A 00 OO O

WO 03/090067 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
30 October 2003 (30.10.2003)

PCT

(10) International Publication Number

WO 03/090067 A2

GO6F 9/30
PCT/US03/11571
14 April 2003 (14.04.2003)

(51) International Patent Classification”:
(21) International Application Number:
(22) International Filing Date:

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

10/127,087 22 April 2002 (22.04.2002) US

(71) Applicant: MOTOROLA, INC. [US/US]; 1303 East Al-
gonquin Road, Schaumburg, IL 60196 (US).

(72) Inventors: LEE, Lea-Hwang; 9303 Quailwood Drive #
A, Austin, TX 78758 (US). MOYER, William, C.; 1005
Pier Branch Road, Dripping Springs, TX 78620 (US).

(74) Agents: CHIU, Joanna, G. et al.; Intellectual Property
Section, 7700 West Parmer Lane, MD: TX32/PL02,
Austin, TX 78729 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY,BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD,
SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ,
VC, VN, YU, ZA, ZM, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI,
SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

[Continued on next page]

(54) Title: SYSTEM FOR EXPANDED INSTRUCTION ENCODING AND METHOD THEREOF

INTER-DECODER

(57) Abstract: A system and methods are
discussed for providing additional capabilities to
some instructions associated with loop execution.
A standard set of instructions is processed
using only a standard instruction size. Some
loop instructions are processed with a standard
instruction portion of the standard instruction
size and an augmented instruction portion. The
augmented instruction portion provides additional
capabilities associated with the standard instruction
portion. The augmented instruction portion can

provide capabilities associated with conditional
execution of the standard instruction portion
or other instructions within a program loop.

Furthermore, the augmented instruction portion
can provide an additional operand to be used with
the standard instruction portion.

CONTROL
410
440~ SECONDARY L STANDARD |~ 430
DECODER DECODER
421 ~{INSTRUCTION INSTRUCTIONE~ 420
FETCH FETCH
N 0 MEMORY 450
AUGMENTED
INSTRUCTIONS STANDARD PROGRAM LOOP
470 INSTRUCTIONS 480
.
M N+ 460
LOOP INIT
AUGMENTED | STANDARD AUGMENTED _INSTRUCTION 1
INSTRUCTION | INSTRUCTION AUGMENTED _INSTRUCTION 2
PORTIONS |, PORTIONS .
47 1 RA] .
AUGMENTED_INSTRUCTION_K
STANDARD
PROGRAM — | TNSTRUCTIONS
405 165
M N+ N 0
AUGMENTED_CODE_1 | STANDARD_CODE _t1
AUGMENTED_CODE_2 | STANDARD_CODE_2
AUGMENTED_CODE_K | STANDARD_CODE_K

400

WO 03/090067 A2 |0 AOHNAN 00 RO AR

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

WO 03/090067 PCT/US03/11571

SYSTEM FOR EXPANDED INSTRUCTION ENCODING AND METHOD
THEREOF

FIELD OF THE INVENTION

The present invention relates generally to instruction execution in a data processing
system and more specifically to extended length instruction execution during loop

executions.

BACKGROUND

Recently much attention has been focused on designing low-cost, low power and
high performance processors for mid-to-low end embedded applications, such as pagers,
cellular phones, etc. Many of these embedded applications require the data processing
system to perform highly repetitive functions, such as digital signal processing (DSP)
functions, where a large amount of Instruction Level Parallelism (ILP) can be exploited,

while also requiring the system to perform control intensive functions.

To address these needs, some systems use dual-core solutions, where one core
performs all the control intensive functions, and the other core performs the specialized
DSP functions. In this approach, the processor cores communicate with each other through
communication channels implemented within the system, such as a shared memory. These
systems often employ dual instruction streams, one for each execution core. These dual

core systems typically have higher hardware and development costs.

In addition, in many embedded applications, some loops are highly vectorizable,
while other loops are more difficult to vectorize. Highly vectorizable loops can be
efficiently processed by using the traditional vector processing paradigm, such as those
described in "Cray-1 Computer System Hardware Reference Manual", Cray Research, Inc.,
Bloomington, MN, publication number 2240004, 1977. This is applicable to the

vectorizable loops, but does not extend to those loops that are difficult to vectorize.

10

15

20

25

WO 03/090067 PCT/US03/11571

-2

For loops that are difficult to vectorize, a DSP style of processing paradigm, which
focuses on optimizing loop executions will be more suitable. The SHARC product
described in the ADSP-2106x SHARC User's Manual, Analog Devices Inc., 1997, is an
example of a system employing loop optimization. While providing efficient performance
of loops that are difficult to vectorize, this approach is not as efficient for highly

vectorizable loops.

Many embedded applications spend most of their execution time executing a
handful of critical program loops. These critical loops often constitute only a small
fraction of the static code side. In such systems, an optimum tradeoff between performance
and system cost (code size) can often be achieved if a dense instruction-encoding scheme is
used for the entire program, except for the few critical program loops. From the above

discussion, it is apparent that an improved method of instruction encoding is needed.

BRIEF DESCRIPTION OF THE DRAWINGS

Specific embodiments of the present invention are shown and described in the
drawings presented herein. Various objects, advantages, features and characteristics of the
present invention, as well as methods, operations and functions of related elements of
structure, and the combination of parts and economies of manufacture, will become
apparent upon consideration of the following description and claims with reference to the

accompanying drawings, all of which form a part of this specification, and wherein:

FIG. 1 illustrates in outline diagram form execution modes in a data processing

system, according to one embodiment of the present invention;

FIG. 2 illustrates in block diagram form prior art operation of functional units in a

DSP processor;

FIG. 3 illustrates in block diagram form prior art operation of functional units of a

true vector machine;

WO 03/090067 PCT/US03/11571
-3

FIG. 4 illustrates in block diagram form a processing system adapted for processing
pseudo-vector arithmetic operations, according to one embodiment of the present

invention;

FIG. 5 illustrates in data flow diagram form data dependency graphs for three types
5 of canonical vector arithmetic (CVA), according to one embodiment of the present

invention;

FIG. 6 illustrates in block diagram form configuration of a portion of a processing
system as in FIG. 4 for CVA processing, according to one embodiment of the present

invention;

10 FIG. 7 illustrates in block diagram form the format of a CVA instruction, according

to one embodiment of the present invention;

FIG. 8 illustrates in block diagram form the format of a pseudo-vector arithmetic

(PVA) instruction, according to one embodiment of the present invention;

FIG. 9 illustrates in program flow diagram form the structure of a program loop
15 constructed using a PVA instruction according to one embodiment of the present

invention;

FIG. 10 illustrates in block diagram form the format of the Stride Size Register

(SSR) according to one embodiment of the present invention;

FIG. 11 illustrates in block diagram form the format of the Count Index Register

20 (CIR) according to one embodiment of the present invention;

FIG. 12 illustrates in block diagram form one embodiment of the load unit Ly,

according to one embodiment of the present invention;

WO 03/090067 PCT/US03/11571
- 4-

FIG. 13 illustrates in block diagram form one embodiment of the load unit L;,

according to one embodiment of the present invention;

FIG. 14 illustrates in block diagram form one embodiment of the store unit S

according to one embodiment of the present invention;

5 FIG. 15 illustrates in block diagram form a register file having overlaid registers

during one mode of operation, according to one embodiment of the present invention;

FIG. 16 illustrates in block diagram form a register file with temporary and overlaid

registers, according to one embodiment of the present invention;

FIG. 17 illustrates in timing diagram form the correspondence of the temporary and

10 overlaid registers; according to one embodiment of the present invention;

FIG. 18 illustrates in block diagram form a counter to manage program loop

executions according to one embodiment of the present invention;

FIG. 19 illustrates in flow diagram form a decision flow for processing computer

program code, according to one embodiment of the present invention;

15 FIG. 20 illustrates in block diagram form an alternative embodiment of a PVA
instruction with early loop continuation capability, according to one embodiment of the

present invention;

FIG. 21 illustrates in block diagram form a pseudo-vector machine, according to an

alternate embodiment of the present invention;

20 FIG. 22 illustrates in data flow diagram form a dependency graph of a pseudo-

vector machine as in FIG. 21, according to one embodiment of the present invention;

10

15

20

25

WO 03/090067 PCT/US03/11571

-5

FIG. 23 illustrates in block diagram form the format of a PVA instruction,

according to an alternate embodiment of the present invention;

FIG. 24 illustrates in program flow diagram form the structure of a program loop

constructed using a PVA instruction, according to an alternate embodiment of the present

invention;

FIG. 25 illustrates in block diagram form the format of a PVA instruction,

according to an alternate embodiment of the present invention;

FIG. 26 illustrates in program flow diagram form the structure of a program loop
constructed using a PVA instruction, according to an alternate embodiment of the present

invention;

FIG. 27 illustrates in block diagram form a system having a first decoding portion
for processing standard instructions and a standard instruction portions of augmented
instructions and further having a second decoding portion for processing augmented
instruction portions of the augmented instructions, according to one embodiment of the

present invention;

FIG. 28 illustrates in block diagram form a structure of a memory wherein an
augmented instruction coupled with a register provides a pointer to a set of augmented
instruction portions associated with augmented instructions, according to one embodiment

of the present invention;

FIG. 29 illustrates in block diagram form a structure of a memory wherein a loop
initialization instruction includes a standard initialization instruction portion and an

augmented instruction portion, according to one embodiment of the present invention;

FIG. 30 illustrates in block diagram form a structure of a program of instructions
wherein augmented instructions are coupled with standard loop instructions in memory,

according to one embodiment of the present invention;

WO 03/090067 PCT/US03/11571

10

15

20

-6-

FIG. 31 illustrates in block diagram form a structure of an augmented instruction
having a standard instruction portion and an augmented instruction portion used to provide
early termination and early continuation capabilities associated with the augmented

instruction, according to one embodiment of the present invention;

FIG. 32 illustrates in block diagram form a structure of an augmented instruction
having a standard instruction portion and an augmented instruction portion used to provide
conditional execution capabilities associated with the augmented instruction, according to

one embodiment of the present invention;

FIG. 33 illustrates in block diagram form a structure of an augmented instruction
having a standard instruction portion and an augmented instruction portion used to provide
additional operand capabilities associated with the augmented instruction, according to one

embodiment of the present invention;

FIG. 34 illustrates in block diagram form a structure of an augmented instruction
having a standard instruction portion and an augmented instruction portion used to provide
extended immediate value capabilities associated with the augmented instruction,

according to one embodiment of the present invention;

FIG. 35 illustrates in block diagram form an example of instruction encodings
associated with augmented instructions, according to one embodiment of the present

invention; and

FIG. 36 illustrates in flow chart form a method for compiling commands, according

to one embodiment of the present invention.

DETAILED DESCRIPTION OF THE FIGURES

In aconventional system having an Instruction Set Architecture (ISA) that uses 16-

bit fixed instruction length encoding, performance is often adversely impacted by various

10

15

20

25

WO 03/090067 PCT/US03/11571

-7-

limitations on instruction encoding. For example, the ISA typically uses a two-operand
instruction format, instead of a three-operand instruction format. In this case, an
instruction typically has a format: opcode Ra, Rb, where Ra is a source operand as well as
a destination operand. As a result, if the original value in Ra is to be preserved, an
additional “move” instruction is needed, due to the operand self-destructive nature of the
instruction. Instructions in this ISA also have limited width to encode “immediate” value
fields. Furthermore, the ISA is unable to encode conditional execution capability (e.g. an
instruction may be conditionally executed if the condition code is of certain values). This
capability is advantageous for eliminating short forward branches. With these limitations
on instruction encoding, an ISA that uses 16-bit fixed instruction length encoding typically
has a poorer performance than an ISA that uses 32-bit fixed instruction length encoding.
The former, however, has a higher code density (and thus lower system cost) than the

latter.

For critical loops, the present invention uses expanded instruction width encoding
to avoid any performance degradation associated with narrow instruction encoding used for
the bulk of the program code. Consider the following example. An embedded system
spends about 40% of its time executing a handful of critical loops. These loops constitute
about 1% of the static code size of the program. By expanding the instruction encoding
only for these loops, we increase the size of these loops by 100%. At the same time, we are
also able to improve the execution time of these loops by 100%. Overall, we improve the

performance by 20%. The static code size, in this case, is only increased by 1%.

The present invention provides a method for performing scalar functions and vector
functions in an integrated datapath. Scalar functions may also be considered as control
functions, while vector functions are typically for replacing and executing repetitive
program loops. The method chooses between a traditional vector processing paradigm or a
DSP style of processing paradigm, depending on the nature of the loop. By providing the
ability to execute both of these processing paradigms for program loops, it is possible to
achieve performance improvements that are higher than either individual paradigm.

Furthermore, capabilities associated with instructions of vector functions are extended

10

15

20

25

WO 03/090067 PCT/US03/11571

- 8-

through the use of augmented instruction portions. The augmented instruction portions are

provided with instructions associated with vector functions.

As used herein, the term "bus" is used to refer to a plurality of signals or conductors
which may be used to transfer one or more various types of information, such as data,
addresses, control, or status. The terms "assert" and "negate" is used when referring to the
rendering of a signal, status bit, or similar apparatus into its logically true or logically false
state, respectively. If the logically true state is a logic level one, the logically false state is a
logic level zero. And if the logically true state is a logic level zero, the logically false state

is a logic level one.

Brackets is used to indicate the conductors of a bus or the bit locations of a value.
For example, "bus 60 [0-7]" or "conductors [0-7] of bus 60" indicates the eight lower order
conductors of bus 60, and "address bits [0-7]" or "TADDRESS [0-7]" indicates the eight
lower order bits of an address value. The symbol “$” preceding a number indicates that the
number is represented in its hexadecimal or base sixteen form. The symbol “%” preceding

a number indicates that the number is represented in its binary or base two form.

Ina vector processing paradigm, data continuously streams from the memory, or
vector registers, and are processed by a chain of functional units in a highly pipelined
fashion. The processed data then continuously stream back to the memory. The Cray

architecture, discussed hereinabove, is an early example of a system using this paradigm.

The strength of vector processing paradigm can be illustrated using the following

example loop.
Example 1
L1:
addi R2,2 // update stride value
1d.h R7,(R2) // load with stride of 2

addi R3,1 // update stride value

10

15

20

25

WO 03/090067 PCT/US03/11571

-0.
1d.b R6,(R3) // load with stride of 1
mul R7,R6 // multiply
st.h R7,R2) // store with stride of 2
dec.ne R1 /l decrement loop index rl
/I set ¢ bit if r1 not equals zero
bt L1 // branch to L1 if ¢ bit is set

This loop performs an element-wise multiplication on two vectors. In vector form,

it is performing: C[i}= A[i] * B[i], i=0, .., n-1, for vectors A, B and C.

In this example, intermediate values are produced and then consumed immediately.
These values are continuously being written back to and read from registers 6 and r7.
Since they are produced and consumed only once, it is inefficient to store these values in

the often limited register storage space. This situation, unfortunately, is inevitable when a

‘vector operation is expressed using a scalar program in a load-store instruction set

architecture (ISA).

A more efficient approach, is to chain a number of functional units together, with
each unit performing a specific task. In this way, when an intermediate value is produced
by a functional unit, it is directly passed on to the next functional unit down the chain,
thereby avoiding the read and write traffic to the register file associated with storing and

retrieving the value.

It is also possible to pipeline vector operations or executions, such that one result
could be produced every cycle. In general, the time required to perform a vector operation
is given by Ts + n/Tr, where Ts is the initial setup cost, n is the vector length and Tr is the
throughput rate in number of results produced per cycle. If ascalar machine takes m cycles
to execute one iteration of the equivalent program loop, then the speedup using the vector
machine is given by nm/(Ts+1/Tr), or nm/(Ts+n) for Tr=1. Maximum speedup could be
achieved when Ts is sufficiently small and n is sufficiently large. In this case, the speedup
approaches m, the number of cycles it takes for the scalar machine to execute one iteration

of the program loop.

10

15

20

25

WO 03/090067 PCT/US03/11571

- 10-

Vector processing has several strengths. Various operations may be pipelined on a
single data stream resulting in improved performance. Efficient data storage and
movement results as a large amount of temporary data are produced and consumed by
adjacent functional units without going through the register file or the memory system.
Additionally, vector processing uses a smaller routing area as a functional unit is routed
directly to its destination function unit, instead of broadcasting it to the entire datapath.
Efficient data movements and lower routing area tend to reduce power consumption. Still
further, a lower instruction fetch bandwidth is achieved as there is no need to request an
instruction during vector executions. The strength of vector processing paradigm makes it

very suitable for the low-cost, low-power embedded computing systems.

A loop that performs a vector operation described by:
Cl[i] = A[i] * B[i], fori=0, ..., n-1.

for some vectors A, B and C, is a highly vectorizable loop. The ease of loop vectorization
is typically a function of the hardware and system configuration. In general, loops that do
not depend on run-time information to decide which arithmetic function to perform are
easier to vectorize. As used herein, Canonical Vector Arithmetic (CVA) represents the
vector arithmetic that can be performed by highly vectorizable loop(s). The following

shows another example of CVA.
C[i] =4 * A[i] + (B[i]>>1), fori=0, ..., n-1.

This CVA can be decomposed into multiple CVAs, as follows.

T1[i]=4*Ali]; T2[i]=Bli]>>1; C[i]=T1[i]+T2[i], fori=0,...,n-1, for some temporary
vectors T1 and T2.

When a DSP algorithm or function is implemented on an embedded machine, it is
often transformed into program loops. The optimizing compiler then tries to restructure
the loop such that all the possible parallelism can be easily exploited by the machine.
Some program loops, however, are not easy to vectorize. They may become vectorizable

after being transformed by the compiler to “fit” the vector processing paradigm. These

10

15

20

WO 03/090067 PCT/US03/11571

- 11-

transformations involve adding some additional vector operations that may include mask

generations, gather and scatter operations, etc.

For example, a loop that performs a vector operation described by:

C[i] = (A[i]>B[i])? AiJ* : A[i]+BIi], for i=0,...,n-1,

is difficult or costly to vectorize. In particular, the loop dynamically relies on the

condition:
Ali] > B[i]

to decide what arithmetic function to be performed in order to obtain the result element

C[i]. This type of arithmetic is referred to herein as the Pseudo-Vector Arithmetic (PVA).

A DSP type machine executes the PVA arithmetic efficiently, by optimizing the
executions of program loops. These machines improve the performance by removing
much of the overhead associated with: (i) the loop control mechanism; (ii) the constant-

stride load; and (ii) the constant-stride store.

An instruction in traditional DSP processors can specify that multiple compute and
memory operations be performed concurrently. The operations of such processors are very
similar to those for Very Long Instruction Word (VLIW) processors, where multiple

operations are issued in parallel.

The present invention provides a mean for processing vectorizable loops using
vector type processing and difficult or impossible to vectorize loops using DSP type
processing. Depending on the type of loops, the machine behaves like a vector processor
under certain conditions; and behaves like a DSP processor under other conditions. In
addition, this machine uses a single data path to execute all the vector arithmetic as well as
the scalar portions (i.e. the non-loop portions) of the program, allowing efficient reuse of

the same hardware resources.

10

15

20

25

WO 03/090067 PCT/US03/11571

- 12-

The present invention incorporates vectorization as a decision mechanism to
determine whether to use vector type processing or DSP type processing. The former is
also referred to as CVA execution(s). The latter is also referred to as PVA execution(s).

This new processing paradigm will be referred to herein as the "Pseudo-Vector Machine."

According to this new processing paradigm, the execution model is capable of
executing in two modes: (i) a scalar execution mode for control functions; and (ii) a vector
execution mode for exploiting instruction level parallelism (ILP). FIG. 1 illustrates the
execution modes of one embodiment of the present invention. The two basic modes are
scalar and vector, where the vector mode includes further specific modes of execution.
The CVA and PVA modes are only available in vector mode, and there are three types of
CVA mode executions: (i) compound; (ii) reduction; and (iii) hybrid. Correspondingly,
there are two vector instructions on this machine: a CVA instruction and a PVA

instruction.

In the execution model of FIG. 1, scalar and vector modes are non-overlapping in
time. The model executes these two modes on a single datapath using a single instruction
stream. Each instruction in this stream can be classified as either a scalar instruction or a
vector instruction. When a vector instruction is fetched and decoded, the machine enters a
vector execution mode. The machine only exits the vector mode via a few predefined

mechanisms.

For loops that are highly vectorizable, the machine uses the CVA execution mode,
i.e. a“true” vector processing paradigm, to process the loops. For loops that are difficult or
impossible to vectorize, the machine uses the PVA execution mode, i.e. a “pseudo” vector
processing paradigm similar to the DSP’s style of processing, to process the loop. The
optimizing compiler, in this case, decides which execution mode is best suited for a given
program loop. In general, the compiler will first try to vectorize a loop using a true vector,
or CVA instruction, in an attempt to exploit the low-power and high performance aspects
of vector processing paradigm. If this is not possible, it will then fall back to the DSP style

loop-based executions using a PVA instruction, or a combination of both.

10

15

20

25

WO 03/090067 PCT/US03/11571

-13-

Vectorization, in a conventional sense, refers to identifying and replacing a
vectorizable program loop with some equivalent vector operations. In addition the present
invention provides vectorization which identifies and replaces a program loop with a DSP
style loop construct. This may include a DO UNTIL or DO WHILE instruction. Such a
loop may be difficult or impossible to vectorize, in a conventional sense. In the pseudo-
vector machine, the PVA instruction is used to construct and vectorize DSP type program

loops.

When a program loop is replaced by its equivalent code that consists of one or more
vector instructions (CVA and/or PVA instructions), the program loop is said to be
vectorized. This vectorized code segment is also referred to as the vector equivalent of the
original scalar program loop, as they both perform the same function. Vectorization can

occur at the assembly level or at the source code level.

If a loop is vectorizable using a CVA construct, it is said to be CVA vectorizable.
If a loop is vectorizable using a PVA construct, it said to be PVA vectorizable. If aloop is
CVA vectorizable, it is also PVA vectorizable. The converse, however, is not generally
true. The PVA construct represents a more general vectorizing mechanism. With
comparable hardware costs, CV A executions usually offer higher performance benefits for
loops that are highly vectorizable. For loops that are impossible or too costly to vectorize,

the PVA executions offer better performance benefits.

The distinctions between a DSP and/or VLIW type execution and a vector type
execution are illustrated in Figs. 2 and 3. FIG. 2 illustrates the operations of a DSP type
execution, where multiple independent operations are issued simultaneously to multiple
functional units. The results produced by these independent functional units are written
back to some architectural registers and/or the memory system. Note that the operations

illustrated in FIG. 2 also describe operations of a VLIW machine.

FIG. 3 illustrates traditional vector execution, where multiple functional units are

chained together to perform dependent operations. Temporary results produced between

10

15

20

25

WO 03/090067 PCT/US03/11571

- 14-

the chained functional units are not written back to an architectural register nor are they
written to the memory system. In addition, a vector execution is also characterized by the
fact that after the initial fetching and decoding of the vector instruction, it does not make

any further instruction request for the rest of its vector execution.

The present invention provides a method of combining DSP type executions and
vector execution in one integrated datapath. As used herein, PV A executions are DSP type
executions, while CVA executions are vector executions. The present invention thus takes

advantage of the benefits of each type of execution within one processing system.

FIG. 4 illustrates a processing system 2 according to one embodiment of the present
invention. Processing system 2 incorporates a processing architecture to perform scalar
executions, CVA executions, and PVA executions on a single datapath. The execution
core 4 includes a first load unit, L 6, and a second load unit, L; 8. Information is loaded

into Ly 6 and L; 8 from memory MO 14 and memory M1 16, respectively.

In one embodiment of the present invention, MO 14 and M1 16 are random access
memory (RAM) blocks, but may be implemented using other types of memory storage
devices. The memory M0 14 communicates data information with the rest of processing
system 2 via MO_dbus, and address information via MO_abus. Similarly, M1 16

communicates data information via M1_dbus, and address information via M1_abus.

The execution core 4 also includes a loop cache 22 coupled to a program sequencer
24, M0_dbus, and MO_abus. The program sequencer 24, also coupled to MO_dbus and
MO_abus, further includes a Count Index Register (CIR) 50. CIR 50 includes two
independent registers: (i) the Count Register (CR); and (ii) the Index Register (IXR). CIR
50 is also illustrated in FIG. 11 where CR 51 is used to specify the vector length for CVA
executions, or the number of iterations for PVA executions. The loop cache is coupled to
receive data via the MO_dbus. The program sequencer 24 provides address information to

MO 14 via the MO_abus.

WO 03/090067 PCT/US03/11571

10

15

20

25

- 15-

A register file (RF) 26 is also provided, where data is provided from Ly 6 and L, 8
to RF 26 via LO_dbus and L1_dbus, respectively. The RF 26, the Ly 6, and the L 8 are all
coupled to the multiplexors 28, 30 and 32. The multiplexor 28 provides information to
primary arithmetic unit (P) 34 via the xbus. In one embodiment, the P 34 is a general
purpose functional unit. It can perform all the scalar arithmetic functions defined in the

underlying ISA. The multiplexor 30 provides information to P 34 via the ybus.

The result of P 34 is provided to the secondary arithmetic/store unit (S) 36 via the
p_bus. The result of P 34 is also provided to multiplexor 40. Besides performing memory
store operations, S 36 can also perform some simple arithmetic logic unit (ALU)

9 <C

arithmetic, such as “add,” “and," “or,” “xor,” etc. The multiplexor 32 provides information
to latch 38 via the zbus, where information is then provided from latch 38 to multiplexor
41. The output of multiplexor 41 provides information to S 36 via the zs_bus. The data
output of S 36 is provided via the s_dbus to multiplexor 40, to multiplexor 41, to
M1_dbus, to MO_dbus, and to the Temporary Memory ™ 20. The address output of S 36
is also provided via the s_abus to MO_abus, M1_abus and to the Temporary Memory (TM)
20. The output of multiplexor 40 provides information to the RF 26, L 6, L; 8, SSR 42

and multiplexors 28 and 30 via the result_bus.

When executing in a scalar mode, the execution core behaves like a single-issued
pipelined machine. It uses the register file RF 26 and P 34 for scalar computations, and Ly
6,L, 8 and S 36 for memory load/store operations. In particular, the memory addresses
for these load/store operations are provided by S 36 to the memory system, including TM
20, MO 14 and M1 16. For memory store operations, data are supplied by the S 36 unit.
For memory load operations, data are supplied by the memory system, through L6 and L,
8, via LO_dbus and L1_dbus respectively, into RF 26 and P 34.

When executing in a vector mode, the vector instruction, i.e. CVA or PVA
instruction, can optionally enable up to two input data streams, Lo and L;, and one output

data stream, S.

WO 03/090067 PCT/US03/11571

10

15

20

25

- 16-

When executing in a vector mode, data can be continuously fetched from MO 14,
through Ly 6 and LO_dbus, and provided by any of multiple paths to RF 26, P 34, or S 36.
A first path is used to stream data to RF 26 via LO_dbus. A second path is used to stream
data to P 34 via multiplexor 28; a third path is used to stream data to P 34 via multiplexor
30. A fourth path is used to stream data to S 36 via multiplexor 32, latch 38, and
multiplexor 41. For PVA execution, one or more of the first, second, and third paths may
be used, depending on the PVA instruction. For CVA execution, one or more of the
second, third, and fourth paths may be used, depending on the CVA instruction. Any of

these data streams is referred to as input data stream L.

Similarly, when executing in a vector mode, data can be continuously fetched from
M1 16, through L; 8 and L1_dbus, and provided by any of multiple paths to RF 26, P 34,
or S 36. A first path is used to stream data to RF 26 viaL.l_dbus. A second path is used to
stream data to P34 via multiplexor 28; a third path is used to stream data to P 34 via
multiplexor 30. A fourth path is used to stream data to S 36 via multiplexor 32, latch 38,
and multiplexor 41. For PVA execution, one or more of the first, second, and third paths
may be used, depending on the PVA instruction. For CVA execution, one or mbre of the
second, third, and fourth paths may be used, depending on the CVA instruction. Any of

these data streams is referred to as input data stream L;.

Also, in vector mode, data can be continuously stored from S 36 to one of the
memory modules MO 14, M1 16 or TM 20. This output data streamed is referred to as the

output data stream S.

The execution core 4 further includes a Stride Sizé Register (SSR) 42 to specify the
stride and the operand size for the Lo, L, and S streams if the corresponding load/store
operation is enabled. SSR 42 is coupledtoly6,L; 8, RF 26 and S 36. SSR 42 is further
coupled to multiplexor 40 to receive information via the result_bus. A temporary memory
storage unit, TM 20 is coupled to S 36, Ly 6 and L; 8. TM 20 can be used to store
temporary vectors, or any data. Vectors stored in TM 20 are not limited to a fixed vector

length.

WO 03/090067 PCT/US03/11571
-17-

Data dependency graphs representing the three types of CVA performed on

processing system 2 are illustrated in FIG. 5. In all three types of CVA illustrated in FIG.

5, the first arithmetic performed near the two inputs is called the primary arithmetic,
denoted as p_op. This arithmetic is performed at the P 34 of FIG. 3. The second

5 arithmetic performed near the output is called the secondary arithmetic, denoted as s_op.

This arithmetic is performed at S 36 of FIG. 3.

FIG. 5 illustrates the relationship between the input data streams Ly, and L;, and
source operands X, Y, and Z for a CV A for one embodiment of the present invention. The
operand X can source from the L stream, the L; stream or from register r4. Operand Y can

10 source from the L stream, the L; stream or from register r5. Operand Z can source from
the L stream, the L stream or from register r6. The X operand and the Y operand are used
in the primary arithmetic, p_op. The result of the primary arithmetic is forwarded to the
secondary arithmetic, s_op. Depending on the type of CVA, the secondary arithmetic s_op

can source from operand Z, or from the output of s_op itself.

15 A compound CVA, illustrated as (A) in FIG. 5, produces a destination vector as a
result of vector computations. The general form of a compound CVA can be expressed as

follows:

If source X and source Y are all vectors, then

R; = (X;p_op Y)) s_op Z;, i=0,...,n-1

20 where n denotes the vector length; p_op denotes the primary arithmetic; s_op
denotes the secondary arithmetic; R; denotes the ith element of the destination

vector; and X;, Y; and Z; are respectively the ith element of vectors X, Y and Z.
If source X is a scalar constant, x, and source Y is a vector, then
R;=(x p_op Yi) s_op Z;, i=0,...,n-1

25 If source X is a vector and source Y is a scalar constant, y, then

WO 03/090067 PCT/US03/11571

- 18-
R; = (X;p_opy) s_op Z;, i=0,...,n-1
Note that the secondary arithmetic, s_op, can also be a “no-op”.

For the reduction CVA, illustrated in (B) of FIG. 5, the sources for the X and Y

operands are the same as for the compound type, however, no Z operand is used. The

5 output of the secondary arithmetic is fed back as an input to s_op itself. In this case the S
stream is disabled. A reduction CVA performs a vector reduction operation, where one or
more vectors, as a result of the vector operation, is reduced to a scalar result. The general

form of a reduction CVA can be expressed as follows:

If source X and source Y are all vectors, then
10 So = (Xo p_op Yo)
Si=(Xip_op Yi) s_op Si1, i=l,..,n-1;

r=Sn1

where S; denotes the ith partial result; r denotes the scalar result for the vector

reduction operations.

15 If source X is a scalar constant, x, and source Y is a vector, then

So = (x p_op Yo)
Si=(xp_op Y)s_opSii1, i=l,..n-1;
r=3Su1

If source X is a vector and source Y is a scalar constant, y, then

20 So=(Xop_opy)

Si=(Xip_opy)s_opSii, i=1,n-1;
r=Sy1

The feed-back path in conjunction with the secondary arithmetic is responsible for

computing and accumulating a partial result; and eventually, producing a final scalar result.

25 Anexample of such reduction operations is the inner product of two vectors, described by

10

15

20

WO 03/090067 PCT/US03/11571

- 19-

Zi(A[i]*BIi]). In this case, the primary arithmetic is the “multiplication” function and the

secondary arithmetic is the accumulative “add” function.

Continuing with FIG. 5, the hybrid CVA, illustrated as (C), allows the same sources
for X and Y operands and the feedback for the secondary arithmetic as in the reduction
case, however, for the hybrid case the S stream is enabled. A hybrid CVA isidentical to a
reduction CVA, except that the intermediate partial results are also constantly being written
to a destination vector via the S stream. The general form of a hybrid CVA is identical to
those for reduction CVA, except that the partial results, S;, i=0,.,n-1, also form a
destination vector, R, with Ri=S;, i=0,.,n-1. For hybrid CV A, there are two destinations: a

scalar destination and a vector destination.

In order to limit the hardware costs, one embodiment of the present invention
imposes several restrictions. First, in the compound CVA, the two arithmetic combined
can only source up to two distinct vectors. This restriction, however, does not preclude the
case where all three source operands are vectors, as long as they source from no more than
two distinct vectors. For example, a vector operation described by C[i] = A[i] * A[i] + B[i}
has three source vector operands, sourcing from two distinct vectors, A and B. This
restriction on number of distinct source vectors reduces the maximum memory bandwidth

requirement, from three data fetches per cycle to two data fetches per cycle.

In addition to the above restriction, the secondary arithmetic may be limited to a
few simple commutative ALU functions (an ALU function, op, is said to be commutative if

X op y ==Y op X, for all scalar x and y). These functions include add, and, or, xor, etc.

WO 03/090067 PCT/US03/11571
-20-
A few examples of CVA are shown in the table below.
Table 1. Examples of CVA
Streams
Enabled
Ex. | Vector Arithmetic Descriptions CVA Vector Instructions
LO| L1

(i) Compound CVA

(a) | Cli]=sA[i] + B[i] Vector constantf CVA mul r4, @L0, @P, Y|Y
multiplication and|add @P, @L1, @S;
addition '

(b) Cli]= (A[i])2+B[i] Element-wise CVA mul @L0, @L0,@P, Y|Y
square and add add @P, @L1, @S;

© | Clil= (A[i])* Element-wise CVA mul @L0, @L0, @S; Y|N
square

(d) | Cli]= abs(A[i]) Element-wise CVA abs @L0, @S; Y (N
absolute

(e) Cli]=Al1] Vector assignmentf CVA mov @L0, @S; Y |N

) Cli]=0 Memory blockf CVA mov 0, @S; N ([N
initialization

WO 03/090067 PCT/US03/11571
-21-
Streams
Enabled
Ex. Vector Arithmetic Descriptions CVA Vector Instructions
LO| L1
(ii) Reduction CVA ‘
(& IP = Zi(A[i]*B[il) Vector innerl CVA mul @L0,@L1,@P, Y|Y
product add r3, @P, r3;
(h) Norm’ =3; (A[i])> |The square off CVA mul @L0,@L0,@P, Y|N
“norm” of vector add 13, @P, r3;
A
(1) Sum = Z; A[i] Vector reductionf CVA mov @L0, @P, Y ([N
through add r3, @P, 13;
summations
Streams
Enabled
Ex. Vector Arithmetic Descriptions CVA Vector Instructions
LO| L1
(ii1) Hybrid CVA
G) C[i]=A[i]*BIil; Vector CVA mul @L0,@L1,@P, Y|Y
IP =%; (A[i]*B[i]) [multiplication and|add r3, @P, {@S13};
vector inner]
product

10

15

20

25

WO 03/090067 PCT/US03/11571

-22-

In each of these examples, the corresponding CV A instruction and the enabling and
disabling settings of the Ly, L; and S streams are also detailed. In these CVA instructions,
“@” denotes a data stream. In particular, “@L0” denotes the first input data stream Lo
from memory; “@L1” denotes the second input data stream L; from memory; “@P”
denotes the intermediate result stream produced by the primary arithmetic, p_op; and “@S”
denotes the output data stream S to memory. In one embodiment, all Ly, L; and S streams

are constant stride memory operations.

For compound CV A operations, the CVA instruction can specify both the primary
and the secondary arithmetic, as illustrated in (a) and (b) in Table 1 above. These two
arithmetics are specified in the CVA instructions with a comma separating them: the
primary arithmetic is specified first (where in this example, the primary arithmetic is
located to the left of the third comma, prior to the word "add"), followed by the secondary
arithmetic (where in this example, the secondary arithmetic is located to the right of the
third comma, beginning with the word "add"). The instruction is terminated with the “;”

symbol. In this case, the “@P” stream appears as a destination in the primary arithmetic; it

also appears in the second arithmetic as a source.

For compound CVA operations, the CVA instruction can specify the primary
arithmetic but not the secondary arithmetic, as in (c) through (f) in Table 1 above. The
secondary arithmetic, s_op, in this case, is a “no- op” and the results produced by the
primary arithmetic are stored directly to the memory via “@S” stream. No “@P” stream is

specified in these instructions.

For reduction CVA, the CVA instructions specify both the primary and secondary
arithmetic, as in (g) through (i) in Table 1 above. In these cases, the “@P” stream appears
as a destination in the primary arithmetic; it also appears in the secondary arithmetic as one
of the source operands. The destination and the second source operand of the secondary
arithmetic is register R3. For reduction CVA, R3 is designated to store the partial results

as well as the final scalar result for the reduction operations.

10

15

20

25

WO 03/090067 PCT/US03/11571

-23.

Since the secondary arithmetic is commutative, a shorthand notation can be used to
describe a reduction CVA. In this case, the entire secondary arithmetic expression is
replaced by the function name for s_op. The CVA instruction for calculating the inner

product (Example (g) in Table 1 above), for example, can also be written as:

CVA mul @LO, @L1, add; //shorthand notation for reduction CVA

For hybrid CVA, the instruction syntax is similar to those for reduction CVA,
except that the secondary arithmetic has two destinations: an S stream and register R3.
They appear on the CVA instruction in the form “{ @S, R3}”. There is no shorthand
notation for hybrid CVA.

FIG. 6 illustrates how the three types of CVA (illustrated in FIG. 5) are performed
by execution core 4 of FIG. 4 according to one embodiment. The stream Ly is provided
from Ly 6 via the L.O_dbus, and stream L, is provided from L; 8 via the L1_dbus. In FIG.
6, operands X, Y and Z can source from stream Ly, stream L; or a designated register from
the RF 26. In particular, the Z operand is supplied to S 36 via multiplexor 32, latch 38,
multiplexor 41 and zs_bus. In addition, the s_dbus, multiplexor 41 and the zs_bus are used
as a feedback path for accumulating the partial results for reduction and hybrid CVA. For
reduction and hybrid CV A, these partial results are also constantly written back to register

R3 via the s_dbus and the result_bus.

FIG. 7 shows the format of a CV A instruction, according to one embodiment of the
present invention. This instruction includes an enable field where Ey, E; and Es are the
enable bits for the Ly, L; and S streams, respectively. The Vyo/Vyi, Vyo/Vy; and V,o/Vy
bits, respectively, specify how operands X, Y and Z of the CV A operation can source their
inputs. In particular, these bits select the sourcing of these operands from stream Lo, L; or
from a designated register. The combination of V,, V;; and E; bits defines the type of
CVA to be performed. The p_op and s_op fields specify the opcodes for the primary and
the secondary arithmetic to be performed at P 34 and S 36, respectively.

10

15

20

25

WO 03/090067 PCT/US03/11571

-24-

For CVA executions, a special register called Count Register (CR) 51, is used to
specify the vector length. One embodiment of CR 51 is illustrated in FIG. 11, as the lower
half of a CIR 50 of FIG. 4. The upper half of CIR 50, called the Index Register (IXR) 70,

is used for PVA executions only.

In one embodiment, CIR 50 is implemented as a special control register accessed by
a software program using the special “move-to-control-register” or “move-from-control-
register” instructions. In other embodiments, CR 51 and IXR 70 may be implemented as

two separate registers.

For CVA executions, CR 51 must be initialized by the software with the
appropriate vector length prior to the CVA executions. During a CVA execution, for each
vector element being processed, CR 51 is automatically decremented by one. When CR 51
reaches zero, indicating that the full vector(s) is(are) being processed, the CVA execution
will terminate. The machine will then enter a scalar mode, until the next vector instruction,

either a CVA or a PVA instruction, is encountered in the instruction stream.

The vector operation: C[i] = sA[i] + B[i], for some scalar s, can be vectorized using

a CVA instruction as follows.

Some initialization code

// assign LO to vector A; assign L1 to vector B; assign S to vector C
// initialize RS with the scalar s

CVA mul @LO, RS, @P, add @P, @L1, @S;

This is acompound CVA. In this example, all Ly, L; and S streams are enabled. Stream Ly
is assigned to vector A; stream L is assigned to vector B and stream S is assigned to vector
C. Register R5 is initialized to the scalar s prior to the CVA execution. The primary

arithmetic is the “multiply” function and the secondary arithmetic is the “add” function.

Preceding the CV A instruction is some initialization code to assign the Lo stream to

vector A, the L; stream to vector B, and the S stream to vector C. “Assignment” here refers

WO 03/090067 PCT/US03/11571

10

15

20

25

- 25-

to initializing some specially designated registers to the appropriate starting vector

addresses, stride values and element sizes for accessing the vectors A, B and C.

Consider the following program loop example.

Example 2
L6:
ldw R10,(R14)
addi R14,4
mov R7,R10
Isr R7R9
mov R3,R10
Isl R3,R8
or R7,R3
stw R7,(R13)
addi R13,4
dec.ne R4
bt L6

The vector operation can be described by:
Cli] = (sr(Afi], R9) | Isl(A[i], R8))

This loop reads in a vector, A, one element at a time, and performs a logical shift right
(“Isr”) and a logical shift left (“Isl”) operation on each element. An "or" function is
performed on the results of the two shift operations and the result is written to a destination

vector, C. This loop can be vectorized as follows.

Some initialization code
/1 assign LO to vector A; assign S to a temporary vector
mov R5,R9

'CVA Isr @LO, RS, @S
Some initialization code
/1 assign LO to the temporary vector; assign L1 to vector A.
// assign S to vector C.

10

15

20

25

WO 03/090067 PCT/US03/11571

- 26-

mov RS, R8
CVA Isl @LO,R5, @P, or @L1, @P, @S

The loop of Example 2 is vectorized by using two compound CV A instructions. The first
CVA instruction performs a “Isr” operation on the source vector A and produces a
temporary vector. The second CVA instruction has “Is]” as its primary arithmetic and “or”
as its secondary arithmetic. This latter instruction reads in the temporary vector via Ly and
performs a “Is]” operation on it. It also reads the original source vector A via L; and
performs an “or” function with the results produced from the primary arithmetic. It then
writes back the results to vector C via S. Notice that in this embodiment, the source
operand Y for both CVA instructions is always sourced from register R5. Additional

“mov” instructions are thus needed prior to the CVA executions to initialize RS.

A CVA execution can also terminate prior to when CR becomes zero. The CVA
instruction also has an early termination field containing an Er bit and a Cy bit, as shown in
FIG. 7. The Er bit enables or disables the early termination capability for CVA
computations. The Cr bit specifies the condition code for this to occur, if the capability is
enabled (Er=1). The following example illustrates how this capability can be used for

vector computations. In this example, the “c” bit refers to the condition code.

Example 3
L1:
addi R2,2
ld.h R7,(R2) // load Ali]
addi R3,1
1d.b R6,(R3) //'load B[i]
cmplt R6,R7 // compare less than: is A[i]>B[i}?
bt EXIT /1 if so, exit the loop
dec.ne R1 /l decrement loop index R1

// set ¢ bit if r1 not equals zero
bt L1 // branch to L1 if ¢ bit is set
EXIT

10

15

20

25

WO 03/090067 PCT/US03/11571

-27-

The corresponding high level source code for this loop is shown below.
for (i=0; i<n; i++) {

if (A[i] > BI[i]) {break;}

This loop performs an element-wise compare between vectors A and B. This loop exits as
soon as A[i]>BIi], for some i. If no such pair of elements exists, then all elements of

vectors A and B will be processed before the loop exits.

If a program loop performs certain arithmetic functions on a fixed length vector(s),
and it is possible for the computation to terminate even before the last element(s) of the
vector(s) is(are) being processed, then such an operation is called a vector arithmetic with

early termination.

In a vector arithmetic with early termination, there are two terminating conditions:
(i) when all the elements of a source vector have been processed; (ii) when certain
arithmetic condition is met. The latter condition could be met prior to the last vector

element being processed, and is usually data dependent and not determined a priori.

The loop shown in Example 3 is a vector arithmetic with early termination. This

loop can be vectorized using a CVA construct as follows.

<Some initialization code>
// assignLOto B, and L1 to A
CVA cmpltct=1 @LO, @LI;

In this CV A instruction, both the Ly and L; streams are enabled, while the S stream
is disabled. In particular, the Ly stream is assigned to vector B, while the L; stream is
assigned to vector A. The secondary arithmetic is unspecified (i.e. it is a “no-op”). The
instruction has Er=1 and Cr=1. The syntax “.ct=x" on the CVA instruction instructs the

assembler that Er=1.

10

15

20

25

WO 03/090067 PCT/US03/11571

-28-

The primary arithmetic, “cmplt” or compare-less-than, continuously compares the
heads of the Ly and L; streams. In effect, it is comparing vector A and vector B on an
element-wise basis. If B[i] < A[i], for some i, the condition code is set to one, terminating
the CVA execution. If no such pair of elements is found, execution continues until the two

source vectors are exhausted.

To perform CVA executions with early termination enabled (Eq=1), the primary
arithmetic p_op (performed at the functional unit P 34 in FIG. 4) is some arithmetic
function that can alter the condition code. During the course of the vector executions, if
the condition code is set to the pre-specified value, given by the Cr bit, the vector
execution will terminate immediately. This termination can occur even before the full
vector length is processed, i.e. before CR 51 becomes zero. Note that in the present
embodiment, the condition code is a single bit, but alternate embodiments may use any

number of bits and/or encodings to represent the condition code.

A PVA instruction is very similar to a DO UNTIL or a DO WHILE instruction in a
traditional DSP processor. Like its DSP counterpart, a program loop constructed using a
PVA instruction consists of a PVA instruction, followed by a loop body made up of

multiple scalar instructions.

FIG. 8 shows the format of a PVA instruction. FIG. 9 shows the structure of a
program loop constructed using a PVA instruction. When executing in a PVA mode, the
execution core 4 also behaves like a single-issued pipeline machine, except the PVA
instruction can optionally enable up to two input data streams, Ly and L;, and one output
data stream S, to be automatically performed during PVA loop executions. These data
streams are constant-stride memory load/store operations. For PVA executions, any or all

of the Ly, L; and S streams can be disabled.

Similar to CVA executions, the input streams Ly and L, respectively, stream in
data from memory MO 14 and M1 16, through the load units Ly 6 and L; 8, into RF 26

and/or P 34. However, for PVA executions, data prefetched via the stream L and the

10

15

20

25

WO 03/090067 PCT/US03/11571

-29-

stream L are written into register RO and R1 in RF 26, respectively. These data can also
be feed-forwarded directly into the P 34. For PVA executions, multiplexor 32, latch 38

and multiplexor 41 are not used.

Referring to FIG. 8, a PV A instruction includes an enable field having Ey, E; and E;
which are enable bits for data streams Ly, L; and S, respectively. A PVA instruction also
has an early termination field having an Er bit and a Cr bit. Similar to those in a CVA
instruction, the Er bit enables or disables the early termination capability for PVA
executions. The Cr bit specifies the condition code for this to occur, if the capability is

enabled (Et=1).

The Loop_size field in the PVA instruction specifies the size of the loop body, in
number of scalar instructions. The cs-store-index field in the PVA instruction specifies the
instruction within the loop body that, when executed, will automatically initiate a constant
stride store (cs-store) operation. The data for this cs-store operation is the data written
back by this instruction. In one embodiment, the index value for the first instruction in a
PVA loop is one, the index value for the second instruction is two, and so on. The index
value for the last instruction in the PVA loop is Loop_size. The index values in this
embodiment are instruction positions relative to the PVA instruction. Other instruction

indexing schemes are also possible.

In a PVA program loop, conditional and unconditional branches are allowed within
the loop body. If a branch within the loop body is taken, and the target of the branch is still
within the loop body, the PVA execution will continue. If a branch within the loop body is
taken, and the target of the branch is outside the loop body, -the PVA execution will

automatically terminate.

The CR 51, illustrated in FIG. 11 as the lower half of CIR 50, is also used for PVA
executions. In particular, it is used to specify the number of loop iterations to be
performed. Similar to its CVA counterpart, the CR 51 needs to be initialized by the

software with the appropriate iteration count prior to its execution. During a PVA

10

15

20

25

WO 03/090067 PCT/US03/11571

-30-

execution, CR 51 is automatically decremented by one for each iteration executed. When
CR 51 reaches zero, PVA execution will terminate. The machine will then enter a scalar

mode, until the next vector instruction is encountered in the instruction stream.

A PVA execution can terminate via one of three mechanisms: (i) when CR 51
reaches zero; (ii) when the Et and Crt bits in the PVA instruction indicate an early
termination condition; or (iii) when a branch is taken within the loop body and the target
of the branch lies outside the loop. All three exit conditions can co-exist in a single
program loop. That is, a loop can terminate via one of the above three terminating
mechanisms, based on run time conditions. Terminating mechanisms (ii) and (ii1) are

collectively referred to as early termination for PVA executions.

The program loop shown in Example 3 can be vectorized using a PVA construct,

using the early termination capability (ii) described above.

<Some initialization code>

/l assign LO to B, and L1 to A

PVA @L0, @L1, ct=1, #1; // PV A instruction

cmplt RO, RI; // loop body with one instruction

The symbols “@L0” and “@L1” are both specified on the PVA instruction. This
signifies to the assembler that both Lo and L, streams are enabled. The S stream is
disabled, since the "cs-store" label does not appeé.r in the loop body. In this instruction,
Er=1and Cr=1. Setting E1=1 enables the earlil termination capability (ii) described above.

The syntax “ct=x" on the PVA instruction instructs the assembler that Er=1.

The size of the PVA program loop is one instruction, as specified by the “#1”
notation on the PVA instruction. This loop contains a single scalar instruction, “cmplt”,

which continuously reads from registers RO and R1, and compares the two values.

For PVA executions, reading from RO (or R1) within the loop body will

automatically dequeue a data item from the Ly (or L;) input stream. The dequeuing of a

10

15

20

25

WO 03/090067 PCT/US03/11571

-31-

data item from the Lg (or L;) queue will cause a constant stride load (cs-load) operation to
be automatically performed, in order to fill up the empty slot left behind by the dequeuing
action. Thus, continuously reading from register RO (or R1) within the loop body will
trigger a continuous stream of data to be fetched from the memory MO 14 (or M1 16) and
loaded into register RO (or R1). RO (or R1) can be read multiple times within a single loop

iteration.

For PVA executions, when the L (or L) stream is enabled, RO (or R1) becomes a

read-only register; writing to this register will be ignored by the hardware.

In effect, the “cmplt” instruction in the above loop body compares vectors A and B
on an element-wise basis. In this example, if the content of RO is less then the content of
R1 (i.e. B[i]<A[i}), the condition code is set to one, equal to the pre-specified value Cr=1,
causing the PVA loop execution to terminate immediately (since Er=1). This termination

can occur even before CR 51 reaches zero.

Alternatively, the program loop shown in Example 3 can also be vectorized using a
PVA construct, as follows. This example illustrates how a PVA loop can exit early using

the early terminating mechanism (iii) described earlier.

<Some initialization code>

// assign LO to B, and L1 to A

PVA @L0, @L1, #2; // PVA instruction
cmplt RO, R1; // part of PVA loop
bt EXIT /[part of PVA loop
EXIT

In this alternative, Et=0 in the PV A instruction. There are two instructions in the
loop body: “cmplt” and “bt”. When the first instruction sets the condition code, as a result
of the compare operations between vectors A and B, the second instruction (“bt EXIT”) is

taken. Since the target of this branch lies outside the loop body, the PVA execution

10

15

20

25

WO 03/090067 PCT/US03/11571

-32-

terminates immediately. Otherwise, if the condition code is not set and the branch
instruction “bt” is not taken, the execution will continue with the first instruction of the

next iteration (the “cmplt” instruction in this case).

The first version of the PVA vectorized loop illustrated earlier (using terminating
mechanism (ii)) is more efficient than the second version of the PVA vectorized loop
illustrated above (using terminating mechanism (iii)). The former has only one scalar

instruction in the loop body, while the latter has two scalar instructions in the loop body.

The “exit-by-conditional-branch” alternative is typically used by a program loop

with conditional executions within the loop body that also utilize the condition code.

Notice that in the original program loop illustrated in Example 3, eight instructions
per iteration are requested by the execution core during loop executions. After the loop is
vectorized using a PVA construct, only two to three instructions per iteration are requested

by the execution core during loop executions.

Alternately, to effect an early termination, the PVA instruction may specify the
offset of a condition setting instruction which can cause a loop to exit early, as illustrated
in FIG. 23. The structure of a program loop constructed using the PV A instruction of FIG.
23 is shown in FIG. 24. In FIG. 23, a non-zero Cos field indicates that the early
termination capability is enabled (similar to setting Er=1 in the format of FIG. 8). This
field specifies the offset (in number of instructions from the PVA instruction) of a
condition setting instruction. When the condition code (or the c bit) is set to the value
specified by the Cr field in the PVA instruction, as a result of execution of the condition
setting instruction, the PVA executions terminate immediately. An example is shown

below.

Some initialization code // assign A[i] to LO; assign B[i] to L1.

PVA @LO, @Ll, #5, CT=1, Coffset=4
cmplt RO, R1 /Ipart of loop body

10

15

20

25

WO 03/090067 PCT/US03/11571

- 33-

bt SKIP /Ipart of loop body

sub R3, R4 /Ipart of loop body

SKIP

cmpnei R3, #2 /lpart of loop body, check R3
add RS, R3 /Ipart of loop body

EXIT

In this alternative, Cyfei=4 in the PVA instruction. There are five instructions in
the loop body ("cmplt", "bt", "sub”, "cmpnei", and "add"). The cmplt instruction compares
the values in RO and R1 and sets the condition code (or the ¢ bit). The "bt" instruction
checks the value of the resulting c bit, and if set, branches around the "sub" instruction.
The fourth instruction in the loop is a compare instruction which is comparing the result of
the subtract instruction (in register R3) to see if it is not equal to the value "2". If the result
of the comparison is true, the ¢ bit will be set to ‘1°, and since the Cr field of the PVA
iﬁstruction is set to ‘1’ also, the PVA executions terminate immediately. Otherwise, the
execution will continue with the next instruction "add". Following the add instruction,
execution continues with the next loop iteration ("cmplt"). Notice that the Coe field of
the PVA instruction indicates that the "cmpnei" instruction (offset of 4 in the loop relative
to the PVA instruction) is used to control loop termination, and that the c bit may be
affected by other instructions (in this case, the "cmplt" instruction) in the loop without
affecting loop termination. This capability is useful when multiple conditions must be

tested within the loop without affecting loop termination.

The following example will be used to illustrate how the cs-store operations via the

S stream can be performed for PVA executions.

Example 4
mov R4.,4
mov R8,8
mov R6,16

L1:

10

15

20

25

WO 03/090067 PCT/US03/11571

- 34-
ld.w R7,(R3) // load Ali]
addi R3,4
mov R2,R8
cmplt R6,R7 /lis A[i] > 167
movt R2, R4 // conditional move:
/I R2 = (A[i]>16)? R4 : RS;
st.w R2,(R10) // store result to C{i]
addi R10, 4
dec.ne RS // decrement loop index RS
/1 set c bit if RS not equals zero
bt L1 // branch to L1 if ¢ bit is set

The high level source code for the above loop is shown below.

for (i=0; i<n; i++) {
if (A[i] > 16) C[i] =4; else C[i] = 8;
}
This loop can be vectorized using a PV A construct, as follows.
<Some initialization code>

// assign LO to vector A; assign S to vector C.

mov R4, 4

mov RS, 8 |

mov R6, 16

PVA @LO0, @S, #3; / PVA instruction
mov R2,R8 .

cmplt R6, RO // is Ali] > 16?
cs-store:

movt R2,R4 // conditional move:

// R2 = (A[i]>16)? R4:R8;

// cs-store performed here

10

15

20

25

WO 03/090067 PCT/US03/11571

- 35-

In this loop, the Ly and S streams are enabled, but not the L) stream. The PVA loop
size is three instructions. On each iteration, the “cmplt” instruction reads RO (or an
element A[i]) and compares it against a constant value 16 that is stored in R6. The “movt”
instruction conditionally moves R4 to R2, if the c bit (or the condition code) is set.

Otherwise, it moves R2 to R2 with the value unchanged.

The “movt” instruction is located at the “cs-store” label within the loop body. A cs-
store operation via the S stream is automatically initiated whenever this “movt” instruction
is executed. The data used for this cs-store operation is the same data written back by the
“movt” instruction. When executing this PVA loop, the results produced by the “movt”
instruction are driven onto the p_bus by P 34, and constantly written back to RF 26 via
multiplexor 40 and result_bus. The S 36 captures these results on the p_bus and performs

the cs-store operations to the memory system using these captured data.

In this example, the store operation associated with the “movt” instruction is
specified, in the assembly code, using the program label “cs-store” inside the loop body. In
the machine code (or the assembled binary code), however, no such store operation is
encoded into the “movt” instruction. Instead, the store operation is implicitly specified in
the PV A instruction that is used to construct the loop. In this case, the PVA instruction has
its Es=1, and its “cs-store-index” field pointing to the “movt” instruction. We will refer to
this type of store operation as an “implicit store” operation. The instruction within the loop
body that can trigger the store operation (“movt” in this example) is called the implicit

store instruction.

In the above embodiment, there is only one “cs-store-index” field in the PVA
instruction, thus only one “cs-store” label is allowed in the loop body. As aresult, only one
implicit store operation is allowed in each iteration. In alternate embodiments, multiple
implicit store operations can be performed by using a special mask register. In one such
alternate embodiment, the mask register can be a 16-bit register, with each bit in this
register corresponds to a scalar instruction in the loop body. Each bit in this register

enables or disables the cs-store operation for the corresponding scalar instruction. Thus up

10

15

20

25

WO 03/090067 PCT/US03/11571

- 36-

to 16 instructions in the loop body can initiate cs-store operations in each iteration. The
software initializes this mask register prior to a PVA execution. During a PVA execution,
when an instruction writes back a result, and its corresponding bit in the mask register is
set, a cs-store operation is initiated, using the data written back by the instruction.
Hardware support is needed for specifying the 16 cs-store data addresses, strides, and

operand sizes.

In another embodiment utilizing an implicit store operation, a cs-store-reg-
designator field (also referred to as a register field) may be specified in the PVA instruction
rather than the cs-store-index. For example, FIG. 25 illustrates one embodiment of aPVA
instruction having a cs-store-reg-designator field, and FIG. 26 illustrates a program loop
constructed using the PVA instruction format of FIG. 25. This cs-store-reg-designator
field defines the implicit store operation as a function of the destination register of any
instruction inside the loop body. For example, if the cs-store-reg-designator field indicates
register 3, then any instruction having register 3 as its destination would invoke the implicit
store. An example instruction might be "add R3, R5" which is in the format "instruction
destination, source." This add instruction uses register 3 as the destination register and
therefore would correspond to the implicit store operation. If more than one instruction
within the loop body were to use register 3 as the destination register, then multiple
instructions may initiate the implicit store operations. However, an instruction such as
"cmpnei R3,#2" may not correspond to an implicit store operation since, in this case, R31s
not being used as a destination register. The "cmpnei" instruction (as well as others) does
not generate a result value to be written into a destination register, and the format is
specifying a pair of source values in this case. Furthermore, élltematc embodiments may
allow multiple registers to be defined in the PVA instruction to allow for more implicit

stores.

In yet another embodiment, a PVA instruction can also incorporate an early
continuation capability. The format of a PVA instruction with this capability is shown in
FIG. 20. There are two additional bits in this PVA instruction, the Ec and the C¢ bits,

within an early continuation field. The Ec bit enables or disables an early continuation

WO 03/090067 PCT/US03/11571

-37-

capability, while the Cc bit specifies the value of the condition code in which this early

continuation will occur, if this capability is enabled.

The following high level code illustrates how this early continuation capability can

be used to skip the execution of the remaining part of a program loop.

5 for (i=0; i<n; i++) {
if (A[i] < s) continue;
<more code>

}

In this example, elements from vector A are compared with a scalar, s. If A[i] <s,

10 for some i, then the remaining part of the program loop, denoted as “<more code>" above,
is skipped and the execution continues with the beginning of next iteration. This is in
contrast with the “early termination capability” described earlier where the execution of the

loop is terminated immediately when a pre-specified condition is met.

This loop can be vectorized as follows.

15 <Some initialization code>

/I assign LO to A; initialize R1 with scalar s.

PVA @LO, cc=1, #Loop_size; // PVA instruction
cmplt RO, R1; /I A[i] <s?

20 <more code> /l The rest of the loop body

In this PVA instruction, Ec=1 and Cc=1. The syntax “cc=x" on the PVA instruction
instructs the assembler that Ec=1. Whenever the “cmplt” instruction sets the condition
code to one, as a result of its compare operations between A[i] and s, the execution will

continue immediately with the next iteration, skipping the executions of “<more code>".

10

15

20

25

WO 03/090067 PCT/US03/11571

- 38-

In a PVA instruction that enables both early termination and early continuation
capabilities (Er=Ec=1), an instruction within the loop body can alter the condition code,
thereby ending the execution of the current iteration. If the condition code is set to the
value specified by the Cr bit, the loop execution will terminate completely. If the condition
code is set to the value specified by the Cc bit, the loop execution will continue with the
next iteration. If the condition code is set to the value specified by both the Cr and the C¢
bits (they both specify the same value for the condition code), the loop execution will
terminate. That is, the early termination capability, in this embodiment, supercedes the
early continuation capability. In other embodiments, the early continuation capability
could supercede the early termination capability. Although not shown, early continuation
capability may also be provided in a similar manner shown in FIG. 23 for early
termination. A Cofere field and Cc bit may be added to the instruction format or may

replace the Cogrse and Cr specifiers. The Cofyser.c field and Cc bit would then specify the

~ offset in instructions from the PVA instruction of a condition setting instruction, and a

condition value to be used for effecting an early continuation of the loop when the
specified instruction generates a condition code which matches the Cc bit setting in the

PVA instruction.

The PV A construct, in general, is capable of removing certain execution overhead
associated with: (i) loop control mechanism; (ii) input data streaming via the cs-load; and
(iii) output data streaming via the cs-store. The PVA instruction may also include any
combination of fields described above, as appropriate, depending on the needs of the
system. For example, alternate embodiments may use different fields and methods to

perform an implicit store operation, as described above.

FIG. 10 shows one embodiment of the SSR 42 for specifying the stride values and
operand sizes for data streams Lo, L; and S. This register is used for both CVA and PVA
executions. In this embodiment, the register is partitioned into three parts, one for each of
the three data streams Lo, L; and S. The stride fields, STRy, STR; and STRg are 9-bit wide.

The size fields, SZy, SZ; and SZs are 2-bit wide, each specifying a byte, a halfword, or a

full word.

10

15

20

25

WO 03/090067 PCT/US03/11571
- 39-

Consider the following example which implements the inner product of two
vectors: %; (A[i]*B[i]). This operation can be performed using a CVA instruction as
follows. In this example, SSR[STR,] denotes the STRy field of the SSR register, and so

on.

Initialize CR to the vector length.

Initialize SSR[STR] to stride value for vector A.
Initialize SSR[STR,] to stride value for vector B.
Initialize RO to the starting address for vector A.

Initialize R1 to the starting address for vector B.
CVA mul @L0, @L1, add;

In this example, Ly and L, are enabled and S is disabled, and thus this is a reduction
CVA. The primary arithmetic for this reduction operation is the “mul” function, and the
secondary arithmetic is the “add” function. During the CVA execution, the partial results
are continuously written back to register R3. When the vector computation is completed,
the final result, i.e. the inner product, will be implicitly stored in R3. The CVA instruction,
in this example, will have the following settings: V,1/Vx=01, V,1/Vy¢=10, V;1=V,=11,

Es=0, Er=0, Cr="don’t care”.

In this example, if the vector execution is interrupted, register R3 will contain the
intermediate partial result of the inner product computations. Upon returning from the
interrupt, computations will continue from where it left off, using the content of register R3

as the initial partial result.

Another example implements the vector arithmetic: C[i] = sA[i], for all i.

Initialize CR to the vector length.

Initialize SSR[STR] to stride value for vector A.
Initialize SSR[STRGs] to stride value for vector C.
Initialize RO to the starting load address for vector A.

Initialize R2 to the starting store address for vector C.

10

15

20

25

WO 03/090067 PCT/US03/11571

- 40-

Initialize R5 to s.

CVA mul @LO, RS, @S;

This is acompound CVA. The second arithmetic is a “no-op”. In this case, the Lo stream
and the S stream are enabled, but not the L, stream. Prior to the vector executions, RS was
initialized with the scalar constant, s. The CVA instruction, in this example, will have the

following settings: Vy1/Vyo=01, V,1/V,0=00, V/ V;1=00, Es=1, Er=0, Cr="don’t care”.

Figs. 12-14 illustrate one possible implementation of Ly 6, L; 8, and S 36,
respectively. Each has a local copy of register RO, R1 and R2, respectively. They are
denoted as L_RO 114, L_R1 124 and L_R2 136.

During scalar executions, the Ly 6 (or L; 8) unit constantly snoops the result_bus
for any write back activities to register RO (or R1), and updates its local copy of the
register, L_R0 114 (orL_R1 124). Likewise, the S 36 constantly snoops the p_bus for any
write back activities to register R2 and updates its local copy of the register, L_R2 136 (see

FIG. 14).

During a CVA or a PVA execution, the contents of these local registers are
appropriately used as load or store addresses for the memory blocks. These registers are
constantly updated by the hardware by adding the appropriate stride-values, when the
corresponding data stream is enabled. Thatis, L_R0 114,L_R1 124 and L_R2 136 are,
respectively, summed with the amount specified by SSR[STRo], SSR[STR,] and

SSR[STRs], for each cs-load or cs-store operation performed.

When a vector instruction (CVA or PVA instruction) is first decoded with its Eg (or
E)) bit set, a cs-load is immediately initiated using the L_RO 114 (or L_R1 124) as the first
load address. Subsequently, L_RO 114 (or L_R1 124) is updated once for each data

prefetched from the memory.

In the embodiment illustrated in Figs. 12 and 13, the data queues in the load units

Lo 6 and L; 8 are only two-deep. The inputs to Ly 6 include MO_dbus and TM_dbus.

10

15

20

25

WO 03/090067 PCT/US03/11571

-41-

These two inputs are provided to the multiplexor 110. The output of multiplexor 110 is
provided to the tail of the data queue 111. The tail of the data queue 111 provides data to
the multiplexor 113, and to the second entry of the data queue 112. This second entry 112
also provides data to multiplexor 113. Data is provided to L0_dbus from the multiplexor

113.

In the load unit L 6, data from MO_dbus and TM_dbus can be provided to the
LO_dbus via multiplexor 110, through the tail entry 111 and multiplexor 113, by-passing
the second data entry 112. Data can also be provided to the LO_dbus from the second entry

112, and through multiplexor 113.

Continuing with FIG. 12, an adder 116 receives stride information from SSR 42,
SSR[STRy], and load address information from L_RO 114. The output of adder 116 is
coupled to multiplexor 115. The result_bus is also coupled to multiplexor 115. The output
of multiplexor 115 is coupled to L_RO 114, which is coupled to the LO_abus. During
vector execution, the'arnount specified by SSR[STRy] is added to L_RO 114, for each cs-
load operation performed via the stream Ly. The multiplexor 115 and L. R0 114 allow load
unit Lo 6 to snoop the result_bus for any write back to register R0. During scalar execution
L_RO 114 is maintained with the same value as register RO in RF 26. Similar operations

and connectivities hold true for the load unit L; 8 illustrated in FIG. 13.

Referring to FIG. 14, in the store unit S 36, the p_bus provides data to latch 130.
The output of this latch and zs_bus provide data to an ALU 131. The ALU 131 then
provides data to latch 132, which in turn, provides data to multiplexor 133. The

multiplexor 133 takes data from latch 130 and from latch 132, and provides data to s_dbus.

Data may also be provided from p_bus, through latch 130 and multiplexor 133, and
to s_dbus. This path by-passes the ALU 131 computation in the store unit S 36. Data may
also be provided from the output of the ALU 131, through latch 132 and multiplexor 133,
to s_dbus. This path takes the result of the ALU 131 and puts it onto the s_dbus.

10

15

20

WO 03/090067 PCT/US03/11571

-42-

In vector arithmetic, most data loaded from the memory via the constant-stride
loads are temporaries only, in the sense that they are consumed in a single iteration, and are
never used again. If a vector arithmetic is allowed to be interrupted, then all the constant-
stride load/store addresses associated with the vector executions need to be saved to allow

the load/store operations to resume after returning from the interrupt.

Storing all the prefetched temporaries from the memory as well as the load/store
addresses using some architectural visible storage spaces, such as the general purpose
register file or control registers, could be an inefficient use of these valuable resources.
The present invention implements a register overlay to address this problem. In this
approach, upon entering a PVA execution mode, a portion of the architectural visible
register file is “overlaid” with a new set of registers. When a register is being overlaid, it
has two instances: (i) an overlaid instance; and (i) a temporary instance. When in the PVA
mode, only its temporary instance is visible to a programmer, but not its overlaid instance.
Conversely, when the execution exits the PVA mode and enters a scalar mode, the overlaid

instance becomes visible again and the temporary instance cease to exist.

FIG. 15 illustrates the visibility of the overlaid registers over a sequence of three
execution modes: scalar, PVA and scalar. In one embodiment, registers RO and R1 are
designated as the set of registers that could be overlaid during PVA executions. They are
shown in Table 2 below. The overlaid instances of these registers are used to store the
corresponding cs-load load addresses. The temporary instances of these registers are used

to store the data prefetched from the memory via the cs-load Lo and L;.

Table 2. Register Allocation and Accessibility

Overlaid Instance Temporary Instance

Registers (only visible in scalar mode) (only visible in PVA mode)

Contents Contents Operation

RO Load address for Ly Prefetched data Read Only
for Ly

R1 Load address for L; Prefetched data Read Only

10

15

20

25

WO 03/090067 PCT/US03/11571

- 43-

for L,

The temporary instances of RO and R1 are denoted as T_RO and T_RI,
respectively. The overlaid instances of RO and R1 are denoted as O_RO and O_R1,

respectively.

The T_RO and T_R1 are read-only registers. Writing to these temporary registers
within a loop body are ignored in hardware. These temporary registers are only defined
during the PVA executions. When a PVA loop exits its execution, the data contained in
these temporary registers are lost. Access to such a register, at that point, will retrieve the
overlaid instance of the register, which is the load address for the last cs-load operation

performed.

Also, when a PVA execution is interrupted, T_RO and T_R1 are not saved as part
of the context. Upon returning from the interrupt, the cs-load operations that prefetched
the data into T_RO and T_R1 will be re-initialized, using the load addresses stored in the
O_RO0 and O_R1. Registers T_R0 and T_R1 will be re-initialized before the normal PVA

executions can resume.

FIG. 16 illustrates one embodiment of the register file RF 26 of FIG. 4. RF 26
contains, among other registers, O_R0 142, T_RO 143, O_R1 152 and T_R1 153. In RF
26, the registers O_R0 142, O_R1 152 and R2 162 are updated using adders 140, 150 and

160, respectively.

The value in the register O_RO 142 is fed to multiplexor 144. It is also fed-back
into an input of adder 140. The other input of adder 140 is coupled to SSR[STR,]. The
output of adder 140 is provided as an input to multiplexor 141. The output of multiplexor
141 is coupled to the input of O_RO 142. The output of multiplexor 164 is provided as
another input to multiplexor 141. T_RO 143 takes its input from LO_dbus and provides its

output to another input of multiplexor 144. The output of multiplexor 144 is provided as

10

15

20

25

WO 03/090067 PCT/US03/11571

- 44-

output RO of RF 26. By using adder 140, multiplexor 141 and O_RO 142, O_RO 142 can
be incremented by the amount specified by SSR[STRy] in each cycle.

Using the same mechanism, in each cycle, O_R1 152 and R2 162 can be updated by
similar hardware configuration by adding the stride values SSR[STR] and SSR[STRs],

respectively.

During PVA execution, the updates of O_R0 142 and T_RO 143 occur at the same
time when the corresponding cs-load operation is committed to the RF 26. Likewise, the
updates of O_R1 152 and T_R1 153 occur at the same time when the corresponding cs-
load operation is committed to the RF 26. The updates of R2 162 occur at the same time
when the corresponding cs-store is committed to the memory. At any given point in time,
T_RO 143 (or T_R1 153) contains the data prefetched from the memory, with an address
stored in O_RO 142 (or O_R1 152). This consistency is maintained across instruction
boundaries during PVA executions. Note that the temporary registers, T_RO 144 and

T_R1 154, are not needed for CVA or scalar executions.

The consistency of temporary and overlaid instances, during PVA executions, is
illustrated in FIG. 17. Tllustrated is a five-instruction execution sequence. The horizontal
axis represents time, while the temporary and overlaid instances of register RO are each
represented on the vertical axis. Instruction boundaries are indicated by vertical dashed
lines. In this example, the data, streamed in via the stream Ly, are DO, D1, D2, D3,..., and
A0, Al, A2, A3,... are the corresponding load addresses. Among these five instructions,
10, 12 and I3 are instructions that read register RO. A read from RO causes O_R0 142 and
T_RO 143 to be updated simultaneously with a new “address-data” pair at the beginning of
next instruction boundary, as shown in FIG. 17. Instruction I1 is an instruction that does
not read RO, and therefore, O_RO 142 and T_RO 143 are not updated on the next
instruction boundary. The registers O_R0O 142 and T_RO 143 are updated on the next
instruction boundary following a read of register RO. Until then, they maintain their last
updated values. Registers O_R1 152 and T_R1 153 are updated by the hardware in a

similar manner.

10

15

20

25

WO 03/090067 PCT/US03/11571

- 45-

Returning to FIG. 16, a read of RO from RF 26 is selected between T_RO 143 and
O_RO 142. This selection is controlled by mutiplexor 144 using a control signal called
PVA_exe0. This signal is asserted when the machine is executing in a PVA mode and the
stream Ly is enabled. The reading of RO from RF 26, in this case, will output the content
of T_RO 143. Atother times when PVA_exe0 is not asserted, reading from RO will output
the content of O_RO0 142. A similar control mechanism exists for reading R1 from RF 26

during a PVA execution.

The register R2 162 is not overlaid. Like registers R3 to R15 in RF 26, R2 has a
single instance. It is, however, updated in a similar manner to registers O_RO 142 and

O_R1 152 during a PVA execution with the S stream enabled.

For scalar execution, a memory load is performed by fetching data from memory
block MO 14 through Lo 6 onto LO_dbus, or from M1 16 through L; 8 onto L1_dbus, and
subsequently by writing into any register in RF 26. Therefore a path is needed to write the
data from LO_dbus or L1_dbus into any register in RF 26. This path is provided by
multiplexor 164 in RF 26, as illustrated in FIG. 16. Multiplexor 164 takes its inputs from
LO_dbus, L1_dbus and the result_bus, and provides its output to multiplexor 141,
multiplexor 151, multiplexor 161 and a register array 163. The register array 163
implements architectural register R3 through R15. Through multiplexor 164, L.0_dbus and
L1_dbus can write to any register in RF 26, except T_RO 143 and T_R1 153. In the present
embodiment, the temporary registers, T_RO 143 and T_R1 153, are not available during

scalar execution.

Prior to any vector execution (CVA or PVA execution), certain registers need to be
properly initialized. These special register contain all the necessary information for the

hardware to carry out the proper vector executions. Table 3 details these special registers.

WO 03/090067

- 46-

PCT/US03/11571

Table 3. Special Registers For Vector Execution

Registers [Notations [Register Contents

Stride and Size Register SSR Stride values and operand sizes for Lo, L
and S'

Count Index Register CIR CR: number of iterations to be executed;

IXR: "local PC" for PVA loop

General purpose register, RO O_RO Load address for Ly

General purpose register, R1 O_R1 Load address for L;"*

General purpose register, R2 R2 Store address for S’

General purpose register, R3 R3 Partial and final results for reduction or
hybrid CVA'

General purpose register, R4 R4 Source for operand X!

General purpose register, RS RS Source for operand Y!

General purpose register, R6 R6 Source for operand z

1. If applicable.

2. These are overlaid instances only.

In the present embodiment, only SSR 42 and CIR 50 are special control registers.

5 All others are general purpose registers. Depending on the vector operation, these registers

may or may not carry special meaning during the vector execution. R2, for example, has

special meaning when the S stream is enabled during the vector execution, where the

special meaning refers to storing the latest cs-store address for the S stream.

Table 3 only includes overlaid instances of RO and R1. Upon an interrupt, or an

10

exception, SSR 42 and CIR 50 are saved by the hardware. Additional hardware support is

needed to save these special control registers. Since registers RO through R6 are general

purpose registers, they are automatically saved by the hardware. Only the temporary

registers, T_RO 143 and T_R1 153, (not shown in Table 3) are not saved by the hardware.

10

15

20

WO 03/090067 PCT/US03/11571
-47-

Upon returning from an interrupt, the following information will need to be
restored to the machine prior to resuming the normal execution. The contents of O_RO
142, O_R1 152 and R2 162 will need to be copied from RF 26 to L_RO 114 (in Ly 6),
L_R1 124 (inL; 8) and L_R2 136 (in S 36), respectively. The latter three local registers

are illustrated in Figs. 12-14, respectively.

In addition, for reduction and hybrid CVA, the intermediate partial result stored in
R3 will need to be restored back into the latch 130 in S 36, and further onto the s_dbus
through multiplexor 133 (see FIG. 14). Restoring this partial result involves reading R3
from RF 26, forwarding the data through P 34, onto the p_bus, and further onto the s_dbus
through S 36 (see FIG. 4).

As illustrated in FIG. 4, there are three independent on-chip memory blocks: MO
14, M1 16, and TM 20. There is also a loop cache 22 for storing program loop instructions
during PVA executions. MO 14 and M1 16 are the main on-chip memories. MO 14 is used
to store instructions and data. M1 16 is used to store data only. TM 20 is also used to store

data only, and in particular, is used to store temporary vectors during vector executions.

In the memory system of one embodiment as illustrated FIG. 4, the load unit Ly 6
has read access to MO 14 and TM 20; the load unit L, 8 has read access to M1 16 and TM
20: S 36 has write access to all MO 14, M1 16 and TM 20. MO 14 and M1 16 are single
ported memories, while TM 20 has one read port and one write port. The contents,
accessibilities and the number of read and write ports of these memory blocks are shown in
Table 4. Alternate embodiments may implement other memory configurations which

allow scalar and vector operations.

10

15

WO 03/090067 PCT/US03/11571

-48-
Table 4. Memory Specifics
Memory Data Streams Number of Read/Arbitrate
Block Contents Write Ports Between
Streams
L0 1 S

MO Instructions andRead - Write |1 (read or write) [Lovs. S

data
M1 Data - Read [Write [l (read or write) |L; vs. S
™ Data (temporaryRead Read [Write [2 (one read and onellg vs. L,

vectors) write)

To perform a compound or hybrid CVA with streams Lo, L; and S enabled, the
memory system will need to support two data reads and one data write per cycle in order to
maintain a peak throughput rate of one result per cycle. There is no instruction request
during a CVA execution. This is because once a CVA instruction is decoded and executed,
no further instruction is needed for the rest of the CVA execution. In addition to the two
data reads and one data write, PVA executions may also require one instruction fetch in

each cycle.

In each cycle, the memory system illustrated in FIG. 4 can support up to two data
reads and one data write, through MO 14, M1 16 and TM 20; it can also support one
instruction fetch in the same cycle, through the use of loop cache 22. The three memory
blocks MO 14, M1 16 and TM 20 can be accessed by referencing certain predefined

memory space, i.e. they are memory mapped blocks.

According to one embodiment, the TM 20 illustrated in FIG. 4 is a small RAM
memory used for storing temporary vectors during vector executions. It may also be used
for storing frequently used constant vectors, such as the coefficient vectors in digital
filtering. TM 20 is an extension of vector registers in the traditional vector machines for

holding temporary vectors. Like those'of traditional vector machines, the optimizing

10

15

20

25

WO 03/090067 PCT/US03/11571

- 49-

compilers attempt to operate on these temporary vectors as much as possible prior to
writing them back to the memory. TM 20 helps reduce the memory bandwidth pressure on
MO 14 and M1 16. It also helps reduce the power consumption of these larger memory

blocks.

Accesses to TM 20 are made by referencing the appropriate memory space, instead
of an explicit reference specified in the vector instructions, such as vector register numbers.

In particular, these accesses are made by setting up the streams Lo, L; and S.

When constructing, allocating and utilizing these temporary vectors, compilers have
more flexibility in organizing the temporary storage space. For example, if TM 20, or
some other similar temporary memory, is able to store a vector of n elements, it can also be
organized as a storage space for m vectors, each with a length of n/m elements. The TM
20 can also be organized as a storage space for multiple vectors with different length. The
compilers, in this case, try to manage the vector allocations to minimize fragmentations

within TM 20.

In the following example, TM 20 is assumed to be 512 bytes, direct-mapped, with
one read port and one write port. TM 20 can be utilized, in this example, to speedup the

vector executions.

Again, consider the loop shown in Example 2. Recall that this loop is performing:

Cli] = (sr(A[i], R9) | Isl(A[i], R8). The vectorized code is shown below.

Some initialization code

// assign LO to vector A; assign S to a temporary vector in TM
mov R5,R9

CVA Isr @LO, RS, @S

Some initialization code

//assign LO to vector A; assign L1 to the temporary vector in TM

//assign S to vector C.

10

15

20

25

WO 03/090067 PCT/US03/11571

- 50-

mov R5, R8
CVA sl @LO, RS, @P, or @L1, @P, @S

In this example, a temporary vector is created and allocated in TM 20. The
destination of the first CVA instruction and one of the source operands of the second CVA
instruction access the temporary vector through TM 20. The first CVA instruction sources
vector A from MO 14, via the L stream, and writes the temporary vector to TM 20, via the
S stream. The second CVA instruction sources vector A again from MO 14, via the Lo
stream, and sources the temporary vector from TM 20, via the L, stream. It also writes the

result vector to M1 16, via the S stream.

In this example, the second CVA instruction uses three data streams, two inputs and
one output. No memory conflict arises in these vector executions. Using MO 14 and M1
16 alone would have caused memory conflicts. Without TM 20, the second CVA

instruction would have taken two cycles to produce each result element.

When the size of a vector being processed is larger than the size of TM 20, the
vector operations break down, under software control, into multiple vector operations, with
each operating on vectors of a length available for storage in TM 20. In this sense, the use
of TM 20 is analogous to "strip-mining" for vector registers. Unlike the fixed length vector
registers, however, the compilers, in this case, have the flexibility to trade-off between the
number of temporary vectors it can allocate and utilize, and the number of strip-mined

iterations.

As another example, we will strip-mine and vectorize the above loop, assuming that
the vector length is not known at compile time. The element size is known to be a word (4
bytes). Since each vector element is four bytes long, and TM 20 is 512 bytes, a vector with
length greater than 128 elements will require some strip-mining code to avoid overflowing

the TM 20.

In this example, there are only two CVA instructions and one temporary vector

involved, and it is possible to have the entire TM 20 dedicated to storing a temporary

5

10

15

20

25

WO 03/090067 PCT/US03/11571

-51-

vector with length of 128 or less. The following shows the strip-mined code, in C-style

language, with an unknown vector length, n.

low =1;
VL = (n mod 128); // find the odd size piece first
for (j=0; j<n/128; j++) {

for (i=low; i<low+VL-1; i++) { /I runs for length VL
C[i] = (sr(A[il,R9) | Isl(A[i],R8)); //main CVA operations

}
low = low + VL,
VL = 128; // reset VL to 128 after the first

// odd size piece

}

The TM 20 may also be used to reduce power consumption, while maintaining the highest
possible performance level, as in the example of performing the following vector reduction

operation:

Zi ((A[*BLI+CLI) * Al]*BHI*DLID,

for some independent vectors A, B, C and D. Assume that vectors A and C reside in MO

14; vectors B and D reside in M1 16.

An optimum solution, in terms of execution time, using three temporary vectors

and four CVA instructions (3 compound CVA and 1 reduction CVA), is shown below.

(1) T1[] = A[i] * B[il;

(2) T2[i] = T1[i] + C[i];

(3) T3[i] = T1{i] * D[],

(4) Reduction result = Z; (T2[i] * T3[i]).

As vectors A and B reside in MO 14 and M1 16, vector T1 must be allocated in TM 20.

Thus vector T3 must be in MO 14, given that vector D resides in M1 16. Since vector C

10

15

20

WO 03/090067 ~ PCT/US03/11571

-52-

resides in MO 14, vector T2 can be in M1 16 or TM 20. Table 5 shows two possible

solutions for allocating the temporary vectors T1 and T2.

Table 5. Temporary Memory Allocation

Temporary [Solutions (I) Solution (II)
Vectors

MO M1 TM MO M1 M
T1 X X
12 X X
T3 X X

Both of these solutions incur no memory conflict. Both solutions achieve the optimal
performance level on this machine. Solution (II) in Table 5, however, provides a lower
power solution since it allocates vector T2 to TM 20. A drawback of Solution (IT) is that it
requires the temporary vectors T1 and T2 to reside in TM 20 simultaneously. If TM 20 is
not big enough to hold both vectors, then Solution (I) is the only viable solution. If TM 20

is too small for even a single vector, then Solution (I) will need to be strip-mined.

All of the vector executions of one embodiment of the present invention are
interruptible. An interrupt can cause a temporary suspension of a vector execution prior to
the completion of vector computations. In addition to the scalar context, additional vector
context will need to be saved so that the vector execution can properly resume upon
returning from the interrupt. On an interrupt, some of these vector contexts are saved and
some discarded. The vector contexts that are saved include all the registers shown in Table
3. These registers include SSR 42, CIR 50, overlaid instances O_RO 142 and O_R1 152,
R2 162 and other registers in RF 26, i.e. all registers in RF 26 excluding T_RO 143 and
T_R1 153.

For CVA executions, operations on each vector element is "atomic," in the sense
that if the result of the operation associated with a vector element is not written back when
an interrupt occurs, all the intermediate results will be discarded. All operations performed

on this element, or elements, will have to be repeated upon returning from interrupt. For

10

15

20

25

WO 03/090067 PCT/US03/11571

-53-

reduction or hybrid CVA executions, the partial result produced in each cycle is
continuously written back into register R3 in RF 26. On an interrupt, as the partial result is
already in RF 26, it is, therefore, automatically saved. This eliminates any additional
wasted time to save the partial result. When returning from interrupt, however, the content
of register R3 in RF 26 will be restored back into the s_dbus before normal CVA

executions can resume.

For PVA executions, all the intermediate results produced in the loop body are
stored in the register file, RF 26. Thus no additional time is wasted to save the
intermediate results. The temporary registers T_RO 143 and T_R1 153 are not saved as
part of the vector context. Upon returning from interrupt, the cs-load.operations that
fetched these temporaries are reinitialized, if the input stream is enabled. Temporary
registers T_RO 143 and T_R1 153 are then updated accordingly before the normal PVA
executions can resume. The hardware, in this case, assumes that the memory locations

have not been altered during the course of servicing the interrupt.

FIG. 18 illustrates a portion of the program sequencer 24 of FIG. 4. To monitor the
loop execution and the target of a branch, a counter based scheme may be used. When a
PVA instruction is encountered, the Loop_size specified in the instruction is captured by
the hardware, such as the program sequencer 24 of FIG. 4. In addition, IXR 70 (see FIG.
11) is used to keep track of which instruction within the loop body is currently being
executed. One embodiment of implementation of the IXR is illustrated in FIG. 18. The
IXR 70 behaves like a local program counter (PC) within the loop body. When the first
instruction in the loop is being executed, IXR 70 is set to one. For each instruction
sequentially executed, IXR 70 is incremented by one. When the last instruction in the loop
is being executed, IXR 70 is equal to Loop_size. When IXR 70 is equal to (Loop_size 1),
the instruction fetch is directed to the first instruction of the loop. If the last instruction is a
sequential instruction or the instruction does not cause a change-of-control flow, where a
target lies outside the loop body, the execution will transfer back to the beginning of the

loop and IXR 70 is reset to one.

10

15

20

25

WO 03/090067 PCT/US03/11571

- 54-

The IXR 70 receives an IXR_count value that is the output of adder 72. The value
stored in IXR 70 is provided as one input to adder 72, and the other input is from
multiplexor 74. One input to multiplexor 74 is a one, and the other is the displacement
field of a branch instruction. In this way, either the adder 72 outputs the next sequential
value or a branch displacement value. The IXR 70 also receives a reset signal that resets

IXR 70 to one, and a load signal to accept the next IXR_count.

When a branch is taken during a PVA execution (either in a forward or a backward
direction), the branch displacement field of the branch instruction is added to IXR 70. This
addition operation is performed by multiplexor 74 and adder 72. The multiplexor 74, in
this case, selects the displacement field of the branch instruction to adder 72. If the sum of
this register value and the branch displacement is negative or greater than the loop size,
indicating that the branch target lies outside the loop body, the PVA loop execution will

terminate.

Continuing with FIG. 18, the IXR_count value is also provided as input to blocks
76, 78 and 80. The IXR_count is constantly compared with zero, Loop_size and
Loop_size-1. If (IXR_count<0) or (IXR_count>Loop_size), it indicates that an instruction
is executing outside the loop body. If (IXR_count<0), as determined in block 78, the
output of block 78 is asserted as input to "or" gate 82. Similarly, if
(IXR_count>Loop_size), as determined in block 80, the output of block 80 is asserted to
"or" gate 82. On either condition, the output of "or" gate 82 terminates loop executions.
Also, if IXR_count == Loop_size- 1), as determined in block 76, an instruction fetch from

the top of the loop is initiated.

Towards the end of the last iteration of a PVA execution, if the last instruction in
the loop is a taken conditional branch with target address outside the loop body, a cycle
penalty will be incurred for wrongfully fetching and executing the first instruction in the
loop. In this case, the result of executing this instruction will be squashed, i.e. the result
will be discarded and not written back. A new instruction fetch using the branch target will

be initiated.

10

15

20

25

WO 03/090067 PCT/US03/11571

- 55-

When resuming a PVA execution from an interrupt, the necessary loop control
information must first be recovered. This can be done in multiple ways. In one
embodiment, when a PVA instruction is first encountered, a copy of the PC (the address of
the PVA instruction) is saved in a temporary hardware location. Upon an interrupt, this
hardware copy is saved as the PC. When returning from the interrupt, the PC is first used
to fetch the PVA instruction to recover all the loop control information, including the
Loop_size, cs-store-index, etc. After this information is recovered, the content of IXR 70
is added to the PC. The PVA loop execution will then continue with the instruction

pointed to by the new PC.

In another embodiment, when a PVA execution is interrupted, the PC points to the
instruction within the loop body whose execution was interrupted. This PC is saved as part
of the execution context. Upon returning from the interrupt, the content of IXR 72 is
subtracted from the PC to obtain the PVA instruction address. The PVA instruction is then
fetched to recover all the loop control information, including cs-store-index, Loop_size,

etc.

In PV A executions, execution of the instruction located at the “cs-store” label, and
its associated cs-store operation is an “atomic” operation. Consider again the vectorized

PVA loop taken from Example 4.

<Some initialization code>

// assign LO to vector A; assign S to C[i].

mov R4, 4

mov RS, 8

mov R6, 16

PVA @LO0, @S, #4; // PV A instruction
mov R2,R8

cmplt R6, RO /lis A[i] > 167

cs-store:

WO 03/090067 PCT/US03/11571

- 56-

movt R2,R4 I/ R2 = (A[i]>16)? R4:RS;

/I cs-store performed here

The “movt” instruction and the associated cs-store operation are “atomic”. If a cs-
store does not complete due to an interrupt, then the “movt” instruction is also considered
5 “notexecuted”. Upon returning from the interrupt, executions will resume starting at the

“movt” instruction.

For each of the vectorized examples provided above, a compiler evaluates the
original code, which may be written a high-level language programming language, or in
assembly code. The compiler analyzes the code to look for loops or other constructs which

10 are applicable to CVA and/or PVA instructions. The process flow for compilation

according to one embodiment of the present invention is illustrated in FIG. 19.

As illustrated in FIG. 19, the process first decides if the loop, or section of code, is
vectorizable using CVA execution at decision diamond 170, and if so the process
vectorizes the code using at least one CVA instruction at block 171. The process then

15 estimates the execution time of the CVA vectorized loop at block 172. The process then

continues to decision diamond 173.

Alternatively, if the code is not CVA vectorizable, process flow also continues to
decision diamond 173 to determine if some combination of CVA and PV A executions may
be used to vectorize the code. If so, the code is vectorized using such a combination at

20 block 174, and its execution speed is estimated at block 175. The process flow then

continues to decision diamond 176.

When the code is not vectorizable by either CVA alone or CVA/PVA combination,
processing also continues to decision diamond 176 to determine if the code is PVA
vectorizable. If so, the code is vectorized using at least one PV A instruction at block 177.

25 Its execution time is estimated in block 178.

10

15

20

25

WO 03/090067 PCT/US03/11571

-57-

At decision diamond 179, a decision is made to determine if the execution speed of
the vectorized code has improved over the original loop using any of the abovementioned
vectorization methods. If there is no improvement, the original code is unchanged at block
181. If the execution speed has improved, the code is implemented using the best
vectorizing method with the fastest execution time, at block 180. In this embodiment, the
compiler tries out all possible vectorizing methods and selects the best method among
them. In this embodiment, the execution time is used as the only selection criteria. Other
embodiments may also incorporate the use of other criteria, such as power consumption, to

select the best vectorization method.

Note that alternate embodiments may also incorporate vectorizing a code by first
using CVA construct alone. It will then try the CVA/PVA combination only if the code is
not CVA vectorizable. If the code is also not vectorizable using any CVA/PVA
combination, it will then try to vectorize using PVA construct. In this alternate
embodiment, it is recognized that most often the CVA vectorization will produce the
greatest improvement in execution speed, followed by a CVA/PVA combination, and
finally the PVA vectorization. The process terminates on finding the first method with
which the code can be vectorized. These alternate embodiments are advantageous when
the profile information used for estimating the execution time is not available. Other

alternate embodiments may find some other ordering appropriate for a given application.

According to the present embodiment, the PVA executions are limited to issuing
one operation in each cycle. In an alternate embodiment, the PVA executions can be
extended to incorporate the capability of issuing multiple independent operations in each

cycle, similar to those illustrated in FIG. 2.

One such extension, a dual-issue pseudo-vector machine, is illustrated in FIG. 21,
where two independent operations can be issued to two independent function units, P1 235
and P2 234, in each cycle. When executing in a scalar or a PVA mode, two results can be

written back to the register file RF 236 or to the memory.

10

15

20

WO 03/090067 PCT/US03/11571

- 58-

In FIG. 21, register file RF 226, and data streams Ly and L; independently provide
data to multiplexors 228, 230, 231, 232, 233. Multiplexors 228 and 230 provide data to
function unit P2 234. Multiplexors 231 and 232 provide data to function unit P1 235. P2
234 provides data to S 236 and RF 226 via resultl_bus. P1 235 provides data to
multiplexor 237 and S 236. Multiplexor 241 provides data to S 236. S 236 provides data
to the memory system via data stream S, and to multiplexors 237 and 241. Multiplexor
237 provides data to RF 226 via result2_bus. It also provides data to multiplexors 228,
230, 231 and 232.

In this dual-issue pseudo-vector machine, there are three types of CVA: compound
CVA, reduction CVA and hybrid CVA. The dependency graphs for these three types of
CVA are illustrated in FIG. 22. In contrast to the dependency graphs of FIG. 5, in this
machine, reduction and hybrid CVA include a three-input arithmetic function, s_op, which

has the general form of:

Ts_opUs_opV, forscalarsT,Uand V.

In these dependency graphs, operands W, X, Y and Z can independently source
from input stream Ly, input stream L, or a designated register. This operand sourcing
mode is referred to herein as independent sourcing mode. Alternatively, each of these
operands can also source from a zero-extended upper or lower halfword of an input stream
Ly or L;. This operand sourcing mode is referred to herein as cross sourcing mode. Table
6 details the independent sourcing modes and two different cross sourcing modes (cross

sourcing modes I and II).

WO 03/090067 PCT/US03/11571

- 59-

Table 6. Possible Sources For Operands W, X, Y and Z

Operands "Operand Sourcing Modes
|Independent Sourcing Mode|Cross SourcingCross Sourcing Mode
Mode I T
% Lo, L, RO {0,Lo[31:16]} {0,Lo[31:16]}
X , L1, R4 {0,L,[15:0]} {0,L;[31:16]}
Y ,Li, R8 {0,L;[31:16]} {0,L;[15:0]}
Z ||L0 L, R12 {0,Lo[15:01} {0,Lo[15:0]}

In this table, {0,Lo[15:0]} denotes the zero-extended lower halfword from the input

data stream Ly. {0, Lo[31:16]} denotes the zero-extended upper halfword from the input

5 data stream L. Similar notations are used for the L; stream. The results of these zero-
extension operations are 32-bit operands. The general form of a compound CVA can be

expressed as

S;=(W; pl_op X;)s_op(Y; p2_op Z;) i=0,...,n-1

The general form of a reduction CVA can be expressed as

10 So=(Wy pl_op Xo)s_op (Yo p2_op Zy,);
Si=(W; pl_op Xi)s_op (Y; p2_op Z;) s_op Si1, i=1,...,n-1;
R =S,

where S; denotes the ith partial result, and R denotes the scalar result for the vector

reduction operations.

15 The general form of a hybrid CVA is the same as those of a reduction CVA, except

that S;, i=0,...,n-1, is also written to the memory via the S stream.

One of the many uses of cross sourcing mode is for complex vector multiplication,
C[i]=A[i]*Bli], i=0,...,n-1, where elements in vectors A, B and C are all complex numbers.

A complex number can be represented in the memory system as a concatenation of two

10

15

20

25

WO 03/090067 PCT/US03/11571

- 60-

16-bit halfwords, with the upper halfword representing the real part of the complex
number, and the lower halfword representing the imaginary part of the complex number.

Using this representation, a complex number is fully represented by a 32-bit data.

The result of multiplying two complex numbers, X and Y, is givenby (Re X *Re Y
-ImX*ImY)+j(ReX*ImY +Im X *Re Y), where “Re W” denotes the real part of a

complex number W, and “Im W” denotes the imaginary part of the complex number W.

Returning to FIG. 21, a multiplication between two complex vectors, A and B, can
be performed by using two compound CVAs. Both of these CVAs stream in vector A via
the L stream, and vector B via the L, stream. In both of these CVA, p1_op and p2_op are
multiplication functions and s_op is an addition function. The first CVA instruction uses
cross sourcing mode I, and produces a result vector that contains the imaginary part of the
result vector C. The second CVA instruction uses cross sourcing mode II, and produces a
result vector that contains the real part of the result vector C. By using an operand size of
two (a halfword) and a stride value of four (one word apart) for stream S, these two CVA
instructions can write to the same vector location C, specifically, the two CVA instructions
can write to vector C without overwriting each other’s results. After executing the two
CVA instructions, each element in vector C contains the required real and imaginary

values.

The cross sourcing mode described above can also be used for PVA executions. In
this case, the two results produced by P1 235, which performs p1_op, and P2 234, which
performs p2_op, are independently written back to two distinct registers in the register file

RF 226, and/or to the memory system.

Figs. 27-36 illustrate methods of increasing capabilities associated with PVA
executions by expanding a size or length associated with certain program loop instructions.
In one embodiment of the present invention, certain instructions associated with loop
execution, such as instructions processed during PVA execution, include a standard part

using a standard instruction size, and an augmented instruction part using a second

10

15

20

25

WO 03/090067 PCT/US03/11571

-61-

instruction size. With the addition of augmented instruction portions, the overall size of
augmented instructions processed during loop execution is expanded to provide enhanced
execution capabilities. Some embodiments of the present invention have the advantage of
improving performance of critical loop executions, by including additional functionality

with instructions of some program loops.

Referring now to FIG. 27, a block diagram illustrating a system for processing
standard and augmented instructions is shown and generally referenced as system 400,
according to one embodiment of the present invention. Decoders 430 and 440 are used to
process instructions of a program 405. Program 405 is stored in memory 450. Program
405 includes standard instructions 460 and 465, as well as augmented instructions 470.
The augmented instructions 470 include a standard instruction part, standard instruction
portions 475, and an augmented instruction part, augmented instruction portion 477. A
standard decoder 430 is used to process standard instructions 460 and 465 and standard
instruction portions 475 of augmented instructions 470. A secondary decoder 440 is used

to process augmented instruction portions 477 of the augmented instruction 470.

In one embodiment, standard decoder 430 is used to process standard commands
associated with a particular group of instructions, such as standard instructions 460 and
465. Aninstruction fetch component 420 is used to access a next instruction from memory
450. For example, standard decoder 430 may indicate to instruction fetch component 420
to access the next instruction to be processed of program 405. A memory address
associated with the address of the next instruction can be provided to instruction fetch
component 420 to indicate the location of the next instruction in memory 450.
Alternatively, the instruction fetch component 420 can monitor a program counter (not

shown) to determine the address of the next instruction to be processed.

In one embodiment, the instruction fetch component 420 accesses instructions of
standard instructions 460. Accordingly, the instruction fetch component 420 provides the
instructions to standard decoder 430 for processing. In one embodiment, instructions of

standard instructions 460 and 465 include scalar or non-loop instructions. Instructions of

10

15

20

25

WO 03/090067 PCT/US03/11571

-62-

augmented instructions 470 include program loop instructions. Accordingly, system 400
can switch to a loop execution or PVA execution mode for processing augmented
instructions 470. In one embodiment, the loop or PVA execution mode is triggered by
PVA or loop initialization instructions. For example, the first instructions of augmented
instructions 470, or the last instructions of standard instructions 460 could be a PVA
instruction used to initiate PVA execution. Alternatively, loop or PVA execution can be
triggered by a program loop instructions, such as a ‘“WHILE’ or a ‘DO UNTIL’ command.
It should be noted that other methods of triggering a loop or PVA execution mode may be
used without departing from the scope of the present invention. Furthermore, a system can
enable augmented instructions to be used in place of standard instructions during a compile
process. A compiler can enable the use of augmented instructions when a loop or loop

initialization command is encountered, as is subsequently discussed.

Once system 400 is in PVA or loop execution mode, the secondary decoder 440 is
enabled. In one embodiment, the secondary decoder 440 is enabled or disabled by the
standard decoder 430, such as through an INTER-DECODER CONTROL signal 410.
Accordingly, in one embodiment, the secondary decoder uses an instruction fetch
component 421, similar to instruction fetch component 420, to access an augmented
instruction portion of augmented instruction portions 477 associated with a standard
instruction portion of standard instruction portions 475, accessed by the standard decoder
430. In alternate embodiments, only a single instruction fetch component 420 may be used
to fetch both standard instruction portions 475 as well as augmented instruction portions
477 from memory 450. In such an embodiment, secondary decoder 440 may receive an
augmented instruction portion 477 of augmented instructions 470 by way of instruction
fetch component 420 and standard decoder 430. In such alternate embodiments, standard
decoder 430 may provide augmented instruction portions 477 to secondary decoder 440
without performing modification or decoding. Alternatively, instruction fetch component

420 may directly provide augmented instruction portions 477 to secondary decoder 440.

In one embodiment, augmented instructions 470 are part of a program loop 480.

Program loop 480 includes a loop initialization command followed by a set of K

10

15

20

25

WO 03/090067 PCT/US03/11571

- 63-

augmented instructions, wherein K specifies a number of augmented instructions greater
than zero. In one embodiment, the loop initialization command is included to initialize
loop execution. For example, the loop initialization command can indicate a number of
iterations of the K augmented instructions to be processed. It should be noted that
instructions associated with other program loops can be included within standard
instructions 460 and 465; however, program loop instructions of standard instructions 460
and 465 have no augmented instruction portions, in comparison with program loop
instructions of augmented instructions 470. K augmented instructions are broken down

into K sets of standard code and augmented code.

The standard code includes code similar in format to at least some instructions of
standard instructions 460 and 465. For example, the standard code may include an opcode
and one or more operands, wherein the opcode can specify an operation to be performed on
the operands. The standard code is processed using the standard decoder 430. In one
embodiment, the standard code of standard instructions portions 475 includes a first set of
bits, such as bits 0 to N, associated with instructions of augmented instructions 470. The
augmented code of augmented instructions portions 477 includes a second set of bits, such
as bits N+1 to M, of the instructions of augmented instructions 470. It should be
appreciated that the standard code could use other formats without departing from the
scope of the present invention. N and M are used to specify particular bit locations,
wherein M is greater than N. In one embodiment, standard instructions 460 and 465 and
standard instructions portions 475 have a same fixed size, and may utilize similar or

identical instruction encodings.

Code of augmented instruction portions 477 can specify particular extended
capabilities associated with processing code of standard instruction portions 475. In one
embodiment, a processing of standard instruction portions 475 is based on a processing of
augmented instruction portions 477. In one embodiment, as standard decoder 430 accesses
a particular standard instruction portion 475, such as standard_code_1, secondary decoder
440 accesses an associated augmented instruction portion 477, such as augmented_code_1.

Processing of standard_code_1 may be dependent on a processing of augmented_code_1.

10

15

20

25

WO 03/090067 PCT/US03/11571

- 64-

For example, in one embodiment, the augmented_code_1 is used to specify a conditional
execution of the standard_code_1. Dependent on a matching of a conditional code of
system 400 and a condition specified by augmented_code_1, secondary decoder 440 can
use INTER-DECODER CONTROL signal 410 to cancel processing of standard_code_1 in
standard decoder 430.

The augmented instruction portions 477 can be used to specify other forms of
execution associated with the standard instruction portions 475. For example, individual
code of augmented instruction portions 477 can specify early termination associated with
individual code of standard instruction portions 475. Accordingly, an instruction of the
augmented instruction portions 477 can indicate that further execution of program loop 480
is to be terminated. Accordingly, dependent on a condition code of system 400 and a
condition specified by an instruction of augmented instruction portion 477, secondary
decoder 440 can provide an INTER-DECODER CONTROL signal 410 to skip further
instructions of augmented instructions 470. For example, standard decoder 430 may be
commanded to process a first instruction of standard instructions 465 in place of

augmented instructions 470.

Code of augmented instruction portions 477 can also specify early continuation
when processing associated code of standard instruction portions 475. For example,
dependent on a conditional code value of system 400 and a condition specified by a current
code of augmented instruction portions 477 being processed by secondary decoder 440,
secondary decoder 440 can provide an INTER-DECODER CONTROL signal 410 to

command standard decoder 430 to skip to a next iteration of program loop 480.

Code of augmented instruction portions 477 can also be used to provide an
additional operand specifier for processing code of standard instruction portions 475. In
one embodiment, the augmented code of an augmented instruction can designate a third
register operand into which the value from processing the first and second operand is to be
returned. In one embodiment, an enable bit may also be included with the augmented code

to enable the use of the third operand as a destination operand. The code associated with

10

15

20

25

WO 03/090067 PCT/US03/11571

- 65-

augmented instruction portions 477 can also encode an immediate field to be used as an
operand for processing code of the standard instruction portions 475. Alternatively, the
augmented instruction portions 477 can also encode an immediate field to be used to
extend the length of an immediate field already encoded in the standard instruction
portions 475. As a result of this extension, the resulting length of the immediate field

operand is increased.

In one embodiment of the present invention, the augmented instruction portions
477 can be stored separately in memory 450 from associated standard instruction portions
475, as subsequently shown in FIG. 28. The augmented instruction portions 477 can be
specified through a separate command, such as an instruction of standard instruction
portions 460, as subsequently shown in FIG. 29. Alternatively, the augmented instruction
portions 475 can be provided adjacent to each associated portion of standard instruction

portions 475, as subsequently shown in FIG. 30.

In one embodiment of the present invention, augmented instruction portions 477 are
processed by secondary decoder 440 concurrently in time with associated standard

instruction portions 475 processed in standard decoder 430.

Referring now to FIG. 28, a block diagram illustrating a form of storing augmented
instruction portions in memory is shown, according to one embodiment of the present
invention. Standard instructions 460 and 465 include standard instructions to be processed
using a standard instruction decoder, such as standard decoder 430 (FIG. 27). In one
embodiment, standard instructions 460 and 465 include a same, fixed instruction length.
Augmented instructions are provided to extend functionality associated with particular
instructions and include an instruction length greater than the fixed instruction length of
standard instructions 460 and 465. Augmented instructions are comprised of standard
instruction portions 510 and augmented instruction portions 515. In the illustrated
embodiment, the augmented instruction portions 515 are stored in a different portion of

memory 505 than the associated standard instruction portions 510.

10

15

20

25

WO 03/090067 PCT/US03/11571

- 66-

Augmented instructions are generally loop or PVA execution instructions. The
standard instruction portions 510 include commands similar to the standard instructions
460 and 465 and can include the same fixed instruction length associated with standard
instructions 460 and 465. Furthermore, the standard instruction portions 510 can be
processed using the same standard instruction decoder as standard instructions 460 and
465. In one embodiment, the standard instructions portions 510 are stored in memory 505
in an order in which standard instruction portions 510 are to be processed in relation to
standard instructions 460 and 465. For example, standard instruction portions 510 are to
be processed after standard instructions 460 are to be processed, but before standard
instructions 465 are to be processed. In one embodiment, the standard instruction portions
510 and the augmented instruction portions 515 are associated with a program loop. A
loop initialization instruction 511 can be used to initialize loop execution and/or

augmented instruction processing.

The augmented instruction portions 515 are associated with the standard instruction
portions 510 and are to be processed concurrently in time with associated standard
instruction portions 510. However, the augmented instruction portions 515 are stored in a
separate block of memory from the standard instruction portions 510. For example, in the
illustrated embodiment, the augmented instruction portions 515 are stored in memory 505
after the standard instructions 465. An augmented instruction register 520 provides a
pointer to the augmented instruction portions 515. In one embodiment, the augmented
instruction register 520 is part of a plurality of registers stored in a register file. A pointer
to the augmented instruction register 520 may be provided through an instruction. For
example, the loop initialization instruction 511 can include an instruction field to point to
the augmented instruction register 520. Alternatively, an instruction, such as the loop
initialization instruction 511, can be used to initialize the pointer of augmented instruction
register 520 to provide the location of a set of augmented instruction portions, such as

augmented instruction portions 515, to be processed next.

Using augmented instruction register 520, augmented code of the augmented

instruction portions 515 can be accessed for concurrent processing with associated standard

10

15

20

25

WO 03/090067 PCT/US03/11571

-67-

code of standard instruction portions 510. For example, as standard_code_1 is accessed by
the standard instruction decoder, augmented_code_1 can be accessed by a secondary
instruction decoder, such as secondary decoder 440 (FIG. 27). A pointer provided by the
augmented instruction register 520 can be used to update a memory address of a next
augmented instruction portion to be processed. Accordingly, each of the K augmented
instruction portions can be processed concurrently with an associated standard instruction

portion, through the pointer of augmented instruction register 520.

In one embodiment, augmented instruction register 520 includes a pointer for each
augmented instruction portion. Alternatively, the augmented instruction register 520 may
be initialized to only the first augmented instruction portion, augmented_code_1, of
augmented instruction portions 515. After augmented_code_1 is accessed, the memory
pointer associated with augmented instruction register 520 can be incremented to point to
augmented_code_2. Similarly, a single pointer of augmented instruction register 520 can

provide access for all K augmented instruction portions.

Referring now to FIG. 29, a block diagram illustrating a form of providing an
augmented instruction in memory is shown, according to one embodiment of the present
invention. A program of instructions is stored in memory 605. The program of
instructions includes standard instructions 460, a loop initialization instruction 610,
standard loop instructions 620, and standard instructions 465. In one embodiment, each
portion of instructions 460, 620, and 465 include a same, fixed instruction length. The
loop initialization instruction 610 is expanded to include both a standard initialization
instruction portion 615, having an instruction length similar to instructions 460, 620 and

465, and an augmented instruction portion 617.

The loop initialization instruction 610 is provided as an augmented instruction,
having an extended instruction length, in comparison with standard instructions 460 and
465. A standard initialization portion 615 can be used to provide an initialization of
executions of standard loop instructions 620. For example, the standard initialization

instruction portion 615 can be used to enable processing of the augmented instruction

10

15

20

25

WO 03/090067 PCT/US03/11571

- 68-

portion 617 or can enable a loop or PVA execution for the standard loop instructions 620.
It should be noted that other forms of program loop instructions can be included with

standard instructions 460 or 465 without departing from the scope of the present invention.

The augmented instruction portion 617 can be used to specify additional processing
capabilities. For example, the augmented instruction portion 617 can specify additional
processing to be performed in respect to code portions of the standard loop instructions
620. For example, a first set of bits of the augmented instruction portion 617 can specify
early termination conditions for processing standard_code_1 of standard loop instructions
620. Furthermore, a second set of bits of the augmented instruction portion 617 can be
used to specify early termination for processing standard_code_2 of standard loop
instructions 620. In one embodiment, K sets of bit masks encoded in augmented
instruction portion 617 can be used to enable and/or specify early termination capabilities
for individual instruction of standard loop instructions 620. For example, a first set of bits
of augmented instruction portion 617 can specify early termination in standard_code_1 of
standard loop instructions 620. The first set of bits can include an enable bit to enable
early termination and a condition bit to specify a condition to trigger early termination.
Similarly, a second set of bits of augmented instruction portion 617 can specify early
termination for another instruction of standard loop instructions 620, such as

standard_code_2.

Alternatively, the augmented instruction portion 617 can also be used to augment
early continuation capabilities to each of the standard loop instructions 620. In one
embodiment, K sets of bit masks encoded in augmented instruction portion 617 are used to
enable and/or specify early continuation capabilities for individual instruction of standard

loop instructions 620.

It should be noted that other functionality may also be provided with the augmented
instruction portion 617. For example, the augmented instruction portion 617 can be used

to specify a destination operand for standard loop instructions 620.

10

15

20

25

WO 03/090067 PCT/US03/11571

- 69-

In yet another example, the augmented instruction portion 617 can be used to
provide a mask vector, such as to enable various input and output data streams for use by
standard loop instructions 620. It should be appreciated that instructions other than the
loop initialization instruction 610 can be used to provide the augmented instruction portion

617.

Referring now to FIG. 30, a block diagram illustrating a form of storing augmented
instruction portions 727 is shown, according to one embodiment of the present invention.
A program of instructions is stored in memory 705 and includes standard instructions 460,
aloop initialization instruction 711, augmented instructions 720, and standard instructions
465. Standard instructions 460 and 465 and loop initialization instruction 711 include
instructions of a standard encoding, and a same fixed instruction length. Augmented
instructions 720 include standard instruction portions 725 and augmented instructions
portions 727. In one embodiment, the standard instruction portions 725 include standard
code of the same standard encoding, and the same fixed instruction length as the standard
instructions 460 and 465, and are processed with a standard instruction decoder. However,
augmented instruction portions 727 are processed concurrently in time with the standard

instruction portions 725, using a secondary instruction decoder.

In one embodiment, a loop initialization instruction 711 is used to trigger a loop
execution mode associated with the augmented instructions 720. In one embodiment, the
loop initialization instruction 711 is further used to trigger the secondary instruction
decoder used to process augmented instruction portions 727 of augmented instructions 720.

Standard instruction portions 725 are stored in memory in a form in which they are to be
processed with respect to standard instructions 460, which are to be processed before the
augmented instructions 720, and standard instructions 465, which are to be processed after

the augmented instructions 720.

Augmented instruction portions 727 include code that expands capabilities of code
in standard instruction portions 725. An augmented_code_1 of augmented instruction

portions 727 corresponds to a standard_code_1 of standard instruction portions 725. To

10

15

20

25

WO 03/090067 PCT/US03/11571

-70-

simplify an access of augmented instruction portions 727, the augmented instruction
portions can be stored adjacent to associated standard instruction portions 725 in memory
705. For example, augmented_code_l is stored in memory 705 following
standard_code_1, and augemtned_code_2 is stored following standard_code_2. Similarly,
each of the K augmented instruction portions is stored following respective standard
instruction portions. It should be noted that while the augmented instruction portions 727
are described as being stored following the standard instruction portions 725, the
augmented instruction portions 727 can be stored preceding each associated standard

instruction portion without departing from the scope of the present invention.

As previously discussed, the augmented instruction portions 727 can expand or
specify processing capabilities associated with the standard instruction portions 725. For
example, an augmented instruction portion can enable and specify conditional execution
conditions associated with a particular standard instruction portion, wherein a processing of
the particular standard instruction portion is conditionally performed based on a condition
associated with an augmented instruction portion. The augmented instruction portion can
also specify early continuation or early termination conditions associated with the

particular standard instruction portion.

Referring now to FIG. 31, a block diagram illustrating fields associated with an
augmented instruction is shown, according to one embodiment of the present invention.
Augmented instructions, such as augmented instruction 800, are used to provide additional
functionality to instructions of some program loops. The augmented instruction 800 is
divided into a standard portion 810 and an augmented portion 820. The augmented portion
820 includes bits Er, Cr, Ec, and Cc-to specify early continuation and early termination

capabilities for processing the standard instruction portion 810 in a program loop.

A condition code associated with a system used for processing the augmented
instruction 800, such as system 400 (FIG. 27), is altered based on commands processed by
the system. For example, a ‘complt’ instruction can be processed by the system to compare

two separate register values. Based on the comparison, the condition code is altered to

10

15

20

25

WO 03/090067 PCT/US03/11571

-71-

affect a true state or a false state. In one embodiment, the processing system sets the
condition code to a value of either ‘1’ or ‘0’ to signify the current state. In alternate
embodiments, multiple condition codes, or a condition code with multiple bits or values

may be present, and may be specified by augmented instruction portion 820.

Based on the current value of the condition code, the augmented instruction 800 can
affect a processing of a program loop associated with the augmented instruction 800. As
previously discussed, a standard instruction decoder can be used to process the standard
instruction portion 810 and a secondary instruction decoder can be used to process the
augmented instruction portion 820. The augmented instruction portion 820 can establish
early termination conditions. Early termination conditions allow processing system 400 to
cancel further processing of the program loop associated with the augmented instruction
800. An early termination enable bit Er can be used to enable the early termination
capability for the augmented instruction 800. The early termination condition bit Ct can be
set to indicate a particular logical condition by being set to a value of either ‘0’ or ‘1’. If
the early termination bit Er is set to an enable state and the value of the early termination
condition bit Cr is equivalent to the value of the condition code of the processing system,
further execution of the program loop is halted. Once the standard instruction decoder
processes the standard instruction portion 810, the next instruction to be processed will be

a next instruction outside of the program loop.

Similarly to early termination, a set of early continuation bits Ec and Cc can specify
early continuation conditions. The early continuation enable bit Ec can be used to enable
the early continuation associated with the augmented instruction 800. If the early
continuation enable bit Ec is set to an enable condition and a value of the early
continuation condition bit C¢ is equivalent to the value of the condition code of the system,
the system can halt processing of any further instructions in a current iteration of the

program loop and continue with a next iteration associated with the program loop.

Other capabilities may also be provided through the use of an augmented

instruction portion, similar to augmented instruction portion 820. For example, the

10

15

20

25

WO 03/090067 PCT/US03/11571

-72-

augmented instruction portion can specify conditional execution capability for an
augmented instruction. Referring now to FIG. 32, a block diagram illustrating fields
associated with an augmented instruction that provides conditional execution capability is
shown, according to one embodiment of the present invention. Augmented instructions,
such as augmented instruction 750, are used to provide additional functionality to
instructions of some program loops. The augmented instruction 750 is divided into a

standard instruction portion 752 and an augmented instruction portion 751.

The augmented instruction portion 751 includes conditional execution control field
755. Conditional execution control field 755 includes enable bit for conditional execution
Ex and condition code for conditional execution Cx. When enabled by enable bit for
conditional execution Ex, execution of augmented instruction 750 is made conditional
based upon the value of condition code for conditional execution Cx. When the condition
specified by condition code for conditional execution Cx is met, execution of the standard
instruction portion 752 will be performed. However, when the condition specified by
condition code for conditional execution Cx is not met, execution of the standard
instruction portion 752 will not be performed, and augmented instruction 750 will be
effectively treated as a “no-operation” instruction. By providing the conditional execution
control field 755, the normal execution of the standard instruction portion 752 may be
advantageously made conditional. Note that in alternate embodiments, conditional
execution control field 755 may be expanded to include multiple condition codes, and/or

condition code field with multiple bits.

An augmented instruction portion of an augmented instruction can also be used to
provide an additional operand for processing a standard instruction portion. In one
embodiment, a standard instruction portion is a two-operand instruction, in which an
operation, such as an arithmetic operation, is performed using values from two source
operands. In conventional systems, the result from the processing of a two-operand
instruction is stored in one of the source operands, destroying the original value in the

source operand. Alternatively, the augmented instruction portion can be used to provide a

10

15

20

25

WO 03/090067 PCT/US03/11571

-73-

third operand into which the value from processing the first and second operand can be

returned.

Referring now to FIG. 33, a block diagram illustrating fields associated with an
augmented instruction that includes an additional operand is shown, according to one
embodiment of the present invention. Augmented instructions, such as augmented
instruction 830, are used to provide additional functionality to instructions of some
program loops. The augmented instruction 830 is divided into a standard instruction
portion 850 and an augmented instruction portion 840. The augmented instruction portion
840 includes an additional operand specifier Rc, which may be used to designate a third
operand value as discussed earlier. This third operand value may be used as a destination
register specifier for receiving a result of the standard instruction portion 850. By
providing the additional operand specifier Rc, the normal destructive operation of the

standard instruction portion 850 may be advantageously avoided.

An augmented instruction portion can also be used to specify an immediate field for
a particular standard instruction portion. Accordingly, a standard instruction portion can
use the immediate field provided by the augmented instruction portion as a source operand.
Alternatively, the augmented instruction portion can be used to extend the length of an

immediate field specified in the standard instruction portion.

Referring now to FIG. 34, a block diagram illustrating fields associated with an
augmented instruction that provides an immediate field is shown, according to one
embodiment of the present invention. Augmented instructions, such as augmented
instruction 860, are used to provide additional functionality to instructions of some
program loops. The augmented instruction 860 is divided into a standard instruction
portion 870 and an augmented instruction portion 880. The augmented instruction portion
880 includes an immediate field 881, which may be used as a source operand or to extend
the length of an immediate field already specified in the standard instruction portion 870.
By providing the immediate field 881 as an extension, the limited range of immediate

values in the standard instruction portion 870 may be advantageously avoided.

10

15

20

25

WO 03/090067 PCT/US03/11571

- 74-

In one embodiment of the present invention, the capabilities described with
reference to FIG. 32, 33 and 34 may be combined and selected by encoding an augmented
instruction portion. Referring now to FIG. 35, a block diagram illustrates encodings and
capabilities associated with augmented instructions 900. Augmented instructions 900 are
comprised of standard instruction portions 910 and augmented instruction portions 920.
The augmented instruction portion of augmented instruction 930 provides an immediate
field 932. The augmented instruction portion of augmented instruction 940 provides an
additional operand specifier Rc. The augmented instruction portion of augmented
instruction 950 provides an early continuation/early termination control field 952.
Augmented instructions 930 and 940 also provide the capability of specifying conditional
execution of the augmented instructions by means of conditional execution control fields

934 and 944.

In FIG. 35, these additional capabilities are distinguished by an encoding of high-
order bits 931, 941, and 951 of augmented instruction portions 920. Secondary decoder
440 of FIG. 27 examines these high order bits to determine the additional capabilities

specified by these augmented instruction portions.

An augmented instruction can be used to provide an expanded instruction width for
defining further capabilities not capable using a standard instruction width. For example,
an embodiment previously discussed in FIG. 4 provided data streaming support. In the
embodiment discussed for FIG. 4, only two input streams, Ly 6 and L; 8, and a single
output stream, S 36, were supported. However, using an augmented instruction, a data
streaming mask vector can be used. A data streaming mask vector includes several bits
that can be used to enable a different data stream. For example, a first data bit of the data
streaming mask vector can be used to enable a first data stream and a second data bit of the
data streaming mask vector can enable a second data stream. In one embodiment, the data
streaming mask vector is divided into a load portion and a store portion, wherein bits in the
load portion enable input data streams and bits in the store portion enable output data

streams. The data streaming mask vector can specify a plurality of input and output data

10

15

20

25

WO 03/090067 PCT/US03/11571

-75-

streams. For example, in one embodiment, a 32-bit data streaming mask vector can enable

up to 16 input data streams and 16 output data streams.

In one embodiment, the data stream mask vector is specified through an augmented
instruction portion. For example, an augmented instruction portion associated with aloop
initialization instruction, such as loop initialization instruction 610 (FIG. 29), can provide
data streaming mask vector values to simultaneously initialize several data streams. Each
data stream can be associated with an architectural register, R;. Reads or writes to the
architectural register R; will retrieve or store a data element from/to an associated input or
output data stream, respectively. As previously discussed in reference to FIG. 15, an
architectural register R; includes a temporary instance associated with a next data element
in a data stream and only visible during PVA or loop execution, and an overlaid instance

visible only during scalar or non-loop execution.

It should be appreciated that other capabilities not discussed herein can also be
added or extended through the use of augmented instructions without departing form the

scope of the present invention.

Referring now to FIG. 36, a flow diagram illustrating a method of compiling
commands is shown, according to one embodiment of the present invention. A compiler is
generally used to translate commands written according to a particular programming
language to system codes understood by a particular processor used to process the
commands. Generally, the compiler generates similar codes for a particular command. In
the illustrated embodiment, the compiler translates commands associated with a program
loop into augmented instructions. Accordingly, code density is not severely impacted and
features previously discussed for augmented instructions can be used with commands

associated with a program loop.

In step 960, the compiler receives a next command to be processed. The command
may be associated with commands of a particular programming language, such as C, C++,

JAVA, BASIC and the like. In step 962, it is determined if the received command is

10

15

20

25

WO 03/090067 PCT/US03/11571

-76-

associated with a program loop. The compiler can recognize the command by associated
the command with commands known for initializing or processing program loops, such as
a branching command, a DO UNTIL command, or a WHILE command. Similarly, the
command may be associated with a PV A initialization instruction, indicating the command

is to be associated with a program loop.

In step 964, if the command is not associated with a program loop, the compiler
translates the command into a standard instruction. As previously discussed, the standard
instruction represents an instruction generally used by the compiler to provide system code
and may be of a fixed or standard size. Once the standard instruction has been generated,

the compiler can return to step 960 to receive a new command.

In step 966, if the received command is identified as being associated with a
program loop, the compiler translates the command into an augmented instruction. The
augmented instruction includes a standard instruction portion, similar to the standard
instruction previously discussed, and an augmented instruction portion. The augmented
instruction can be used to specify extended properties for processing the standard
instruction portion, as previously discussed. For example, the augmented instruction
portion can specify condition control information, such as early termination, early
continuation, or condition execution control information. Alternatively, the augmented
instruction portion can specify data streaming for handling data associated with the
standard instruction portion. The augmented instruction portion can also be used to
provide an immediate field or an immediate field extension for processing the standard
instruction portion. Other capabilities can also be used without departing from the scope of
the present invention. Once the augmented instruction has been generated for the
command, the compiler can return to step 960 to receive a new command to process. In
one embodiment, the standard instructions and the standard instruction portions are to be
processed by a standard decoder, such as standard decoder 430 (FIG. 27), while the
augmented instruction portions are processed using a separate decoder, such as the

secondary decoder 440 (FIG. 27).

10

WO 03/090067 PCT/US03/11571

-77-

In the foregoing specification, the invention has been described with reference to
specific embodiments. However, one of ordinary skill in the art appreciates that various
modifications and changes can be made without departing from the scope of the present
invention as set forth in the claims below. For example, any software taught herein may be
embodied on one or more of computer hard disks, floppy disks, 3.5" disks, computer
storage tapes, magnetic drums, static random access memory (SRAM) cells, dynamic
random access memory (DRAM) cells, electrically erasable (EEPROM, EPROM, flash)
cells, nonvolatile cells, ferroelectric or ferromagnetic memory, compact disks (CDs), laser
disks, optical disks, and any like computer readable media. Accordingly, the specification
and figures are to be regarded in an illustrative rather than a restrictive sense, and all such

modifications are intended to be included within the scope of present invention.

WO 03/090067 PCT/US03/11571

-78-

WHAT IS CLAIMED IS:

1. A method comprising the steps of:
receiving a plurality of instructions (405);
identifying an instruction group in the plurality of instructions that is part of a
5 program loop (480);
using a first instruction size for instructions within the instruction group; and
using a second instruction size for instructions outside the program loop, wherein

the second instruction size is different from the first instruction size.

2. The method as in Claim 1, wherein a standard instruction group is used for instructions
10 outside the program loop and further wherein the standard instruction group and an
augmented instruction group, different from the standard instruction group, are

used for instructions within the program loop.

3. The method as in Claim 2, wherein the -augmented instruction group includes

conditional control information for executing the program loop.

15 4. The method as in Claim 2, wherein the augmented instruction group is used to control
input/output data streaming, to support an immediate field extension, or to support an

immediate field.

WO 03/090067 PCT/US03/11571

-79-

5. A method comprising the steps of:
when in a first mode of operation:
receiving a first standard instruction;
decoding the first standard instruction using a first instruction
5 decoder (430);
when in a second mode of operation:
receiving a second instruction, wherein the second instruction includes the
first standard instruction part and an augmented instruction part;
decoding the first standard instruction part using the first instruction
10 decoder (430);
decoding the augmented instruction part using a second instruction

decoder (440).

6. The method as in Claim 5, wherein the step of decoding the first standard instruction
part in the first instruction decoder and the step of decoding the augmented
15 instruction part using the second instruction decoder, when in the second mode of

operation, are performed concurrently.

7. A system comprising:
a first instruction decoder (430) to decode a first instruction having a first size, and
a first part of a second instruction having a second size, wherein the first
20 size is the same as the second size; and
a second instruction decoder (440), different from the first instruction decoder, to

decode a second part of the second instruction.

8. The system as in Claim 7, wherein the second part of the second instruction includes

conditional control information for executing a program loop.

WO 03/090067 PCT/US03/11571
- 80-

9. The system as in Claim 7, wherein the second part of the second instruction is used to
control input/output data streaming, to support an immediate field extension, or to

support an immediate field.

10. A method comprising the steps of:
5 receiving a command,
determining if the command is associated with a program loop;
if the command is not associated with a program loop, translating the command to
a standard instruction; and
if the command is associated with a program loop, translating the command to an
10 augmented instruction having a standard instruction part and an augmented

instruction part.

WO 03/090067 PCT/US03/11571

120

SCALAR MODE COMPOUND CVA

EXECUTION MODES CVA MODE REDUCTION CVA
VECTOR MODE HYBRID CVA

PVA MODE

FI1G.7

FOUR INDEPENDENT OPERATIONS
ARE ISSUED SIMULTANEOUSLY

DATA DATA DATA DATA

R R P ___~:\\ FOUR FUNCTIONAL
T T ==~ UNITS OPERATE
) IN PARALLEL

RESULTS ARE WRITTEN BACK
TO REGISTERS OR MEMORY

_PRIOR ART-
DATA
DATA
/
, FOUR FUNCTIONAL
/DATA | UNITS ARE CHAINED
7/ 1 TOGETHER TO PERFORM
y ,")?::) DEPENDENT OPERATIONS
/ Pl
/ ”~
[0 DATA,
TEMPORARY RESULTS
ARE NOT WRITTEN BACK

TO ANY REGISTER 7
RESULT IS WRITTEN BACK

TO REGISTER OR MEMORY A7 (F. S

—PRIOR ART-

PCT/US03/11571

WO 03/090067

||| L T _W3LSAS
| ONISS300Yd
— - /\Q* | \
Snaa_ s = =] ¥sS _
-] | sng"1ns3y 2y !
=—{HOLV > ¥30ONIND3IS “
_mm M8 1= 8 | wvadodd | i
—_— - B - —
53 sng" sz oo [E Snaq mm “ N> 419 : |
b q....hp - 05
- - - A |
.l_lm - _ | d 0¢ P N - y I
snd d A - _ snavy |1 _
- - Y r_
mm _ Y onax > _ . 1 3Hovo |, “
Snav s - s 0 | | 00T
8c 9 - 7
e e e e e e e e e e e i I He o 14 ¥ 340D
NOILNJ3X3
= =] AMONIN |~ - Vaig
snav S ANYYOdW3L Sngy Al
— > Nl —
Snaa s Nz SMOWL A4 N 91
N snav 01 L Snav 11 N —
N snav_In _ N
Snaa IN
N e s q
= ~1 %0078 Wvy
N Snav~ oW v_ oN

Snaa oW 1

WO 03/090067 PCT/US03/11571

3/20

SOURCE X SOURCE Y SOURCE X SOURCE Y SOURCE X SOURCE Y
Lo Ly Lo» Ly Lo Ly Lo» Ly Lo Ly L. Ly
ORRé ORRS ORRE ORRS ORRE ORRS

SOURCE z @ @

Lo Lt
OR R6
@ S_OP S_OP
Y Y
S R3 S AND R3
(A) COMPOUND CVA (B) REDUCTION CVA (C) HYBRID CVA
(S ENABLED) (S DISABLED) (S ENABLED)
28
STREAM L -5
:L 34 36
REGISTER g
FILE RF Y p | Psmea | s |S STREAU
Zy] (P_OP) (S_OP)
STREAM L - —
1 - 38
2 [a1 | ZS_BUS
-z b LaTCH |—
S_DBUS
WRITE BACK =

TO REGISTER R3
VIA RESULT_BUS

F1G.6

WO 03/090067 PCT/US03/11571

4/20

CVA INSTRUCTION
N
31 1615 8 7 4 3 0
VECTOR_OPCODE |0 [Eq|E1|Es|ET|CTVxiVxalVy1lyolVzilVzol P_OP | S_OP

VECTOR_OPCODE: OPCODE FOR VECTOR INSTRUCTIONS
E/Ey/Es: ENABLE BITS FOR DATA STREAMS Lg, Ly AND S, RESPECTIVELY
Vyo/Vxt: DEFINED AS FOLLOWS:
Vy{Vyxg=00 OPERAND
Vy{Vxg=01 ~ OPERAND
Vy{Vxg=10 OPERAND
VyiVxg=11 OPERAND

SOURCES FROM R3
SOURCES FROM L
SOURCES FROM L,
SOURCES ZERO

>XO X X X

Vyo/Vys DEFINED AS FOLLOWS:
Vy{Vy=00 OPERAND
Vy{Vyq=01 OPERAND

SOURCES FROM R4
SOURCES FROM L
SOURCES FROM L,
SOURCES ZERO

< < =< =<

V2o/ Vs DEFINED AS FOLLOWS:
| V74V70=00 OPERAND Z SOURCES FROM R5 (COMPOUND CVA)
V74V70=01 OPERAND Z SOURCES FROM Ly (COMPOUND CVA)
V7{V70=10 OPERAND Z SOURCES FROM L; (COMPOUND CVA)

Vz{Vz0=11 OPERAND Z SOURCES ZERO
(REDUCTION AND HYBRID CVA)

Et: ENABLE BIT FOR EARLY TERMINATION

Cr: CONDITION CODE FOR EARLY TERMINATION
P_OP: OPCODE FOR PRIMARY ARITHMETIC

S_OP: OPCODE FOR SECONDARY ARITHMETIC

FI1G.7

WO 03/090067 PCT/US03/11571

5/20

PVA INSTRUCTION ™~
31 1615 13 76 0
VECTOR_OPCODE 11Eg|E1|Es|ET|CT|CS—STORE-INDEX| LOOP_SIZE

VECTOR_OPCODE: OPCODE FOR VECTOR INSTRUCTIONS

Eg/Ey/Eg: ENABLE BITS FOR DATA STREAMS Lj, Ly AND S, RESPECTIVELY
Ey: ENABLE BIT FOR EARLY TERMINATION
Cy: CONDITION CODE FOR EARLY TERMINATION

CS—STORE-INDEX: INDEX OF THE INSTRUCTION IN THE LOOP BODY THAT WILL
INITIATE A CS—STORE OPERATION

LOOP_SIZE: SIZE OF THE LOOP BODY IN NUMBER OF INSTRUCTIONS

FI1G.8

A PVA INSTRUCTION\
PVA @LO, @L1, @S, CT=1, # LOOP_SIZE

e =h
1 BR L1 \ \L_
<INSTRUCTIONS> EARLEOLE§¥%gQTION
CS—STORE BR L2
INDEX <INSTRUCTIONS>
P L PVA LOOP BODY
<INSTRUCTIONS>
Y CS—STORE:
<INSTRUCTIONS
.y \\——-EXECUTING THIS INSTRUCTION
LOOP EXITS ITS WILL INITIATE A
EXECUTIONS CS—STORE OPERATION

FI1G.9

WO 03/090067 PCT/US03/11571

6/20
'/STRIDE SIZE REGISTER,
SSR 42 FROM FIG.4
31 29 20 19 109
FOR L FOR L FOR S

STRy/STRy/STRg: STRIDE VALUE FOR Lg, Ly AND S, RESPECTIVELY.

§74/S14/SLg: OPERAND SIZE FOR Lg, Ly AND S, RESPECTIVELY.

THEY ARE DEFINED AS FOLLOWS: Ox WORD
10 HALFWORD

m BYTE
FI1G.710

COUNT INDEX REGISTER,

¥~ "CIR 50 FROM FIG.4
31 1615
INDEX REGISTER (IXR) COUNT REGISTER (CR)
70” “51

F1G.717

Lo LOAD UNIT 6

/ FROM FIG.4
-

wo_osus ——y Y | .
TM_DBUS —L— _l LO_DBUS

110 TAIL [I 113

™~ 112

RESULT_BUS
SSR[STRg]

LO_ABUS =

WO 03/090067 PCT/US03/11571

7/20
Ly LOAD UNIT 8
FROM FIG.4
r-—-—-=——m=———== i |
! L, DATA QUEUE !
! 2 l
w_ous ——y Y | . |
TM_DBUS —1— _I L~ 1_DBUS
| |
| 120 TALL |, 123 |
: 122 :
| 124 125 |
, h - — RESULT_BUS
L1_ABUS —=—
- ! L SSR[STR;]
| ey |
| L_Ri 126 |
| |
Lo o oo o o e o o e e e i e o —— o - o
S STORE UNIT 36
FROM FIG.4
r—--—"—-=-"=-="=--"=-=-"=-"=--""=-"=+=--=""=—="="—-"=-="=-=== a2
| |
| —Ir13o |
P_BUS —1—= -
- ! J 131 } S_DBUS
| > |
| > |
ZS_BUS — :}‘1—1; 133
: ALU :
! (S_OP) ,
| 136 ,
P_B0s i g | 5 ABUS
SSR[STRg] —— L
>4 -
' 135 L_R2 '
: |—’ 134 - :
b o e e o e e e e o G — — — - o

WO 03/090067 PCT/US03/11571

8/20

OVERLAID REGISTERS
DISAPPEAR AND REAPPEAR AGAIN

REGFILE REGFILE REGFILE

- TEMPORARIES X

—— b e e o s o e Y Ahd Ll AL B e e e e e e ——— — e — -

\\A//

THESE REGISTERS ARE
ALWAYS VISIBLE

TIME
(A) SCALAR MODE (B) PVA MODE (C) SCALAR MODE
FI1IG.15 REGISTER FILE, RF 26
/ FROM FIG.4
e T, mEmEmmEEmEmEEmEmEm—m_m—— b |
I 141 0_RO I
| \ 144 |
SSRSTR,] — - I-* | - |
: - - |
00 ¥ ’_I T_RO — RO
: 140 142 :
LO_DBUS — > I
| 151 0_R1 PUA_EXEO
|
| = B 143 154
SSR[STRy] — - | - -
| + T R1 l
! 150 1527 :
L1_DBUS —t - |
| 161 R2 PVA_EXE1|
| . |
. I > —I 153 I
SSR[STRg] — - — R2
| >+ j_J |
| 164 |[lA160 162 |
LO_DBUS -—l—>\ﬁ :R3—R15
l -
|

L1_DBUS —— ~ R3-R15
RESULT_BUS ——{_J

WO 03/090067 PCT/US03/11571

9/20

INSTRUCTION BOUNDARIES

SIGNALS

TEMPORARY INSTANCE
OF RO

OVERLAID INSTANCE

A3
OF RO . 1

INSTRUCTION IOV Bt 1/ ' 1/ 14 TIME
EXECUTION STREAM | i

INSTRUCTIONS THAT
READ RO

F1G.77

A PORTION OF PROGRAM
_/—I—:+ (72 ¥ SEQUENCER 24 FROM FIG.4
J_

[| A

4__\54
t DISPLACEMENT FIELD
I

70 OF A BRANCH INSTRUCTION
IXR <— RESET
(FI1G.11) <— LOAD
A
IXR_COUNT 76
=~ _» |, INITIATE INSTRUCTION FETCH
LOOP_SIZE-1 o B FROM THE TOP OF LOOP

Y

TERMINATE LOOP
EXECUTIONS

f
L

LOOP_SIZE ——|

80

FI1G.18

WO 03/090067

START

PCT/US03/11571

1020

170 171 172

CVA YES [VECTORIZE USING ESTIMATE THE
VECTORIZABLE CVA INSTRUCTION(S)[| EXECUTION TIME
174 175
VECTORIZE USING |

CVA_AND PVA EXECUTION TIME

INSTRUCTIONS

177 178

VECTORIZE USING ESTIMATE THE

PVA INSTRUCTION EXECUTION TIME

CAN THE
EXECUTION
TIME BE IMPROVED
USING ANY OF
THE ABOVE
VECTORIZATION
METHODS?

o181
USE ORIGINAL LOOP |

180

METHOD WITH THE BEST
EXECUTION TIME

CHOOSE THE VECTORIZATION

WO 03/090067

PVA INSTRUCTION-\\\

3

11/20

1615

PCT/US03/11571

1

6 5 0

VECTOR_OPCODE 1

Eo

E4

Es

Ey

Cy

Ec

Ce

CS-STORE-INDEX

LOOP_SIZE

VECTOR_OPCODE: OPCODE FOR VECTOR INSTRUCTIONS
ENABLE BITS FOR DATA STREAMS Lj, Ly AND S, RESPECTIVELY
ENABLE BIT FOR EARLY TERMINATION
CONDITION CODE FOR EARLY TERMINATION
ENABLE BIT FOR EARLY CONTINUATION
CONDITION CODE FOR EARLY CONTINUATION

INDEX OF THE INSTRUCTION IN THE LOOP BODY THAT WILL
INITIATE A CS-STORE OPERATION

SIZE OF THE LOOP BODY IN NUMBER OF INSTRUCTIONS

FI1G.20

EO/E1/ES:
Ey:
CT:
Ec:
Ce:
CS-STORE-INDEX:

LOOP_SIZE:

INPUT DATA STREAMS

Lo
RESULT1_BUS

Ly

226 |

Yy JV

AR

AW

o2

Yyvy

Y

RF

A

\JA

N
N

Kl

[

OUTPUT DATA STREAM

S
!

235

Y

.

A\

P1

o

YyYVYy

]

EXTENDED
DUAL-ISSUED
PSEUDO-VECTOR
MACHINE

YvYy

241

A\

YV

RESULT2_BUS

FI1G.27

L\~]‘

Z$<4//]‘__

S_DBUS

WO 03/090067 PCT/US03/11571
12/20
SOURCE W SOURCE X SOURCE Y SOURCE Z
Lg Lp RO, Lo Ly R4, {0, L15:0R, Lo Ly, RS, {0, L3116}, Ly Ly RI2,

{0, Lo[3116] {0, L{3116}

{0, L[15:0}

{0, Lo[15:0}

S

(A) COMPOUND CVA
(S ENABLED)

SOURCE X
Lo Ly Ré, {0, L{{15:0]}

{0, L3116}

SOURCE W
Lg: Ly RO,

{0, Lol3116}

SOURCE Y SOURCE Z
Lo Ly RE, {0, L3116} Ly Ly RI2,

{0, L{15:0] {0, Lo[15:0}

S_OP

\

|

R

3

(B) REDUCTION CVA
(S DISABLED)

SOURCE X
Lo, L1, R4, {0, L1[150]§,

{0, L3116}

SOURCE W
Lo» Ly RO,

{0, Lol3116%

SOURCE Y SOURCE_Z
Lo Ly RS, {0, Li{3116], Ly Ly RI2

S AND RS

F1G.22

(C) HYBRID CVA
(S ENABLED)

WO 03/090067

31

13/20

1615 14

109

PCT/US03/11571

S5 4 0

VECTOR_OPCODE |1

Es|C1| CorFsET

CS—STORE-INDEX

LOOP_SIZE

— J

v

CS-LOAD/CS-STORE
ENABLE BITS

— EARLY TERMINATION

CONDITION CODE AND
CONDITION SETTING
INSTRUCTION OFFSET

F1G.23

A PVA INSTRUCTION-\\\

PVA @LO, @L1, @S, CT=1, COFFSET=N, # LOOP_SIZE

BR L1
<INSTRUCTIONS>
CS—-STORE BR L2
INDEX <INSTRUCTIONS>
—- 1
' <INSTRUCTIONS>
‘ CS-STORE:
CoFFSET <INSTRUCTION> ~-
Y <INSTRUCTION>

N

—

> PVA LOOP* BODY

— EXECUTING THIS
INSTRUCTION WILL
INITIATE A CS-STORE

—=L2

LOOP EXITS ITS
EXECUTIONS

OPERATION

\\——-EXECUTING THIS INSTRUCTION
WILL CAUSE A CHECK FOR
LOOP TERMINATION CONDITION

F1G.24

WO 03/090067 PCT/US03/11571

14/20

3 1615 14 109 54 0

CS-STORE-

L A v
™)

CS-LOAD/CS-STORE
ENABLE BITS

— EARLY TERMINATION
CONDITION CODE AND
CONDITION SETTING
INSTRUCTION OFFSET

F1G.25

A PVA INSTRUCTION\\
PVA @L0, @L1, @S, CT=1, COFFSET=N, # LOOP_SIZE

-~

-BR L1
F <INSTRUCTIONS>

BR L2
L <INSTRUCTIONS>

-1

CorFsET CINSTRUCTIONS> | [PVA LOOP BODY

<INSTRUCTION ~4

— EXECUTING THIS
gEIg;{ DESTINATION INSTRUCTION WILL

INITIATE A CS-STORE
OPERATION

Y <INSTRUCT{?N>

—2 N~ EXECUTING THIS INSTRUCTION
LOOP EXITS ITS WILL CAUSE A CHECK FOR
EXECUTIONS LOOP TERMINATION CONDITION

FI1G.26

WO 03/090067

15/20

INTER-DECODER

PCT/US03/11571

CONTROL
410
440 ~ SECONDARY STANDARD |~ 430
DECODER DECODER
A A
Yy Y
421 ~{INSTRUCTION INSTRUCTION}~ 420
FETCH FETCH
A
MEMORY 450
AUGMENTED STANDARD
INSTRUCTIONS PROGRAM LOOP
470 INSTRUCTIONS /,430
M N+1 460
LOOP INIT
AUGMENTED ! STANDARD AUGMENTED _INSTRUCTION 1
INSTRUCTION : INSTRUCTION AUGMENTED _INSTRUCTION 2
PORTIONS |, PORTIONS .
477 475 .
AUGMENTED_INSTRUCTION K
STANDARD
PROGRAM —7 INSTRUCTIONS
405 165
M N+1 N 0

AUGMENTED_CODE _1

STANDARD_CODE_1

AUGMENTED_CODE_2

STANDARD_CODE_2

AUGMENTED _CODE_K

STANDARD_CODE_K

F1G.27

400

WO 03/090067

16/20

STANDARD
INSTRUCTIONS

460

LOOP
INITIALIZATION
INSTRUCTION

T 511

STANDARD
INSTRUCTION
PORTIONS

510

AUGMENTED
INSTRUCTION
PORTIONS
515

STANDARD_CODE _1

b — — — ————— — -

STANDARD_CODE_K

STANDARD
INSTRUCTIONS

465

AUGMENTED_CODE _1

L — o — — e — — —

AUGMENTED_CODE _K

FIG.28

MEMORY
505

J

PCT/US03/11571

/520

AUGMENTED
INSTRUCTION
REGISTER

WO 03/090067

PCT/US03/11571
17/20
MEMORY
605 STANDARD
o INSTRUCTIONS
460 STANDARD 615
460 INITIALIZATION
10 INSTRUCTION
- LOOP PORTION
INITIALIZATION -
STANDARD INSTRUCTION Iﬁg-?MENTEDN ~ 617
LOOP T o RUCTIO
INSTRUCTIONS b — - MPARD_CODE T PORTION
620 __§IANDARD CODE_2
'Eﬂ@kﬁ&ﬁY"
STANDARD
INSTRUCTIONS
465
MﬁngY STANDARD
w INSTRUCTIONS
460
711+ LOOP
INITIALIZATION
INSTRUCTION
| _STANDARD_CODE_1_ |
AUGMENTED | AUGMENTED_CODE_1 K '\ oranpaArD
INSTR%gJIONS | STANDARD_CODE_2 |+ INSTRUCTION
~— AvsienTeD cove 2 | (| "
'é?kﬁbihﬁ'ﬁdﬁt_K"" AUGMENTED
----------- INSTRUCTION
AUGMENTED_CODE_K SRTTONS
727
STANDARD
INSTRUCTIONS
FI1G. 30 16

WO 03/090067 PCT/US03/11571

18/20

EARLY TERMINATION EARLY CONTINUATION
CONDITION BIT ENABLE BIT

EARLY TERMINATION EARLY CONTINUATION
ENABLE BIT CONDITION BIT
18 17} \16

23 19 15
-
o Er | Cr | Ec | Cc STANDARD CODE
AUGMENTED STANDARD
INSTRUCTION INSTRUCTION
PORTION PORTION
820 810
AUGMENTED
INSTRUCTION
800

CONDITIONAL EXECUTION
CONTROL FIELD

755
f_E
23 17 16 15 0
f————————
I Ey [Cy STANDARD CODE
b e e e e e e
AUGMENTED STANDARD
INSTRUCTION INSTRUCTION
PORTION PORTION
751 152
AUGMENTED
INSTRUCTION
750

FI1G.32

WO 03/090067

19/20

PCT/US03/11571

ADDITIONAL
OPERAND
SPECIFIER
23 19 16 15
F e
! Re STANDARD CODE
e e — = —
AUGMENTED STANDARD
INSTRUCTION INSTRUCTION
PORTION PORTION
840 855
AUGMENTED
INSTRUCTION
830
IMMEDIATE
FIELD
881
23 / 16 15 0
Lo
! Imm STANDARD CODE
b=
AUGMENTED STANDARD
INSTRUCTION INSTRUCTION
PORTION PORTION
880 870
AUGMENTED
INSTRUCTION

860

F1G.34

WO 03/090067

PCT/US03/11571

934
931 932 —
930 23/ / 17 16 15 0
[\
0 Imm Ex | Cy STANDARD CODE
941 944
—r— —r—
940 23 17 16 15 0
\ 110 Re Ex | Cx STANDARD CODE
951 932
950 23 17 16 15 0
N VIV B |G| E |G| — | — STANDARD CODE
AUGMENTED STANDARD
INSTRUCTION INSTRUCTION
PORTIONS PORTIONS
920 910
AUGMENTED
INSTRUCTIONS
FI1G.35 0
960
= RECEIVE A COMMAND ==
& NOT 964
DETERMINE ASSOCIATED ‘
IF COMMAND IS WITH LOOP | TRANSLATE COMMAND TO

ASSOCIATED WITH A
PROGRAM LOOP
?

ASSOCIATED
WITH LOOP

STANDARD INSTRUCTION

-

, 966

TRANSLATE COMMAND TO
AUGMENTED INSTRUCTION

F71G.36

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

