(57) Abrégé/Abstract:
Arrangement for printing to strip-shaped print media in a franking and/or addressing machine in which the print media are transported by means of a revolving transport belt of a known transport module and are printed by means of a print head located...
behind a print window. A module with a magazine for the strip-shaped print media is alternatively arranged in the entrance region for the otherwise typical print media and in the engagement region of the transport belt. The transport belt simultaneously serves as a take-off device. An increase of the print quality and of the reliability given a decreased technical cost, as well as a lower wear and maintenance cost, are intended. According to the object, an easy exchanging capability should be achieved, and separate drive means for the print media are omitted. The sensor technology in the transport path for the otherwise typical print media should also be maintained without modification for the strip-shaped print media. Filling errors should be avoided via apparatus technology. A refilling during the take-off position should be possible. According to the invention, the module 2 with the magazine 21 is arranged laterally offset from the transport belt 11 so that the print media 3 are collected by the transport belt 11 only in an edge region 31 and are wider by this edge region 31 than is otherwise typical, such that the transport belt 11 travels outside and next to the print window 12, and such that the print media 3 with the remaining region 32 provided for printing is directed past below the print window 12 (see Fig. 2).
Abstract

Arrangement for printing to strip-shaped print media in a franking and/or addressing machine in which the print media are transported by means of a revolving transport belt of a known transport module and are printed by means of a print head located behind a print window. A module with a magazine for the strip-shaped print media is alternatively arranged in the entrance region for the otherwise typical print media and in the engagement region of the transport belt. The transport belt simultaneously serves as a take-off device.

An increase of the print quality and of the reliability given a decreased technical cost, as well as a lower wear and maintenance cost, are intended.

According to the object, an easy exchanging capability should be achieved, and separate drive means for the print media are omitted. The sensor technology in the transport path for the otherwise typical print media should also be maintained without modification for the strip-shaped print media. Filling errors should be avoided via apparatus technology. A refilling during the take-off position should be possible.

According to the invention, the module 2 with the magazine 21 is arranged laterally offset from the transport belt 11 so that the print media 3 are collected by the transport belt 11 only in an edge region 31 and are wider by this edge region 31 than is otherwise typical, such that the transport belt 11 travels outside and next to the print window 12, and such that the print media 3 with the remaining region 32 provided for printing is directed past below the print window 12 (see Fig. 2).
ARRANGEMENT TO PRINT TO STRIP-SHAPED PRINT MEDIA

The invention concerns an arrangement to print strip-shaped print media in a franking and/or addressing machine.

An arrangement of the aforementioned type is known (see DE 197 12 077 C1) in which the print media are transported on edge, resting on a guide plate with a printing window, with the aid of contact pressure elements attached to a revolving transport belt, and are printed by means of an ink print head located behind the printing window. In the entrance region of the otherwise typical print media, a strip magazine is arranged transversal to the guide plate and at a distance to said guide plate that is greater than the largest permitted thickness of the said otherwise typical print media. The strip-shaped print media – simply strips in the following – are output from the magazine transversal to the transport direction and above the transport plane of the transport belt towards the guide plate. For this purpose, the strip magazine is provided with a separate drive made up of motor, reduction gear and drive roller. A recess is provided in the guide plate in the impact region of the strips, into which recess is inserted a specifically shaped guide part. The middle of the exit opening for the strips from the magazine, the middle of the guide part and the middle of the printing window are all situated at approximately the same level.

As is apparent from the facts described in the preceding, this solution is limited to only a specific, complicated transport system, and the technical design cost is also significant. The output relationships do not allow any reloading during operation.

On the other hand, a modular strip dispenser is known (see DE 202 18 855 U1) that is designed so as to be connectable with a mail processing machine. The strip dispenser comprises a shaft beam and a removable strip receiver shaft that is adapted in terms of its length to different strip lengths. Integrated into the shaft beam are a take-off unit and sensors that can be electrically connected with a control unit of the mail processing machine. The take-off unit comprises a step motor that can be controlled via software with the respective take-off speed, corresponding to the different machine variants. A sensor installed in the shaft beam checks whether a strip has been taken off or whether a strip is located in the strip guide. The strip receiver shaft has at the start a mechanical sluice with which the maximum fill level is established. In the output region of the strip receiver shaft, two levers that can be moved against an elastic force are borne between the upper outer wall and the inner wall. The spring-loaded levers extend to the exit opening and press the strips against a take-off roller.
Upon insertion of one to a few strips, the danger exists that strips are pushed too far through, recurve at a damming part, and therefore an error mode is triggered (given one strip) or an isolation is impossible (given multiple strips).

In addition to the technical cost for the separate drive for the strip dispenser, the tuning between ejection velocity and the transport velocity of the mail processing machine is problematical. Given offset between the velocities, print offsets can occur in the print image. The maximum offset occurs when the drive in the strip dispenser is deactivated immediately after the isolation. Depending on the geometric dimensions in the region between strip ejection and printing region, given corresponding strip length it can occur that a portion of the strip still sticks into the strip dispenser while the front part of said strip is already being printed. It is clear that a reloading during operation is also not possible here.

Furthermore, a strip dispenser for mail processing machines is known (see US 6,773,524 B2) that essentially comprises a strip magazine in which the strips are stacked one after another, resting with their leading edges on a floor plate. The mail processing machine has a transport system that comprises multiple parallel (upper and lower), revolving transport belts actively driven via rollers. The strip magazine has a matching slit centrally relative to one of the upper transport belts in the outermost region of the forward driven roller. The strip take-off position is centrally established by means of an electromagnet that pulls the slit of the magazine into the engagement region of this transport belt. If the electromagnet is not fed with current, the magazine remains pivoted away and no strip is taken. The removed strip is initially non-positively taken along by the upper transport belt through the slit between floor plate and transport belt, then strikes with its leading edge on the lower transport belt and is deflected by said lower transport belt and is directed further. In the subsequent printing position, the strip segment located there lies only on the lower transport belt opposite the print heads. A correspondingly designed counter-pressure element might not be necessary.

The strips must be situated at a defined angle relative to the floor plate so that they are not excessively curved and safely arrive at the slit to the transport belt. If they are wavy or do not have a smooth cut edge, this can lead to malfunctions. Different flexural strengths of the webs can likewise have a disadvantageous effect. In this solution the danger also exists that, upon insertion of one or a few strips, this or these are already slid into the output slit, which has the result of the errors already cited above. The transport system is complicated and requires a precise matching between the upper and lower transport belts.
In addition, a transport module is cited (see DE 10 2007 060 789 A1) that is arranged above a feed table and (in a known manner) has a transport belt for flat print media. The print media, arriving from the feed table, are pressed against the transport belt by means of elastically arranged, spring-loaded pressure elements (advantageously brush elements) below the transport belt. Due to a plurality of contact pressure elements, a correspondingly large contact area is achieved, whereby start-stop errors in the print image are largely avoided (see Fig. 2 and 3).

Finally, a transport device for flat goods to be printed is known (see DE 10 2008 032 804 A1) that has a driven, revolving transport belt borne on rollers. A number of spacers that are axially parallel to one another are arranged between one end of a bearing plate of a roller support and a first shaped part plate, and a number of spacers axially parallel to one another are likewise arranged between the other end of the bearing plate and a second shaped part plate. The spacers are all identical and designed as bearing shafts. A respective tensioning means is mounted at the ends of the bearing plate of the roller support and is designed for force transmission from a connecting rod. For a defined flexing of the roller support given corresponding loading of the bearing plate, a mechanism draw tension is transmitted via the tensioning means to the two ends of the bearing plate. The connecting rod is provided with tensioning and adjustment means to adjust a defined draw tension (see also Fig. 2 and 3).

The last two cited solutions, matched to one another, form a compact transport device for franking machines with small to medium mail good throughput; see also Design Patent registration with the Office of Harmonization for the Internal Market, file number 001292361-0001 and Fig. 1 through 3.

The purpose of the invention is an increase of the print quality and reliability with decreased technical cost; moreover, a low wear and decreased need for maintenance are sought.

The invention is based on the object to achieve an arrangement of the aforementioned type that is provided without separate drive means with an easily exchangeable strip dispenser module for strips of different length and thickness as well as flexural strength, and that achieves the same print quality in the transport path with the sensor technology for the otherwise typical print media.

Disadvantageous effects as a result of insertion errors given one or a few strips should be precluded by means of the application technology. A refilling of strips during the take-off should be possible.

The object is achieved with the features of the arrangement according to the protective Claim 1 and the dependent Claims.
Via the laterally offset arrangement of the module relative to the transport module, the strip-shaped print media – strips in the following – are already aligned resting on their lateral edges upon removal from the magazine. The longitudinal edge of the strip and transport track are therefore parallel to one another, and the required print image clearance from the longitudinal edge of the strip is furthermore also ensured. The wider embodiment of the strips enables the typical print region, and the already present transport conditions (including sensor technology), to be maintained without changes. Based on empirical tests, the edge region of the strip that is provided for the transport (and therefore the module offset) is chosen to be so wide (at least one third of the print region width) that a safer transport is ensured by the transport module. The edge region can appropriately be provided with an identifier (arrow) in order to facilitate the correct filling of the magazine. The additional space is also suggested for advertising purposes. Given self-adhesive design of the strip, a subdivision of it matching the transport strips is advantageous; the later take-off of the printed part is thereby facilitated.

The special embodiment of the module according to the invention enables the optional configuration of the franking machine with or without strip printing and without additional space requirement.

The incorporation of the flap in the input region of the device housing into the strip magazine enables the opening for the strip input to be kept as small as possible, the housing to be sealed against access and the module to be adapted without any problems.

By adjusting the magazine from the pivoted-away position into the take-off position and back with the aid of a step motor with gearwheel and associated toothed segment on an axle with activation curve profile, a catch is reached for each position; a holding current is omitted. It is clear that a continuous adjustment of the exit conditions corresponding to the strip quality is thereby possible.

In the pivoted-away position of the magazine, the division of the floor of the magazine into a rigid, smooth part and a rotationally movable, elbowed part prevents individual strips from sliding through upon filling, and ensures a certain individualization afterward. In the take-off position, the rigid, flat part of the floor wall initially rests spring-loaded on the transport belt; the sluice is closed. The removed strip is subsequently pushed into the sluice. In this way an adapted, elastic sluice is formed for strips of different thicknesses, and the exit of only one strip is respectively enabled. Since only the contact region of the contact lever is significant for the take-off, a reloading can take place without any problems during the take-off operation.
In the take-off position, the combination of magazine with contact pressure lever and rigid, smooth resting part of the floor wall, as well as associated baffle plate with spring tabs above the letter thickness sluice, produces at least the triple contact of the strip with the transport belt, and therefore a high certainty of take-off and transport.

In the pivoted-away position, the equipment of the magazine with a touching lever with two switching plates and associated photoelectric barriers enables a simple fill level monitoring with regard to the empty state or overfilling.

The invention is explained in detail in an example in the following.

Shown are:

Fig. 1 a perspective view of a franking machine according to design patent registration 001292361-0001 with assembly for strip printing,

Fig. 2 a perspective view of the transport device of a transport module according to DE 10 2008 032 804 A1 and Fig. 2, with a module for strip-shaped print media,

Fig. 3 a perspective view of a counter-pressure device for the transport module according to DE 10 2007 060 789 A1 and Fig. 3, with a module for strip-shaped print media,

Fig. 4 details of the input region with letter thickness sluice at the top, in perspective view,

Fig. 5 a perspective view of a module for strip-shaped print media, counter to the transport direction, as viewed from the rear right,

Fig. 6 details regarding Fig. 4 and 5, partially in section,

Fig. 7 a perspective view of a module for strip-shaped print media with step motor for defined adjustment of the module relative to the transport belt, as viewed in the transport direction from the front left,

Fig. 8 an exploded view of a module according to Fig. 7,

Fig. 9 a side view of the module outside of (pivoted away) the engagement region of the transport belt in section,
Fig. 10 a side view of the module in the engagement region (take-off position) of the transport belt in section,

Fig. 11 a perspective view of a magazine in the transport direction, as viewed from the front left,

Fig. 12 an exploded view (in part) of a magazine according to Fig. 11 with details regarding the fill level monitoring.

According to Fig. 1, a franking machine 0 is laterally provided via the input region 02 in the apparatus housing 01 with a flap 011. The flap 011 can be pivoted forward so that a filling opening (opening upward) of a magazine 21 (see Fig. 5) for the strips 3 is created; see detail. The flap 011 is simultaneously the rear wall of the magazine 21 and is non-positively coupled with its u-shaped upper forward wall 2110 so that this is simultaneously pivoted inward upon closing the flap 011.

If the franking machine 0 is not assembled for strip printing, the flap 11 remains permanently closed (and locked) so that manipulations of the franking machine 0 are not possible via this path.

The input region 02 of the franking machine 0 has what is known as a letter thickness sluice that is formed by an upper plate 021 and a lower plate 022; see also Fig. 3. The maximum letter thickness (10 mm, for example) is established by the separation of these two plates 021, 022. Depending on comfort, an additional design of the input region 02 with means for letter thickness detection is possible.

The counter-pressure device 10 of the transport module 1 is apparent in outline in the lower part of the franking machine 0; see also Fig. 3.

A perspective plan view of a transport module 1 with a module 2 for strips 3 is shown according to Fig. 2. The transport module 1 has a revolving transport belt 11 directed over rollers. The drive roller – not designated specifically – is arranged in the output region of the franking machine 0.

Two print heads 15 are offset across a print window 14 so that printing can take place across the full width of the print region 32 of the strip 3. Said strip 3 is taken up with its edge region 31 (transport region) by the transport belt 11. The revolution direction of the transport belt 11 travels in the counter-clockwise direction; see also the thick arrow. The upper letter travel guide 16 and the lateral letter travel guide 17 serve to guide the typical letters (see also Fig. 3).

According to Fig. 3, the counter-pressure device 10 is arranged non-positively at the transport belt 11. A circuit board 13 with transmitter-side letter travel sensors 131, 132 and 133 is attached below
to the lateral letter travel guide 17. The associated counterpart is a circuit board 12 with receiver-side letter travel sensors 121, 122, 123 (not shown) above at the letter travel guide 16 (see Fig. 2 in this regard).

The upper forward wall 2110 of the magazine 21 is arranged spring-loaded so as to be movable in rotation around the axis 212 (see also Fig. 7). The free end of the baffle flap 0232 of the baffle plate 023 for the module 2 protrudes out from the plate 021 (top of the letter thickness sluice) in the transport direction, next to the transport belt 11 (see also Fig. 4). The module 2 has a module housing 20 to accommodate the magazine 21 (see also Fig. 5).

The adjustment and fixing of the baffle plate 023 for the module 2 in the plate 021 (top of the letter thickness sluice) is shown in Fig. 4. The baffle plate 023 ends in two parallel tabs 0231, 0232. A spring tab 0231 is non-positively applied on the transport belt 11. The baffle flap 0232 deflects the strip 3 into the engagement region of the counter-pressure device 10. The baffle flap 0232 is arranged near the transport belt 11 and is adapted to its curvature (see also Fig. 10). The deflection roller 110 for the transport belt 11 is provided with an encoder wheel (not designated) that serves to measure distance for the print line to be printed. Mounting holes 111 for the mounting pins 2011 (see also Fig. 7) of the module 2 are provided in the support frame of the transport module 1. A defined position of the module 2 relative to the transport module 1 is therefore achieved.

The offset position of the module 2 or, respectively, of the magazine 21 relative to the transport belt 11 is clearly visible in Fig. 5. Only the narrower region (see stippling) of the transport belt 1 serves for the transport of the strips 3 with the edge region 31. The front wall 211 of the magazine 21 is notched correspondingly (adapted to the transport module 1) for this. The magazine 21 is suspended with the pins 213 in the module housing 20 (see also Fig. 8). At least the part 2171 of the floor wall 217 of the magazine 21 that is situated in the engagement region of the transport belt 11 is executed as a rigid, smooth part (see Detail A). A metal plate with rounded facing profile with low coefficients of friction is advantageously glued on. A corresponding ceramic plate would also be possible.

Additional details regarding Fig. 4 and 5 are shown in Fig. 6. The magazine 21 is hereby located in the pivoted-away position relative to the transport belt 11. In this position, the rear part of the elbowed part 2172 of the floor wall 217 is pressed against a contour 0211 in the upper plate 021 of the letter thickness sluice 02. As a result of this, the front part of the elbowed part 2172 is pivoted upward. The magazine 21 is filled with a stack of strips 3 that is pressed by means of a contact pressure lever 214 against the front wall 211 of the magazine 21. The fill level is monitored with the
touching lever 215. The strips stand with their lower facing edges on the smooth, rigid part 2171 of the floor wall 217. With its raised leading edge, the elbowed part 2172 of the floor wall 217 prevents an exit of strips from the magazine 21. A function support 218 for a circuit board 2180 is attached to the lower rear wall 216 of the magazine 21 (see Fig. 11 and 12).

A complete module 2 is shown in Fig. 7 as viewed from the front left. The module housing 20 (see also Fig. 2) is assembled from a right part 201 and a left part 202 and includes the magazine 21 (see also Fig. 8). The upper, movable front wall 2110 of the magazine 21 is borne such that it can rotate around the axle 212 and is tensioned by means of a tension spring 2113. The tension spring 2113 is suspended with one end in a tab 2114 of the front wall 2110 below the axle 212 and attached with the other end in a nose 2021 of the left part 202 of the module housing 20. The contact pressure lever 214 with associated spiral torsion spring 2141 and the touching lever 215 with associated spiral torsion spring 2151 are likewise arranged next to one another on the axle 212. The axle 212 itself is borne in side walls of the magazine 21. A step motor 22 with gearwheel (not shown) is attached to the side at the left part 202 of the module housing 20, which serves to drive a toothed segment 221.

The design of the module 2 is more clearly apparent in Fig. 8 via the exploded presentation. In particular, it is clear that the toothed segment 221 forms a unit with an axle 222 with activation curve profile that is borne between two parts 201, 202 of the module housing 20 parallel to the axle 212. The axle 222 engages with its profile in an opposite contour 2112 of the outer front wall 211 of the magazine 21. The distance of the rigid, smooth part 2171 of the floor wall 217 of the magazine 21 from the transport belt 11 is continuously adjustable in this manner, and therefore the sluice opening for the strips 3 can be set (see also Detail A).

The relationships given a pivoted-away magazine 21 are shown in section in side view in Fig. 9, in particular Detail A. In the magazine 21 (see also Fig. 8), the stack of strips 3 rests non-positively (as a result of contact pressure lever 214) with the front-most strip on the lower front wall 211. The facing side of the elbowed part 2172 of the floor wall 217, the exit end of the tab spring 0231 and of the baffle flap 022 of the baffle plate 023 are normally distanced from the transport belt 11. As an exception, it can be desired to leave the tab spring 0231 in contact with the transport belt 11 in order to securely transport away the end of the currently taken strip 3. The facing part of the tab spring 0231 is then advantageously to be provided with a sliding layer.

The interaction of axle 222 with activation profile and opposite contour 2112 of the front wall 211 is easily recognizable in Detail B. As long as the projecting part of the eccentric axle 222 strikes the bead of the opposite contour 2112 of the front wall 211, the magazine 21 remains pivoted away.
The translation relationships between gearwheel of the step motor 22, toothed segment 221 and axle 222 can be selected so that a less powerful motor is sufficient and a catch is present; a holding current is consequently done away with.

As a supplement to Fig. 3, the arrangement of the circuit boards 12 and 13 with the associated letter travel sensors 121, 122, 123 and 131, 132, 133 relative to the transport belt 11 and counter-pressure device 10 is visible.

The relationships given a pivoted-towards magazine 21 in a side view in section are shown in Fig. 10 (in particular Detail A); that is the take-off position. The magazine 21 is pivoted so far forward that the deflection roller 110 with the transport belt 11 protrudes into the recess 2111 of the lower front wall of the magazine 21 (see Fig. 8, Detail A). As a result of this, the forward-most strip 3 rests positively on the transport belt 11 and is taken along by this via static friction, is deflected at the magazine floor and consequently matches the curvature of the deflection roller 110. The elbows part 2172 of the floor wall 217 has left the contour 0211 of the plate 021, whereby its free end falls downward and releases the strip 3. The exit end of the spring tab 0231 of the baffle plate 023 initially rests on the transport belt 11 before the strip 3 arrives between them. With its rounded front profile and the transport belt 11, the smooth part 2171 initially forms a wedge-shaped, closed intake angle into which the front-most strip 3 is securely pressed due to the static friction with the transport belt 11. Since the magazine 21 is elastically spring-loaded, the now open intake angle or, respectively, the strip sluice is flexibly adapted to different strip thicknesses. The strip 3 presses the sluice only until this is passed through. The static friction required for the take-off (and consequently the feed force) is not sufficient for the strip situated after this.

If the start of the strip 3 is located in the region of the first sensor pair (the input sensor 121, 131), strip take-off is signalled. The second sensor pair is the print image sensor 122, 132 and the third sensor pair is the print start sensor 123, 133. The print image sensor 122, 132 is used both for the preparation of the print image and the control of the magazine position. If the start of the strip arrives at the print image sensor 122, the signal to pivot the magazine 21 away is emitted to the step motor 22 with a delay (see also Fig. 7).

Since the thickness fluctuations of the strips are far less in comparison to typical letters, a significantly higher print quality is achieved given unmodified transport conditions.

The arrangement of the touching lever 215 for the fill level monitoring and the function support 218 with the circuit board 2180 relative to one another is shown in the view according to Fig. 11. The free leg of the touching lever 215 is provided at its end with two elbowed switching plates 2152, 2153 of different lengths that act on associated photoelectric barriers 2181, 2182 depending on the position of the touching lever 215. The photoelectric barriers 2181, 2182 are designed as forked photoelectric barriers with aperture and are attached on the circuit board 2180.
The size ratios of the two switching plates 2152, 2153 are easily recognizable in Fig. 12. If too many strips 3 are slid into the magazine 21, the shorter switching plate 2152 interrupts the photoelectric barrier 2182. Enough strips 3 must be removed so that the photoelectric barrier 2182 is free again. Given an empty state, the touching lever 215 is pivoted so far forward into a recess (not designated in detail) of the front wall 211 that, due to this path relationship, the longer switching plate 2153 securely triggers the photoelectric barrier 2181 even given thin strips 3.

The invention is not limited to the presently explained embodiment. Further embodiments of the invention can be developed or, respectively, used that are encompassed by the same basic ideas of the invention based on the attached protective Claims.
Reference list

0 franking machine
01 apparatus housing
011 flap, to the side in the input region of the apparatus housing 01
02 input region for franking machine 0, letter thickness sluice
021 plate, above letter thickness sluice
0211 contour for floor wall part 2172
022 plate, below letter thickness sluice
023 baffle plate for module 2
0231 spring tab
0232 baffle flap for print media 3

1 transport module
10 counter-pressure device
11 transport belt
110 deflection roller for transport belt 11, with encoder wheel
111 mounting holes for mounting pins 211
12 circuit board with letter travel sensors 121, 122, 123, receiver part
121 input sensor 121, above
122 print image sensor, above
123 printing start sensor, above
13 circuit board with letter travel sensors 131, 132, 133, transmitter part
131 input sensor, below
132 print image sensor, below
133 printing start sensor, below
14 print window
15 print head
16 letter travel guide, above
17 letter travel guide, to the side

2 module
20 module housing
201 module housing, right part
2011 mounting pins
202 module housing, left part
2021 nose for tension spring suspension, rigid
21 magazine
211 front wall of the magazine 21
2110 upper front wall, movable in rotation
2111 recess in the lower front wall 211
2112 opposite contour to the axle 222
2113 tension spring for front wall 2110
2114 tabs for tension spring suspension, movable
212 axle
213 pins
214 contact pressure lever, movable in rotation
2141 torsion spring for contact pressure lever 214
215 touching lever for fill level monitoring, movable in rotation
2151 torsion spring for touching lever 215
2152 switching plate at touching lever 215 for photoelectric barrier 2182
2153 switching plate at touching lever 215 for photoelectric barrier 2181
216 lower rear wall of the magazine 21
217 floor wall of the magazine 21
2171 rigid, smooth part of the floor wall 217 with specific front profile
2172 elbowed part of the floor wall 217, movable in rotation
2173 contour at the floor wall, outside for spring tabs 0231
218 function support for circuit board 2180 and part 2172
2180 circuit board for photoelectric barriers and plug connectors
2181 photoelectric barrier for empty level monitoring
2182 photoelectric barrier for overfill monitoring
22 step motor with gear wheel
221 toothed segment
222 axle with activation curve profile

3 print medium, strip-shaped; strips
31 edge region of the print medium 3, transport region
32 print region of the print medium 3
Protective Claims:

1. Arrangement to print to strip-shaped print media in a franking and/or addressing machine in which the print media (3) are transported by means of a revolving transport belt (11) of a known (DE 10 2007 060 789 A1 and DE 10 2008 032 804 A1) transport module (1) and are printed by means of a print head (13) located behind a printing window (12); and in which a module (2) with a magazine (12) for the strip-shaped print media (3) is optionally arranged in the entrance region (02) for the otherwise typical print media and in the engagement region of the transport belt (11); and in which the transport belt (11) simultaneously serves as a take-off device; characterized in that
 the module (2) with the magazine (21) is arranged laterally offset from the transport belt (11) so that the print media (3) are captured by the transport belt (11) only in an edge region (31) and is wider by this edge region (31) than is otherwise typical; and in that the transport belt (11) runs outside of and next to the print window (12), and the print medium (3) with the remaining region (32) provided for printing is directed past below the print window (12).

2. Arrangement according to Claim 1, characterized in that
 an axle (212) parallel to the transport belt plane is attached centrally to the back side of the magazine (21), and the magazine (21) has a u-shaped, upper front wall (2110) that is spring-loaded and elastically pivotable around this axle (212), while the upper rear wall is formed by a sealable flap (011) of the apparatus housing (01) of the franking machine (0),
 in that the magazine (21) as a whole is borne spring-loaded, pivotable and adjustable via motor actuation with two pins (213) in the input region of the module housing (20), and therefore the output region is adjustable,
 in that the front wall (211) of the magazine (21) has a recess (2111) adapted to the transport module (1) in the engagement region of the transport belt (11), and a contact pressure lever (214) borne such that it can pivot and spring-loaded on the axis (212) is provided after the recess (2111),
 in that a touching lever (215) likewise borne such that it can pivot and spring-loaded on the axis (212) is provided parallel to the contact pressure lever (214) for fill level monitoring,
 in that the lower rear wall (216) of the magazine (21) transitions, adapted in terms of its shape, into the floor wall (217), which is additionally subdivided into a rigid, smooth, existing part (2171) below the contact pressure lever (213) and into a rotationally movable part (2172), wherein the latter part (2172) is elbowed upward at its free end so far that the existing of one or more print media (3) upon filling is securely avoided.
3. Arrangement according to Claim 1 and 2, characterized in that
a step motor (22) with gearwheel is attached laterally to the left part (202) of the module
housing (20), which gearwheel is engaged with a toothed segment (221) that is in turn
connected with an axle (222) that has an activation curve profile with which the axle (222)
engages in an opposite contour (2112) in the outer front wall (211) of the magazine (21),
in that the axle (222) is borne parallel to the axle (212) in the module housing (20), and
the translation from gearwheel to toothed segment (221) is selected so that the "take-off",
"pivoted-away" and "intermediate position" positions are self-locking, and therefore the exit
conditions (strip sluice) for the strips (3) are adjustable with the step motor (22).

4. Arrangement according to Claim 1 and 2, characterized in that
a baffle plate (023) is installed in the upper plate (021) of the typical letter thickness sluice that
ends in two parallel tabs, a spring tab (0231) and a baffle flap (0232), wherein the spring tab
(0231) non-positively rests on the transport belt (11) or, respectively, the strip (3) while the
baffle flap (0232) is arranged with short distance from the transport belt (11), and is adapted to
its curvature, and serves to deflect the strip (3) into the engagement region of the counter-
pressure device (10) for the transport belt (11).

5. Arrangement according to Claim 1 and 2 as well as 4, characterized in that
the module (2) for the strip-shaped print media (3) is fixed by means of mounting pins (2011) in
associated mounting holes (111) of the support frame for the transport module (1), and
therefore assumes a defined position relative to the transport belt (11).

6. Arrangement according to Claim 2, characterized in that
the rigid, smooth part (2171) of the floor wall (217) of the magazine (21) has a plate (metal or
ceramic) with rounded facing profile with low coefficient of friction that, in the take-off position
of the magazine (21), together with the transport belt (11) forms a wedge-shaped, closed but
elastically sprung intake angle into which the front-most strip (3) is pushed via static friction
with the transport belt (11).

7. Arrangement according to Claim 2 and 4, characterized in that,
in its pivoted-away position, the rotationally movable, elbowed part (2172) of the floor wall
(217) of the magazine (21) is pressed with its rear part against a contour (0211) in the upper
plate (021) of the letter thickness sluice (02) and is thereby raised forward, and
in that, in the take-off position, the part (2172) with its rear part leaves the contour (0211) and folds away downward onto the plate (021) as a result of gravity, and therefore releases the strips (3).

8. Arrangement according to Claim 2, characterized in that the touching lever (215) is provided at its free leg with two elbowed switching plates (2152, 2153) of different lengths that act on associated photoelectric barriers (2181, 2182) depending on the position of the touching lever (215).

9. Arrangement according to Claim 2 and 8, characterized in that the photoelectric barriers (2181, 2182) are executed as forked photoelectric barriers with aperture and are attached to a circuit board (2180) that is attached to the lower rear wall (216) of the magazine (21) by means of a function support (218), the shorter switching plate (2152) interrupts the photoelectric barrier (2182) upon overfilling, and the longer switching plate (2153) interrupts the other photoelectric barrier (2181) given an empty state, and the touching lever (215) thus dips into a recess of the front wall (211) of the magazine (21) so that the photoelectric barrier (2182) is already securely released given a thin strip (3).