

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
15 June 2006 (15.06.2006)

PCT

(10) International Publication Number
WO 2006/062810 A1

(51) International Patent Classification:
A44B 18/00 (2006.01) A61F 13/62 (2006.01)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(21) International Application Number:
PCT/US2005/043568

(22) International Filing Date:
2 December 2005 (02.12.2005)

(25) Filing Language:
English

(26) Publication Language:
English

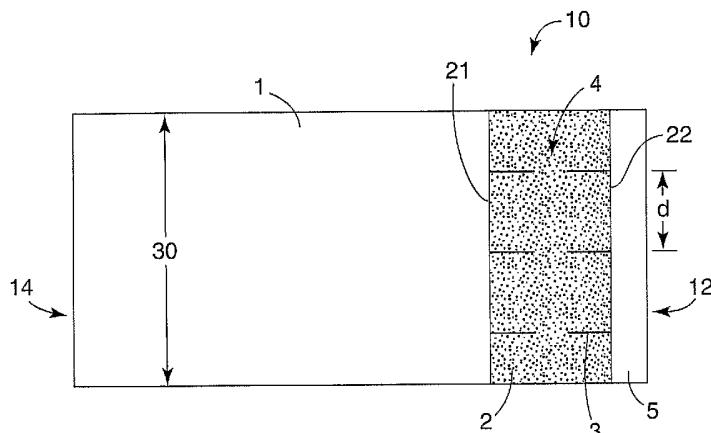
(30) Priority Data:
04029356.5 10 December 2004 (10.12.2004) EP

(71) Applicant (for all designated States except US): 3M INNOVATIVE PROPERTIES COMPANY [US/US]; 3m Center, Post Office Box 33427, Saint Paul, Minnesota 55133-3427 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): OERTEL, Ralf, G. [DE/DE]; Carl-schurz-strasse 1, D-41453 Neuss (DE).

(74) Agents: BOND, William, J. et al.; 3M Center, Office Of Intellectual Property Counsel, Post Office Box 33427, Saint Paul, Minnesota 55133-3427 (US).


(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: STRIP OF MALE FASTENING MEANS, PATCH CUT THEREFROM, AND FASTENING TAPE TAB COMPRISING SUCH PATCH

(57) Abstract: The invention provides a patch of a male fastening means, in particular, a hook patch with decreased bending resistance. The patch according to the invention comprises a backing bearing a plurality of male fastening elements, in particular hook elements. The patch is integral and comprises a plurality of incisions. Said incisions do not extend across the whole width of the patch but preferably leave at least one intact bridge across the cross-direction of the patch. Furthermore, a fastening tape tab having a manufacturer's and user's end is provided, the fastening tape tab comprising a support layer bearing on its major surface of the user's end at least one fastening patch according to the invention. Furthermore, a strip is provided from which a patch according to the invention is cut.

WO 2006/062810 A1

Strip of Male Fastening Means, Patch Cut Therefrom, and Fastening Tape Tab Comprising Such Patch

5 The present invention relates to a strip of a male fastening means, in particular a hook strip having a high flexibility, and a patch cut therefrom, said patch being for use in a fastening laminate, in particular a fastening tape tab. Such fastening tape tabs may be particularly used in diapers or feminine hygiene articles as mechanical closure component.

10 Known fastening tape tabs used in, for example, disposable diapers usually comprise a support layer bearing on one of its major surfaces a patch of fastening means in order to securely join parts of the diaper together. Said tab of fastening means may for example comprise a hook patch which usually extends across the whole width of the fastening tape tab. Therefore, the whole width and length of the hook patch is adding to the bending 15 performance of the fastening tape tab. Since the hook patch is comprised of a rather rigid material, this may cause the problem that the fastening tape tab may not be flexible enough to conform to a movement of the wearer and thus may decrease the comfort of wearing. This is even more critical if the width of the fastening tape tab is large as in the case of recently 20 more common elasticized fastening tape tabs, in particular in so-called big-ear applications, like pull-up diapers or training pants.

US-A-6,146,369 describes an extensible tab fastener for a disposable diaper comprising a laminate of an extensible facestock and an ordinarily nonextensible mechanical fastener. The nonextensible mechanical fastener is rendered extensible by providing in at least the 25 nonextensible portions thereof a plurality of separation interfaces or parting planes extending through the thickness of the nonextensible portion or portions at spaced locations in the direction of desired extensibility.

EP-A-0 755 665 describes a disposable undergarment having a tape fastener for releasably 30 joining front and rear regions of the undergarment. The tape fastener comprises a soft base panel member and at least two relatively rigid fastening panel members bonded to an inner surface of the base panel member in order to eliminate the problem that the whole of the tape fastener might be unintentionally disengaged at once.

US-B-6,575,953 describes a disposable absorbent article having an absorbent chassis and a fastening system that aims at providing beneficial fit attributes yet affording easier access to the interior of the article for purposes of inspection. The fasteners of the absorbent article include discrete hook patches forming a fastening component comprising hinge areas.

5

EP-B-0 113 464 discloses a waist band provided on a diaper comprising an intermediate area, an adhesive area and a finger lift portion. Slits are applied in the cross-direction in either the intermediate section, the adhesive section or in both to allow these sections to function independently from each other.

10

In US-A-2002/0016581 a fastening system having a hook fastening element is disclosed. The fastening element comprises an attached portion, partly joined to the article, at least one liftable portion extending from the attached portion, and at least one hinge line disposed in an angle of less than 90° relative to the primary direction of the load bearing. The hinge line is positioned between and thus separates the attached portion and the liftable portion.

15

In WO96/19174 a fastening tab is described, said fastening tab including a manufacturer's bond end and a user's end, wherein said user's end includes a mechanical fastener component and is configured to have a disengagement ratio of at least 1.5:1. The user's end may be multi-lobed or may define sheer channels in the mechanical fastener component.

20

There is a need to provide a strip of male fastening means a patch of male fastening means to be cut from said strip, in particular a patch of hook strip, with improved bending performance. The fastening patch should advantageously be more flexible than prior cut patches yet still properly handleable. There is also a need to provide a fastening tape tab comprising such a fastening patch. When used, e.g., as fastening means for a baby or adult diaper or in feminine hygiene articles, in particular in so-called big-ear applications, the fastening tape tab should be able to conform to the body shape and the movements of the wearer in order to increase the comfort of the wearer and decrease the risk of red marks on the wearer's skin. More generally, the fastening tape tab should conform better to any surface to which it is attached.

25

According to the present invention, a patch of a male fastening means with improved flexibility and decreased bending resistance is provided as well as a strip from which such a

patch can be cut. The patch according to the invention comprises a backing bearing a plurality of male fastening elements, in particular hook elements. The patch is preferably cut from an elongate strip of a male fastening means, e.g., a hook strip, and has two longitudinal edges along its length, i.e., two edge lines which both substantially extend in the machine direction of the strip from which the patch has been cut. The cross-direction is defined as the direction perpendicular to the machine direction in the plane of the flat patch. The term hook describes all types of hooks suitable to form a hook-and-loop fastener together with a corresponding landing zone. The hook may have all kind of shapes, including mushroom type hooks. The patch is integral and comprises at least one incision. The term "integral" as used above and below means that the patch forms one piece, i.e. the incisions are non-throughgoing. Here, the term incision describes both, an incision wherein no material is removed from the substrate, e.g., the strip, in which the incision is made, like incisions made with a knife or a pair of scissors, but also an incision wherein material is removed from the substrate to be cut, e.g., when the latter type of incision is punched into the substrate. In the following, the latter incision will be called an insection.

Said at least one incision does not extend across the whole width of the patch but leaves at least one intact land of material across the cross-direction of the patch. Thus, a portion of the patch in machine direction is uncut. The incisions may extend through one or both edge lines of the patch. Preferably, the at least one incision substantially extends in the cross-direction of the patch. However, the incisions can also extend in a direction between the cross-direction and the machine direction. The incisions extending through one of the edge lines of the patch may be aligned with the incisions extending through the other edge line, i.e., extend in cross-direction pointing towards the same spot in the center of the patch, but may also be staggered in machine direction along the two edge lines. The incisions extending through the two edge lines, respectively, can have the same or a different length from the respective edge line towards the center of the patch. The option of differing incision lengths exists also when the incisions from the one side and the other side are not pointing towards the same spot but are staggered, i.e., shifted in the machine direction of the fastening patch. Moreover, the incisions may also extend at an angle between the machine direction and the cross-direction.

The lands of uncut material preferably provide a bridge of intact material extending in the longitudinal direction (machine direction) of the strip. The width of the remaining narrow

bridge with intact material should be selected so as to increase flexibility but should provide sufficient strength to the strip before its cutting into patches to allow processing and converting of the strip. The width of the remaining bridge preferably is less than about 10 mm, more preferably less than about 5 mm and more preferably less than about 3 mm, but 5 the width is in any case above 0 mm, and preferably at least 1 mm. In case incisions are cut through both edge lines of the strip the remaining lands may not be aligned in the longitudinal direction of the strip. The remaining lands may then form a bridge which is curved, i.e., a continuous but curved path of intact material extending generally in the longitudinal direction of the strip.

10

The distance between incisions on the same edge line in machine direction can be less than about 70 mm, more preferably less than about 15 mm and even more preferably less than about 7 mm. Preferably, the distance is at least 2 mm, more preferably at least 4 mm or even more preferably at least 5 mm.

15

The incisions can also be designed in such a way that two or more intact narrow bridges are provided across the cross-direction of the patch. This may be preferred when using wide strips and large patches.

20

The incisions according to the present invention may be cut in the strip, for example by using rotary knives, laser cutting, perforating, or other techniques. Such incisions may have any shape and can be, for example, triangular, rectangular, oblong, curved, T-shaped or can also have an irregular shape.

25

The longitudinal edges of the elongate strip from which the patch is cut need not be straight linear edge lines that are parallel to each other. Also edge lines that are irregular or have a regular pattern, like a wavy edge line, can be used for this purpose. Strips with a wavy edge line on each side of the strip can preferably be cut out of a stock roll with minimized inherent waste in that at least two strips are cut out of the stock roll adjacent to each other in such a

30

way that a wavy edge line of one strip corresponds to a wavy edge line of the other strip, i.e., in a nested configuration. Such strips can be used for various applications. Additional incisions into a wavy edge strip will further increase flexibility of the strip. Irrespective of the amplitude and the frequency of the wave in the edge, the still intact center of the strip material forming a bridge will deliver the required strength in machine direction, and a strip

having high amplitude and frequency wavy edges will act similarly to a strip where narrow pieces of material are punched out along its edge lines. Instead of a wavy cut edge line also other suitable edge contours may be provided which act in the same or similar way, such as a strip edge with triangular, saw-tooth like, rectangular or generally curved characteristics.

5

The incisions according to the present invention may also be provided in the form of 10 incisions in the fastening strip and the patch. Such incisions can be obtained by punching out of the strip or the patch, for example, by die-cutting a narrow piece of material. The incision may have a triangular, rectangular, oblong, sinusoidal, generally curved or any 15 other shape which is suitable to increase the bending performance of the fastening strip and patch.

The invention further provides a fastening tape tab having a manufacturer's end and a user's 15 end. The fastening tape tab of the invention comprises a support layer bearing on one of its major surfaces in the area of the user's end at least one fastening patch according to the invention. The patch has a proximal end facing the manufacturer's end of the tape tab and a distal end facing the user's end of the tape tab. The support layer of the fastening tape tab may be continuous at least at the location of the incisions in the fastening patch. The 20 incisions may also extend through both, the support layer and the patch, in particular in case at least one of the incisions extends through the edge line on the proximal end of the patch and at least one of the incisions extends through the edge line on the distal end of the patch.

Further, a strip of a male fastening means from which fastening patches can be cut, and 25 methods of manufacturing such a strip and patch of the invention as well as a method of manufacturing a fastening tape tab are provided.

Hook strips that can be used as starting material in the present invention are known to a person skilled in the art. Hook strips to be used in the present invention are described, for example, in US-A-4,894,060, US-A-2004/0111844, US-A-2003/0145440, US-A-30 2003/0182776 and US-A-2004/0068848. General background information on hook webs including stem webs without hook heads can be found, for example, in US 5,077,870, US 5,607,635, US 5,679,302, US 6,132,660, US 6,054,091, US 6,039,911, US 6,000,106, US 5,879,604, US 5,868,987, US 58453785 US 5,845,375, US 6,635,212, US 6,558,602. Hook strips which may be used as a starting material in the present invention are commercially

available, e.g., under the tradenames CS-600 or CS-1010 available from 3M Company, St. Paul, USA.

5 The fastening tape tabs of the invention may be used on baby or adult diapers or feminine hygiene articles. The invention is however not limited to personal care articles but may also be used in other industrial applications where it is important that the fastening patch or fastening tape tab easily follows the movement of the article to which the hook patch is attached. Such applications may be for example in the upholstery, car and air plane industry or in other textile applications.

10

The fastening patch of the present invention provides the specific advantage that due to the incisions the rigidity of the patch is decreased which causes a higher flexibility of the fastening tape tab to which the patch is provided. Since the strip from which the patch may be cut, and patch are integral, sufficient strength in machine direction for converting is provided. Since the bending force is decreased with the incised fastening patches, the fastening tape tabs are conforming better to the shape or to movements of the articles to which the patch is attached, e.g., to the movements of the user of a diaper. Therefore, the comfort of wearing is increased and the risk of red marks on the wearer's skin is reduced. As the bending is easier, also the risk of disengagement of the hooks of the patch from its engagement surface, e.g., from a loop surface, is decreased as the hook and loop components can move more synchronously. The advantage is significantly increased the larger the width of the fastening tape tab and thus the width of the patch is. Furthermore, the patch of the present invention may also provide increased flexibility in the plane of the patch due to its lower resistance against bending in said plane.

25

In the following, the invention is described in more detail with reference to the Figures.

30 Fig. 1(a) to (e) schematically show fastening tape tabs according to the present invention with preferred arrangements of the incisions provided on the patch according to the present invention,

Fig. 2 shows a further arrangement of the incisions according to the invention, and

Fig. 3 shows an embodiment of the patch according to the invention comprising incisions in the form of insections.

Fig. 1(a) shows a fastening tape tab 10 for use, for example, in a diaper in accordance with 5 an embodiment of the present invention. The fastening tape tab 10 has a manufacturer's end 11 and a user's end 12. The fastening tape tab 10 comprises a substrate or support layer 1 and at least one precut patch 2 of a male fastening means, preferably hook means, according to the invention. The precut patch 2 is arranged on a major surface of the user's end 12 of the support layer. The patch 2 has a proximal end facing the manufacturer's end 11 of the tape 10 and a distal end facing the user's end 12 of the tape tab 10. The edge line 21 is situated on the proximal end of the patch 2, the edge line 22 is situated on the distal end of the patch 2. The fastening tape tab 10 has a width 30 and further comprises a finger lift portion 5.

The precut patch 2 preferably is cut from a hook strip and comprises at least one incision 3. 15 The support layer 1 is preferably comprised of a nonwoven or woven textile web or a thin flexible polyolefin backing. The incised or precut fastening patch 2 of the invention may be attached to the support layer 1 by using an adhesive, ultrasonic welding, thermocalandering, stitching or other suitable techniques.

20 In Fig. 1(a), a preferred embodiment of the precut hook strip according to the present invention is schematically shown. The hook strip 2 shown in Fig. 1(a) comprises six incisions 3 which extend through both edge lines 21, 22 in cross-direction of the patch 2. The three incisions 3 extending from both edge lines, respectively, are aligned and have the same length. However, the incisions on the two edge lines may also have different lengths. 25 The incisions 3 extending from both edge lines, respectively, leave an intact bridge 4 which is centered in the cross-direction of the patch 2. In case the incisions have different lengths on both edge lines, the bridge will not be centered. The intact bridge 4 has a width of less than 10 mm, preferably less than 5 mm and more preferably less than 3 mm. However, the width of the bridge 4 is in any case above 0 mm and should preferably be at least 1 mm in 30 order to allow processing of the patch and the strip from which it is cut. The distance d between subsequent incisions 3 in machine direction can be less than 70 mm, preferably less than 15 mm and more preferably less than 7 mm, and is preferably at least 2 mm, or at least 4 mm. The distances d between subsequent incisions 3 may be equal, as shown in Fig. 1, or may be different.

Fig. 1(e) schematically shows a cross-sectional view of the fastening tape tab 10 of Fig. 1(a) along the line A-A indicated in Fig. 1(a). The incisions 3 extend through the hook patch 2 but not through the support layer 1. The incisions 3 which were obtained by cutting without 5 removing material are shown out of scale in Fig. 1(e) to make them better recognizable.

In Fig. 1(b) a further embodiment of the arrangement of the incisions 3 is shown. In this embodiment, the incisions 3 arranged on both edge lines of the patch 2 are not aligned with respect to each other but are in a staggered arrangement. In the embodiment shown in Fig. 10 1(b) there is no intact straight bridge left in the machine direction of the patch but an intact curved bridge exists which forms a continuous path on the strip. The necessary stability for processing is maintained due to the staggered arrangement of the incisions 3.

In the embodiment shown in Fig. 1(c) the incisions 3 do not extend through one of the edge 15 lines of the patch 2 but are centered on the patch 2 leaving two intact bridges 4 and 4' along both edge lines of the patch 2.

The embodiment shown in Fig. 1(d) shows a fastening tape tab 10 comprising a patch 2 according to the invention which has a non-straight edge line 22 on the distal end of the 20 patch. The incisions 3 are aligned as shown in Fig. 1(a). In the embodiment shown in Fig. 1(d) no fingerlift area is provided on the user's end 12 of the fastening tape tab but the patch 2 extends to the user's end 12 of the fastening tape tab. In order to allow the user to lift the fastening tape tab, an area void of hooks or of crushed hooks is provided on the outer portion 25 5' of the patch 2 in order to allow gripping of the user's end 12 without discomfort.

25 In Fig. 2, an alternative arrangement of incisions 3 on the patch 2 of the invention is shown. In this embodiment, the incisions 3 only extend from one edge line 21 of the patch 2 which has a width 31. The incisions 3 do not extend perpendicular to the edge line 21 of the patch 2 but are inclined in a certain angle with respect to the cross-direction of the patch 2. The angle 30 may be in the range of 10 degrees to 80 degrees, preferably 30 degrees to 60 degrees, and most preferably about 45 degrees. In this embodiment the intact bridge 4 is arranged along the edge line 22 which is situated opposite the edge line 21 through which the incisions 3 extend.

In Fig. 3, an alternative embodiment of the present invention is shown. According to this alternative embodiment the incisions 3' provided in the patch 2 of the present invention are formed as incisions formed in either one or both edge lines of the patch 2. Such incision can be formed by punching out material from the strip. Another possibility to form 5 incisions is to stretch an incised strip in machine direction so that incisions are formed at positions where the strip is incised.

In this embodiment, hook strips are used which are cut out with a wavy edge knife in a way that at least one edge line, or both edge lines have a wavy edge pattern, for example a 10 sinusoidal edge pattern. Both sides of the hook strip may have a different wavy edge geometry, e.g. different frequencies of a sinus-curve. The cutting may be carried out without waste as the complimentary hook strip next to the one which is shown is also a functional one with the complimentary wavy edge. In this case no material will be removed. The wavy edge is shaped in a way that a narrow center part of the hook strip is still intact, leaving a 15 bridge 4. Thus the total hook area offered is extremely large compared to the narrow center part which will primarily contribute to the bending force.

The shape of the wavy edge can be mathematically altered in a lot of ways, e.g., in frequency and amplitude, but also the shape of the curve may be different, e.g., rectangular. When 20 having a rectangular shape, the amplitude would determine how deep the incision is and the frequency would determine how often an incision occurs, or the distance between incisions.

Figure 3 shows a hook strip left intact in the center with large wavy edge hook wings 6 on 25 both sides. The intact bridge 4 provides sufficient strength to the patch.

For the hook patch shown in Fig. 3, the bending force is decreased compared to a patch having straight edges with the same size. In the example shown in Fig. 3, the ratio of the area of the intact bridge 4 to the total area of the patch 2 is only about 23%. That means that only 30 23% of the area of the patch 2 contribute to the bending of the patch 2, whereas the total area of the patch 2 contributes to the fastening performance of the patch 2, since the whole area of the patch 2 comprises fastening means which can engage with complementary fastening means, e.g., a loop surface forming the counterpart of the fastening patch of the invention to which it can be attached. That means that 77% of total area lies outside of the intact bridge 4

which mainly will contribute to the bending properties of the fastening tab. In the case of a patch having straight edges and no incisions, the above ratio is 100% which means that all of the area which contributes to the fastening performance also contributes to the bending of the patch. Preferably the ratio of the area of the intact bridge to the total area of the patch is less 5 than 50%, preferably less than 40%, more preferably less than 30% or even less than 20%.

The sinusoidal wave can be further altered becoming a rectangular geometry. In a further embodiment of the invention the incisions can be provided in the form of triangular incisions provided on one or both sides of the hook strip.

10

The patch according to the present invention can be used on a baby or adult diaper as hook closure component. To this patch forces from the user of the diaper are applied when it is moved with a vector which is pointing into a direction perpendicular to the plane of the unbended diaper, causing bending of the patch. Such forces may be caused by the movement 15 of a user, in particular a body when wearing the diaper. The bending force is decreased with the incised patches according to the invention. The fastening tape tabs thus are better conformable to the movements of the user of the diaper which increases the comfort of wearing and provides less red marks. As the bending is easier also the risk of hook disengagement from the loop surface of the diaper is decreased as the hook and loop 20 components can move more synchronously. These advantages significantly increase the larger the fastening tab and thus the patch width is. Precut hook patches of the invention can also be used on a wide, large elastic or non-elastic diaper ear used, e.g., in pull-up diapers or convertibles.

25

The incised fastening patch of the invention can be used in feminine articles as well. In the patent literature various hook closure systems are described which are used as attachment system. These very large hook strips contribute to the flexural rigidity of pantiliners. However, in this sensible application a high flexibility of the finished article is important. Incised hook patches allow higher flexibility of the pantiliner in the direction perpendicular 30 to its plane when not bend so that the pantiliner is conforming to the body shape in a better way.

Further, the invention is not limited to personal care articles like diapers or feminine hygiene articles, but may be used in other industrial applications where it is important that the hook

patch or fastener tape tab follows the movement of the article to which the hook patch is attached. Applications can be for example in the upholstery, in cars, particularly for the roofliner of cars, the air plane industry or in other textile applications.

- 5 In particular if the incisions extend from one side edge only, with intact material directly at the opposite edge, an incised strip of male fastening means of the present invention is able to be bent easily without folds and wrinkles in the plane of the strip towards the side of the intact material. Upon bending the incisions 3 or infections 3' are widened, in particular, at the side edge from which such incisions or infections extend. For example it was found that
- 10 with an adhesive coated incised hook strip it is possible to adhere the hook strip to an article such that the hook strip was bowing to one side without having folds and wrinkles. This tendency for curved applications would particularly be an advantage where longer hooks strips are used in applications in non-hygiene markets.
- 15 In the following, examples of hook patches and strips are described. The exemplary hook strips were produced using standard commercial products available from 3M Company, St. Paul, USA. In particular, hook strips with the trade names CS-600 having a width of 15mm (Hook 1) and CS-1010 having a width of 25mm (Hook 2) were used. The CS-600 hook has a basis weight of 108 g/m², a hook density of 248 hooks/cm², the caliper of the backing is
- 20 109 µm, and the total caliper of the hook web is 390 µm. The CS-1010 hook has a basis weight of 162 g/m², a hook density of 81 hooks/cm², the caliper of the backing is 173 µm, and the total caliper of the hook web is 658 µm. Furthermore, a Binder hook (Hook 3) has been used which is commercially available from Gottlieb Binder GmbH & Co., Holzgerlingen, Germany. The Binder hook has a basis weight of 194 g/m², a hook density of
- 25 294 hooks/cm², the caliper of the backing is 187 µm, and the total caliper of the hook web is 463 µm. The hook density and the calipers were measured using a microscope which is available from Mitutoyo Corporation, Japan under the trade name TM-500 Measuring Microscope.
- 30 The bending length as an indication of flexibility was measured according to test method ERT 50.5-99 recommended by EDANA; EDANA is the abbreviation for "European Disposables And Nonwovens Association" which is located in Brussels, Belgium. In this test method, a rectangular strip of fabric is supported on a horizontal platform with the long axis of the strip parallel to the long axis of the platform. The strip is advanced in the direction of

its length so that an increasing part overhangs and bends down under its own weight. When the leading edge of the test piece has reached a plane passing through the edge of the platform and inclined at an angle of 41.5° below the horizontal, the overhanging length will equal twice the bending length of the test piece, and thus the bending length can be 5 calculated.

The results of this test for non-adhesive coated hook strips as described above, which were cut such that incisions were located in machine direction at a distance of 5mm with an intact, centered bridge of 5 mm width, are shown in Table 1.

10

Table 1:

	Overhanging length in mm of non-incised hook strip	Overhanging length in mm with incised hook strip	Reduction of bending length in % by incision
Hook 1	76.3	53.9	29.4
Hook 2	161.2	99.0	38.6
Hook 3	158.5	124.4	21.5

The results of this test for non-adhesive coated hook strips, which were cut such that incisions were located in machine direction at a distance of 10 mm with an intact, centered 15 bridge of 3 mm width, are shown in Table 2.

Table 2:

	Overhanging length in mm of non-incised hook strip	Overhanging length in mm with incised hook strip	Reduction of bending length in % by incision
Hook 1	76.7	62.1	19.0
Hook 2	157.5	108.0	31.4

As can clearly be seen from Tables 1 and 2, the bending length is significantly decreased 20 when the tested strips are incised in accordance with the invention.

Although the invention has been described and illustrated with reference to specific illustrative embodiments thereof, it is not intended that the invention be limited to those illustrative embodiments. Those skilled in the art will recognize that variations and

modifications can be made without departing from the scope of the invention as defined by the claims.

CLAIMS

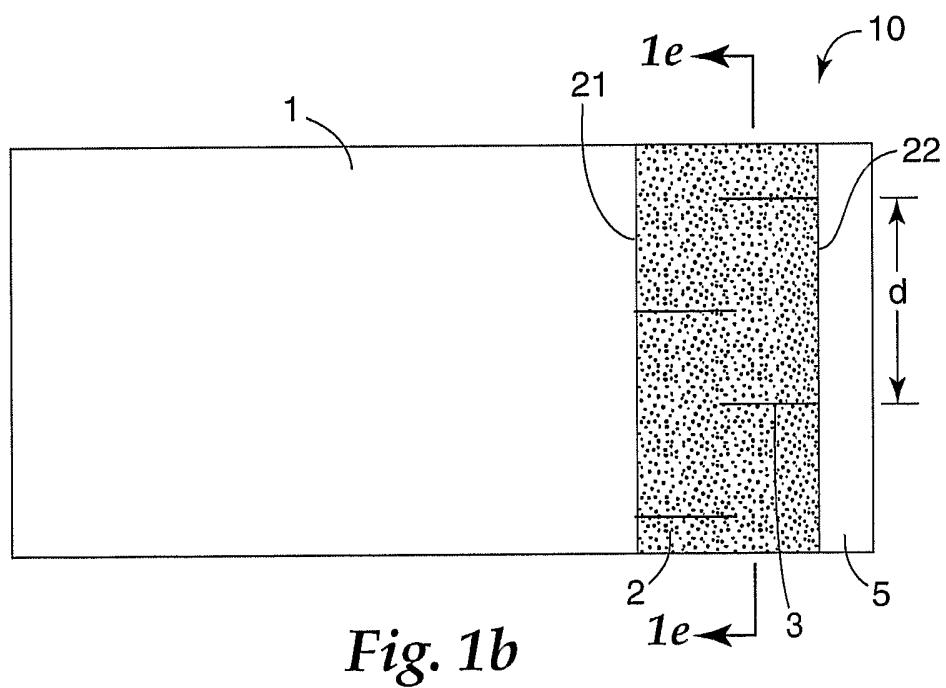
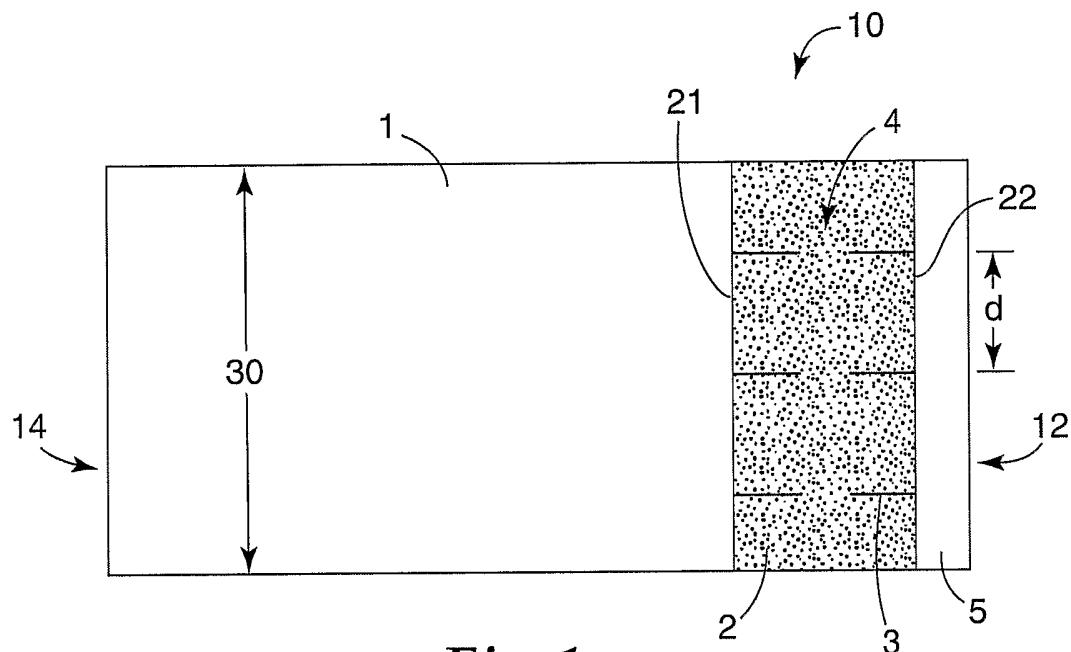
1. An elongate strip of a male fastening means having two longitudinal edges along its length, said strip comprising a backing bearing a plurality of male fastening elements, wherein said strip is integral and has a plurality of incisions (3, 3') cut through the strip so as to increase the flexibility of the strip.
5
2. The strip according to claim 1, wherein the strip has a substantially constant width in its cross-direction between its longitudinal edges.
10
3. The strip according to claim 1 or 2, wherein at least some of said incisions (3, 3') extend through one edge line of the strip.
4. The strip according to claim 3, wherein at least some of said incisions (3, 3') extend through the other edge line (21, 22) of the strip.
15
5. The strip according to any of claims 1 to 4, wherein at least some of said incisions (3, 3') are arranged such that they do not extend through any of the two edge lines.
- 20 6. The strip according to any one of the preceding claims, wherein at least some of said incisions (3, 3') extend substantially in a cross-direction of the strip.
7. The strip according to any one of the preceding claims, wherein at least some of said incisions (3, 3') extend in a direction inclined to a cross-direction of the strip.
25
8. The strip according to any one of the preceding claims, wherein said incisions (3, 3') leave at least one intact bridge (4) across the cross-direction of the strip.
9. The strip according to claim 8, wherein said bridge (4) is centrally arranged in the cross-direction of the strip.
30
10. The strip according to claim 8, wherein said bridge (4) extends along one or both edge lines of the strip.

11. The strip according to any one of claims 8 to 10, wherein said at least one bridge (4) is less than about 10 mm wide, preferably less than about 5 mm, and more preferably less than about 3 mm.
- 5 12. The strip according to any one of the proceeding claims, wherein the distance (d) between adjacent incisions (3, 3') in the length direction of the strip is less than about 70 mm, more preferably less than about 15 mm and more preferably less than about 7 mm.
- 10 13. The strip according to any one of the preceding claims, wherein at least some of said incisions are cuts (3).
14. The strip according to claim 13, wherein said cuts do not remove material from the strip.
- 15 15. The strip according to any one of the preceding claims, wherein at least some of said incisions are insections (3').
- 20 16. The strip according to claim 15, wherein said insections (3') have a triangular, rectangular, oblong or sinusoidal shape.
17. The strip according to any one of the preceding claims, wherein said male fastening means are hooks.
- 25 18. An integral patch (2) of a male fastening means, wherein said patch (2) is cut from a strip according to any one of claims 1 to 17, said patch bearing a plurality of male fastening elements and comprising at least one of said incisions (3, 3').
- 30 19. A fastening tape tab (10) having a manufacturer's end (11) and a user's end (12), said fastening tape tab (10) comprising a support layer (1) and at least one patch (2) according to claim 18 on one of its major surfaces in the area of the user's end (12), said patch (2) having a proximal end facing the manufacturer's end (11) of the tape tab (10) and a distal end facing the user's end (12) of the tape tab (10).

20. The tape tab (10) according to claim 19, wherein the support layer is continuous at least at the location where the at least one incision (3, 3') is cut through the patch.
21. The tape tab (10) according to claim 19 or 20, wherein said at least one incision (3, 3') in the patch extends through the edge line (21) on the proximal end of the patch (2).
- 5 22. The tape tab (10) according to claim 19 or 20, wherein said at least one incision (3, 3') extends through the edge line (22) on the distal end of the patch (2).
- 10 23. The tape tab (10) according to any one of claims 19 to 22, wherein said patch comprises at least two incisions (3, 3'), wherein at least one of said incisions extends through the edge line (21) on the proximal end of the patch (2) and at least one of said incisions extends through the edge line (22) on the distal end of the patch (2).
- 15 24. A fastening tape tab (10) having a manufacturer's end (11) and a user's end (12), said fastening tape tab (10) comprising a support layer (1) and at least one patch (2) of a male fastening means on one of its major surfaces in the area of the user's end (12), wherein said patch (2) comprises a backing bearing a plurality of male fastening elements, said patch (2) being integral and having at least one incision (3, 3') cut through the patch, wherein the support layer (1) is continuous at least at the location of the at least one incision (3, 3') in the patch.
- 20 25. A fastening tape tab (10) having a manufacturer's end (11) and a user's end (12), said fastening tape tab (10) comprising a support layer (1) and at least one patch (2) of a male fastening means on one of its major surfaces in the area of the user's end (12), wherein said patch (2) comprises a backing bearing a plurality of male fastening elements, said patch (2) being integral and having at least two incisions (3, 3') cut through the patch (2), said patch (2) having a proximal end facing the manufacturer's end (11) of the tape tab (10) and a distal end facing the user's end (12) of the tape tab (10), wherein at least one of said incisions (3, 3') extends through the edge line (21) on the proximal end of the patch (2) and at least one of said incisions extends through the edge line (22) on the distal end of the patch (2) so as to increase the flexibility of the patch (2).
- 25 30

26. A method of manufacturing an elongate strip according to any one of claims 1 to 17, comprising the steps of:

providing an elongate strip of a male fastening means having two longitudinal edges along its length, and



5 cutting a plurality of incisions (3, 3') in the strip such that none of the incisions (3, 3') extends through the width of the strip, thereby leaving the strip integral.

27. The method of claim 26, wherein incisions (3') are formed in the strip by stretching the incised strip in machine direction.

10

28. A method of manufacturing a fastening tape tab (10) according to any one of claims 19 to 25, wherein at least one incision (3, 3') is cut in the patch (2) prior to attaching the patch (2) to the support layer (1).

1/3

2/3

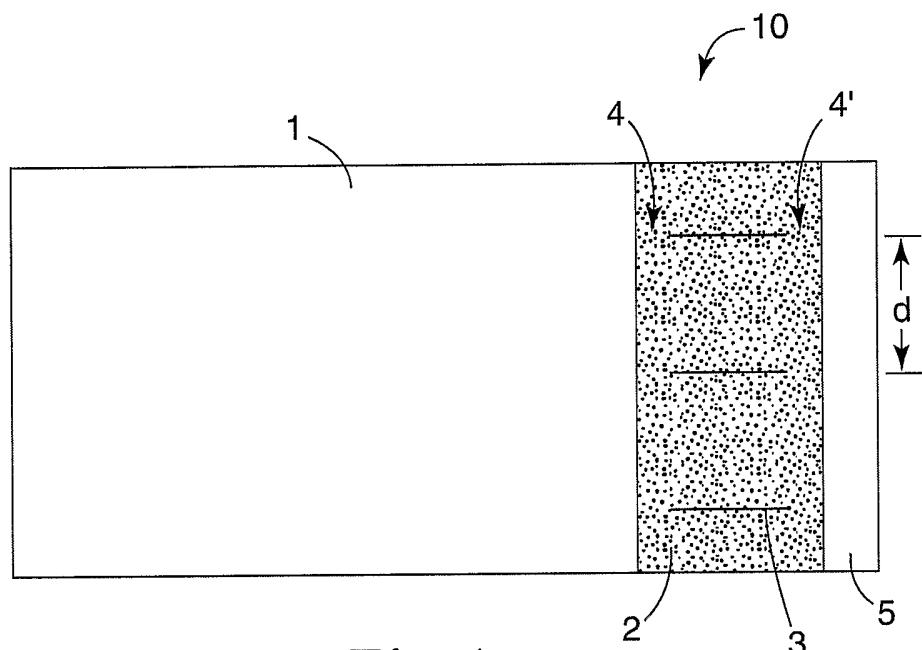


Fig. 1c

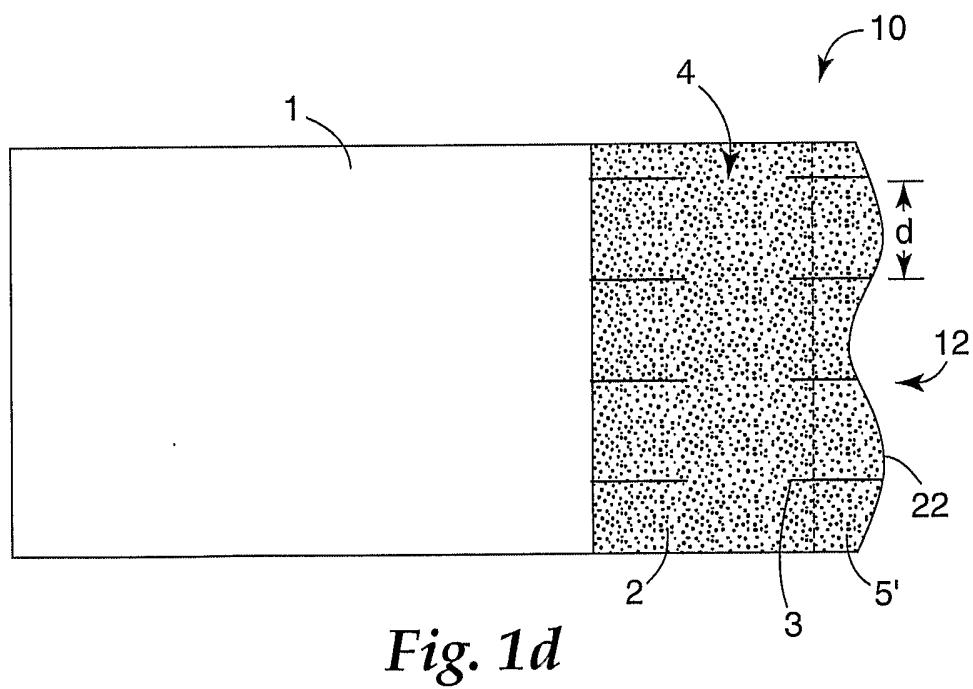


Fig. 1d

3/3

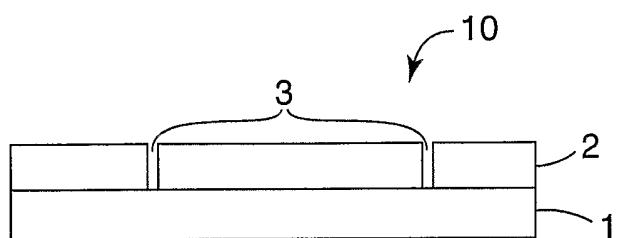


Fig. 1e

Fig. 2

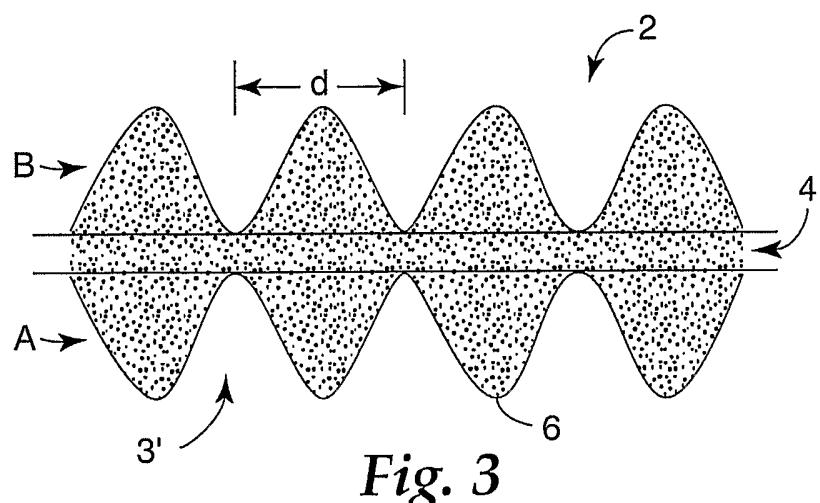


Fig. 3

INTERNATIONAL SEARCH REPORT

national application No

T/US2005/043568

A. CLASSIFICATION OF SUBJECT MATTER

A44B18/00 A61F13/62

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A44B A61F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 6 146 369 A (HARTMAN ET AL) 14 November 2000 (2000-11-14) cited in the application abstract; figures 1,2 -----	1-4,6,7, 13-26
A	WO 94/02091 A (HAMILTON, DAVID, C) 3 February 1994 (1994-02-03) abstract; figures 8-11 -----	1-28
A	US 2003/008106 A1 (GUENTHER WERNER ET AL) 9 January 2003 (2003-01-09) abstract; figures 2,9,10,9a -----	1-28

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

29 March 2006

06/04/2006

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Westermayer, W

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

/US2005/043568

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 6146369	A 14-11-2000	NONE		
WO 9402091	A 03-02-1994	AU 4778693	A 14-02-1994	
US 2003008106	A1 09-01-2003	US 6461715	B1 08-10-2002	