04/0363:50 A 2 I 0K .0 O 0000

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
29 April 2004 (29.04.2004)

PCT

000 0 0 0

(10) International Publication Number

WO 2004/036350 A2

GO6F

(51) International Patent Classification’:

(21) International Application Number:
PCT/US2003/031261

(22) International Filing Date: 1 October 2003 (01.10.2003)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/271,050 16 October 2002 (16.10.2002) US

(71) Applicant: VORMETRIC, INC. [US/US]; 3131 Jay
Street, Santa Clara, CA 95054-3308 (US).

(72) Inventors: LO, Mingchen; 275 Ondina Drive, Fremont,
CA 94539 (US). NGUYEN, Tien; 10105 Stern Ave, Cu-
pertino, CA 95014 (US). PHAM, Duc; 10412 Menhart
Lane, Cupertino, CA 95014 (US). ZHANG, Pu; 6404 Mo-
jave Drive, San Jose, CA 95120 (US).

(74) Agent: ROSENBERG, Gerald; NewTechLaw, 285
Hamilton Avenue, Suite 520, Palo Alto, CA 94301 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE,
GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR,
KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK,
MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, UZ, VC, VN, YU, ZA, 7ZM, ZW.

(84) Designated States (regional): European patent (AT, BE,
BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU,
IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: SECURE FILE SYSTEM SERVER ARCHITECTURE AND METHODS

CLIENT USERS
A 20
f ~ 24
APPLICATION/ 3 A
DATABASE APPLICATIONS &
SERVER OPERATING SYSTEM \ 4 4 SERVER PLATFORM
SYSTEM SECURTY InTERPosER. 1 Nerwork FiLe | _ INDEPENDENT
4 ACCESS APPLIANCE " MANAGEMENT
22 FILE SYSTEM K NETWORK I/F
26 -~ \ 28
\
12
L5 Ome
PROTECTED — > PSEMR
LATFORMS
PERSISTENT DIRECT ATTACHED 14
STORAGE STORAGE —
16

(57) Abstract: A data server platform (14) includes a security file system layer (22) interposed between the platform operating
system kernel (24) and file system (26). The secure file system layer is structured to implement a file access control function that
selectively constrains data transfer operations initiated through the operating system kernel by an application program to transfer
file data through the file system with respect to a persistent data store (18). A file access controller (12), implemented independent
of the operating system kernel, is coupled to the security file system layer and supports the file access control function by defining
permitted file data transfers through the file system. Management of the file access controller separate from the data server platform
ensures that any security breach of the platform operating system kernel cannot compromise the function of the security file system

layer.

WO 2004/036350 PCT/US2003/031261

[0001] SECURE FILE SYSTEM SERVER
ARCHITECTURE AND METHODS

[0002] Inventors:
Duc Pham

Tien Le Nguyen

Pu Paul Zhang

Mingchen Lo
[0003] Background of the Invention
[0004] Field of the Invention:
[0005] ~ The present invention is generally related to systems and

methods of protecting persistently stored data from unauthorized access and
modification and, in particular, to a system and method of reliably securing
persistent data managed through a file system server operating in the role of

an application or database service provider platform.

[0006] Description of the Related Art:

[0007] Maintaining robust and verifiable security over persistently
stored data has and continues to be a primary requirement in the operation
of commercial, governmental, and essentially all other computing
environmenis. Achieving a desired high level of security, however, is not
commonly realized for a variety of reasons. With the fast-paced development
particularly of the Internet infrastructure, the diversity of network architectures,
infrastructure devices, and computer protocols has rapidly increased. Thus,

the number, variety, and complexity of computer systems and network

WO 2004/036350 PCT/US2003/031261

-2.

components that must be cooperatively managed to establish at least a
minimum uniform level of security within some defined domain has
correspondingly increased. The practical difficulties of coordinated
management of the different systems and components, as well as sysfémic
failures to protect against both known and previously unrecognized security
attack approaches, also coniribute to the vulnerabilities of systems and
networks to security breaches.

[0008] Conventionally, security protections for a given domain are
layered and specialized depending on the operational nature of corresponding
individual computer systems and network componenis. Typically, these
securily protections are implemented variously as password challenges and
data and connection filters layered over the core functionality of a computer
system or network component. The conventional implementation of security
functions in software in computer systems and network components implicitly
recognizes the inherent complexity of establishing robust security mechanisms
and the very practical need to frequently apply patches to close both previously
unrecognized and newly emergent vulnerabilities.

[0009] Different architectural approaches have been explored to
minimize the vulnerabilities of different security mechanisms to attack and,
ultimately, loss of security over persistently stored data. 'US Patent No.
5,007,082, issued on April 9, 1991 to Cummins, describes an early data
security system applicable to file data iransfers. Balancing the need for
security, transparency of use and compatibility, Cummins describes a
hardware specific, software-based encryption control system that interoperates
with the platform operating system at the basic 1/O system (BIOS) level. File
data transfer operations provided by the BIOS are selectively re-vectored to
compatible routines implementing encryption and decryption functions against

file level data. The described functions perform file-level encryption and

WO 2004/036350 PCT/US2003/031261

-3-

decryption. Consequently, full file reads and writes are required to support
application program read/write support. Compatibility further requires that
the relevant file data memory buffers must be maintained in an unencrypted
state to support dynamic read/write operations directed by executing
applications. |

[0010] US Patent No. 5,584,023, issued December 10, 1996 to Hsu
describes a similar, but more advanced software-based file-data encryption
system. An operating system kernel mode driver is used to re-vector selected
file data related operating system calls at the system call interface level. The
underlying operating system provided file-oriented system calls are wrapped
to support block-level encryption and decryption services, where the block size
is determined by the nominal operation of the operating system. File blocks
retrieved from encrypted files are generally maintained in an encrypted state
while managed by the operating system within the kernel space buffer cache.
The encryption and decryption algorithms utilize password key to select
encryption code tables defined against user related processes and initialized
with the invocation of an initial user process. Separate file atiribute tables,
populated frém data appended to the individual disk files, define the
encryption attributes of individual actively accessed files. The various code and
attribute tables are dynamically allocated and limit pointer references to
increase the difficulty in tracing the data structures and the corresponding
operation of the kernel mode driver.

[0011] A more involved, but similar encryption system is describéd in US
Patent No. 6,249,866, issued June 19, 2001 to Brundrett et al. An extensive
modification of ’rhé operating system is described to integrate both file and file
system encryption functions into a logically unified view of the underlying file
system space. Operating system calls to read and write data are evcul‘uon‘ed

on interception to determine if the calls are directed to an encrypted file system

WO 2004/036350 PCT/US2003/031261

-4 -

directory or file. System call file data transterred relative to an encryption
flagged directory or file is encrypted or decrypted utilizing a key associated
with'the target direciory or file utilizing a kernel mode driver layered above a
conventional file system, such as the NT file system (NTFS). The encryption
keys and encryption driver management systems are implemented as a
combination of operating system kernel functions and user-mode key
mcmugemen’r applications.

[0012] While these conventional security systems provide a significant
degree of security over persistent stored data, each fails to establish a
comprehensive securﬁy sysiem. Each of these systems remains particularly
vulnerable to basic Tro]o?‘n attacks for obtaining passwords and encryption
keys, thereby permitting complete conversion of the security systems to support
inappropriate access to and modification of the persistent stored data.
Furthermore, these systems provide no protection against the execution of
user-mode programs that may exploit vulnerabilities in the operating system
to gain unlimited root or administrator control over the operating system. An
intruder can then either directly circumvent the kernel password and encryption
mechanisms or breach the security of the password and encryption key
management systems to obtain the passwords and keys. In either case, the
infruder again obtains unencumbered access to the ostensibly secured
persistently stored data over the heightened encryption-based security
capabilities with little greater difficulty than exploiting the typically limited
security protections afforded by the operating system itself.

[0013] Ultimately, the security systems described by Cummins, Hsu, and
Brundrett et al. rely on the basic security subsystems of the local operating
system to prevent attack on the underlying encryption mechanisms. Where
utilized on systems that are part of an extended security domain, these and

similar systems also inherently rely on whatever cooperative management

WO 2004/036350 PCT/US2003/031261

-5.-

policies are enforced for the coordinated configuration of the required
password and encryption key management systems. Unintended errors and
perhaps more ftypically lapses in the consistent and comprehensive
management of the security mechanisms protecting the security domain only
increase the availability of operating system vulnerabilities that may be
exploited to penetrate the security domain and inappropriately permit access
to persistently stored data.

[0014] Consequently, there is a clear need for mechanisms to secure

persistent data that are ultimately reliable and cooperatively manageable.

[0015] , Summary of the Invention

[0016] Thus, a general purpose of the present invention is to provide
an efficient and effective mechanism for reliably securing persistent data in a
manner eminently subject fo cooperative management and control within a
security domain.

[0017] This is achieved in the present invention by providing, on a data
server platform, a security file system layer interposed between the platform
operating system kernel and file system. The secure file system layer is
structured to implement a file access control function that selectively constrains
data transfer operations initiated through the operd’ring system kernel by an
application program to transfer file data through the file system with respect
to a persistent data store. A file access controller, implemented independent
of the operating system kernel, is coupled to the security file system layer and
supports the file access control function by defining permitted file daia
transfers through the file system.

[0018] An advantage of the present invention is that the management

of the file access controller is separate from the data server platform. This

WO 2004/036350 PCT/US2003/031261

-6 -

ensures that any security breach of the platform, including specifically the
operating system kernel, does not and cannot compromise the essential
function of the security file system layer as supported by the independently
managed file access controller.

[0019] Another advantage of the present invention is that the security
file system layer permits a broad range of security information to be collected
and processed through the file access controller as a basis for determining
permissions for file accesses. Collection of authentication, authorization and
authenticity information can be efficiently performed by or through ’rhe.securify
file system layer. The independently secure evaluation of the collected
information ensures the secure function of the security file system layer in
selectively enabling file data access and modification.

[0020] A further advantage of the present invention is that minimal
platform modifications are required to ensure the security of persistent
platform accessible data. Implementation of the security file system layer is
consistent with the architectural model of conventional operating systems
supporting virtual file system support.

[002{1] Still another advantage of the present invention is that the secure
file system layer, in combination with the file access controller, provides a
comprehensive security envelope relative to persistent stored data accessible
through a protected computer platform. The security envelope includes identity
authentication, access authorization and application authenticity to ensure that
only well-identified users, subject to defined policy permissions can access
persistent stored data through certified applications. The integrity of the
persistent stored data is further preserved through data encryption subject to

dynamic tamper detection.

WO 2004/036350 PCT/US2003/031261

-7
[0022] Brief Description of the Drawings
[0023] These and other advantages and features of the present

invention will become better understood upon consideration of the following
detailed description of the invention when considered in connection with the
accompanying drawings, in which like reference numerals designate like parts
throughout the figures thereof, and wherein:

[0024] Figure 1 is a top-level block diagram illustrating the intended
operating environment of a preferred embodiment of the present invention;

[0025] Figure 2 is a detailed architectural block diagram of a preferred
implementation of the present invention;

[0026] Figure 3 is an architectural block diagram of a preferred, fixed
scale appliance embodiment of the present invention;

[0027] Figure 4 is a process flow diagram illustrating the deep packet
analysis processing provided in accordance with the present invention to
support authentication and access qualification of client file oriented network
requests directed to network storage resources;

[0028] Figure 5A provides a process interaction diagram showing the
interoperation of platform processes with a éecure file system layer executed
by a platform computer system;

[0029] Figure 58 illustrates the process flow integration of a preferred
embodiment of the present invention into the login and execution process
operations in accordance with a preferred embodiment of the present
invention. | .

[0030] Figure 6 provides a process interaction diagram illustrating the
preferred exposure of network storage resources providéd in a preferred
embodiment of the present invention to provide multiple qualified views of the

underlying file data;

WO 2004/036350 PCT/US2003/031261

-8-

[0031] Figure 7 is a software block diagram illustrating the preferred
components implementing network packet protocol processing in accordance
with a preferred embodiment of the present invention; .
[0032] Figures 8A-D illustrates the preferred decomposition of file data
through the network packet protocol processing implemented in accordance
with a preferred embodiment of the present invention;

[0033] Figure 9 is a software block diagram illustrating an extended
network packet protocol processing including firewall processing in
accordance with a preferred embodiment of the present invention;

[0034] - Figures 10A-B illustrafe the process flow of a file system read
request and response performed in accordance with a preferred embodiment
of the present invention;

[0035] Figures 11A-Billustrate the process flow of a file system file create
request performed in accordance with a preferred embodiment of the present
invention; and

[0036] Figures 12A-B illustrate the process flow of a file system write
request and response performed in accordance with a preferred embodimém‘

of the present invention.

[0037] Detailed Description of the Invention

[0038] The present invention utilizes and extends the operation of a
secure network file system appliance to establish a security envelope protecting
persistent stored data accessible through various computer system platforms.
An exemplary server platform protected environment 10 is shown in Figure 1.
A secure network file access appliance 12 is preferably implemented in the
environment 10 to support the sec‘ure operation of one or more computer

server platforms 14, 14' relative fo protected persistent storage resources 16,

WO 2004/036350 PCT/US2003/031261

9.

such as direct aftached storage 18. For purposes of the preferred
embodimens of the present invention, the computer system platforms 14, 14'
are database and application server platforms supporting local and remote
client systems and users 20. The secure network file system appliance is
integrated with the computer system plaiform 14 through a security interposer
layer 22 established between the operating system kernel 24 and a file system
26 through which data is transferred relative to direct attached storage 18.
[0039] The security interposer layer 22 selectively routes file oriented
data transfers between the operating system kernel 24 and file system 26
through the secure network file access appliance 12 to encrypt and decrypt the
file data stored to the protected persistent storage resources 16 subject to
access policies implemented within the secure network file access appliance
12. In accordance with the present invention, the file data encryption
maintains the logical file-oriented structure of the data and is thus transparent
to the persistent storage resources 16. Additionally, the secure network file
access appliance 12 can implement IP firewall functions, limiting potential
attacks on the security of the secure network file system appliance from the
computer server platforms 14, 14'.

[0040] Clients and users 20 are unaffected by the security support and
encryption functions of the secure network file access appliance 12, yet are
secured against unauthorized access of the encrypted content. Actively used
file data encryption keys are preferably held and managed within the secure
network file access appliance 12 essentially independent of the computer
server platform 14. A logically and preferably physically separate private
network interface 28 is supported by the secure network file access appliance
12 to control effectively single-point secure management over the secure
network file access appliance 12 by a centralized security management system.

Thus, the encryption keys utilized by the secure network file access appliance

WO 2004/036350 PCT/US2003/031261

- 10 -

12 are not accessible in usable form as a consequence of a security breach of
the computer system platform 14, direct attached storage 18, or client users
20.
[0041] Preferably, the secure network file access appliance 12 processes
file data read and write requests in aggregate at wire-speed and with minimal
latency in qualifying the access privileges of each read, write, and related file
access request, to selectively encrypt and decrypt file data transferred, and
further selectively compress and decompress the transferred file data. The
round-trip encryption of file data ensures that all protected data stored by
persistent storage resources 16, including the direct attached storage 18, are
secure both as fransferred and while statically stored. Round-trip compression
can substantially reduce the needed file data transfer bandwidth, particularly
where the transfers are for repeated mass archival backups.
[0042] The preferred structure 40 of a computer system platform 14 is
* shown in Figure 2. The platform 14 conventionally includes an operating
system kernel 42 supporting execution of applications, such as a database
management system (DBMS) 44 and other server applications 46, in a user
mode execution space. The operating system kernel 42 also preferably
supports execution of an authentication agent program 48 substantially, if not
completely, within a kernel mode execution space. A virtual file system switch
(VFS) 50 provides a conventional interface fo any number of different
conventional file systems (xFS) 52 as necessary to access conventional direct
attached storage 18 and, for example, storage devices 54 accessible through
a storage area network 56.
[0043] In a first preferred embodiment of the present invention, the
security inferposer layer 22 is implemented utilizing a secure network file
system (SNFS) 58 and a conventional network file system (NFS) client file
system daemon (NFSd) 62. The secure network file system 58 is preferably

WO 2004/036350 PCT/US2003/031261

11 -

based on a conventional network file system (NFS) implementation used to
route network file transfer requests and data through the secure network file
access appliance 12. The secure network file system 58 includes modifications
to enable collection of user, process and session information through an
interface 60 to the operating system kernel 42, in regard to specific network
file transfer requests, and to provide this information to the secure network file
access appliance 12 as a basis for determining whether to permit the
corresponding network file transfer fo proceed.

[0044] Network file data transfers permitted by the secure nefwork file
access appliance 12, including any associated transparently encrypted and
compressed data, are processed through the NFS daemon 62 and an
appropriate file .sys‘rem 52 as necessary to transfer data relative to the
persistent storage resources 16. Alternately, the secure network file access
appliance 12 may determine to route the network file request and data
through a network infros’rru‘c’rure, as generally represented by router 64, to
conventional network attached storage 66 operating as a network file system
client. Utilization of the conventional NFS profocols between the secure
network file access appliance 12 and at least the NFS client daemon 62
enables substantial flexibility in using direct attached storage 18, storage area
networks 56, and network attached storage 66.

[0045] For a second preferred embodiment of the present invention, the
necessary complexity of maintaining NFS protocol compliance and the
overhead of executing NFS client daemons 62 may be avoided by
implementing an RPC-based communications protocol between the security
interposer layer 22 and secure network file access appliance 12. While using
RPC-based messages functionally similar to the NFS protocol, the requirements
for formal NFS compadtibility are obviated and both server and client

communications functions can be merged info a single, concisely defined

WO 2004/036350 PCT/US2003/031261

-12 -

secure virtual file system layer (SVFS). In this embodiment, ‘the security
inferposer layer 22 again implemenis the interface 60 to the operating system
kernel 42 and supports any combination of an overlay inferface to a
conventional file system 52, a captive file system, generally equivalent to the
file system 52 though implemented as an internal component of the security
inferposer layer 22, and a direct interface to the direct attached storage 18 in
support of a file system externally implemented as part of the secure network
file access appliance 12.
[0046] Implementation of comprehensive access policy controls in the
secure network file access appliance 12, essentially independent though
additive to those of the computer system platform 14, enables centralized
secure file data access management. The access permissions and other
controls implemented by multiple computer system platforms 14, 14' and
potentially other network components implementing the persistent storage
resources 16 are difficult to globally maintain through additions and
reconfigurations of the various storage devices 18, 54, 64. The access policy
controls provided by the secure network file access appliance 12 are
significantly more comprehensive, flexible, and administratively uniform than
conventional access permissions supported by computer system platforms 14,
14,
[0047] Authentication controls are also supported by the secure network
file access appliance 12 as a complement to the access policy controls. For
the preferred embodiments of the present invention, the security interposer
layer 22 interoperates with the authentication agent program 48 installed and
executed on the computer system platforms 14, 14' to enable user and client
authentication, including authentication over user sessions and processes.
Specifically, the security interposer layer 22 supports a modified file system

interface, compatible with the virtual file system switch 50 as implemented by

WO 2004/036350 PCT/US2003/031261

-13-

the conventional operating system kernel 24, to provide selective
authentication processing of file system requests directed to the protected
persistent storage resources 16. Forthe preferred embodiments of the present
invention, the file system swiich interface security interposer layer 22 is
mounted through the file system switch 50 against the direciory nodes
representing protected persistent storage resources 16. Authentication logic
provided in the agent program 48, preferably executing in kernel space, is
called through the operating system kernel 42 in response to file system
operations directed against the security interposer layer 22. Through the
operating system kernel 24, the agent program 48 has access to user, client
process, application, and session information. Where attended user
authentication is required, the agent program 48 preferably interoperates
through the operating system kernel 42 to assert an authentication dialog for
a user 20. User responsive information can then be authenticated using
standard authentication controls, such as LDAP and o’rlher network available
authentication servers (not shown). Alternately, or in combination, the user
authentication response information can be transmitted fo the secure network
file access appliance 12 for security qualification.
[0048] Authentication of user applications 44, 46 executed within the
application execution space supported by the operating system kernel 42 is
'performed autonomously through the agent program 48. Preferably in
response to a first file system operation by a user 20 application, as received
by the security interposer layer 22, or on notice from the operating system 42
of the invocation of the user application, the agent program 48 generates a
secure hash identification of the loaded binary image of the user application.
This hash identifier and the application file atiributes are then transmitted to
the secure network file access appliance 12 for verification. An authentication

response is refurned to the agent program providing verification status. A

WO 2004/036350 PCT/US2003/031261

214 -

verification failure or other exception indicated by the secure network file
‘access appliance 12 preferably results in a disallowance of the requested file
system operation.

[0049] Unattended execution of applications by the computer system
platform 14, such as on booting of the platform 14, can also be supported
through the application authentication mechanism. Preferably, an application
launcher utility is scripted to execute on boot. Through application
authentication’ of the utility, the absence of attended user authentication
derived information is not treated as an exception by the secure network file
access appliance 12. The application launcher utility is then enabled to launch
a designated application.

[0050] The state of user and application authentication, in combination
with user session and associated process identifiers, is preferably maintained
by the agent program 48 or within the security interposer layer 22. In the
preferred embodiments of the present invention, this authentication
information and the digital signature of the agent program 48 are combined
and sent encrypted to the secure network file access appliance 12 with each
file s.ysfem request received by to the interposer layer 22. Where an NFS
communications protocol is utilized between the security interposer layer 22
and secure network file access appliance 12, the NFS packets are modified to
include the user and agent authentication information with the file system
requests. In the preferred embodiment, an NFS packet header field is
extended, preferably by redefinition of an existing field, to store and transfer
the user and agent authentication information. Additionally, periodic or
heartbeat status remote procedure call (RPC) packets are sent by the agent
program 48 to the secure network file access appliance 12 reflecting the
current state of the user and agent authentication information. Computer

system platform 14 changes relevant fo authentication, including specifically

WO 2004/036350 PCT/US2003/031261

-15-

terminations of processes and user sessions, are thereby rapidly noticed to the
secure network file access appliance 12.

[0051] A preferred, fixed scale, hardware platform 70 for the present
invention is shown in Figure 3. The platform 70 is preferably implemented on
a motherboard supporting the Intel® E7500 chipset 72, dual 2.2 GHz Intel®
Xeon™ processors 74 (Intel Corporation, Santa Clara, California;
www.intel.com), and a 1-Gbyte 200-MHz bouble Data Rate (DDR) main
memory array 76. The chipset 72 supports six PCI-X buses 78, individually
capable of over 8-Gbps throughput and an aggregate throughput of at least
24-Gbps. A basic configuration of two 1-Gbps network interface controllers
80, supporting ingress and egress network connections, and one .1 0/100
Mbps network interface controller 80, supporting the management network
connection 28, are connected to the PCI-X bus 78. A base configuration of
three HiFn™ 7851 security processors 82 (HiFn, Inc., Los Gatos, California;
www.hifn.com) provides hardware accelerated encrypﬁoln and compression
support for the generic data processing and control function of the processors
74. The security processors support symmetric programmable length block
encryption algorithms, including 3-DES, atthroughputs in excess of 400-Mbps
per chip and programmable length block compression algorithms, including
LZS, at throughputs in excess of 80MBps.

[0052] Other peripherals 84, including a BIOS program and boot hard
disk drive, are supported though the chipsé’r 72 to enable basic operation of
the hardware platform 70. Preferably, the hardware platform 70 boots and
runs a Linux™ based operating system, based on a commercial distribution of
Red Hat™ Linux (Red Hat, Inc., Raleigh, North Caroling; www.redhat.com).
The software-based authentication and access functions of the secure network

file access appliance 12 preferably load and execute in the Linux kernel space.

WO 2004/036350 PCT/US2003/031261

216 -

Administrative and support utilities are preferably implemented as user-mode
applications and daemons.

[0053] The logical control and protocol processing functions
implemented in the control programs executed on a hardware platform 70 for
a preferred embodiment of the present invention are shown in Figure 4.
Inbound file requests are received as network data packets containing the
various network file system messages implemented by a network distributed file
system, such as the network file system (NFS) , common internet file system
(CIFS), or whatever secure virtual file system (SVFS) protocol is implemented by
the security interposer layer 22. These network data packets are processed to
expose the control information 114 contained in the protocol layers of each
received data packet and the packet payload data 116 for examination and
processing. '

[0054] Additionally, application and status information is gathered by
an agent monitoring process 118 listening on a dedicated network port
connected to the computer system platforms 14, 14'. Client status information,
obtained from heartbeat network packets, is relayed to an authentication and
access control process 120. Continuity of a client heartbeat is used to
maintain a client authorization session. User authentication session
information, minimally reflecting that a user authentication sequence mediated
by the agent program 48 has completed successfully, can also be provided to
the authentication and access control process 120 within the heartbeat data
packets. Transmission of user authentication session information at checkpoint
intervals serves to protfect against conversion of any client process for the
execution of unauthorized applications. Where the authentication and access
control process 120 operates directly as an authentication server, user and
client identifiers and the user password acquired by the agent program 48 are

relayed through the agent monitor process 118. Authorization responses are

WO 2004/036350 PCT/US2003/031261

17 -

generated and returned by the authentication and access conrol process 120
based on the user and client authentication policy information maintained by
the authentication and access control process 120.

[0055] Figure 5A shows a configuration 130 of the computer system
platform 14 employing the second preferred embodiment of the security
interposer layer 22 where the secure virtual file system 132 effectively
combines the function of the secure network file system 58 and network file
system daemon 62. While the secure virtual file system 132 may also use the
NFS protocol for transferring file transfer requests and data with the network
file access appliance 12, the secure virtual file system 132 preferably
implements a non-sfqndards compliant RPC-based message transfer protocol
to obscure the information transferred between the computer system platform
14 and network file access appliance 12. A conventional interface fo the
virtual file system switch 50 is supported so that the secure virtual file system
132 appears to the switch 50 as an ordinary file system. The secure virtual file
system 132 implements the extended operating system kernel 42 interface 60
to support operation of the authentication agent program 48. The secure
virtual file system 132 also implements a conventional file system overlay
interface 134, permitting functional capture and utilization of conventional file
systems 52. Dedicated or proprietary file systems 136 may also be closely
coupled to the secure virtual file system 132.

[0056] For both computer system platform 14 configurations 40, 130,
user authentication enforcement is enabled by requiring a call to the agent
program 48 in connection with the initialization of a new user process 138.
As shown in Figure 58, following from the initialization of the new user process
151, the network file access appliance 12, through the secure virtual file
system 132, causes the agent program 48 fo present a session login 152 to

the user 20 associated with the client process 138. User authentication is

WO 2004/036350 PCT/US2003/031261

- 18-

performed directly by a user mode component of the agent program 48
through a conventional authentication service, such as LDAP, against a user
login and password. Alternately, user authentication can be direct through a
pluggable authentication module generally consistent with DCE/OSF-RFC 86.0
(Unified Login with Pluggable Authentication Modules (PAM);
www.opengroup.org/tech/rfc/rfc86.0.html). Upon authentication of the user
20, the agent program 48 initiates an authenticated user session 153 by
submitting an authenticated user identification along with the login process
identifier (LPID), user identifier (UID), and group identifier (GID) established by
and collected from the operating system kernel 42. This session idenification
inforﬁqoﬁon is submitted through 154 the secure virtual file system 132 to the
network file access appliance 12. A secure session key is then returned 155
to the agent program 48 for use in connection with subsequent file system
requests initiated from the authenticated client process 138.

[0057] An.oufhenﬁcoted user process 138 issues file requests to the
operating system kernel 42, which are then passed to the secure virtual file
system 132. A kernel mode portion of the agent program 48, operating in
conjunction with the secure virtual file system 132, determines the source
process identifier 142 for each file request 134, as received by the operating
system kernel 42, by accessing conventional operating system kernel 42
structures. The authenticated user session information maintained by the
agent program 48, located by the determined process identifier, is then
provided fo the secure virtual file system 132 for inclusion in the file transfer
requests processed through the network file access appliance 12.

[0058] Client processes 144 spawned from an authenticated process
138 remain part of the parent authenticated user session. The chain of parent
process identifiers is fraced 142 by the agent program 48 to associate file

reqbes’rs 146 from child processes 144 with corresponding authenticated user

WO 2004/036350 PCT/US2003/031261

-19 -

sessions. Preferably, to support access management at the level of individual
processes, both the authenticated user login parent process identifier (LPID)
and the current process identifier (PID) are provided to the modified network
layer for inclusion in the session and process corresponding file reduesfs
forwarded to the secure network file access appliance 12.

[0059] In a preferred embodiment of the present invention, the
authenticated user session information, including a session identifier generated
by the agent program 48, is encrypted using the session key as obtained
through a secure key exchange with the agent monitoring process 118. The
resulting extended NFS requests thus securely transports the session control
information, including at least a session identifier, user identifier, group
identifier, and process identifiers to the secure network file access appliance
12.

[0060] Preferably, the agent program 48 further supports authentication
of user applications 44, 46, particularly including login shell applications, as
loaded for execution in the authenticated user session processes 138, 144.
Digitally signed applications loaded for execution can be verified
conventionally by the agent program 48 against digital certificates ;)b’roined
from a trusted PKl-based, LDAP or other authentication server. Application
authentication information, such as the identity of the authentication server
and certificate, can be potentially included, by the secure virtual file system
132, with the session information provided with corresponding file requests to
support auditing of independently verified applications.

[0061] Autonomous application authentication by the agent program
48 is also supported through the secure network file access appliance 12. On
the loading of an application for execution in a processA 138, 144, the agent
program 48 is called and executes, through the operating system kernel 42,

to locate 148 the application binary image and retrieve the application file

WO 2004/036350 PCT/US2003/031261

- 920 -

attributes, including the application filename, path, permissions, and file size.
Acsecure hash signature is generated for the application binary. In a preferred
embodiment of the present invention, a 20-byte hash signature is generated
using Thel SHA-1 algorithm. An oppliccn‘ionc authentication request, containing
- the hash signature, file attributes and a secure application token, is then
passed to the secure network file access appliance 12 in an RPC directed to the
agent monitoring process 118. The secure application token preferably
includes a public key, of a public/private key pair stored by the secure network
file access appliance 12 or trusted third-party authentication server, an
application name, and a structure containing a secure hash signature of the
application binary image and the application file attributes encrypted with the
public key. The token is prior administratively generated through the secure
. network file access appliance 12 or other trusted application authenticator
against an administratively determined authentic application. The tokens for
authenticated applications are stored on or otherwise made accessible to the
computer system platforms 14, 14'. The application file name located for the
loaded binary image is used to further locate a corresponding token by the
agent program 48.
[0062] On presentation of an application authentication request, the
secure network file access appliance 12 compares the public key provided
within the token against known valid public keys prior administratively
registered with the secure network file access appliance 12. The decrypted
token hash signature and file attributes are verified against the hash signature -
and file attributes separately provided in the request by the agent program 48
and a return RPC communicates the verification status to the agent program
48. Where the loaded application fails authentication, the corresponding

application process 138, 144 can be terminated. Alternately, subsequently

WO 2004/036350 PCT/US2003/031261

-21 -

received network file system requests 140, 146 from an Unauiﬁorized
application can be ignored or refused by the secure virtual file system 132.
[0063] Periodically, the agent program 48 may regenerate and resubmit
156 user session and application authentication requests to the secure network
file access appliance 12. Alternately, or in oddi’rion, the secure network file
access appliance 12 may direct the agent program 48 to regenerate and
resubmit 157 application authentication information for specific user sessions.
Thus, within an otherwise authenticated user session, the application
authentication provisions of the present invention can enforce explicit and
functional limitations on user process execution to a well defined set of
authenticated applications.

[0064] Referring again to Figure 4, packet control information 114 and
application information 122, exposed by packet processing 112 and as
received from the agent monitoring process 118, is provided to the
authentication and access control process 120 for each network file data
packet received by the secure network file access appliance 12. Preferably, the
authentication and access control process 120 includes a policy store
representing the administratively determined, functionally supported operations
of the secure network file access appliance 12. The polices are preferably
stored in a high-performance hash table permitting a policy lookup against the
information 114, 122 as presented fo the authentication and access control
process 120. Audit logs of the file requests, as well as error logs and logs of
refused operaﬁéns are produced by the authentication and access control
process 120.

[0065] Policy sets applicable to a received network file packet can be
progressively discriminated based on any of the data provided in the packet
control information 114. In particular, IP layer data provides source and

destination IPs, permitting specific access constrains to be defined against

WO 2004/036350 PCT/US2003/031261

_22.

defined clients, individually or by subnets. The standard NFS/CIFS layer data
provides the requesting user UID and GID, as well as the fully qualified file or
directory reference, including generally a mount point, file system path, and
applicable file name. The application information 122 layer identifies the user
session and provides the execution and parent process identifiers. Where
utilized, the application information 122 layer also provides the application
name and signature. Successful discrimination of the policy sets against the
provided information 114, 122 enables and qualifies the processing of

network file packets transported relative to the persistent storage resources 16.

[0066] Preferably, the handling of the various possible types of policy
set discrimination failures is defined by the policy setfs. Discrimination failures
will typically include user authorization failures and unauthorized application
execution attempts, unauthorized source IP addresses, and improper file
references due to unavailability of the referenced file or lack of adequate user,
group or file permissions. Depending on the nature of the failure, the
discrimination failure handling defined by the policy sets will direct the
production of detailed audit and error log eniries.and immediate issuance of
administrative alarms, including potentially the automated generation of email
and voice messages. The policy se’r'discrimina’rion failure handling preferably
further defines the type and content of any NFS/CIFS network file error data
packets generated by of the NFS/CIFS state machine 124 and returned to a
computer system platform 14, 14",

[0067] In accordance with the present invention, the progressive
discrimination of the policy sets also determines the active application of
encryption and compression to the packet payload data 116. For inbound
network file data packets from computer system platforms 14, 14!, any

combination of data provided in the control information 114, 122 can be

WO 2004/036350 PCT/US2003/031261

-23.

utilized as a signature identifying whether the packet payload data is to be
encrypted against a particular encryption key and compressed using a
particular compression algorithm. A preferred basic policy set essentially
defines the combinations of source IPs, user ideritifiers, and group identifiers
permitied access through the mount point and, further, a default encryption
key to be used, particularly for file creation. Multiple policy sets can be
applicable to the same mount point, differing in the specification of source IPs,
user identifiers, and group identifiers or by specification of additional control
information, such as the path specification and file-type extension for the
network file identified in the request. The policy sets are administratively
managed to ensure that unique combinations of the provided control
information resolve to distinct policy sets. Where path specification
information is utilized to establish the scope of other wise matching policy sets,
a best maich of the path specification, file name, and file extension is
preferably used to discriminate the default applicability of data encryption and
compression.

[0068] Network file packets returned from persistent storage resources
16 are similarly processed 112 to expose the packet control information 114
and permit a combination of data to be considered in determining whether
accompanying packet payload data requires decompression and decryption.
While, in accordance with the present invention, encrypted network data
packets returned from the persistent storage resources 16 can be presumed
secure, examination of the control information 114 through authentication and
access processing 120 enables an appropriate authentication of the source
and sequence of the returned ‘network file packets.

[0069] Preferably, packet payload data presented to the sécure network
file access appliance 12 and determined to be encrypted or compressed is

processed info a sequence of logical access blocks (LABs) through an

WO 2004/036350 PCT/US2003/031261

- 24 -

encryption and compression process 126. As part of the encryption and
compression process 126, each logical access block is, in accordance with one
preferred embodiment of the present invention, marked with at least an
indirect identifier of the applicable éncryp’rion key and compression algorithm.
Thus, while the decompression and decryption status of outbound network
data packets may be suggested by a source directory specification, the
applicable encryption key and compression algori’rhm is determined based on
the encryption and compression identifiers associated with the logical access
blocks. Decryption and decompression of the logical access blocks are,
therefore, not essentially dependent on the directory specification or other
independently alterable aspects of the network file.

[0070] Discrimination of applicable policy sets is, in accordance with the
preferred embodiments of the present invention, expanded through the
support by the secure network file access appliance 12 of multiple, inbound
virtual mount points for various persistent storage resources 16. As shown in
Figure 6, multiple virtualized mount points /dev/hd_a, /dev/hd_b, /dev/hd c,
and /dev/td_d may be predefined administratively in the configuration of the
secure network file access appliance 12 for the benefit of applications 162,
164 executed by the computer system platforms 14, 14'. These virtual mount
points are independently associu’red through a defined mapping with the
same, as by alias, or separate real mount points supported by various real
storage resources 166, 168. Computer system platform 14 requests to mount
any of the virtual mount point represented storage resources 166, 168 can be
qualified and constrained by policy sets that, at a minimum, serve to validate
the existence of the virtual mount point.

[0071] In accordance with the present invention, the virtual mount points
further expand the ability to discriminate applicable access policy sets for the

different applications 162, 164 executed by the computer system platform 14.

WO 2004/036350 PCT/US2003/031261

L

The control information 114 provided with each file request directed to the
secure network file access appliance 12 identifies a file request corresponding
target mount point. In accordance with the preferred embodiments of the
present invention, the authentication and access control process’1 20 logically

selects an applicable policy set based on the identified virtual mount point.
The further constraints represented by the selected policy set are conculrren’rly
used to determine how the network file data packet is to be processed. For

example, otherwise authorized applications 162, 164 accessing the storage
resource 166 through the /dev/hd_a virtual mount point may be cc;nsirqined

to read-only file data transactions. The separate policy set associated with the
/dev/hd_b virtual mount point may support read-write access by only a well
defined set of UIDs, further constrained to file data requests originating from

a defined subnetwork.

[0072] 'As another example, read-write access of the storage resources

166 by the application 164, administratively limited to providing backup

services, may be specially supported through the virtual mount point
/dev/hd_c. Preferably, the policy set associated with the mount point
/dev/hd_c preferably enables read-write access to the storage resources 166
though specifically disallowing decryption of exis’ring encrypted files. The
policy set for the virtual mount point /dev/td_d, in complementary fashion,

provides for the encryption and compression of unencrypted files read from the

storage resources 166 for writing to the archival storage resources 168. The
/dev/td_d policy set symmetrically limits the decryption of files read from the
archival storage resources 168 to those encrypted by the backup application
164. Consequently, a user with limited backup access rights can fully

administer the backup and restore of files without breach of the secure storage
of previously encrypted files. Thus, distinguishing policy sets based on

virtualized mount points provides an extensive degree of flexibility in managing

WO 2004/036350 PCT/US2003/031261

-26 -

the access rights of the applications 162, 164 executed on behalf of a
community of clients and users 20.

[0073] Network file packets permitted or refused by operation of the
authentication and access control process 120 are signaled to an NFS/CIFS
state machine 124, as shown in. Figure 4. The sequences of network file
packets representing select file data transactions, including specifically
NFS/CIFS transactions, are tracked by the NFS/CIFS state machine 124, in
accordance with the present invention, fo support the selective encryption and
compression of NFS/CIFS network packet transferred file data and manage the
attendant changes in the size and structure of network files as stored by the
persis’;en’r storage resources 16. Mount and unmount request RPCs are
essentially atomic operations between the computer system platforms 14, 14’
and the secure network file access appliance 12. On receipt of a mount
request, access is optionally determined by the authentication and access
control process 120 based on the applicable policy set and a determination
that the underlying network storage resource 16 identified with the
corresponding real mount point is available. An RPC response acknowledging
the success or failure o‘f the mount or unmount request is then returned.
[0074] The NFS/CIFS state machine 124 tracks the state of each
NFS/CIFS transaction processed through the secure network file access
appliance 12. The principle NFS/CIFS transactions tracked include Read,
Write, and Create. All other NFS/CIFS defined transactions (generically
Requests) are also fracked by the NFS/CIFS state machine 124. The Read
transaction, following from an inbound read request for file data defined by
an offset and range, involves building a corresponding read request with the
read offset adjusted back to an encryption and compression block boundary
and the range adjusted to allow for the encryption and compression of the file

data through to the end of a block boundary. The next states include issuing

WO 2004/036350 PCT/US2003/031261

-927 .

the read request to the persistent storage resources 16, receiving a responsive
series of network read file data packets, and processing, as needed, to decrypt
and decompress the received packet payload data. The final read transaction
states include extracting the read file data for the originally requested offset
and range and building and returning one or more network file data packets
with the read file data.
[0075] An NFS/CIFS Write transaction requires a read/modify/write
operation where existing stored file data is encrypted or compressed. A write
transaction includes receiving a write request, building a lock request with a
write lock offset adjusted back to an encryption and compression block
boundary and the range adjusted to allow for the encryption and compression
of the file data through to the end of a block boundary. The next transaction
states include issuing a read request for any initial and final partial file-data
page including the adjusted write offset and range terminus, decrypting,
decompressing and modifying the read data page to include the
corresponding parts of the file write data as received from the client,
encrypting and, as appropriate, compressing the file write data, and building
and issuing correspondiﬁg write requests to the storage resources 166. The
final write states include building and sending an unlock request to the storage
resources 166 and building and sending a write requesf reply to the client.
[0076] NFS/CIFS Requests, such as get and set atfributes, get access
permissions, and make directory, ‘ore generally atomic fransactions managed
by the secure network file access appliance 12 to support infrastructure
compatibility with the storage resources 166. Request transactions involve
receiving a client request and building and sending a corresponding request
1o the storage resources 166. Upon receipt of a request response from the
storage resources 166, adjustments are made for the reported file size and

other affributes of the network file as stored on the storage resources 166

WO 2004/036350 PCT/US2003/031261

.28 -

depending on the particular request involved in the transaction. A
corresponding request response is then constructed and sent to the client.
[0077] An NFS/CIFS Create transaction involves receiviné a file create
request, constructing a file management header for the new file, and building
and sending a corresponding request to the storage resources 166. Upon
receipt of a request response from the storage resources 166, a corresponding
request response is again constructed and sent to the client. _

[0078] Figure 7 provides a block diagram and flow representation of
the software architecture 170 utilized in a preferred embodiment of the present
invention. While the preferred embodiment utilizes separate ingress and
egress network interfaces to the computer system platforms 14, 14", the two
interfaces can share a single network interface adapter, provided the total
bidirectional file transfer bandwidth is within the capabilities of the adapter.
For either case, inbound network communications are processed through a
first network interface 172. Network file data packets representing file transfer
requests origindﬁng from applications 44, 46 are processed 174 to expose
and deliver the network control information 114 for authentication processing
176. Application control information 122 collected from corresponding agent
applications 48 are provided through an agent interface 178 in support of the
authentication processing 176.

[0079] Based on interactions with a policy parser 180, selected elements
of the network and application control information 114, 122 are compared
with authentication parameters maintained in a policy data store 182. The
policy parser 180 preferably implements decision tree logic to determine the
level of authentication required for processing the network file request
represented by the network file ‘don‘o packet received and whether that level of

authentication has been met.

WO 2004/036350 PCT/US2003/031261

-929 .

[0080] The network and application control information 114, 122 is
also processed 184 to determine whether the authorized user is permitted
access to the corresponding persistent storage resources 16. The policy
processor 180 and policy data store 182 operate to determine whether the
access atiributes provided with the network file request are appropriate to
enable access fo the specific persistent storage resources 16 identified by the
network file request.

[0081] While logically separate operations, the authentication and
access processing 176, 184 are preferably performed concurrently. In a
preferred embodiment of the present invention, a basic decision tree logic
sequence considers the logical combination of network file operation
requested, virtual mount point, target directory and file specification, user UID
and GID, and the client/user session and process identifiers. Also considered
is application authentication data provided with the network file request and
as prior provided by the agent program 48 and the continuity state of the client
session as periodically reported by the agent interface 178. Additional state
data accumulated in relation fo the nature, timing, and frequency of network
file access requests is considered. This state data is accumulated by the secure
network file access appliance 12 to support static time scheduling and quota
controls over file access requests as well as dynamic traffic shaping of the file
access operations processed through the secure network file access appliance
12. The accumulated state data also permits dynamic detection of patterns in
file access requests that threshold qualify as intrusion attempts or other
circumstances worrom‘iné issuance of an administrative alarm. The decision
tree evaluation considers prior sequences of file access requests and thereby
qualifies the permitted support of a current network file access request.
[0082] Policy data is administratively established to define the set of

virtual mount points and the mapping of virtual mount points fo real mount

WO 2004/036350 PCT/US2003/031261

-30-

points. The policy data can also variously define whether application
authentication is to be enforced as a prerequisite for session execution or
operative response by the secure network file access appliance 12, a limited,
permitted set of authenticated digital signatures of execution or response
enabled applications, whether user session authentication extends to spawned
processes or processes with a different UID or GID, and other data that can
be used to match or otherwise discriminate, in operation of the policy parser
180, against the control information 114, 122. This administratively
established policy data is logically accessed from the policy store 182 by the
policy parser 180 in the evaluation of the network and application control
information 114, 122. For the preferred embodiments of the present
invention, the decision tree logic and policy data are stored in a hash table
permitting rapid evaluation of the network and application control information
114,122.

[0083] The network and application control information 114, 122, as
well as the determined results of the authorization and access processing 176,
184 are control inputs to an NFS/CIFS state machine process 186. Non-file
data messages, including various NFS/CIFS request and reply messages
involved in the read, write, and create NFS/CIFS transaction sequences, are
prepared and forwarded 188, 190 directly from the state machine process
186 to the inbound network interface 172 and an outbound network interface
192. Policy data needed to support the generation of network file request and
reply data packets, such as virtual to real mount point mapping data, is
accessed from the policy data store 182 as needed.

[0084] Where file data is included in a network file data packet inbound
from an application 44, 46, the packet payload data 116 is processed 194
into a sequence of logical access blocks (LABs), provided the network file data

packet is qualified through access processing 184 for encryption or

WO 2004/036350 PCT/US2003/031261

-31-

compression. The packet payload data 116 of unqualified network file datq
packets are processed 194 unchanged info network data packets and
provided fo the network interface 192 for transmission through the security
interposer 22 to the persistent storage resources 16.

[0085] As represented in Figure 84, the packet payload data of network
file data packets corresponds to read and written portions of a file 220
recognized by a file system 26. Individual packet payload data 222, generally
as shown in Figure 88, is preferably pr;>cessed 194 into a sequence of logical
access blocks 224, , as shown in Figure 8C with each logical access block
containing a corresponding portion of the packet payload data 222. In an
initial embodiment of the present invention, the file management header 226
is virtualized for all files associated with a real mount point and locally stored
by the hardware platform 70 effectively as part of the policy data held by the
policy store ‘1 82. The applicable file management header is retrieved as part
of the policy set applicable to the requested virtual mount point. The
preferred embodiments of the present invention provide for the creation of a
file management header 226 in connection with each Create file NFS/CIFS
iransaction. In one embodiment, the file management header 226 is created
and written fo the persistent storage resources 16 effectively as the first file
data block as part of the creation of the file 220 on the persistent storage
resources 16. One or more logical access blocks 224 can thereafter be
appended to the file as created on the persistent storage resources 16 and,
subsequently, read and written in random order. Alternately, to optimize the
storage and refrieval of data with respect to the persistent storage resources
16, individual or subsets of logical access blocks 224 and the file management
header 226 can be written to separate I/O pages within the same or different
file spaces and storage devices. In either case, in accordance with the present

invention, qualified file data reads and writes directed to the persistent storage

WO 2004/036350 PCT/US2003/031261

-392.

resources 16 are performed as discrete, logical access block-aligned transfers
encompassing the offset and range of a client network file data request.
[0086] The file management header 226 and logical access blocks 224
are repackaged in network file data packets as otherwise ordinary blocks of
file data for transport to the persistent storage resources 16. The encryption
and/or compression of network file data by secure network file access
appliance 12 is thus entirely transparent to the reading and writing of relative
to the persistent storage resources 16 by operation of the present invention.
[0087] A preferred structure of the file management header 226 is
shown in Figure 8D and further detailed in Table | below. Preferably, the file
management header 226 includes a unique file GUID 228, security parameter
index (SPI) 230, and a security signature 232. The file GUID 228 is preferably
a SHA-1-based secure hash of data related to the file, such as the user UID,
and file creation time fo provide a 160-bit unique random identifier for the file.
The security parameter index 230 is preferably a composite of security
information including an encryption key identifier (Key) 234, a security options
array (Idx) 236, and file related information (Info) 238.

[0088] The encryption key identifier 234 is preferably an encrypted
representation of the encryption key name utilized to encrypt the file data
contained in the logical access blocks of the file 220. Encryption key
name/key value pairs are utilized by the secure network file access appliance
12 are administratively defined and stored in the policy data store 182. When,
as a product of access processing 184, an encryption key is associated with a
new file, the corresponding encryption key name is securely digested, again
preferably using the SHA-1 algorithm, and stored in the key identifier field 234
of the file management header 226.

[0089] The security parameter index 230 may optionally also include a

linked list storing, in encrypted form, the encryption key value for the file 220.

WO 2004/036350 PCT/US2003/031261

.33 -

Each entry in the linked list includes a public key, encrypted key value tuple.
The public key corresponds to a trusted encryption key agent server and the
encrypted key value is encrypted with the public key of the agent. On retrieval
of the network file data by a different secure network file access appliance 12!,
the public key identified agent server can be used to recover the encrypted key
value. Providing support for multiple independent agent servers ensures that

the encrypted key value can always be recovered.

[0090]

Table |
Management Header Structure

Struct MGT_BLOCK { :
U32 File_ GUID[5]; // 160-bit unique random GUID for File
U32 Mgt _Hdr_Ver; // 32-bit version identifier for this structure

U32 Size Mgt_Blk; // Size of the management block structure
U32 Options[]; // Option include
© // --IntegrityMode: to compare digital
signatures
//.--OutOfBand: out-of-band meta-data
used
// --CypherName: encryption algorithm 1D
// --ComprName: compression algorithm 1D
// --UserEncryption: Key GUID is a user key
// --GroupEncryption: Key GUID is a group
key
// --HaveKeys: has list of agent encrypted
keys
U32 Key GUIDI5]; // 160-bit GUID for Key, generated by

// SHA-1(KeyName)
U32 Creator GUID[5]; // 160-bit GUID identfifying the file creator
BYTE Init_Vector[8)]; // Initial seed value for LAB encryption;
// encryption seeds are a function of
// Init Vector + LAB Offset
U32 Paddingl];
U32 CRC; // To verify management header block
integrity
BYTE Signature[128]; // Signature, signed with PrivKey for

WO 2004/036350 PCT/US2003/031261

-34-

Table |
Management Header Struciure

// PublicKey Verify Pre-computed.

// Signs only static part of the structure o

// avoid overhead on each file under the
same

// volume/policy. CRC is signed as the last
port

// so that changing to any part of the whole

// block is detected. '

*Key Table // Linked list of Public Key, agent encrypted
// LAB Symmetric Key tuples

[0091] The security options array 236 provides an indexed list of the
security functions applied to the logical access blocks 224 associated with file
management header 226. These options preferably include identifiers of the
whether encryption is used and the applicable encrYp’rion algorithm, whether
compression is used and the applicable compression algorithm, whether the
encryption key name lookup should be user or group based, whether an agent
encrypted key list is present, and whether tamper detection through digital
signature checking is fo be enforced. The file related information 238 fields
provide storage for various other information, such as a GUID corresponding
to the file creator.

[0092] Finally, the security signature 232 provides storage for a cyclic
redundancy check (CRC) value and digital signature. The CRC value is
preferably computed over the binary value of the preceding portions of the file
management header 226 to permit block integrity checking. The digital
signature is computed for the preceding portions of the file management
header 226 including the CRC field to enable detection of tampering with any

portion of the file management header 226.

WO 2004/036350 PCT/US2003/031261

-35.

[0093] A preferred in-band structure of logical access blocks 224 is also
shown in Figure 8D. The primary fields of a logical access block 224 include
a LAB data field 240, a LAB signature field 242, and an optional LAB
compression header 244. The LAB data field 240 contains an encrypted
and/or compressed portion of the packet payload data 222. The size of the
LAB data field 240 is nominally set as a multiple of a natural or convenient
block size recognized by the file system 26 and further chosen for block
encryption algorithm efficiency.

[0094] In accordance with the present invention, segmentation of the
packet payload data 222 into the logical access blocks 224 enables
reasonably sized blocks of file data o be encrypted and compressed as atomic
units. Smaller segments sizes are preferred for obtaining relatively efficient
random read/write operations directed to the file 220 as stored by random
access devices within the persistent storage resources 16. Larger segment sizes
are preferred for lower processing overhead, greater encryption and
compression efficiency, and where the target device within the network strange
resources 16 is a streaming access device, such as a conventional tape drive.
Preferably, the packet payload data 222 segment size has a block modulo of
eight bytes with a minimum size of 512 bytes and a nominally preferred size
of 1024 bytes for random access devices. For sireaming access devices, larger
block sizes on the order of 8096 bytes may be preferred.

[0095] Where the last segment of the packet payload data 222 is less
than the nominally preferred segment size, a smaller block size is used. This
smaller block size is chosen to be the largest modulo eight byte block size that
is the same or smaller than the size of the last segment. All but at most seven
bytes of the last segment are then block encrypted. Any remaining segment

bytes are then XORed with a mask value generated by the encryption of an

WO 2004/036350 PCT/US2003/031261

-36 -

eight-byte length, zero-value string and then appended to the block encrypted
portion of the last segment.

[0096] The LAB cémpression header 242, preferably included only
where the packet payload segment held by the logical access block 224 is
compressed, includes fields specifying the offset and range of the file data
contained within the LAB data field 240. Dependent on the underlying data
values and the stream compression algorithm applied, the segment length or
range of the packet payload data 222 stored in the LAB data field 240 is
variable. The segment length is manipulated to obtain compressed data that
closely approaches the preferred LAB data field size. Padding is provided to
reach a modulo eight-byte encryption block compatible size. At a minimum,
the range value identifies the actual compressed data carried in a completed
logical access block 224.

[0097] The LAB signature 244 is preferably computed as a secure digest
of the LAB data field 240 and, where present, the LAB compression header
242. In the preferred embodiments of the present invention, an SHA-1
algorithm is used to create the LAB signature 244. The security of each logical
access block 244, when reirieved to the secure network file access appliance
12, can be assured against fampering by recomputing the secure digest of the
LAB data field 240, including any LAB compression header 242, and
comparing against the LAB signature 244. For a preferred variant of the
present invention, network file data is stored as logical access blocks 224
containing only unencrypted, uncompressed LAB data 240 and LAB signatures
244. While the efficiency of random access over network file data is
maintained, modifications pofentially due to improper tampering with the
contents of the network file are nonetheless detectable on an individual logical
access block 224 level. The conventional necessity of reading the entire

network file to compute a secure digest to detect tampering is not required.

WO 2004/036350 PCT/US2003/031261

_37.

[0098] In an alternate embodiment of the present invention, an error
correction trailer 246 is provided fo store an ECC value computed over the
LAB data field 240, any LAB compression header 242 and the LAB signature
244. ECC values are computed on creation of the logical access blocks 244.
Upon retrieval of logical access blocks 244, the ECC value is used to correct
bit errors that may occur as a consequence of extended network infrastructure
transport of the logical access blocks 244. In particular, bit errors may be
introduced by network routers operating at the TCP layer and above. Such
infrastructure induced bit errors are otherwise detected from the LAB signature
244, but are then indistinguishable from data tampering. Use of the error
correction field 246 serves to independently protect the integrity of the logical
access blocks 244. ‘

[0099] The file management header 226 and the headers 244 and
trailers 242, 246 of the logical access blocks 244 may be included in-band,
or in-file, as generally represented in Figure 8D, as part of the file 220 as
ultimately stored by the persistent storage resources 16. Different in-band
layouts can also be used to optimize access to the logical access block data
240. The file management header 226, digital signatures 242, and
compression headers 244 can be collected into one or more in-band super
blocks. The size of these super blocks and the remaining logical access block
data 240 can be sized to optimize /O performance of the persistent storage
resources 16. '
[0100] Alternately, and potentially preferred, only the logical access
block data.240 is stored by the persistent storage resources 16 in-band as the

. network file 220. The file meta-data, including the management header 226
and the headers 244 and trailers 242, 246, corresponding to a network file
220 are stored in a separate, meta-data or shadow file. Any parallel storage

structure that maintains the relationship between the shadow file and the in-

WO 2004/036350 PCT/US2003/031261

-38.

band network file 220 may be used. The shadow files can be created and
stored on the network resources 16 within the same storage space as the
network files 220, within a different storage space potentially physically remote
from the network files 220, or on the platform 70 provided the parallel
- association of the shadow files with the network files 220 is maintained. For
example, shadow files can be stored in the same directory with the counterpart
network files 220 and identified by file names that are a defined permutation
of the network file 220 file names. The shadow files can alternately be stored
in a parallel directory structure diverging from a defined root or relative root
node of the persistent storage resources 16. In either case, the defined
relationship between the shadow files and the corresponding network files 220
is determined and known to the secure network file access appliance 12, which
can ensure the parallel reading and writing of the shadow files with
corresponding reading and writing of the network files 220.
[0101] Referring again to Figure 7, the packet to LAB processing 194
preferably utilizes, as required, the hardware accelerators 62 to perform
encryption 196 and compression 198 over the segments of packet payload
data 222. The logical access blocks 224, \, together containing the packet
payload data 222 of a network file data packet, are then collected into a new
network file data packet and passed to the network interface 192 for transport
to the networks storage resources 16.
[0102] Network file data packets received through the network interface
192 are similarly processed 200 to expose and deliver the network control
information 114 for authentication and access processing 176, 184 and
logical access blocks 224, | contained in the packet payload daia to a logical
access block fo packet data process 202. The provision for authentication and
access processing 176, 184 permits even distributed, potentially client-based

network storage devices fo be equally secured and made accessible as other

WO 2004/036350 PCT/US2003/031261

-39.

persistent storage resources 16. In the preferred embodiments of the present
invention, minimal authentication and access processing 176, 184 is
performed for network file data packets received from dedicated persistent
storage resources 16.

[0103] The logical access blocks 224]‘_N received in the packet payload
data are processed 202 to apply error correction, where the error correction
field 246 is present, and validate the integrity of the LAB data fields 240,
including the LAB compression headers 244 if present, against the digital
signature 242 values. The file management header 226 is read, typically in
advance, by the NFS/CIFS state machine process 186 to obtain the encryption
key identifier from the field 234 and compression algorithm identity, if
applicable from the options index field 236. The LAB data fields 240 are then
decompressed 204, if applicable, and decrypted 206. The NFS/CIFS state
machine process 186, based on fhe pending inbound file data read request
transaction, identifies an offset and range-selected portion of the combined
logical access block 224, , data representing client read requested data. The
selected data is then incorporated into a network file data packet and provided
to the network interface 172 for transport o the transaction identified
application 44, 46.

[0104] For the preferred embodiments of the present invention, an
administration interface 208 provides access to and configuration of the policy
parser 180 and policy data store 182. A network communications interface
210 provides access to the administration interface 208 independent of the
inbound and outbound network interfaces 172, 192.

[0105] The software architecture 170 is preferably extended, as shown
in Figure 9, to provide additional security appliance-oriented features. The
extended architecture 250 includes IP filter layers 252, 254 implementing

firewall-type filiering for network connections made through the network

WO 2004/036350 PCT/US2003/031261

- 40 -

interfaces 172, 192. Afilter rules store 256 preferably maintains iptables-type
specifications that define the IP addresses, network protocols, and internet
ports permitted o pass network packets through the IP filter layers 252, 254.
Preferably, the IP filter layers 252, 254, and particularly the inbound IP filter
layer 252, is set to reject all connections except those pertaining to network file
access operations, including the NFS, CIFS, RPC, and mount protocols. These
network file data packets passed by the IP filter layers 252, 254 are directed
for packet/LAB processing 258 as performed by the software architecture 170.
Unauthorized connection attempts and access requests lacking adequate
policy-based permissions are therefore preferentially received, detected, and
audited by the software architecture 170.

[0106] The flexible analysis capabilities of the authentication and access
controls 176, 184 and policy parser 180, particularly based on access to the
full set of control information 114, 122, allows a more refined identification
of potential abuse patterns and a wider variety of remedial actions, including
dynamically blocking specific source IPs, logging detailed information, and
issuing real-time administrative alerts. The security and reporting sirength of
the firewall filters 252, 254 is appropriate for handling connection attempts
unrelated to the primary functions of the secure network file access appliance
12. The firewall filters 252, 254 may also be utilized to proxy selected network
data packets, including potentially network file data packets, through the
secure network file access appliance 12, utilizing a bypass route 260. In the
case of VPN 42 and network file access appliance 12' designated source IP
addresses and protocols can be identified and approlprio’rely bypassed 260.
[0107] For the fixed scale, hardware platform 70, the firewall filters 252,
254 are preferably implemented through the kernel execution of the operating
system iptables module by the main processors 54. On the scalable hardware

platform 80, the firewall filter layers 252, 254 are preferably implemented on

WO 2004/036350 PCT/US2003/031261

-471 -
the ingress and egress processors 86, 88, with the bypass routed network
packets being passed directly between the ingress and egress processors 86,
88. The filter rules maintained in the filter rules store 256 are administered
through the administration interface 208.
[0708] An NFS/CIFS read transaction 270, structured in accordance
with a preferred embodiment of the present invention, is shown grophicall} in
Figure TOA. A read target file, consisting of a file management header 226
and a sequence of logical access blocks 224, , exists on the persistent
storage resources 16. In general, an inbound read request identifies an offset
and range of data fo read 272. Outbound read requests are issued to read
274, 276 the file management header 226 and an encompassing, block-
aligned sequence of logical access blocks 224, . The read request 276
retrieves the requested logical access blocks 224, y in a series of one or more
network file data packets, which are then processed to complete the inbound
read request by returning one or more network file data packets containing the
read request data 272.
[0109] The specific processing 280 associated with an NFS/CIFS read
transaction 270 is shown in Figure 10B. The secure network file access
appliance 12, on receiving a firewall-filtered file data read request, exposes
282 and parses 284 the network control information 114 against the policy
rules and data 182, 184. A policy compliance failure is reported 286 by
return issuance of an NFS/CIFS appropriate reply network data packet.
[0110] Where the read request complies with the defined policy
requirements, the file related access control information is optionally read 288
from the persistent storage resources 16 to confirm existence of the file and
evaluate applicable read data permissions. Where the permissions check is
performed and fails, nonexistence of the file or inadequate permissions are -

reported 286 without issuing the read file request to the persistent storage

WO 2004/036350 PCT/US2003/031261

- 49

resources 16. The file meta-data, including the file management header 226
for the request target file, is also read 288 from the network storage resource
16. A block-aligned logical access block offset 290 and range 292 are
determined and used to create and issue an outbound read request directed
to the persistent storage resources 16. The read data offset is adjusted to
account for the size of the file management header 226 as stored at the
beginning of the file. Where the logical access blocks 224, , contain
compressed data, file data reads of the LAB compression headers 244 may be
required to determine adjustments to both the read data offset and an
encompassing read request range. |

[0111] As the requested logical access blocks 224, , are received 294,
error correction is applied 296, depending on whether the LAB ECC field 246
is present, decrypted 298 utilizing the key associated with the key name
determined from the key identifier field 234 of the file management header
226, and decompressed 300, depending on whether the file management
header 226 includes the compression option and identifies a corrésponding
algorithm. The LAB digital signatures 242 are used to check the integrity of the
retrieved file data. A failure of the integrity check for any of the logiéul access
blocks 224, x may result in a re-reading of some or all of the logical access
blocks 224, y, to protect against soft-errors, with persistent errors being
ultimately reported by the return issuance of an NFS/CIFS appropriate error
network data packet. Preferably, both soft and persistent errors are logged by
the secure network file access appliance 12. Persistent errors, recognized
through the operation of the NFS/CIFS state machine processing 186 of the
inbound read request, are further preferably asserted against the policy parser
180 for evaluation and subsequently issued 302 as a tampering alert message
through the administrative interface 208. Finally, as file data is received and

processed in response to the outbound read request, the file data identified in

WO 2004/036350 PCT/US2003/031261

- 43 -

the inbound read request is assembled 304 into one or more reply network file
dat packets and returned.

[0112] An NFS/CIFS create file transaction 310, as shown graphically
in Figure 114, preferably operates to create a new file containing a new file
management header 226. As further detailed in Figure 118, a create file
request process 320 initially exposes 322 and parses 324 the network control
information 114, with any policy compliance failures resulting in the return
issuance of an NFS/CIFS appropriate reply network data packet. Provided the
file create request complies with the defined policy requirements, directory
information is op’rionally‘ read 328 from the persistent storage resources 16 to
obtain the target file creation permissions. Where the permissions check is
performed and fails, non-existence of the target directory and inadequate
permissions are reported 326 without asserting a create file request to the
persistent storage resources 16.

[0113] A file management header 226 is then created 330. Through
operation of the NFS/CIFS state machine processing 186, the policy parser
180, based on the stored values provided from the policy data store 182,
generates and provides the necessary values for the security parameter index
230. In particular, the policy parser 180 preferably associates encryption keys
and compression choices against directory specifications, including mount
points. Thus, the target location of the file to be created is u.’rilized‘fo determine
whether encryption and compression are to be applied and the applicable key
and algorithms forimplementation. A secure identifier based on the key name
and compression and compression algorithm identifiers are computed and
stored in the new file management header 226 along with computed CRC and
signature values.

[0114] The NFS/CIFS state machine 186 next provides for the creation

and issuance 332 of an NFS/CIFS create file request fo the persistent storage

WO 2004/036350 PCT/US2003/031261

- 44 -

resources 16 utilizing the directory specification provided by the inbound create
file request. For in-band storage of the file manqgerﬁenf header 226, an
NFS/CIFS file write request, con’faining the file management header 226, is
1Hen created and issued 334 fo the persistent storage resources 16. Where a
shadow meta-data file is designated for use, an NFS/CIFS file create and write
requests, the latter containing the file management header 226, are created
and issued 334 to the persistent storage resources 16 to create the shadow
file. Finally, an NFS/CIFS appropriate create file reply network data packet is
returned to the client.

[0115] An NFS/CIFS write transaction 340, structured in accordance
with a preferred embodiment of the present invention, is shown graphically in
Figure 12A. The write of file data to an existing file in the persistent storage |
resources 16 uses a read, modify, write procedure. An inbound write data
request specifies an offset and range of write data 342 that is provided in a
transaction sequence of one or more network file data packets. In most
instances, the write request data will be unaligned to the logical access blocks
224, \ existing in the stored file. The file management header 226 and any
partially overlapped logical access blocks 224,, 224, are preemptively read
344,346, 348, permitting the overlapped logical access blocks 224,, 224, to
be decrypted and decompressed as required. An overlay of the inbound write
data 342 with the block-aligned read data is then performed. The resulting
block-aligned write data is then processed into logical access blocks 224, 4
and written 350 in a write transaction sequence of one or more network file
data packets to the persistent storage resources 16.

[0116] The preferred process 360 of performing an NFS/CIFS write
request transaction is shown in Figure 12B. The received write file data request
is received and processed 362 to expose the network control information 114.

This information is then parsed 364 against the established policies 180, 182,

WO 2004/036350 PCT/US2003/031261

- 45 -

with any compliance failures being reported 386. The network control
information 114 is then further processed 368 to identify the target file stored
by the persistent storage resources 16, create and issue read requests to obtain
the file meta-data, including the file management header 226. The logical
access block offset and range are then determined 370, 372, adjusting as
needed for the presence of the file management header 226 and compression
of the logical access block 224 contained data. A file lock is asserted against
the range logical access blocks 224, . The initial and terminal logical access
blocks 224,, 224, are read 374 from the persistent storage resources 16,
corrected 376 if the LAB ECC field 246 is present, decrypted 378, and
decompressed 380, as needed. Integrity failure errors are reported 382. Data
from the terminal logical access blocks 224, 224, are merged 384 with the
write data 342 and the combined data is resegmented 386, compressed 388
as appropriate, and encrypted 390. As applicable, LAB ECC values are
computed and added 392 to the assembled 394 series of Iogicdl access blocks
224, x. As the logical access blocks 224, 4 are assembled, one or more write
network file data packets are constructed and sent to the persistent storage
resources 16. Once the writing the logical access blocks 224, , has
completed, the file lock is released.

[0117] 4 Thus, a secure file system server and methods of efficiently and
reliably securing persistently stored data accessible through the file system
sever has been described. In view of the above description of the preferred
embodiments of the present invention, many modifications and variations of
the disclosed embodiments will be readily appreciated by those of skill in the
art. It is therefore to be understood that, within the scope of the appended
claims, the invention may be practiced otherwise than as specifically described

above.

WO 2004/036350 PCT/US2003/031261

O 0 00 N O s Wy -

N med emd ed) ed ema) e eed e e
O VW 00 N O O A W N -

a ~ W N

- 46 -

Claims

1. A secure server platform providing profected access to persistent data,
said secure server platform comprising:

a) a persistent data store supporting storage of predetermined
files;

b) a computer server system, including an operating system
kernel supporting execution of an application program with respect to a user,
a first file system layer, responsive to predetermined data transfer operations
managed by said operating system kernel relative to said application program
to transfer file data with respect to said persistent data store, and a second file
system layer inferposed between said operating system kernel and said first file
system layer, said second file system layer establishing a file access control
function selectively constraining said predetermined data transfer operations;
and -

c) a file access controller coupled to said second file system layer
to support said file access control function, wherein said file access controller
implements an access policy list establishing a predetermined correlation
between said user and said predetermined files determinative of permitted
ones of said predetermined data transfer operations, and wherein said access
policy list is maintained within said file access controller independent of said

computer server system.

2. The secure server platform of Claim 1 wherein said second file system
layer includes an operating system inferface coupled to said operating system
kernel to enable collection of authorization information. with respect to said
user and session information with respect to said application program and

wherein said file access control function, in response to said predetermined

WO 2004/036350

AOWON

—

O Vv 0O N o s W N

- 47 -

data transfer operations, selectively provides said authorization and session

information to said file access controller.

3. The secure server platform of Claim 2 wherein said authorization
information includes a secure identification of said user and said session
information includes a session key identifying the session, established by said

operating system kernel, within which said application program executes.

4, A secure server system, supporting application access to file data
persié’renﬂy maintained in a file data store, said secure server system
comprising:

a) a cryptographic data processor, responsive to session data, operative
to encrypt and decrypt file data streams dependent on encryption keys, said
cryptographic data processor including an encryption key store; and

b) a computer system, coupled to said cryptographic data processor,
includ.ing an operating system kernel and a file system responsive to file data
requests provided by said operating system kernel with respect to a
predetermined file data store,

soid file system being operative to route, with respect to a
predetermined file data request, a file data stream through said cryptographic
data processor, said file system identifying predetermined session data with
said predetermined file data request to selectively enable the encryption and
decryption of said file data stream, and wherein said encryption key store is

secure against access through said file system.

5. The secure server system of Claim 4 wherein said cryptographic data
processor includes first and second access interfaces, said first access interface

being coupled to said file system and said second access interface providing

PCT/US2003/031261

WO 2004/036350

—_

O 0V 0 N o AW N

AWM

PCT/US2003/031261

.48 -

management access to said encryption key store independent of said first

access interface.

6. The secure server system of Claim 5 wherein said first access interface

provides for the bidirectional transfer of file data streams.

7. A method of securing the transfer of persistently stored data between
a computer system and a persistent data store, wherein said computer system
includes a processor supporting the execution of an operating system kernel
and a file system fo transfer data with respect to said persistent data store, said
method comprising the steps of: .

a) associating session information with data transfer requests provided
from said operating system kernel;

b) providing said session information and said data transfer requests
to an independent security processor system to determine permitted data
ﬂ’onsfer operations; and

c) routing, between said operaﬁng'sysiem and said file system, the

persistently stored data corresponding to said permitted data transfer

operations exclusively through said independent security processor system.

8. The method of Claim 7 further comprising the step of acquiring said

session information through said operating system kernel.

9. The method of Claim 8 further comprising the step of decrypting, by
said independent security processor system, persistently stored data retrieved
through said file system, said step of decrypting utilizing decryption keys

identified only by reference by said data transfer requests.

WO 2004/036350

AowWON

© N0 00 N U A WN -

B T S U T S
O N O O A WN -

PCT/US2003/031261

- 49 -
10. The method of Claim 9 wherein said step of decrypting includes
retrieving a predetermined decryption key in correspondence with a
predetermined data transfer request, wherein said predetermined decryption

key is retrieved independent of said computer system.

11. The method of Claim 10 wherein, in performance of said step of
decrypting, said predetermined encryption key is held by said independent

security processor system inaccessible from said computer system

12. A method of securing persistently stored file data stored by a persistent
storage device and accessible through a computer server system including a
processor, an operating syé’rem executable by said processor including an
operating system kernel providing a first file system interface and a second file
system interface to said persistent storage device, said method comprising the
steps of:

a) coupling an independently operating encryption processor

“supporting the transparent encryption and decryption of persistent file data to

said computer server system through a defined communications channel;

b) associating session information obtained through said operating
system kernel with a predetermined persistent file data transfer request
identifying predetermined persistent file data; ‘

c) providing said predetermined persistent file data transfer request and
said session information fo said independently operating encryption processor
’rhrough said defined communications channel; and

d) routing said predetermined persistent file data as transferred between
said first and second file system interfaces through said independently

operating encryption processor.

WO 2004/036350 PCT/US2003/031261

- 50 -

—T

13. The method of Claim 12 further comprising the step of maintaining
inaccessible, by said independently operating encryption processor from said
computer server system through said defined communications channel, an

encryption key associated with said predetermined persistent file data transfer

O =~ W N

request.

1 14, The method of Claim 13 further comprising the step of determining, by
2 said independently operating encryption processor, said encryption key from

3 said predetermined persistent file data transfer request.

1 15, The method of Claim 14 wherein said step of determining
predetermines the access authorization of said predetermined persistent file

data transfer request with respect to said session information and an access

bhowWON

policy store maintained by said independently operating encryption proceséor.

16. The method of Claim 15 wherein said step of maintaining further

—

maintains inaccessible, by said independently operating encryption processor

from said computer server system through said defined communications

AW N

channel, said access policy store.

—

17. The method of Claim 16 wherein said step of maintaining inaccessible
prevents access to said encryption key and said access policy store through

said defined communications channel independent of a security breach of said

AW N

computer server system.

1 18. Acomputer system implementing a server architecture enforcing secure
2 authentication and access control to file data, said computer system

3 comprising:

WO 2004/036350 PCT/US2003/031261

O NV 0O N o O A

11

13
14
15
16
17

— c NN I O

G A W N

-51-

a) a first processor system, coupled to said persistent file data store,
including a server memory area and a server processor providing for the
execution of an operating system within said server memory, wherein said
operating system includes an operating system kernel, having a kernel data
access inferface, a filesystem switch, supporting routing of file data requests
provided from said operating system kernel, and a security interposer layer
coupled to said kernel data access interface and said filesystem switch, said
securify‘ interposer layer being responsive to received file data requests to
associate session information obtained from said operating system kernel with
said file data requests; and

b) a second processor system coupled fo said security interposer layer
and responsive to said session information as associated with said file data

requests to selectively enable said file data requests relative to the transfer of

file data in response to said file data requests.

19. The computer system of Claim 18 wherein said second processor
system includes a security processor providing for the execution of a control
program that implements an access policy list enabling said security processor
to identify, based on said session information, permitted ones of said file data
requests, wherein said second processor system interoperates with said security

interposer layer to enable said permitted ones of said file data requests.

20. The computer system of Claim 19 wherein said control program further
implements an authorization control list and wherein said second processor
system inferoperates with said securily interposer layer fo enable the execution
of a predetermined application program within said server memory area by

said server processor.

WO 2004/036350 PCT/US2003/031261

.59 .

1 21. The computer system of Claim 20 wherein said security interposer layer
presents a file system interface to said filesystem switch and wherein said

security interposer layer is coupled to said filesystem switch as the exclusive

WM

route path for predetermined file data requests.

1 22. Thecomputer sysfem of Claim 21 wherein said security inferposer layer
2 is coupled to said filesystem switch as the exclusive route path for said file data

3 requests received by said filesystem switch.

1 23. The computer system of Claim 20 wherein said security interposer layer

2 utilizes an RPC-protocol to communicate with said second processor system.

1 24. The computer system of Claim 23 wherein said security interposer layer

2 utilizes an NFS protocol to communicate with said second processor system.

1 25. The computer system of Claim 18 wherein said security interposer layer
2 provides for the transfer routing of file data through said second processor
3 systemand wherein said second processor system includes a security processor
4 operative to decrypt file data transferred through said second processor
5

system.

1 26. The computer system of Claim 25 wherein file data is bidirectionally
2 transferred between said security interposer layer and said second processor

3 system.

1 27. The computer system of Claim 26 wherein said second processor
2 system stores an encryption key for use by said security processor in decrypting

3 file data, wherein said security interposer layer provides a reference to said

WO 2004/036350

o R WwN

G A W N

AOWON

-53.

encryption key determined from said session information fo said second
processor system, and wherein second processor system maintains said

encryption key independent of said security interposer layer.

28. The computer system of Claim 27 wherein said security processor
provides for the execution of a control program that implements an access
policy list enabling said security processor to identify, based on said session
information, permitted ones of said file data requests, wherein said second
processor system interoperates with said security interposer layer to enable

said permitted ones of said file data requests.

29. The computer system of Claim 28 wherein said control program further
implements an authorization control list and wherein said second processor
system interoperates with said security inferposer layer to enable the execution
of a predetermined application program within said server memory area by

said server processor.

30. The computer system of Claim 29 wherein said security interposer layer
presents a file system interface to said filesystem switch and wherein said
security interposer layer is coupled to said filesystem switch as the exclusive

route path for predetermined file data requests.

31. The computer system of Claim 30 wherein said security interposer layer
is coupled to said filesystem switch as the exclusive route path for said file data

requests received by said filesystem switch.

32. The computer system of Claim 31 wherein said security interposer layer

utilizes an RPC-protocol to communicate with said second processor system.

PCT/US2003/031261

WO 2004/036350 PCT/US2003/031261

-54 -

1 33. . Thecomputer system of Claim 32 wherein said security interposer layer

2 utilizes an NFS protocol to communicate with said second processor system.

PCT/US2003/031261

WO 2004/036350
1/11
CLIENT USERS
A 20
- N 24
APPLICATION/ Y A |
DATABASE APPLICATIONS & i |
SERVER OPERATING SYSTEM | SERVER PLATFORM
SYSTEM NETWORK FILE INDEPENDENT
// SECURITY INTERPOSER 1 ACCESS APPLIANCE 1> MANAGEMENT
22 FILE SYSTEM I I NETWOZR; VE
26 “ T K e
\. J 1 2
?4 : |5 OmHRR
<l A L5 SERviR
PROTECTED ———— PLATFORMS
PERSISTENT DIRECT ATTACHED 10 14"
STORAGE \/ —. o
16 Fig. 1
18
84 — OTHER PERIPHERALS
¢ <——>‘ Nic1 I(—>
o \
° 80
(PUT f—> .5 - [
SYSTEM
e — NicN |1—>
7 4/‘/ CONTROL J€—> A
\ HuB
(PU2 j€—> —> H/W AL 1
@
78 ° K 82
. [
70 2|
>< |[{€—» H/W AcceL. N
M MEMORY S
k76

WO 2004/036350 PCT/US2003/031261

2m

USEr
CONNECTIONS

20

FIG. 2

P Mre b BN N S B G G S M S S e —— —

40
SERVER :
: NETWORK FILE
SYSTEM N ' ’ ACCESS APPLIANCE
PLATFORM :

.........................

N o o e e e e s e e

L e] e —— — — — — o — — ————

DIRECT ATTACHED
STORAGE

STORAGE AREA
NETWORK

16

PCT/US2003/031261

WO 2004/036350

3m

oLl

ENLD
YYOMLIN

SA1D/S4N

¥ Ol

gLl
gel 2 omssnoyg 3
NOISSI4dW0)
3 zo%“szm «— VIV QVOTAVY
130vd
% 44"
3
SIINVY
) 9NISSD08d
MWW AIS |, - 4| movgang [MOMN
S41/SIN S4D/S4N
< dl
dl VLl
3y S
wwg O¢l 2|)dY 8Ll
9013 — SIAS/SAD/SAN 3
o] «—— sy 9NISS0¥d SLINVY
"WavTy NOULYIILNIHLNY A/ NOLLYDIddY 40LINOW HOMLIN
‘llany 7 1NF9y INT9y
/ NNF
SLYLS INIIT)/ HINY ¥3SN

WO 2004/036350

PCT/US2003/031261

\/\v 4
CLENT
PROCESS 1
138 A CLIENT
: PROCESS 2
140
42 OPERATING SYSTEM KERNEL 130
— Y ¥
VIRTUAL FILE SYSTEM SWITCH 50 0SIF g0
<> NETwoRk FILe
SECURE VIRTUAL FILE SYSTEM 132 ACCESS APPLIANGE
FILE SYSTEM OVERLAY INTERFACE {34 {
— DEDICATED 12
XFS FILE SYSTEM
52 136 [: 5;
SS——
DIRECT ATTACHED
STORAGE
APPLICATION A APPLICATION B
= " FIG. 6
[DEV/HD_A - [DEV/HD B — /DEV/HD_C E_' /DEV/TD D
FILE Accs '
CONTROLLER
{
12 160

166 168

DIRECT ATTACHED
STORAGE

NETWORK
ARCHIVE

I((G

WO 2004/036350 PCT/US2003/031261

SN

INBOUND FILE DATA PACKETS

!

NETWORK COMMUNICATIONS INTERFACE 1
A A
l \ 172

Deep PACKET | 174
PROCESSOR

‘ AGENT 178
188 — l " e
f\ p| AUTHENTIGTION) 180

170 i ConTROL . A~
l \176) PoLicy
FlG . 7 | ‘ — > PARSER E |
Access CONTROL € p
> o
184 186
NFS/CIFS/SVFS {
1 TRANSACTION j&— 182
DECRYPTOR € PROCESSOR
‘ T AKX
g LAB To T
206 PACKET | ADMIN
Y
DE PROCESSOR —+ INTERFACE
COMPRESSOR <> L g COMPRESSOR {
PACKET To 190 208
\ S T LAB | Stos | [
204 202
[PROCESSOR NET Comm I/F 3
DEEP PACKET «€—»| ENCRYPTOR Z JRY
PROCESSOR 210
X Q \196
200 194
Y

NETWORK COMMUNICATIONS INTERFACE 2

I \
192
\

QuTBOUND FILE DATA PACKETS

PCT/US2003/031261

WO 2004/036350

6/11

ag "ol

J9 'Ol

d9Q "Old

V@ ‘Ol

ove cve ove 1444 ¢ec 8€¢ 9eC ¥Ee 8¢c
R R X S S S R
91§ ¥avaH ‘91§ 04N | Xai E) |
Vv
03 8v1 910 AV aavi avl see) 7114 TG aing 114
~ea, - .\ ~, ~. \l\
.I.I.I.I.I \.\ N 0€c
T~ i RN . .
Sl .\. > ~. !
N-1 — N 101g e oo € Mo1g ¢ Dog [Mo1g Y30v3IH INIWIIYNYIN
vee SS100Y 1907 $§320¢ V21907 $$300y 11907 $SY 21907 1
A / T v s R
\ / S NN, \ 1 a 9¢e
./. \. ~ .o .//../ .. .~ \.\
(S SNV s
¢cc ™ viv(Q aQvoiavd L3vd
e . —.
e S /-
T ~—— /.
0¢ce el \
J . — .
114 -

WO 2004/036350 PCT/US2003/031261

m
NETwork Comm. I/F 1
I \ 172
FIREWALL FILTER L—~_ 252
A A
180
A~
f i PoLicy
PARSER
182
| ‘ Vad
PACKET/LAP NFS/CIFS oLy
ProTOCOL l—————>1 TRANSACTION &> STORE
PROCESSORS PROCESSOR
186
Y
FILTER RULES
STORE «
e \ \ 256
260 258
' ADMIN
v INTERFACE
FIREWALL FILTER \
208
I 1\
254 NEeT Comm I/F 3
NETWORK Comm. I/F 2 T
- I 210
192

250 FIG. 9

WO 2004/036350 PCT/US2003/031261

8/11
READ 274
276 A s
R ' d
0 A"~ FIG. 10A
I e L
L \
| . [
l T] [« | ‘\230
LAB £y LAB, LABp LAB y |

NFS ReAD

REQUEST
RepoRT PoLicy
PARSE AGAINST
PARSE REQUEST POLIIES o
PACKET
284 DETERMINE 286
282 FILE TARGET RETURN

- ERROR
CaLC LAB :

288
m OFFSET
280 CALC LAB
290 RANGE
292

FIG. 10B 296

- TAMPERING @
RETURN
ERROR
) i 204

ASSEMBLE 298 " :
ReAD DATA ‘" DECOMPRESS '\
\ LAB

”
.
L
LY

RETURN NFS 304
REQUEST DATA 300

WO 2004/036350 PCT/US2003/031261

Im
WRITE
FIG.TA T = 3"
LAB FMH-

NFS CReATE

REQUEST
‘ /" REPORT PoLicY
PARSE AGAINST EAILURE
POLICIES
PACKET ,
N 6
324 %
DETERMINE '\
322 ‘ FILE TARGET
RETURN
CREATE FILE 328 ERROR
MaomT HoR
330 ~

CREATE EMPTY
‘ FiLE
STORE FILE
RETURN MemT HDR
334

332
REPLY MsG
\ FIG. 11B
320

WO 2004/036350 PCT/US2003/031261

10/11
350
WRITE
A 344 346 s " 348
READ R
340 READ,\J L e 342 /_.EIfE(/
g 5 “‘(:/ ————— N
| | | |
FIG. 124 +—F H——F———+H
LAB ey LAB, LABp LAB y

CLIENT L 138
Process

OPERATING
SYSTEM KERNEL

42 ’
, REPEAT
w AUTHENTICITY
SESSION
REQUEST

167

SECURE VIRTUAL
FILE SYSTEM

151
REPEAT
SESSION Ip
NeTwork FiLe
ACCESS APPLIAN
150 SusmMIT 156 ¢
SESSioN Ip {
FIG. 7B 2
* 154

xFS
92 7 Fug SysTew

PERMITTED
ACCESS

WO 2004/036350 PCT/US2003/031261

1N

NFS WRITE
REQUEST
REPORT PoLicY
PARSE AGAINST
PACKET
364 7 386
DETERMINE \
362 RETURN
o ERROR
CaLc LAB 368
A CALc LAB
(\ RANGE
372

360 370

REPORT ;
TAMPERING
RETURN

ERROR |
382 DECRYPT LAB ;
i 374

384

CREATE LAB @ 380

DECOMPRESS

386 LAB

_ 392
| ENCRYPT LAB
: ASSEMBLE
WRITE LABS
ComPRESS LAB }-- ST 300

. FIG. 12B

304 WRrite NFS
DATA

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

