
P. C. HEWITT.

STARTING AND CONTROLLING DEVICE FOR ELECTRIC VAPOR APPARATUS.

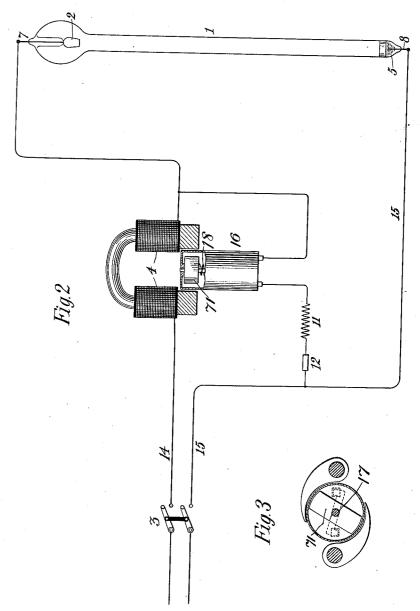
APPLICATION FILED APR. 11, 1902.

1,110,543.

Patented Sept. 15, 1914.

Witnesses: Rashail litter W.N.Capel

Inventor Peter Cooper Hewittby Crunes a Parry. Atty


P. C. HEWITT.

STARTING AND CONTROLLING DEVICE FOR ELECTRIC VAPOR APPARATUS.

APPLICATION FILED APR. 11, 1902.

1,110,543.

Patented Sept. 15, 1914,

Witnesses: Rashae'l fetter Orth. Capel

Peter Corpor Hunter
by Church at any Alty

UNITED STATES PATENT OFFICE.

PETER COOPER HEWITT, OF NEW YORK, N. Y., ASSIGNOR, BY MESNE ASSIGNMENTS, TO COOPER HEWITT ELECTRIC COMPANY, OF HOBOKEN, NEW JERSEY, A CORPORA-TION OF NEW JERSEY.

STARTING AND CONTROLLING DEVICE FOR ELECTRIC VAPOR APPARATUS.

1,110,543.

Patented Sept. 15, 1914. Specification of Letters Patent. Application filed April 11, 1902. Serial No. 102,336.

To all whom it may concern:

Be it known that I, Peter Cooper Hew-itt, a citizen of the United States, and a resident of New York, in the county of New 5 York and State of New York, have invented certain new and useful Improvements in Starting and Controlling Devices for Electric Vapor Apparatus, of which the follow-

ing is a specification. This invention relates to improvements in starting and controlling apparatus for electric vapor lamps of the class described in certain United States patents issued to me on the 17th day of September, and the 15 3d day of December, 1901. In operating lamps of this class, a convenient way of starting the lamp is by causing a quick or sudden electrical impulse to be impressed upon the lamp terminals, such impulse being 20 of higher potential than that of the current with which the lamp is to be operated after starting. This initial or starting impulse may be caused by creating a quick break in the circuit of a reactance device in series with the lamp, the circuit thus broken forming, before the rupture, a short-circuit around the lamp. I have found that by causing a quick rupture of such a circuit between electrical contacts submerged in a 30 non-conducting liquid such as oil, it is possible to produce a sufficient impulse for the purpose indicated without the use of large or cumbersome reactance coils and by very simple manipulations. In general, I em-35 ploy a main switch for closing the original short-circuit and an auxiliary snap switch for breaking the said circuit and producing the initial starting impulse, the contacts of the snap switch, or the entire switch being 10 inclosed in oil within an oil-tight receptacle. The coils of the reactance device may remain in the lamp circuit and serve as a steadying-resistance for the lamp.

I usually provide a starting switch which 15 is operated automatically when the main switch is turned on, the automatic switch being so arranged as to have the electrical contacts covered with oil as in the hand switch already described. I utilize the coils of the O reactance device for bringing about this automatic action, by forming them into windings for a solenoid or an electro-magnet, the actuating part of which is located outside an oil-tight receptacle within which the actu- lenergized and deënergized after the marner

ated part, whether core or armature, is con- 55 tained. Through the instrumentality of the core or armature, electrical contacts are actuated, generally through the medium of a quick-break electric switch. The actuating coils are arranged in series with the lamp, 60 but between the coils and the lamp a shortcircuit is provided, including the contacts operated by the coils and also when need be including a suitable resistance. If desired, the coils may be so adjusted that the dura- 65 tion of contact will be timed so as to have a predetermined periodicity for a given flow of current. Moreover, a time cut-out may conveniently be located preferably in the shunt circuit. As soon, therefore, as the ac- 70 tuating coils are energized sufficiently to separate the contacts, the short-circuit is broken and when this rupture takes place, an electrical impulse of higher potential passing through the lamp circuit causes the lamp 75 to start. The described starting device may be combined with a conducting band or coating surrounding the lamp near the negative electrode and connected by a suitable conductor to the leading-in wire of the posi-tive electrode or to ground. Whether this is done or not, the reactance of the magnet or solenoid coils, when they are properly proportioned may be enough to generate the required starting impulse; and by virtue 85 of the arrangement described, this action is automatic. After the lamp is started, the described short-circuit remains broken during the normal operation of the lamp, and the actuating reactance coils remain in series 90 with the lamp, holding the contacts apart, and incidentally serving as a steadying-resistance for the lamp. Should the lamp circuit be broken or the lamp be extinguished for any reason, thereby interrupting the 95 circuit of the actuating coils, the movable contacts of the switch will be released and reëngage with the stationary contacts thereof, thus closing the original short-circuit and restoring the initial conditions of the 100 circuit. A second separation of contacts will then take place, which, if the lamp has simply gone out, may cause a renewed starting of the lamp, whereupon the lamp will continue to operate as before. If, however, 105 the lamp should be broken, or fail to relight, the switch actuating coils will be alternately

10

of a vibrating bell-magnet. The action of the time cut-out in the short-circuit then comes in to permanently disrupt the shortcircuit when the alternate closing and opening thereof, as described, has continued for a predetermined length of time. The time cut-out may be any suitable form of cutout for the purpose, such, for instance, as the well-known time fuse.

While for convenience I have referred to the invention more particularly in connection with an electric lamp, yet the invention is applicable for starting other forms of electric gas or vapor devices operating upon

15 the same general principle.

I have illustrated my invention in the ac-

companying drawings, in which-

Figure 1 is a diagram of circuits and apparatus embodying my invention; Fig. 2 illustrates means whereby the actuating reactance coils may operate a snap or quickbreak switch; and Fig. 3 is a detail view.

In the drawings, I represents an electric vapor lamp in which electrodes 2 and 5 are 25 suitably connected by leading-in wires 7 and 8, respectively, to the external circuit represented by the wires 14 and 15. A switch 3, of any desired construction, controls the circuit of the wires 14 and 15. This is the 30 main switch referred to in the foregoing part of the specification and is generally operated by hand. The wire 14 includes the coils 4 of an electro-magnet having an iron core, 6, adapted to act upon an armature, 71, 35 in proximity thereto. The armature 71 supports movable contacts, 72, 72, which are so related to the stationary contact-points, 81, 81, of an electric switch that when the coil 4 is energized so as to attract the armature 71, 40 the circuit is interrupted between the movable and the stationary contacts. The contacts referred to are included in a shunt or short-circuit starting from between the coil 4 and the lamp 1 and extending from the 45 wire 14 to the wire 15 through a resistance 11 and a time cut-out 12. When the main switch 3 is turned on, the current from the line passes through the short-circuit which includes the coil 4, contact points 72, 72, and 50 81, 81, resistance 11, and time cut-out 12, the resistance of the lamp circuit being too high to be traversed by the current on the line before the lamp has once been started. By the passage of the current as described, 55 the coil 4 is energized, magnetizing the core 6 and attracting in that way the armature 71. The armature is attracted and the shortcircuit is broken. In Fig. 2, I illustrate the means whereby this rupture of the circuit is 60 caused through the medium of a snap-switch so that a quick break is produced, causing a sudden reactance in the coil 4. This causes an electrical impulse of high potential to traverse the lamp circuit and results in the 65 lighting up of the lamp. In Fig. 2, the coils

4 are wound upon a core of horseshoe shape, the poles of the core being arranged outside a cylindrical casing, 16, containing oil. The shape of the poles is clearly shown in Fig. 3. Inside the casing the armature 71 is ar- 70 ranged, the same being mounted on a spindle, 17, and being normally held in the position illustrated in Fig. 3, by a spring 18. The spindle 17 is the actuating spindle of an ordinary snap switch, the details of which need not be fully illustrated. The principal point is that when the spindle is moved in one direction by the magnetization of the poles of the magnet 4, the circuit shall be broken by a quick movement; while on the 80 rotation of the spindle in the opposite direction by the spring 18, the circuit shall be restored. This being the action of the apparatus, it follows that should the lamp 1 become broken, or be temporarily extinguished, 85 the circuit between the points 72, 72, and 81 81, which remains open during the normal operation of the lamp, will be restored but immediately broken again through the energization of the magnet 4. This may relight 90 the lamp, but in case of a permanent derangement of the lamp, the armature 71 will vibrate back and forth owing to the operation of the magnet 4 and the spring 18 alternately affecting the contacts. When the 95 armature has thus vibrated for a predetermined length of time, the cut-out 12 permamently breaks the short-circuit and the entire system remains out of operation until it is properly restored to its original con- 100 The described action of the switch dition. when the lamp 1 becomes broken or is temporarily extinguished is similar to that of an ordinary electro-magnetic vibrator and the switch may be so designated when it is 105 performing the functions above set forth.

I claim as my invention:

1. The combination with an electrical translating device and a reactance device in series therewith, of a shunt across the circuit between the translating device and the reactance device, and a snap or quick-break switch in said shunt, the reactance device being placed in operative relation to the switch, so as to operate the same when the main circuit is closed.

2. The combination with an electric gas lamp, of an electro-magnetically actuated circuit interrupter having its contacts in multiple with the lamp and its magnet coil or 120 coils in the supply circuit with the lamp and adapted to hold the interrupter contacts open by the current flowing through the lamp while the lamp is in action.

3. The combination with an electric gas 125 lamp connected with a low potential source of energy through a circuit of self-induction of sufficient value to furnish a high potential current proper for starting said lamp, an interrupter for said circuit of induction 130

having its contacts in multiple with the lamp, and an electromagnet for actuating said interrupter, said electromagnet having its coils connected to the supply circuit and adapted to hold the interrupter contacts open by the current flowing through the lamp while the lamp is in action.

Signed at New York, in the county of New York and State of New York this ninth day of April A. D. 1902.

PETER COOPER HEWITT.

Witnesses:

M. von Recklinghausen, WM. H. CAPEL.