A handle grip assembly includes a connector housing configured to connect to a support post, an upper housing mounted stationary to the connector housing, and a lower housing and handle grip extending between the connector and the upper housing. The lower housing is freely rotatable relative to the upper housing.
SPINNING HANDLE GRIP ASSEMBLY FOR TOWABLE LUGGAGE ITEM

BACKGROUND OF THE INVENTION

[0001] This invention relates generally to a handle grip assembly for a toweable item, and more specifically, to handle grip assemblies for toweable baggage.

[0002] Various types of bags, from luggage items to briefcases and backpacks, now include wheels and a towing handle which allow the bags to be pulled along a surface rather than being carried above the ground. The towing handle is typically located on an end of the bag opposite the wheels, and the bag is pulled along the ground in an inclined position. Such handles can be very convenient and are now popular.

[0003] Typically, the towing handle is mounted to telescoping supports extending alongside a back panel of the bag, and the handle is extendible for towing or retractable into the bag in a generally flush position with an outer contour of the bag. Conventionally, the handles were rigidly mounted to the supports and when the supports were extended, the handle was in a fixed position relative to the supports. It has been found, however, that such handles can become uncomfortable to hold for an extended period of time.

[0004] Various types of handle systems have been developed to reduce user fatigue in towing baggage. For example, pivotal or rotatable handles have been employed in an effort to provide more comfortable pulling positions. While known handle systems have had varying degrees of success in addressing these issues, many of them tend to be quite complicated, expensive to implement, and not as reliable as desired. Additionally, various locking features and adjustable positions of the handle can present difficulties to certain users in use. Locking, unlocking and positioning the handle in desired positions can be cumbersome to casual and/or infrequent users of the baggage.

[0005] It would be desirable to provide a lower cost and more user friendly handle system for toweable items.

BRIEF DESCRIPTION OF THE INVENTION

[0006] According to an exemplary embodiment, a handle grip assembly comprises a connector housing configured to connect to a support post, an upper housing mounted stationary to the connector housing, and a lower housing and handle grip extending between the connector and the upper housing. The lower housing is freely rotatable relative to the upper housing.

[0007] Optionally, a bearing interface element is sandwiched between the upper and lower housing and configured to allow relative movement of the lower housing with respect to the upper housing. The assembly may further comprise a shaft fixedly mounted to the upper housing and extending through the lower housing, wherein the lower housing is rotatable about an axis of the shaft. The shaft may be fixedly coupled to the connector housing.

[0008] According to another exemplary embodiment, a handle grip assembly for a toweable item comprises a connector housing configured to connect to a support post, a shaft mounted in fixed relation to the connector housing, and an upper housing mounted stationary to the connector. The upper housing has an outer surface, the outer surface being continuously curved, and a lower housing and handle grip extends between the upper housing and the connector. The lower housing is configured to spin about an axis of the shaft.

[0009] According to another exemplary embodiment, a toweable baggage item comprises a body defining a cavity to store articles, a support post coupled to the body, and a handle grip assembly coupled to the support post. The handle grip assembly comprises an upper housing mounted stationary to the support post, and a lower housing defining a handle grip located between the upper housing and the support post. The lower housing is configured to spin about an axis of the support post relative to the upper housing.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIG. 1 is a side elevational view of an exemplary toweable item including a towing arm and handle grip assembly formed in accordance with an exemplary embodiment of the invention.

[0011] FIG. 2 is a perspective view of the handle grip assembly and towing arm shown in FIG. 1.

[0012] FIG. 3 is an assembly view of the handle grip assembly shown in FIG. 2.

[0013] FIG. 4 is a perspective view of an upper handle grip for the grip assembly shown in FIG. 3.

[0014] FIG. 5 is a perspective view of a lower handle grip for the grip assembly shown in FIG. 3.

[0015] FIG. 6 is a perspective view of a bearing interface element for the handle grip assembly shown in FIG. 3.

[0016] FIG. 7 is a perspective view of a connector plate for the grip assembly shown in FIG. 3.

[0017] FIG. 8 is a front elevational view of the grip assembly shown in FIG. 3 at a first stage of manufacture.

[0018] FIG. 9 is a perspective assembly view of a second embodiment of a handle grip assembly.

[0019] FIG. 10 illustrates the grip assembly shown in FIG. 9 with parts removed.

[0020] FIG. 11 illustrates the grip assembly shown in FIG. 10 with further parts removed.

DETAILED DESCRIPTION OF THE INVENTION

[0021] FIG. 1 is a side elevational view of an exemplary toweable item in the form of a wheeled bag 100 including a retractable towing handle system 102 formed in accordance with an exemplary embodiment of the invention. The bag 100 includes a body 104 defining a storage cavity 106 (shown in phantom in FIG. 1) within the body 104 for storing and transporting desired items, such as clothing and personal items, therein for travel.

[0022] The wheels 108 are mounted to the lower end of the bag 100 in a known manner. While in the illustrated embodiment the bag 100 is a general purpose luggage bag, in alternative embodiments other types of wheeled bags may be employed, including but not limited to wheeled brief
As shown in FIG. 1, the towing handle system 102 is in an extended position relative to the bag 100, and the towing handle system 102 includes a telescoping support post or pole 110 and a handle grip assembly 112 coupled to an end of the support post 110 at a distance from the bag 100. The support post 110 extends generally alongside a back panel 114 of the bag 100, and the support post 110 is fixedly mounted to the bag 100 at the back panel 114. In accordance with known telescoping supports, the support post 110 includes sliding support members 116, 118 arranged in an overlapping fashion, and the sliding members 116, 118 include spring loaded pins (not shown) which engage apertures (not shown) to lock the support 110 in the extended position (FIG. 2). The towing handle system 102 is also positionable in a retracted position (not shown) wherein the support 110 is positioned within the body 104 adjacent the back panel 114. The handle assembly 112 includes a push button 120 which, among other things, releases the pins from the apertures in the post 120 and allows the telescoping members 116, 118 to telescope to the extended or retracted positions. The telescoping members 116, 118 may be fabricated from, for example, aluminum, according to a known process.

As also shown in FIG. 1, the telescoping support post 110 is curved away from a central axis 122 of the bag 100 such that the handle grip assembly 112 extends past the back panel 114 of the bag 100. Stated another way, the support post 110 extends in a curved or arcuate manner away from the body 104 of the bag 100 and toward a user intending to tow the bag 100 in the direction of arrow A. Consequently, the user may rather easily grip the handle assembly 112 and incline the bag upon the wheels 108 to a towing position wherein the wheels 108 roll along a supporting surface 124, such as, for example, a floor, a walkway, or the earth. By gripping the handle assembly 112 and exerting a relatively modest force thereon, the bag is maneuverable with little effort in nearly any desired direction along the surface 124.

As explained below, the handle grip assembly 112 includes a freely rotatable handle grip that spins about the axis of the support post 110 and thus allows free floating accommodation of changing positions of a user’s wrist as the bag is towed. The grip assembly 112 therefore naturally conforms to a pulling position of the users hand, without conscious action by the user. The grip assembly 112 is less complicated, easier to use, and provided at relatively low cost compared to known handle assemblies that are rotatable or pivotable to different towing positions for more comfortable and convenient positions for a user.

FIG. 2 is a perspective view of the handle grip assembly 112 and towing arm support 110. The support post 110 has a trapezoidal shaped profile or cross section, and in an exemplary embodiment includes a front face or surface 120, side faces or surfaces 122 extending rearwardly from and at an angle to the front face 120, and a rear face 124 extending opposite the front face 120 and interconnecting the side surfaces 120.

The handle grip assembly 112 is attached to an upper end 126 of the support post 110 in a known manner, such as with screw fasteners (not shown). The handle assembly 112 includes a connector housing 128 that is mounted to the support post 110, a lower grip housing 130, and a stationary grip housing 134. The lower housing 130 extends between the connector housing 128 and the stationary housing 134, and the lower housing 130 is rotatable about the longitudinal axis 136 of the handle assembly 112 and the support post 110 in the direction of arrows B and C. The upper housing 134, however, is mounted stationary to the support post 110 and the connector housing 128. A portion of the connector housing 128 is received within the support post 110, and the trapezoidal shape of the support post 110 prevents the connector housing 128 from rotating relative to the support post 110. However, while the support post 110 is trapezoidal in an exemplary embodiment, it is recognized that in alternative embodiments other cross sectional shapes and profiles may be employed in the support post 110.

The handle grip assembly 112 in an exemplary embodiment is rounded and shaped like a ball such that a user may comfortably grasp the lower housing 130 with his or her fingers while cradling the upper housing 134 with the palm of his or hand. The push button 120 is readily accessible at the top edge of the upper housing 130 and may be depressed, for example, with a user’s thumb to release the telescoping support 110 and move the support 110 between the extend and retracted positions relative to the bag 100 (FIG. 1).

FIG. 3 is an assembly view of the handle grip assembly 112 illustrating the connector housing 128, the lower housing 130, a bearing interface element 132, the upper housing 134, a pushbutton assembly 140, a connector plate 142, a coupler 144, and a support post release rcl 146.

The upper housing 134, also shown in FIG. 4, includes a shaped body 150 having a continuously curved contour and defining a first hand grip surface 152, an annular flange 153 formed with and inwardly spaced from the outer body 150, and a connector shaft 154 fixedly mounted to the outer body 150 and the annular flange 152. In an exemplary embodiment, the body 150 is spherically shaped, or more particularly semispherically shaped.

In an exemplary embodiment, the shaft is 154 is fabricated from metal and is overmolded with a known plastic or rubber material to form the body 150 and flange 153. The flange 153 extends downwardly from the outer body 150 beyond a lower edge 155 of the outer body 150. The lower edge 155 provides a first bearing surface 156 for engagement with the interface element 132, while the flange 153 positions the upper housing 134 with respect to the lower housing 130 and the interface element 132.

The connector shaft 154 is generally cylindrical and extends from each of the outer body 102 and the flange 153. The shaft 154 includes a squared end 158 which engages the connecting plate 142 when the grip assembly is assembled as further explained below. The shaft 154 further includes a central bore 159 extending end-to-end through the shaft 154 for reasons set forth below. An upper edge 160 of the upper housing 134 is flattened and defines a receptacle for the push button 120.

The lower housing 130, also shown in FIG. 5, includes an outer body 170 having a first portion 172 that
substantially continues the semispherical curvature of the upper housing 134, and a second portion 174 transitioning the first portion 172 to a substantially cylindrical shape at a lower end thereof. The first portion 172 defines a second hand grip surface 176, and finger grip areas 178 are provided between the first and second portion 172, 174. The first portion 172 and second portion 174 of the lower housing 130 collectively form a funnel shape. Further, when assembled, the lower housing 130 and the upper housing 134 collectively form a mushroom shape.

[0034] An annular flange 178 is formed with and is inwardly spaced from the outer body 170. The flange 178 extends upwardly from the outer body 170 beyond an upper edge 180 of the outer body 170. The upper edge 180 provides a second bearing surface 182 for engagement with the interface element 132, while the flange 178 positions the lower housing 130 with respect to the upper housing 134 and the interface element 132. In an exemplary embodiment, the lower housing 130 is fabricated from a known plastic or rubber material to form the body 170 and flange 178.

[0035] The bearing interface element 132, also shown in FIG. 6, is fabricated from a plastic material in an exemplary embodiment into a washer or bushing having a lower annular ring 190, a positioning flange 192 centrally located in the lower ring 190 and extending upwardly therefrom, and an inner rim 194 extending on an end of the positioning flange 192 opposite the lower ring 190. The inner rim 194 defines an opening 196, and the opening 196 extends through the bearing interface element 132 from the inner rim 194 to the lower ring 190. The lower ring 190 extends outwardly and away from the positioning flange 192 on one end while the inner flange extends inwardly toward a center of the bearing interface element 132 on the other end of the flange 192. The positioning flange 192 extends generally perpendicular to the lower ring 190. The inner ring 194 extends generally parallel to the lower ring 190.

[0036] The flange 192 is generally cylindrical in an exemplary embodiment, and has an inner diameter that is slightly larger than an outer diameter of the annular flange 178 of the lower housing 130. The lower ring 190 has an outer diameter that is substantially equal to an outer diameter of the first portion 172 of the lower housing 130 at the upper edge 180 thereof. Thus, when assembled, the positioning flange 192 of the bearing interface element 132 is fitted over the annular flange 178 of the lower housing 130, and the flange 192 and the annular flange 178 cooperatively maintain the interface element 132 in position relative to the lower housing 130.

[0037] The inner rim 194 of the bearing interface element 132 has an inner diameter that is slightly larger than an outer diameter of the annular flange 153 of the upper housing 134. Therefore, when the annular flange 153 is fitted into the inner rim 194 as the handle grip assembly 112 is assembled, and the flange 132 and the inner rim 194 cooperatively maintain the interface element 132 in position relative to the upper housing 134. A lower outer surface 198 includes a position rib or guide 200 extending therefrom that further secures and maintains the bearing interface element 132 in an operative position with respect to the lower housing 130.

[0038] Once assembled, the bearing interface element 132 is sandwiched between the upper housing 134 and the lower housing 132, and the lower surface 198 of the annular ring 190 engages the bearing surface 182 of the lower housing 130. Meanwhile, an upper surface 202 of the annular ring 190 engages the bearing surface 156 of the upper housing 134. Sliding engagement of annular ring 170 and/or the lower housing 130 with respect to the upper housing 134 is facilitated by the bearing surfaces 156, 182, and the lower housing 130 is freely rotatable and may spin about the axis 136 (FIG. 2) of the support post 110 as the hand of a user changes position when towing the bag 100 (FIG. 1).

[0039] In an exemplary embodiment, the bearing interface element 132 is not mechanically fixed to either of the upper or lower housings 134, 132, but is merely held in place geometrically by the configuration of the housing flanges 153, 178 and the shape of the interface element 132. Thus, the components may be rather easily stacked upon one another during assembly, simplifying the assembly and reducing manufacturing costs. In another embodiment, however, it is recognized that the interface element 132 could be fixed to one or the other of the upper and lower housings 134, 132 while still achieving the functional benefits of the grip assembly.

[0040] The connector housing 128 includes a body 210 having a first portion 212 that is generally cylindrical and extends adjacent the second portion 174 of the lower housing 130, and a second portion 214 that has a shape complementary to the profile of the support post 110 (e.g., trapezoidal in an exemplary embodiment) but at a reduced outer dimension. The reduced outer dimension of the second portion 214 permits the lower portion 214 to be inserted into the end 126 (FIG. 2) of the support post 110 until a rim or lip 216 buts the end 126 of the support post. Fasteners (not shown) such as screws may be used to secure the second portion 214 of the connector housing 128 to the support post 110.

[0041] One side of the second portion 214 of the connector housing 142 is open and defines a receptacle 218 (FIG. 8) that receives the squared end 158 of the connector shaft 154 when the handle grip assembly 112 is assembled. The connector plate 142, also shown in FIG. 7, includes an end wall 220 sized and dimensioned to close the receptacle 218 and to complete the shape of the connector housing second portion 214 when attached thereto. Retaining arms 222 extend substantially perpendicularly from the end wall 220 and define a U-shaped channel 224 therebetween. The arms 222 are extended into the receptacle 218 and receive notched portions of the squared end 158 of the connector shaft 154.

[0042] The squared end 158 of the connector shaft 154 and the U-shaped channel 224 of the connector plate 142 prevent rotation of the shaft 154 relative to the connector housing 128, as well as maintains the upper housing 134 in position relative to the lower housing 130 and the connector housing 132.

[0043] The push button assembly 140 includes the push button 120, an internal connecting rod 232 mounted to the push button 120, and biasing elements 232, 234. The connecting rod 230 extends through the bore 159 (FIG. 4) of the connector shaft 154 and through the receptacle 218 (FIG. 8) of the lower housing 128 to an exterior of the lower housing as shown in FIG. 8. An end of the internal connecting rod 230 includes a notch 236 that engages the internal connecting rod 230 to the coupler 144 (FIG. 3). The coupler 144 connects the internal connecting rod 230 to the support post release rod 140. The support post release rod 140 extends
within the support post 110 and operates to release the support post from a locked position, thereby enabling the support post 110 to be moved between the extended and retracted position.

Thus, when the push button 120 is depressed downwardly in the direction of arrow D (FIG. 8), the internal connecting rod 230 is displaced downwardly in the direction D. Because the internal connecting rod 230 is coupled to the support post release rod 146, the support post release rod 146 is also displaced, causing the support post to be released in a known manner.

In an exemplary embodiment, the internal connecting rod 230 and the support post release rod 146 are each fabricated from metal, although other high-strength materials may be used in alternative embodiments. The coupler 144 is fabricated from plastic in an exemplary embodiment, and is constructed to engage the ends of the internal connecting rod 236 and the support post release rod 146. Interference fit techniques, adhesives, fasteners (e.g., screws) and the like may be employed to securely retain the coupler 144 to the rods 236 and 146 and ensure reliable operation of the handle grip assembly 112.

The bias elements 232 and 234 are each helical compression springs in an exemplary embodiment, and the bias element 232 is seated within a first receptacle (not shown) formed at the top edge 160 of the upper housing 134, and has a circumferential dimension roughly equal to the circumference of the push button 120. The second bias element 234 is seated in a flange (not shown) formed within the receptacle of the upper housing 134, and has a circumferential dimension roughly equal to the internal connecting rod 130. When the handle grip assembly 112 is assembled, the bias elements 232 and 234 are compressed and produce a biasing force in the direction of arrow B (FIG. 8) against the pushbutton 120. Thus, the bias elements 232, 234 resiliently return the button 120 to its original position after being depressed in the direction of arrow D, and also move the internal connecting rod 230 back to its original position, causing the support post release rod 146 to return to a position wherein the support post 110 is locked in position.

While helical compression springs are illustrated in FIG. 3, it is understood that other biasing elements and mechanisms may be employed in alternative embodiments. Further, while two bias elements 232 and 234 are illustrated in FIG. 3, it is understood that greater or fewer bias elements could be provided in alternative embodiments.

The handle grip assembly 112 may be assembled as follows, referring to FIGS. 3 and 8. The bearing interface element 232 and the lower housing 130 are fitted over the connecting shaft 154 extending from the upper housing 134. The bearing interface element 132 is fitted over the annular flange 178 of the lower housing 130, and the flange 153 of the upper housing 134 is fitted within the inner rim 194 (FIG. 6) of the bearing interface element, and the bearing interface element 132 is sandwiched between the upper and lower housings 134, 132.

A washer 250 is placed over the end of the shaft 154 adjacent the second portion 174 of the lower housing 130, and the connector shaft 154 is inserted through the first portion 212 of the connector housing 108 such that squared end 158 of the shaft 154 is located within the receptacle 218 in the second portion 214 of the connector housing 128 as seen in FIG. 8.

The push button assembly 140 is assembled, and the internal connecting rod 230 is extended through the shaft 154 and through the receptacle 218 of the connector housing 128 as shown in FIG. 8. The coupler 144 is attached to the end of the connecting rod 230, either before or after the coupler 144 is connected to the support post release rod 146. The connector plate 142 is then attached to the connector housing 128 with the arm 222 of the connector plate engaging the squared end 158 of the shaft, thereby fixedly mounting the shaft 154 to the connector housing 148.

The support post release rod 146 is extended within the support post 110 (FIG. 2) and the second portion 214 of the connector housing 128 is fitted within the end 126 (FIG. 2) of the support post 110. The connector housing 128 may then be fixed to the support posts with screws or another known fastener or fastening mechanism.

A handle grip assembly 112 is therefore provided that is less complicated than known rotational handle assemblies and may be provided and assembled at a lower cost. Additionally, the grip assembly 112 is easy to use and is intuitive to most users, even for casual or infrequent users of the bag 100 (FIG. 1). Multiple locking positions and orientations of the grip assembly 112 are avoided, while the spinning movement of the lower housing 132 and associated handle grip comfortably accommodates varying positions of the user’s hand as the bag is being towed. Meanwhile, the stationary upper housing 134 and the associated handle grip provide a stable and sturdy handle construction that is easily grasped and towed by a user.

FIGS. 9-11 are perspective assembly views of a second embodiment of a handle grip assembly 300 that may be used with, for example, the support post 110 and the bag 100 (FIG. 1).

The handle grip assembly 300 includes a spherically shaped lower housing 302, a bearing interface element 304, a spherically shaped lower housing 306, and a connector housing 308. Separately provided handle grips 310, 312 are provided and fixedly mounted, adhered, or otherwise attached to the lower and upper housings 302, 306.

As shown in FIGS. 10 and 11, the bearing interface element 304 is a flat washer, and the washer provides a lower surface 305 that is flat and smooth to provide sliding engagement with an upper edge of the lower housing 302. Holes are provided in the interface element 304 through which screws 320 extend to fixedly mount the interface element 304 to the upper housing 306. A separate washer 322 and a nut 324 is provided to locate a bias element 326 with respect to the interface element 304. A connecting rod 330 is mounted to the pushbutton 120 and is in turn attached to a stop element 332. The stop element 332 includes a locating surface 334 that cooperates with a complementary surface 336 formed in the tube 110 to retain the grip assembly 300 in proper relation to the post 110.

A washer 340 is provided adjacent a lower end of the lower housing 304, and also provides a bearing surface for sliding engagement with the lower housing 302. The lower housing is therefore free to spin about an axis of the handle grip assembly, which is coincident with an axis of the support post 110 in an exemplary embodiment.

Except for the noted differences in construction, the handle assembly 300 operates similarly to and has the same advantages as the handle assembly 112.
While the embodiments described thus far include handle grip assemblies 112 and 300 attached to a single support post 110, it is anticipated that the concept of the spinnable lower housing and a stationary upper housing could be applied to a towable item having more than one support post. Additionally, it is contemplated that more than one handle grip assembly 112 could be applied to a towable item having more than one support post for two handed use, or for more than one person to push, pull and or maneuver a larger item. Additionally, while spherical or ball shaped handle grips are included in the illustrative embodiments, it is recognized that other shapes of the handle grips may be useful for various applications and towing items.

While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modifications within the spirit and scope of the claims.

What is claimed is:

1. A handle grip assembly comprising:
 a connector housing configured to connect to a support post;
 an upper housing mounted stationary to said connector housing; and
 a lower housing and handle grip extending between said connector and said upper housing, said lower housing freely rotatable relative to said upper housing.

2. A handle grip assembly in accordance with claim 1 further comprising a shaft fixedly mounted to said upper housing, said shaft extending through said lower housing, said lower housing rotatable about an axis of said shaft.

3. A handle grip assembly in accordance with claim 1 further comprising a shaft fixedly mounted to said upper housing, said shaft fixedly coupled to said connector housing.

4. A handle grip assembly in accordance with claim 1 further comprising a bearing interface element sandwiched between said upper and lower housing, said bearing interface element configured to allow relative movement of said lower housing with respect to said upper housing.

5. A handle grip assembly in accordance with claim 1 wherein each of said upper and lower housing comprises an annular flange and a bearing surface, said annular flanges extending toward one another and engaging a bearing interface element therebetween.

6. A handle grip assembly in accordance with claim 1 wherein said upper housing is substantially semi-spherical.

7. A handle grip assembly in accordance with claim 1 wherein said lower housing is funnel shaped.

8. A handle grip assembly in accordance with claim 1 wherein said upper and lower housing collectively define a mushroom shape.

9. A handle grip assembly in accordance with claim 1 further comprising a release button extending from said upper housing.

10. A handle grip assembly for a towable item comprising:
 a connector housing configured to connect to a support post;
 a shaft mounted in fixed relation to said connector housing;
 an upper housing mounted stationary to said connector, said upper housing having an outer surface, said outer surface being continuously curved; and
 a lower housing and handle grip extending between said upper housing and said connector, said lower housing configured to spin about an axis of said shaft.

11. A handle grip assembly in accordance with claim 10 wherein said upper housing is substantially semi-spherical.

12. A handle grip assembly in accordance with claim 10 wherein said upper housing comprises an annular flange spaced from said outer surface, said handle grip assembly further comprising an interface element received over said flange, said interface element comprising a bearing surface permitting movement of said lower housing with respect to said upper housing.

13. A handle grip assembly in accordance with claim 10 further comprising a bearing interface element, said bearing interface element comprising opposite bearing surfaces, one of said bearing surfaces comprising a flange co-operating with a respective one of said upper and lower housings to maintain a position of said bearing element with respect to said upper and lower housings.

14. A handle grip assembly in accordance with claim 10 wherein each of said upper and lower housing comprises an annular flange and a bearing surface, said annular flanges extending toward one another and engaging a bearing interface element therebetween.

15. A handle grip assembly in accordance with claim 10 wherein said upper housing is substantially semi-spherical.

16. A handle grip assembly in accordance with claim 10 wherein said lower housing is funnel shaped.

17. A handle grip assembly in accordance with claim 10 wherein said upper and lower housing collectively define a mushroom shape.

18. A towable baggage item comprising:
 a body defining a cavity to store articles;
 a support post coupled to said body; and
 a handle grip assembly coupled to said support post, said handle grip assembly comprising an upper housing mounted stationary to said support post; and
 a lower housing defining a handle grip located between said upper housing and said support post, said lower housing configured to spin about an axis of said support post relative to said upper housing.

19. A handle grip assembly in accordance with claim 18 wherein said upper housing is substantially semi-spherical.

20. A handle grip assembly in accordance with claim 18 wherein each of said upper and lower housing comprises an annular flange and a bearing surface, said annular flanges extending toward one another and engaging a bearing interface element therebetween.