以外は実施例1と同様にプロピレンの酸化反応を実施した。結果を表2に示した。

比較例1

実施例1において、触媒(1)のみを層長2900mmとなるように充填したこと以外は実施例1と同様にプロピレンの酸化反応を実施した。結果を表2に示した。実施例1と比較して、酸化反応の初期80時間および4000時間経過時における収率が共に低く、経時的な反応温度上昇速度が速かった。
比較例 2

実施例 1 において、触媒 (2) のみを層長 290 mm となるように充填したこと以外は実施例 1 と同様にプロピレンの酸化反応を実施した。結果を表 2 に示した。実施例 1 と比較して、酸化反応の初期 80 時間および 400 時間経過時における収率が共に低く、経時的な反応温度上昇速度が速かった。

比較例 3

実施例 1 において、触媒 (3) のみを層長 290 mm となるように充填したこと以外は実施例 1 と同様にプロピレンの酸化反応を実施した。結果を表 2 に示した。実施例 1 と比較して、酸化反応の初期 80 時間および 400 時間経過時における収率が共に低く、経時的な反応温度上昇速度が速かった。

実施例 4

実施例 1 において、反応ガス入口側から出口側に向かって、先ず触媒 (5) のみを層長 80 mm となるように、次いで触媒 (4) を層長 2100 mm となるように、順次充填したこと以外は実施例 1 と同様にプロピレンの酸化反応を実施した。結果を表 2 に示した。

[表 1]

<table>
<thead>
<tr>
<th>触媒</th>
<th>乾燥条件</th>
<th>備考</th>
<th>担持量(質量%)</th>
<th>D1/D2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>V/W=50、185℃15時間</td>
<td></td>
<td>140</td>
<td>4.1</td>
</tr>
<tr>
<td>(2)</td>
<td>V/W=400、180℃14時間</td>
<td></td>
<td>141</td>
<td>1.0</td>
</tr>
<tr>
<td>(3)</td>
<td>V/W=800、180℃14時間</td>
<td></td>
<td>139</td>
<td>0.4</td>
</tr>
<tr>
<td>(4)</td>
<td>V/W=100、180℃15時間</td>
<td>乾燥固形物の2端の距離100mm未満</td>
<td>142</td>
<td>4.0</td>
</tr>
<tr>
<td>(5)</td>
<td>V/W=300、185℃15時間</td>
<td>触媒前駆体粉体の粉砕粒度120μm</td>
<td>138</td>
<td>0.5</td>
</tr>
<tr>
<td>実施例</td>
<td>触媒</td>
<td>反応時間 (Hr)</td>
<td>反応温度 (℃)</td>
<td>転化率 (Hr)</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>触媒 (2) / 触媒 (1)</td>
<td>80</td>
<td>320</td>
<td>97.8</td>
</tr>
<tr>
<td></td>
<td>900mm/2,000mm (1.0/4.1)</td>
<td>4000</td>
<td>333</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>触媒 (1) / 触媒 (2)</td>
<td>80</td>
<td>320</td>
<td>97.6</td>
</tr>
<tr>
<td></td>
<td>800mm/100mm (4.1/1.0)</td>
<td>4000</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>触媒 (3) / 触媒 (2) / 触媒 (1)</td>
<td>80</td>
<td>320</td>
<td>97.8</td>
</tr>
<tr>
<td></td>
<td>600mm/700mm/1600mm (0.4/1.0/4.1)</td>
<td>4000</td>
<td>332</td>
<td></td>
</tr>
<tr>
<td>比較例 1</td>
<td>触媒 (1)</td>
<td>80</td>
<td>320</td>
<td>97.9</td>
</tr>
<tr>
<td></td>
<td>2,900mm (4.1)</td>
<td>4000</td>
<td>335</td>
<td></td>
</tr>
<tr>
<td>比較例 2</td>
<td>触媒 (2)</td>
<td>80</td>
<td>320</td>
<td>97.6</td>
</tr>
<tr>
<td></td>
<td>2,900mm (1.0)</td>
<td>4000</td>
<td>336</td>
<td></td>
</tr>
<tr>
<td>比較例 3</td>
<td>触媒 (3)</td>
<td>80</td>
<td>321</td>
<td>97.6</td>
</tr>
<tr>
<td></td>
<td>2,900mm (0.4)</td>
<td>4000</td>
<td>337</td>
<td></td>
</tr>
<tr>
<td>実施例 4</td>
<td>触媒 (5) / 触媒 (4)</td>
<td>80</td>
<td>320</td>
<td>97.7</td>
</tr>
</tbody>
</table>
請求の範囲

[請求項1] 触媒を充填した固定床多管式反応器を用いて、プロピレンを分子状酸素または分子状酸素含有ガスにより接触気相酸化することによってアクロレインおよびアクリル酸を製造する方法であって、モリブデン、ビスマスおよび鉄の各酸化物および/またはこれらのうちの少なくとも2つの元素の複合酸化物を含む触媒活性成分として含む少なくとも2種の触媒、細孔直径が0.03～0.3 μm未満の範囲にある細孔により占められる細孔容積の全細孔容積に対する割合（D1）と、細孔直径が0.3～3 μmの範囲にある細孔により占められる細孔容積の全細孔容積に対する割合（D2）との比（D1/D2）を異にする——を、前記固定床多管式反応器の各反応管に管軸方向に少なくとも2つの反応帯が形成されるように充填することを特徴とするアクロレインおよびアクリル酸の製造方法。

[請求項2] 前記触媒が、下記一般式（1）

\[\text{Mo}_{12}B_{i}Fe_{b}A_{c}B_{d}C_{e}D_{f}O_{x} \] (1)

（ここで、Moはモリブデン、Biはビスマス、Feは鉄、Aはコバルトおよびニッケルからなる群より選ばれる少なくとも1種の元素、Bはアルカリ金属、アルカリ土類金属およびタリウムからなる群よりも選ばれる少なくとも1種の元素、Cはタングステン、ケイ素、アルミニウム、ジルコニウムおよびチタンからなる群より選ばれる少なくとも1種の元素、Dはリチウム、テルル、アンチモン、スズ、セリウム、鉛、二オブ、マンガン、砒素、ホウ素および亜鉛からなる群より選ばれる少なくとも1種の元素、そして0は酸素であり、a、b、c、d、e、fおよびxはそれぞれBi、Fe、A、B、C、Dおよび0の原子比を表し、0 < a \leq 10、0 < b \leq 20、2 \leq c \leq 20、0 < d \leq 10、0 \leq e \leq 30そして0 \leq f \leq 4であり、xはそれぞれの元素の酸化状態によって定まる数値である。）

で表される触媒活性成分を含む触媒である請求項1に記載のアクロレ
インおよびアクリル酸の製造方法。

[請求項3] 前記触媒が、前記触媒活性成分を成形した成形触媒である請求項１または２に記載のアクロレインおよびアクリル酸の製造方法。

[請求項4] 前記触媒が、前記触媒活性成分を一定形状の不活性担体に担持させた担持触媒である請求項１または２に記載のアクロレインおよびアクリル酸の製造方法。

[請求項5] 固定床多管式反応器の各反応管のガス入口側に D1/D2 比の小さい触媒を、ガス出口側に D1/D2 比の大きい触媒を充填する、請求項１から４のいずれか１項に記載のアクロレインおよびアクリル酸の製造方法。

[請求項6] D1/D2 比が 0.1～8 であることを特徴とする、請求項１から５のいずれか１項に記載のアクロレインおよびアクリル酸の製造方法。
INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2013/059304

A. CLASSIFICATION OF SUBJECT MATTER

- C07C2 7/14 (2006.01)
- BOU23/8 8 (2006.01)
- BOJ35/1 0 (2006.01)
- C07C45/35
- (2006.01)
- C07C2/72/22 (2006.01)
- C07C51/21 (2006.01)
- C07C57/05 (2006.01)
- C07B61/00 (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

- C07C27/00, B01J23/00, B01J35/00, C07C45/00, C07C47/00, C07C51/00, C07C57/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

- Jitsuyo Shinan Koho 1922-1 996 Jitsuyo Shinan Torok Koho 1996-2013

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

- CAPLUS / REGISTRY (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2011-246384 A (Mitsubishi Rayon Co., Ltd.), 08 December 2011 (08.12.2011), (Family: none)</td>
<td>1-6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date of the actual completion of the international search</th>
<th>Date of mailing of the international search report</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 June, 2013 (20.06.13)</td>
<td>02 July, 2013 (02.07.13)</td>
</tr>
</tbody>
</table>

Name and mailing address of the ISA/Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 2009)
国際調査報告

国際出願番号 PCT/JP2013/059304

A. 発明の属する分野の分類（国際特許分類（IPC））

Int.Cl. C07C27/14 (2006.01) i, C07C47/22 (2006.01) i, C07C51/21 (2006.01) i, C07C57/05 (2006.01) i, C07B61/00 (2006.01) i

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int.Cl. C07C27/00, B01J23/00, B01J35/00, C07C45/00, C07C47/00, C07C51/00, C07C57/00

C. 関連すると認められる文献

引用文献のカテゴリー

引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示

関連する請求項の番号

A JP 2011-246384 A（三菱レイヨン株式会社）2011.12.08.（ファミリーなし）

1-6

A JP 2003-220334 A（三菱化学株式会社）2003.08.05.

1-6

A JP 2000-202294 A（三菱レイヨン株式会社）2000.07.25.（ファミリーなし）

1-6

C 欄の続きにも文献が列挙されている。 発表トフィミリーに関する別紙を参照。

* 引用文献のカテゴリー

「A」 特に関連のある文献ではなく、一般的な技術水準を示すもの

「TE」 国際出願 日前出願 または特許であるが、国際出願 日後に公表されたもの

「E」 優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献（理由を付す）

「B」 口頭による開示、使用、展示等に言及する文献

「F」 国際出願 日前で、かつ優先権の主張の基礎となる出願

の日の後に公表された文献

「I」 特に関連のある文献であって、国際出願日又は優先日後に公表された文献であって出願又は特許化を考慮するもので、発明の原理又は理論の理解のために引用するもの

「Y」 特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性が認められないもの

「Y」 特に関連のある文献であって、当該文献と他の１以上の文献との、当業者にとって自明である組合せによって進歩性が認められないもの

同一パテントファミリー文献

国際調査を完了した日

20.06.2013

国際調査報告の発送日

02.07.2013

国際調査機関の名称及びあて先

日本国特許庁（ISA／JP）

特許庁審査官（権限のある職員）

前田 好彦

電話番号 03－3581－1101 内線 3443

様式 PCT／ISA／210 (第2ページ) (2009年7月)