发明名称
带有外部排气装置的弹簧储能制动缸

摘要
本发明涉及一种用于车辆的制动设备的弹簧储能制动缸(1)，具有：布置在弹簧储能制动缸(4)中的、可通过至少一个储能弹簧(10)操纵的弹簧储能制动活塞(8)，该弹簧储能制动活塞将容纳储能弹簧(10)的弹簧室(14)和弹簧储能制动缸(4)的可充气和可排气的弹簧储能制动室(12)分隔开；以及松开装置(64)，用于手动地或通过传动装置操纵地松开弹簧储能制动器，其中松开装置(64)包括和弹簧储能制动活塞(8)的弹簧储能制动活塞杆(18)共同作用并保持在弹簧储能制动缸(4)的开口(66)中的、可从弹簧储能制动缸(4)的外部操纵的松开主轴(72)。本发明提出，在松开主轴(72)中，包括阀装置(74)的流动连接部(82)设计在弹簧室(14)和外界环境之间，其中阀装置(74)取决于在弹簧室(14)中存在的压力打开或关闭流动连接部(82)。
1. 一种用于车辆的制动设备的弹簧储能制动缸，所述弹簧储能制动缸具有：布置在弹簧储能制动缸（4）中的、可通过至少一个储能弹簧（10）操纵的弹簧储能制动活塞（8），所述弹簧储能制动活塞将容纳所述储能弹簧（10）的弹簧室（14）和所述弹簧储能制动缸（4）的、可充气和可排气的弹簧储能制动室（12）分开；当松开装置（64），用于手动地或通过传动装置操纵地松开弹簧储能制动器，其中所述松开装置（64）包括和所述弹簧储能制动活塞（8）的弹簧储能制动活塞杆（18）共同作用并保持在所述弹簧储能制动缸（4）的开口（66）中的、可从所述弹簧储能制动缸（4）的外部操纵的松开主动轴（72）。其特征在于，在所述松开主动轴（72）中，包括阀装置（74）的流动连接部（82）设计在所述弹簧室（14）和外界环境之间，其中所述阀装置（74）取决于在所述弹簧室（14）中存在的压力打开或关闭所述流动连接部（82）。

2. 根据权利要求1所述的弹簧储能制动缸，其特征在于，所述阀装置（74）包括至少一个通过至少一个弹簧（76）抵靠至少一个阀座（78）预张紧的阀体（80），所述阀体在封闭的初始位置中关闭在所述松开主动轴（72）中同轴设计的流动通道（82），并取决于在所述流动通道（82）中存在的压力在打开位置中打开所述流动通道。

3. 根据权利要求2所述的弹簧储能制动缸，其特征在于，所述流动通道（82）的、相对于从所述弹簧室（14）至外界环境的流动而言是布置在所述阀装置（74）的弹簧加载的所述阀体（80）之前的部段（84）通过至少一个设计在所述松开主动轴（72）中的横向通道（86）于所述弹簧室（14）连接。

4. 根据前述权利要求中任一项所述的弹簧储能制动缸，其特征在于，所述松开主动轴（72）与所述弹簧储能制动活塞（8）这样共同作用，即所述松开主动轴（72）的旋转运动转化为所述弹簧储能制动活塞（8）的平移运动。

5. 根据权利要求4所述的弹簧储能制动缸，其特征在于，所述松开主动轴（72）借助于螺纹连接可旋转地安置在螺母（92）中，所述螺母与所述弹簧储能制动活塞杆（18）抗扭地连接。

6. 根据权利要求4所述的弹簧储能制动缸，其特征在于，所述松开主动轴（72）相对于所述弹簧储能制动缸（4）轴向固定，但可旋转地安置。

7. 根据权利要求5所述的弹簧储能制动缸，其特征在于，所述松开主动轴（72）相对于所述弹簧储能制动缸（4）轴向固定，但可旋转地安置。

8. 根据权利要求4所述的弹簧储能制动缸，其特征在于，所述松开主动轴（72）在所述松开主动轴的自由的、指向外界环境的端部（88）上有用于旋转工具的作用面（90）。

9. 根据权利要求7所述的弹簧储能制动缸，其特征在于，所述松开主动轴（72）在所述松开主动轴的自由的、指向外界环境的端部（88）上有用于旋转工具的作用面（90）。

10. 根据权利要求4所述的弹簧储能制动缸，其特征在于，所述弹簧储能制动缸和运转制动缸（2）一起合并成组合的运转制动缸和弹簧储能制动缸（1），并且所述运转制动缸（2）具有可移动地布置在所述运转制动缸（2）中的运转制动活塞（26）。

11. 根据权利要求9所述的弹簧储能制动缸，其特征在于，所述弹簧储能制动缸和运转制动缸（2）一起合并成组合的运转制动缸和弹簧储能制动缸（1），并且所述运转制动缸（2）具有可移动地布置在所述运转制动缸（2）中的运转制动活塞（26）。
带有外部排气装置的弹簧储能制动缸

技术领域
[0001] 本发明涉及一种根据权利要求1的前序部分所述的用于车辆的制动设备的弹簧储能制动缸，该弹簧储能制动缸具有设置在弹簧储能制动缸中的、可通过至少一个储能弹簧操纵的弹簧储能制动活塞，该弹簧储能制动活塞将容纳储能弹簧的弹簧室和弹簧储能制动缸的、可充气和可排气的弹簧储能制动室分解隔开；以及松开装置，用于手动地或通过传动装置操纵地松开弹簧储能制动器，其中松开装置包括和弹簧储能制动活塞的弹簧储能制动活塞杆共同作用并保持在弹簧储能制动缸的开口中的、可从弹簧储能制动缸的外部操纵的松开主轴。

背景技术
[0002] 这种类型的弹簧储能制动缸例如已在WO 97/07322中公开。在此所述的松开装置用于松开被动的弹簧储能制动器，当从车辆移除或在那里安装弹簧储能制动缸时，或者当车辆应随着已松开的弹簧储能制动器而进行牵引时，该弹簧储能制动器压力加载地或充气地松开并且压力卸载地或排气地压紧。在此情况下，即其中由于弹簧储能制动室内压力不足使充气泵供应装置发生故障时使弹簧储能制动器无法松开，则也涉及到弹簧储能制动器的所谓的“紧急松开”。然后，通过手动地或者通过借助于传动装置引起的松开主轴的旋转例如通过螺纹转换成弹簧储能制动活塞的平移运动，以便松开弹簧储能制动器。

[0003] 由现有技术，例如由DE 10 2006 005 031 A1公开了一种组合的制动和活塞的弹簧储能制动活塞，也就是所谓的组合缸，其中在停车制动的情况下弹簧储能制动活塞利用其弹簧储能制动活塞杆操纵又具有运转制动活塞杆的运转制动活塞，运转制动活塞杆和车辆制动器的制动机构、特别是盘式制动器共同作用。弹簧储能制动活塞具有弹簧储能制动活塞杆，该活塞杆在其阻挡运转制动缸的端部上支撑排气阀，该排气阀建立或关闭在弹簧室和运转制动室之间的流动连接。在此，排气阀在端部一侧布置在弹簧储能制动活塞的空心的弹簧储能制动活塞杆中，该弹簧储能制动活塞取决于运行状态可伸入运转制动室中。排气阀用于在松开驻车制动器时，降低由于弹簧储能制动活塞的返回以及弹簧室由此缩小的体积在后所产生的过压，这由此实现，即排气阀通过该过压接入到打开位置上并且建立在弹簧室和运转制动室之间的流动连接。在行驶在平坦路段上时，运转制动室被排气并且与压力调节模块的排气装置相连接，这是因为在松开驻车制动器后无需进行运转制动。随后，至少一部分的在弹簧室中过剩的空气体积可以流出，因此这些空气体积并不是例如经过布置在弹簧室内壁中的阀直接到达大气中，而是经过运转制动室的充气路径和排气路径到达大气中。因此在此也称为内部排气。

[0004] 然而当行驶在上升路段上时，在首先压紧了驻车制动器的情况下必需的是，在松开驻车制动器之前至少暂时地直向运转制动器，从而避免车辆在行驶时倒退。这种情况下对运转制动室进行充气。在制动要求足够高时，当驾驶员提出足够高的制动要求时，运转制动室中以及同时在活塞的一侧存在的运转制动压力可能逆着阀座在弹簧室中产生的压力的作用使其由此使排气阀保持关闭。但是如果基于驾驶员的相应较低的运转制动
要求，运转制动压力和/或运转制动压力梯度处于某个阈值以下，那么在活塞的一侧上形成的运转制动压力不足以保持排气阀关闭。然而压缩空气从运转制动室经过打开的排气阀流入弹簧室。从那里，压缩空气通过弹簧储能制动活塞密封件的工作面和弹簧储能缸的摩擦面之间的密封间隙以及壳体密封件压入大气中，这引起了干扰的差拍噪音。

发明内容
[0005] 与此相对地，本发明的目的在于，进一步改进开头所述类型的弹簧储能制动缸，即减少或避免在特定的运行情况下出现的、由于气流引起的噪音。
[0006] 该目的根据本发明通过权利要求1所述的特性实现。
[0007] 本发明基于这样的思想，即在松开主轴中，包括阀装置的流动连接设计在弹簧室和外界环境之间，其中阀装置取决于在弹簧室中存在的压力打开或关闭流动连接。然后阀装置特别在被动的、充气地松开并且排气地压紧的弹簧储能制动器中，用于在外界环境中减少上述运行状态中在弹簧室中存在的过压，而不会使在弹簧储能制动活塞的密封装置处产生引起干扰噪音的流动或避免这种流动。在此，“外界环境”理解为在弹簧储能制动缸的壳体之外和在外界环境压力下存在的区域。
[0008] 本领域技术人员可以这样设计流动通道和阀装置的走向线路或尺寸大小，即流过流动通道或阀装置的气柱仅仅产生少量的或几乎不产生可听见的流动噪音，这在调整弹簧储能制动活塞的密封装置时只能困难地实现。
[0009] 相对于现有技术的内部排气的另一优点是，与运转制动室内的压力无关地操纵阀装置，并且因此当在山地或斜坡上行驶时也能实现所期望的功能。
[0010] 可以特别附加地或替代现有技术的上述内部排气装置而设置带有阀装置的流动通道，以用于实现外部排气。
[0011] 特别有利的是，弹簧储能制动缸通常总是有上述类型的松开装置，并且这种松开装置现在根据有利的双重功能一方面在没有压缩空气供给的情况下用于松开弹簧储能制动器，和另一方面用于弹簧室的排气。这引起有利的少量元件。
[0012] 通过在从属权利要求中执行的措施实现了在独立权利要求中给出的本发明的有利的改进方案和改进之处。
[0013] 特别优选地，阀装置包括至少一个通过至少一个弹簧抵靠至少一个阀座预张紧的阀体，该阀体在被触发的初始位置中关闭在松开主轴中同轴设计的流动通道，并取决于在流动通道中存在的压力在打开位置中打开该流动通道。
[0014] 根据一个改进方案，流动通道的，相对于从弹簧室至外界环境的流动而言是布置在阀装置的阀元件之前的部段通过至少一个设计在松开主轴中的横向通道与弹簧室连接。特别优选的是，松开主轴与弹簧储能制动活塞这样共同作用，即松开主轴的旋转运动引起了弹簧储能制动活塞的平移运动。
[0015] 为实现该目的，松开主轴相对于弹簧储能制动缸优选地轴向固定，但可旋转地安置，其中松开主轴在其自由的，指向外界环境的端部上配有用于旋转工具的作用面。此外，松开主轴可以借助于螺纹连接可旋转地安置在螺母中，该螺母和弹簧储能制动活塞杆抗扭地连接。然后以例如手动地开始松开主轴在特定的方向上的旋转为条件，实现弹簧储能制动活塞在松开位置中的平移运动。
此外特别优选的是，弹簧储能制动缸可以和运转制动缸一起合并成组合的运转制动缸和弹簧储能制动缸，并且运转制动缸具有布置在运转制动缸的壳体中的运转制动活塞。

附图说明

由下列对实施例的说明得出更详细的内容。

下面在附图中示出了本发明的一个实施例并且在随后的描述中对此详细说明。图中示出：

图 1 是根据本发明的一个优化的实施方式的带有密封装置的组合缸的横截面图；

图 2 是图 1 中组合缸的放大截面图。

具体实施方式

图 1 中示出了组合的运转制动缸和弹簧储能制动缸 1，以下称为组合缸。组合缸 1 由运转制动缸 2 和与其在结构和功能上相联系的弹簧储能制动缸 4 组成。运转制动缸 2 和弹簧储能制动缸 4 通过间隔 6 相互隔离。在弹簧储能制动缸 4 内部可移动地布置了弹簧储能制动活塞 8，其中储能弹簧 10 抵靠在弹簧储能制动活塞 8 的一侧。储能弹簧 10 支撑在它的在弹簧储能制动缸 4 的底面上的相反设置的侧面上。在弹簧储能制动活塞 8 和间隔 6 之间设计有弹簧储能制动室 12，该弹簧储能制动室与出于尺寸原因未示出的力调节模块连接，用于对其进行充气和排气。在充气时，弹簧储能制动活塞 8 在储能弹簧 10 被固定住的状态下轴向地移动到驻车制动器的松开位置中。在弹簧储能制动活塞 8 这样移动时，将存在于容纳了储能弹簧 10 的弹簧室 14 内部的空气在一些运行状态下通过排气阀 16 压出到运转制动室 20 中。如果相反地为达到制动目的使弹簧储能制动室 12 排气，储能弹簧 10 则可以使弹簧储能制动活塞 8 移到压缩位置中。

弹簧储能制动活塞 8 与空心的弹簧储能制动活塞杆 18 连接，该活塞杆穿过间隔 6 延伸到运转制动缸 2 的运转制动室 20 中。插入间隔 6 的中央孔 21 中的密封装置 22 在其纵向运动期间相对于弹簧储能制动活塞杆 18 的外壁密封。未示出的入口通入运转制动室 20 中，为了操纵运转制动缸 2 而使压缩空气通过该入口流入和流出。压缩空气作用于安装在运转制动缸 2 内部的膜片 24 上，在该膜片的相反设置的侧面上设置了刚性膜片盘 26 形式的压力件。膜片 24 正好将运转制动缸 2 的、可加预和可卸载压力介质的运转制动室 20 和容纳了支撑在膜片盘 26 上的复位弹簧 30 的弹簧室 31 分隔开。

膜片盘 26 与压杆 28 连接，压杆与在组合缸 1 外部的制动操纵机构共同作用。在此，该制动操纵机构例如可以是机动车的盘式制动器的操纵元件。运转制动缸 2 是主动的制动缸，也就是说运转制动器通过运转制动室 20 的充气而压缩，并且通过排气而松开。一方面支撑在膜片盘 26 上，另一方面支撑在运转制动缸 2 的底面上的复位弹簧 30 确保了，在运转制动室 20 排气时将压杆 28 复位至松开位置中。

膜片 24 的径向外部的固定边缘 32 具有楔形的、径向向内逐渐变细的横截面。膜片盘 24 的、具有楔形的、径向向内逐渐变细的横截面的径向外部的固定边缘 32，在具有楔形的、径向向外扩展的横截面的互补成型的容纳部 34 中，夹紧在间隔 6 和运转制动缸 2 之间。间隔 6 和运转制动缸 2 构成其外边缘作为径向向外弯曲的凸缘 36, 38, 凸缘的相对
指向的内表面在凸缘自身之间构成了具有楔形横截面的容纳部 34。

[0026] 此外在膜片 24 上设计了至少一个在轴向方向上延伸的，相对于固定边缘 32 而言径向向内偏移布置的定心环 40，通过该定心环可使膜片相对运转制动缸 2 的壁 44 的径向内侧的周向表面 42 对中心。特别优选的，定心环 40 基本上垂直于固定边缘 32 的中心平面布置，并且例如在膜片 24 远离伸出。但是也可考虑替代该定心环 40 或附加地设置其它的定心环，其在弹簧储能制动机缸 4 的方向上伸出并且相对弹簧储能制动机缸的壁的径向内侧的周向表面有中心。

[0027] 同样地，运转制动机缸 2 的、定心环 40 相对其对中心的径向内侧的周向表面 42 优选地位于其中心轴与缸轴的同轴所计划的缸体上。定心环 40 可以如同示出地那样在周向方向上完全环形地或由环形部段组成地设计。膜片 24 优选地由橡胶制成并且定心环 40 与其一体设计。

[0028] 然后，相对夹紧的间隔壁 6 和运转制动机缸 2 的、具有轴向分量的夹紧力确保的是，膜片 24 的定心环 40 压向运转制动机缸 2 的壁 44 的径向内侧的周向表面 42。也就是说，夹紧力的轴向分量确保将固定边缘 32 基于楔作用径向向外拉动，并且由此使定心环 40 利用较高的径向力根据中心的自行增强而压向运转制动机缸 2 的壁 44 的径向内侧的周向表面 42。

[0029] 这种轴向夹紧力分量例如可由此实现，即运转制动机缸 2 的、构成凸缘 36 的边缘以及间隔壁 6 的凸缘 38 由弹簧储能制动机缸 4 的壁的边缘 48 以卷边形式搭接，该卷边例如通过变形过程形成。该卷边然后确保了夹紧力的轴向分量。

[0030] 弹簧储能制动机活塞 8 在其径向外侧的周向表面上，准确地说在其活塞裙 50 上支撑了密封装置 52，用于相对于弹簧储能制动机缸 4 的、可充气和可排气的弹簧储能制动机 12 密封包括储能弹簧 10 的弹簧室 14。密封装置 52 具有一个利用导向环的径向外侧的工作面 56 相对于弹簧储能制动机缸 4 的摩擦面 54 引导弹簧储能制动机活塞 8 的导向环 58 和至少一个利用密封元件的密封部段 60 对弹簧储能制动机缸 4 的摩擦面 54 进行密封的密封元件 62，其中导向环 58 的工作面 56 在从弹簧室 14 到弹簧储能制动机室 12 的流动方向上安装在密封元件 62 的密封截面 60 之间，并且导向环 58 由相对于至少一个密封元件 62 的材料刚性更高的材料制成。

[0031] 特别的是，导向环 58 由刚性的塑料、如乙缩醛构成，并且密封元件 62 则由相对而言更具有弹性的弹性体造成。弹簧储能制动机活塞杆 18、弹簧储能制动机活塞 8 以及间隔壁 6 则优选地由铝制成。

[0032] 弹簧储能制动机缸 4 具有松开装置 64，用于优选地手动操纵地松开弹簧储能制动机器，其中松开装置 64 包括与弹簧储能制动机活塞 8 的弹簧储能制动机活塞杆 18 共同作用并且保持在弹簧储能制动机缸 4 的壳体 68 的开口 66 中的、能从壳体 68 的外部操纵的松开主轴 72，该松开主轴由 DE 10 2006005 031 A1 所公开。

[0033] 如最好根据图 2 可以看到的，和现有技术不同地，在松开主轴 72 中设计有包括阀装置 74，优选地以在弹簧室 14 和外界环境之间的流动通道 82 形式的流动连接部，其中阀装置 74 取决于在弹簧室 14 中存在的压力打开或关闭流动通道 82。然后该阀装置 74 用于，特别在优选实施例的气流松开和排气地压紧的被动的弹簧储能制动机器中，将可能存在于弹簧室 14 中的过压卸载到外界环境，而不会从弹簧储能制动机活塞 8 的密封装置 52 上的弹
[0061] 40 定心环
[0062] 42 径向内侧的周向表面
[0063] 44 壁
[0064] 46 缸轴线
[0065] 48 边缘
[0066] 50 活塞裙
[0067] 52 密封装置
[0068] 54 摩擦面
[0069] 56 工作面
[0070] 58 导向环
[0071] 60 密封部段
[0072] 62 密封元件
[0073] 64 松开装置
[0074] 66 开口
[0075] 68 壳体
[0076] 72 松开主轴
[0077] 74 阀装置
[0078] 76 弹簧
[0079] 78 阀座
[0080] 80 阀体
[0081] 82 流动通道
[0082] 84 部段
[0083] 86 横向通道
[0084] 87 空隙
[0085] 88 端部
[0086] 89 轴承结构
[0087] 90 作用面
[0088] 91 入口
[0089] 92 螺母