This invention relates generally to multiple outlet electrical plugs adapted to make electrical contact with one or more electrical plugs and more specifically to a multiple outlet electrical plug adapted to function as a plurality of male or female electrical outlets or a combination of both.

In the prior art there have been numerous multiple outlet electrical connector plugs. However, all of such prior art plugs have had numerous disadvantages, among these being complex and expensive construction, low current carrying capacity when all of said outlets are connected, and low heat dissipating capacity. Numerous other disadvantages are also inherent in said plugs.

It is desirable in a multiple outlet electrical plug to have a plurality of outlets, any one of which may at the time of assembly be selectively made either a female or male outlet. It can readily be seen that if the manufacture of both a male and female multiple outlet plug or a plug with part and part female outlets is exactly the same, with the only difference being the final assembly operation, standardization and low manufacturing cost will be achieved. This is extremely desirable since most of the prior multiple outlet plugs have not had such standardization and have been relatively expensive to manufacture.

It is also extremely desirable in a multiple outlet electrical connector plug to have the plug so designed as to be able to carry a heavy current such as, for example, when one outlet is connected to a source of electrical power and all of the other outlets are connected to various loads. This can best be achieved by having the portions of the electrical connector plug which carry the combined total current of all of the various individual outlets of sufficiently low resistance and with sufficiently high heat dissipation rate as to cause the plug to operate in a safe range. Most of the prior art multiple outlet connector plugs have been deficient in this very point, that is the portions of said plugs carrying the full maximum total current of each individual outlet were of fairly small cross-sectional area and therefore with high electrical resistance and with low heat dissipation.

Furthermore, most of the prior art multiple outlet electrical plugs were either manufactured as a plurality of male outlets or as a plurality of female outlets or a combination of both with different basic structures for the different plugs.

It is also extremely desirable to positively prevent the possibility of an arc-over or a short occurring between electrical terminals of opposite polarity. Most of the prior art multiple outlet electrical connector plugs did not positively prevent the possibility of such a short or arc-over.

Also, most prior art multiple outlet electrical connector plugs did not provide a large number of available outlets conveniently located for ready usage.

With the above points in mind, it is an object of this invention to provide a multiple outlet electrical connector plug wherein the various outlets may be either male or female and wherein at the time of assembly the various outlets may selectively be made male or female.

It is a further object of this invention to provide a multiple outlet electrical connector plug readily adapted for heavy current carrying capacity.

It is a further object of this invention to provide a multiple outlet electrical connector plug with a large heat dissipating capacity.

It is a further object of this invention to provide a multiple outlet electrical connector plug wherein the portion carrying a maximum current has an extremely low electrical resistance.

It is a further object of this invention to provide a multiple outlet electrical connector plug adapted to receive male prongs and wherein the contact resistance existing between said male prongs and the electrically conductive element contained in said plug is at a minimum because of a large surface area of contact between said members.

Referring to the drawings:

Fig. 1 is a perspective view of a preferred embodiment of my invention.

Fig. 2 is a top plan view of the bottom outer member portion of the plug of my invention with the metallic, electrical distributor and a prong in assembled position.

Fig. 3 is a front elevation, partly in section, of the assembled plug taken along the plane III—III of Fig. 2.

Fig. 4 is a front sectional elevation of half of an assembled plug taken along the plane IV—IV of Fig. 2.

Fig. 5 is a top plan view of the central prong-spacing core member of my invention taken along the plane V—V of Fig. 3.

The plug body comprising the outer members and the central core member may be made from Bakelite, rubber, plastic, or any other suitable insulating material. The central metallic dis-
2,500,987

3

tributor disc and the prongs may be made from spring brass or any other suitable electrically con-
ductive resilient material. The hollow eyelet for
joining the plug together may be made of any
material well known in the art utilized for
such purposes.

More specifically, substantially hexagonal-
shaped, outer members 1 are each provided
with an annular recess 2. Each hexagonal face
of each outer member 1 is provided with a radially
distinctly prong-receiving aperture 3 extending
into said annular recess 2. Each of the outer
members 1 is provided with cooperating locating
means 4 which, in the example shown, comprise
holes or indentations in the inner surfaces
each of said outer members 1.

Mounted in the annular recess 2 of each outer
member 1 is a unitary metallic electrical distribu-
tor disc 5 provided with six inwardly extending,
resilient fingers 6, each of said resilient fingers
6 being provided with prong-engaging means 7
or dimpled protruberances as shown in the ex-
ample illustrated, on the convex or inward side
thereof. Each of said distributor discs is also
provided with suitable locating means or co-
operating locating means 8 cooperating with like
means 9 on each outer member 1 for fixing each
of the disc members 5 with respect to the outer
members 1.

A central, substantially hexagonal-shaped,
prong-spacing, core member 10 is provided with
suitable cooperating locating means 11, which
in the example shown, are buttons or protuber-
ances, and is mounted between the two outer
members 1 so that the cooperating locating
means 11 cooperate to fix the relative posi-
tion of the outer members 1 and the central
core member 10. The relative position of said
central core member 10 and the outer mem-
bers 1 is such that thick, radially extending por-
tions 12 of core member 10 are placed opposite
the prong-receiving apertures 3 in the outer
members 1. The relative position of the central
distributor disc 5 with respect to the core mem-
ber 10 and outer members 1 is such that each of
the six resilient fingers 6 is opposite the prong-
receiving apertures 3 in the outer members 1.

The central, prong-spacing, core member 10
in the example shown is provided with recessed
portions 13 between the thick, radially extend-
ing spokes 12 and a thick, outer, circumferential
portion 14. Said recessed portions 13 are re-
cessed on each side of core member 10 so that
only a web of material remains separating the
two sides of the plug at the recessed portion 13.
The outer body members 1 and the central core
member 10 are centrally apertured and are
joined together through said central aperture
by means of hollow eyelet 15, said eyelet 15 be-
ing integrally, on the convex or inward side so as to rigidly join the plug assembly together.

If it is desired to have a multiple outlet plug
having five female outlets and one male terminal
for connecting to a suitable female outlet opera-
tively connected to a source of electrical power,
prongs are inserted into said prong-receiving apertures 17 in one hexagonal face of said plug on opposite sides of the thick, radially extending portion 12 of central core
member 10. Each of said prongs 16 in the example
shown comprises half hard brass in strip form,
the outer end of which is bent back upon itself
and which is perforated or partially perforated
so as to engage the usual prong-engaging means
shortly found in a female electrical outlet. The
inner end of each prong 16 is also bent back so
as to diverge from the longitudinal axis of the
prong 16. The diverging portion or resilient re-
taining means 18 acts to lock or retain the prong
16 within the recess 3.

It can readily be seen that when the male
prongs of other male electrical terminals
are inserted in the prong-receiving apertures
of the other face of the plug, the holes gener-
ally provided in the ends of the prongs will also
engage the dimpled protruberances 1 on the re-
silient fingers 6 of the disc member 5, thus mak-
ing firm electrical contact with said male plugs.

It is to be clearly and distinctly understood
that the embodiment of my invention illustrated
and described herein is exemplary only. The
plug, for example, need not be hexagonal; it may
be polygonal or inward side thereof. Each of the
central, prong-spacing core need not have re-
cesses 13 therein. The locating means and co-
operating locating means 4, 11, 8, and 9 may take
numerous forms. As an example, the cooperating
locating means 8 and 9 may be so placed as to
cause cooperation between metallic disc member
5 and central, prong-spacing, core member 10,
rather than between disc member 5 and outer
members 1. The central, metallic, distributor
disc need not be of disc form but may take any
one of numerous forms. The retained prongs 16
may be any one of numerous types of construc-
tion well known in the art. For example, they
can be single strips of metal with or without
perforations or partial perforations therein and
not bent back upon themselves as in the example
illustrated and described herein. Furthermore,
said prongs and prong-receiving apertures into
which they are fitted may be larger than usual
since they will be required to carry the total cur-
rent being distributed through a plurality of out-
lets. Electrical supply line wires may be con-
nected in any suitable manner directly to the re-
tained prongs prior to the insertion of said
core member 10 into the prong-receiving apertures. Said con-
nections between said electrical supply line wires
and said retained prongs may be covered with
any suitable insulating material which will snugly
engage said prong-receiving apertures. Many
other variations are possible also. The hollow
eyelet member 15 may be a hollow rivet having
a head at one end and having the other end
peened over or it may take numerous other forms.
The outer member may be recessed so that said
eyelet member 15 will fit flush. The center core
member might have recesses in each side thereof
for mounting the electrical distributor members
with their convex sides outward. In such case,
the outer members could either be of uniform
thickness throughout or could be provided with
spaced webs and radial spokes similar to those
shown in the center core member in the attached
drawing.

It can be seen that I have provided a unique
plug having an extremely low inherent electrical
resistance, having a large contact area, one which
is capable of dissipating heat rapidly because of
the large area and numerous apertures which also
act as ventilating means, which is of very simple,
light, cheap construction readily adapted to mass production methods.

It is to be clearly and distinctly understood
that my invention is not to be construed as limited by the specific examples and illustrations given herein but is to be limited only by the scope of the appended claims.

I claim:

1. A multiple outlet electrical plug comprising: a body provided with a plurality of angularly related sides, each side being provided with prong-receiving apertures, all of said apertures lying in a pair of spaced, parallel planes, said body comprising a central, prong-spacing core and a pair of outer members connected thereto, edges of said core and said outer members forming said angularly related sides; a recess between the prong-spacing core and each of said outer members; a convex, disc-shaped, unitary, metallic, electrical distributor having a plurality of inwardly directed, resilient fingers formed in the distributor mounted in each recess, said resilient fingers being provided with prong-engaging means; and a plurality of prongs mounted in two or more of said prong-receiving apertures, the inner ends of said prongs being provided with resilient retaining means for retaining the inner ends of said prongs in said recesses in engagement with said fingers.

2. A multiple outlet electrical plug comprising: a polygonal body provided with a plurality of prong-receiving apertures lying in a pair of spaced, parallel planes, said body comprising a central, prong-spacing core and a pair of outer members connected thereto; a recess between the prong-spacing core and each of said outer members; a convex, disc-shaped, unitary, metallic, electrical distributor having a plurality of inwardly directed, resilient fingers formed in the convex distributor mounted in each recess; locating means formed integral with the core; cooperating locating means formed integral with the outer members and cooperating with said locating means formed integral with said distributor; cooperating distributor locating means formed integral with the core; and a plurality of prongs mounted in two or more of said prong-receiving apertures, the inner ends of said prongs being provided with resilient retaining means for retaining the inner ends of said prongs in said recesses in engagement with said resilient fingers.

REFERENCES CITED

The following references are of record in the file of this patent:

UNITED STATES PATENTS

<table>
<thead>
<tr>
<th>Number</th>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,503,306</td>
<td>Dominick</td>
<td>July 29, 1924</td>
</tr>
<tr>
<td>1,633,025</td>
<td>Kranz</td>
<td>June 21, 1927</td>
</tr>
<tr>
<td>1,734,073</td>
<td>Canton et al.</td>
<td>Nov. 5, 1929</td>
</tr>
<tr>
<td>1,863,761</td>
<td>Ferris</td>
<td>Oct. 18, 1932</td>
</tr>
<tr>
<td>1,907,817</td>
<td>Hubbell</td>
<td>May 9, 1933</td>
</tr>
<tr>
<td>1,950,717</td>
<td>Douglas</td>
<td>Mar. 15, 1934</td>
</tr>
<tr>
<td>2,443,367</td>
<td>Aguilar</td>
<td>June 15, 1947</td>
</tr>
</tbody>
</table>