(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization f d”Ij

) IO O T O 0O

International Bureau

(43) International Publication Date
10 January 2008 (10.01.2008)

(10) International Publication Number

WO 2008/005840 A2

(51) International Patent Classification: Not classified

(21) International Application Number:
PCT/US2007/072490

(22) International Filing Date: 29 June 2007 (29.06.2007)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

11/428,058 30 June 2006 (30.06.2006) US

(71) Applicant (for all designated States except US): CITRIX
SYSTEMS, INC. [US/US]; 851 West Cypress Creek Road,
Fort Lauderdale, FL. 33309 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BOTS, Henk
[CA/CA]; clo Citrix Application Networking Group, 180
Baytech Drive, San Jose, CA 95134 (US). DEVARAJAN,
Srikanth [US/US]; c/o Citrix Application Networking
Group, 180 Baytech Drive, San Jose, CA 95134 (US).
ANNAMALAISAMI, Saravana [IN/US]; c/o Citrix
Application Networking Group, 180 Baytech Drive, San
Jose, CA 95134 (US).

(74) Agent: LANZA, John, D.; Choate, Hall & Stewart, Two

International Place, Boston, MA 02110 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
— without international search report and to be republished
upon receipt of that report

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

0870058240 A2 |1 00O OO O

—

(54) Title: METHOD AND SYSTEMS FOR EFFICIENT DELIVERY OF PREVIOUSLY STORED CONTENT

(57) Abstract: Systems and methods for reducing file sizes for files delivered over a network are disclosed. A method comprises
receiving a first file comprising sequences of data; creating a hash table having entries corresponding to overlapping sequences
of data; receiving a second file comprising sequences of data; comparing each of the sequences of data in the second file to the
sequences of data in the hash table to determine sequences of data present in both the first and second files; and creating a third file
comprising sequences of data from the second file and representations of locations and lengths of said sequences of data present in
both the first and second files.

WO 2008/005840 PCT/US2007/072490

PATENT APPLICATION

- METHOD AND SYSTEMS FOR EFFICIENT DELIVERY OF PREVIOUSLY STORED
CONTENT

FIELD OF THE INVENTION

The present invention is directed to Internet and computer network content delivery and,
more particularly, to systems and methods for reducing file sizes for files delivered overa
network.

BACKGROUND OF THE INVENTION

In many network environments, bandwidth is a scarce resource. Bandwidth may be
limited by the connection infrastructure of the environment or the maximum transmission or
reception speeds of devices on the network. Where bandwidth is scarce, significant
improvements in transmission time can be achieved by reducing the size of files transmitted over
a network.

Another common feature of networks, including the internet and the World Wide Web, is
the transmission of redundant data. For example, often a client may request the same file on
different days to observe any changes that have taken place. A large portion of the file data may
be redundant in that it has already been transmitted to the user. For example, if the file is the
web page of a newspaper, the headings and formatting information will remain constant. As
another example, a client may load a file several times within a single hour, for example if the
file is a web page listing updated sports scores. In this example, the only data that changes from
viewing to viewing may be the scores themselves, and the team names, logos, and formatting
will remain unchanged.

Several systems and methods already exist for taking advantage of this redundancy to
reduce the size of transmitted files. Many web browsers store images from sites a user has
already visited so that they do not need to be retransmitted if the user returns to the site. While
this method is effective, it is typically limited only to standard image files, and cannot reduce file
sizes for pages comprising large amounts of text, scripts, or formatting information. Many web
sites utilize frames, applets, or scripts to control web pages so that only the portion of a page that

has changed will be retransmitted. The drawback of this approach is that programming a site to

WO 2008/005840 PCT/US2007/072490

use these techniques often requires substantial developer time and resources, and may require
recoding previously existing files. Thus there exists a need for means to leverage the redundancy
found in many network transmissions to reduce the size of transmitted files that may be easily

applied to both presently existing and future files.

SUMMARY OF THE INVENTION

The present invention provides an efficient mechanism by which the transmitted file sizes
can be significantly reduced for files comprising data that has previously been transmitted. The
invention may make this reduction possible without the need for file specific, application
specific, or network specific solutions, and thus may not require substantial developer
investment.

In one aspect, the invention is a method for creating efficient updates to a previously
stored file. The method comprises receiving a first file comprising sequences of data; creating a
hash table having entries corresponding to overlapping sequences of data; receiving a second file
comprising sequences of data; comparing each of the sequences of data in the second file to the
sequences of data in the hash table to determine sequences of data present in both the first and
second files; storing representations of lengths and locations of said sequences of data present in
both the first and second files; and creating a third file comprising sequences of data from the
second file and representations of locations and lengths of said sequences of data present in both
the first and second files.

In another aspect, the invention is a method of receiving efficient updates to previously
stored files. The method comprises receiving a first file comprising sequences of data, receiving
a second file comprising sequences of data and representations of locations and lengths of
sequences in the first file, and executing a Javascript function to create a third file comprising
sequences of data from the second file and sequences in the first file indicated by the second file.

In yet another aspect, the invention is a computer system for creating efficient updates to
a previously stored file. The system comprises a fransceiver which receives a first and second
file, each file comprising a respective plurality of sequences of data; a hash engine which
communicates with said transceiver and computes hash values for sequences of data in the first
and second file, wherein at least two of said sequences overlap, and determines sequences of data

present in both the first and second files; a storage element in communication with said hash

WO 2008/005840 PCT/US2007/072490

engine which stores representations of the lengths and locations of said sequences present in both
the first and second files; and a processor in communication with said storage element which
creates a third file comprising sequences of data from the second file and representations of

lengths and locations of said sequences present in both files.

BRIEF DESCRIPTION OF THE DRAWINGS
The foregoing and other objects, aspects, features, and advantages of the invention will
become more apparent and may be better understood by referring to the following description

taken in conjunction with the accompanying drawings, in which:

FIGs. 1A and 1B are block diagrams of embodiments of a computing or network device

useful as a device in a client-server network;

FIG. 2 is a block diagram illustrating an embodiment of a network appliance operating in

a client-server network;

FIG. 3 is a flow diagram depicting one embodiment of a method for creating an efficient

update to a previously stored file;

FIG. 4 is a flow diagram depicting another embodiment of a method for creating efficient

updates to a previously stored file;

FIG. 5 is a flow diagram depicting another embodiment of methods for creating and

receiving efficient updates to a previously stored file;

FIG. 6 is a flow diagram depicting one embodiment of a method for assembling a second
file from a previously stored first file and a third file comprising sequences of data from the
second file and representations of locations and lengths of sequences of data present in both the

first and second files; and

FIG. 7 is a flow diagram depicting one embodiment of a method for determining a file

WO 2008/005840) PCT/US2007/072490

transmission method.

DETAILED DESCRIPTION OF THE INVENTION
Servers and clients as described herein may comprise any device capable of processing
information and sending and receiving information, including without limitation a personal
computer, notebook computer, personal digital assistant, cellular telephone, pager, a standalone

computer server, a blade server, a rack mounted server, or a group of any types of said servers.

Figures 1A and 1B depict block diagrams of a typical computer 100 useful as client
computing devices and server computing devices. As shown in FIGs. 1A and 1B, each computer
100 includes a central processing unit 102, and a main memory unit 104. Each computer 100
may also include other optional elements, such as one or more input/output devices 130a-130-b
(generally referred to using reference numeral 130), and a cache memory 140 in communication

with the central processing unit 102.

The central processing unit 102 is any logic circuitry that responds to and processes
instructions fetched from the main memory unit 104. In many embodiments, the central
processing unit is provided by a microprocessor unit, such as those manufactured by Intel
Corporation of Mountain View, California; those manufactured by Motorola Corporation of
Schaumburg, Illinois; the Crusoe and Efficeon lines of processors manufactured by Transmeta
Corporation of Santa Clara, California; the lines of processors manufactured by International
Business Machines of White Plains, New York; or the lines of processors manufactured by

Advanced Micro Devices of Sunnyvale, California.

Main memory unit 104 may be one or more memory chips capable of storing data and
allowing any storage location to be directly accessed by the microprocessor 102, such as Static
random access memory (SRAM), Burst SRAM or SynchBurst SRAM (BSRAM), Dynamic
random access memory {DRAM), Fast Page Mode DRAM (FPM DRAM), Enhanced DRAM
(EDRAM), Extended Data Output RAM (EDO RAM), Extended Data Output DRAM (EDO
DRAM), Burst Extended Data OQutput DRAM (BEDO DRAM), Enhanced DRAM (EDRAM),
synchronous DRAM (SDRAM), JEDEC SRAM, PC100 SDRAM, Double Data Rate SDRAM
(DDR SDRAM), Enhanced SDRAM (ESDRAM), SyncLink DRAM (SLDRAM), Direct
Rambus DRAM (DRDRAM), or Ferroelectric RAM (FRAM). In the embodiment shown in

WO 2008/005840 PCT/US2007/072490

FIG. 1A, the processor 102 communicates with main memory 104 via a system bus 150
(described in more detail below). FIG. 1B depicts an embodiment of a computer system 100 m
which the processor communicates directly with main memory 104 via a memory port. For

example, in FIG. IB the main memory 104 may be DRDRAM.

FIGs. 1A and 1B depict embodiments in which the main processor 102 communicates
directly with cache memory 140 via a secondary bus, sometimes referred to as a “backside” bus.
In other embodiments, the main processor 102 communicates with cache memory 140 using the
system bus 150. Cache memory 140 typically has a faster response time than main memory 104
and is typically provided by SRAM, BSRAM, or EDRAM.

In the embodiment shown in FIG. 1A, the processor 102 communicates with various /O
devices 130 via a local system bus 150. Various busses may be used to connect the central
processing unit 102 to the I/O devices 130, including a VESA VL bus, an ISA bus, an EISA bus,
a MicroChannel Architecture (MCA) bus, a PCI bus, a PCI-X bus, a PCI-Express bus, or a
NuBus. For embodiments in which the IO device is an video display, the processor 102 may
use an Advanced Graphics Port (AGP) to communicate with the display. FIG. 1B depicts an
embodiment of a computer system 100 in which the main processor 102 communicates direcily
with I/O device 130b via HyperTransport, Rapid I/O, or InfiniBand. FIG. 1B also depicts an
embodiment in which local busses and direct communication are mixed: the processor 102
communicates with I/O device 130a using a local interconnect bus while communicating with
IO device 130b directly.

A wide variety of I/O devices 130 may be present in the computer system 100. Input
devices include keyboards, mice, trackpads, trackballs, microphones, and drawing tablets.
Output devices include video displays, speakers, inkjet printers, laser printers, and dye-
sublimation printers. An /O device may also provide mass storage for the computer system 800
such as a hard disk drive, a floppy disk drive for receiving floppy disks such as 3.5-inch, 5.25-
inch disks or ZIP disks, a CD-ROM drive, a CD-R/RW drive, a DVD-ROM drive, tape drives of
various formats, and USB storage devices such as the USB Flash Drive line of devices

manufactured by Twintech Industry, Inc. of Los Alamitos, California.

In further embodiments, an /O device 130 may be a bridge between the system bus 150

and an external communication bus, such as a USB bus, an Apple Desktop Bus, an RS-132 serial

5

WO 2008/005840 PCT/US2007/072490

connection, a SCSI bus, a FireWire bus, a FireWire 800 bus, an Ethernet bus, an AppleTalk bus,
a Gigabit Ethernet bus, an Asynchronous Transfer Mode bus, a HIPPI bus, a Super HIPPI bus, a
SerialPlus bus, a SCIYLAMP bus, a FibreChannel bus, or a Serial Attached small computer

system interface bus.

General-purpose computers of the sort depicted in FIG. 1A and FIG. 1B typically operate
under the control of operating systems, which control scheduling of tasks and access to system
resources. Typical operating systems include: MICROSOFT WINDOWS, manufactured by
Microsoft Corp. of Redmond, Washington; MacOS, manufactured by Apple Computer of
Cupertino, California; OS/2, manufactured by International Business Machines of Armonk, New
York; and Linux, a freely-available operating system distributed by Caldera Corp. of Salt Lake
City, Utah, among others.

For embodiments comprising mobile devices, the device may be a JAVA-enabled cellular
telephone, such as the i55sr, i58sr, i85s, or the i88s, all of which are manufactured by Motorola
Corp. of Schaumburg, [ilinois; the 6035 or the 7135, manufactured by Kyocera of Kyoto, Japan;
or the 1300 or 1330, manufactured by Samsung Electronics Co., Ltd., of Seoul, Korea. In other
embodiments comprising mobile devices, a mobile device may be a personal digital assistant
(PDA) operating under control of the PalmOS operating system, such as the Tungsten W, the
VII, the VIIx, the 1705, all of which are manufactured by palmOne, Inc. of Milpitas, California.
In further embodiments, the client 113 may be a personal digital assistant (PDA) operating under
control of the PocketPC operating system, such as the iPAQ 4155, iIPAQ 5555, 1PAQ 1945,
iPAQ 2215, and iPAQ 4255, all of which manufactured by Hewlett-Packard Corporation of Palo
Alto, California; the ViewSonic V36, manufactured by ViewSonic of Walnut, California; or the
Toshiba PocketPC e405, manufactured by Toshiba America, Inc. of New York, New York. In
still other embodiments, the mobile device is a combination PDA/telephone device such as the
Treo 180, Treo 270, Treo 600, Treo 650, Treo 700, or the Treo 700w, all of which are
manufactured by palmOne, Inc. of Milpitas, California. In still further embodiments, the mobile
device is a cellular telephone that operates under control of the PocketPC operating system, such
as the MPx200, manufactured by Motorola Corp. A typical mobile device may comprise many
of the elements described above in FIG. 1A and 1B, including the processor 102 and the main
memory 104,

FIG. 2 depicts a block diagram illustrating an embodiment of a network appliance

6

WO 2008/005840 PCT/US2007/072490

operating in a client-server network. In brief overview, a number of clients 213a, 213b, ... 213n’
(collectively referred to as 213), are connected via a network 211, to a network appliance, 209,
which in turn is connected to a network 211’ comprising a number of servers 205a, 205b, 205n
(collectively referred to as 205). The clients 213, networks 211, servers 205, and network
appliance 209 may comprise any computing devices comprising substantially similar
capabilities, descriptions, functions, and configurations as described herein.

Still referring to FIG. 2, in greater detail, a network appliance 209 connected via a
network 211’ to a number of servers 205 is shown. In the embodiment shown, the servers 205
may comprise any device capable of processing information and sending and receiving
information, including a standalone computer server, a blade server, a rack mounted server, or a
group of any types of said servers. The servers may further comprise databases, file servers, web
servers, application servers or any other type of server. In embodiments involving multiple
servers, the servers may be identical servers, or may differ in make, model, type, content,
performance, availability, or any other aspect.

The network appliance 209 may perform any function related to providing services to
clients 213 including, without limitation, firewall services, SSL pooling and acceleration, TCP
pooling and acceleration, data compression, connection monitoring, application logging,
application acceleration, application delivery, load balancing, caching, virtualization, translation,
redirection, connection pooling, proxy services, reverse proxy services, authentication, and
session management. In some embodiments, the network appliance 209 may reside on the same
physical machine as the servers 205. In some embodiments, the network appliance 209 may
share processors, disk space, RAM, or any other computing resource with the servers 205.

In the embodiment shown, the network appliance 209 is connected to networks 211, 211°.
The networks 211, 211" may comprise the Internet, local networks, web servers, file servers,
routers, databases, computers, servers, network appliances, or any other computing devices
capable of sending and receiving information. The networks 211, 211’ may comprise computing
devices connected via cables, IR ports, wireless signals, or any other means of connecting
multiple computing devices. The networks 211, 211’ and any devices connected to the networks
may communicate via any communication protocol used to communicate among or within
computing devices, including without limitation SSL, HTML, XML, RDP, ICA, FTP, HTTP,
TCP, IP, UDP, IPX, SPX, NetBIOS, NetBEUI, SMB, SMTP, Ethemet, ARCNET, Fiber

WO 2008/005840 PCT/US2007/072490

Distributed Data Interface (FDDI), RS232, IEEE 802.11, IEEE 802.11a, IEE 802.11b, IEEE
802.11g and direct asynchronous connections, or any combination thereof. The networks 211,
211" may comprise mobile telephone networks utilizing any protocol or protocols used to
communicate among mobile devices, including AMPS, TDMA, CDMA, GSM, GPRS or UMTS.
The networks 211, 211° may comprise physically distinct networks, or the networks 211, 211°
may comprise the same network, and may be connected in any manner, In some embodiments,
the devices communicating via network 211’ may use a specialized or different protocol than
devices communicating via network 211.

In embodiments comprising a TCP/IP based communications among any of the above
devices, any TCP/IP based protocol may be used, including Messaging Application
Programming Interface (MAPI) (email), File Transfer Protocol (FTP), HyperText Transfer
Protocol (HTTP), Common Internet File System (CIFS) protocol (file transfer), Independent
Computing Architecture (ICA) protocol, Remote Desktop Protocol (RDP), Wireless Application
Protocol (WAP), Mobile IP protocol, and Voice Over IP (VoIP) protocol. Any type and form of
transport conirol protocol may also be used, such as a modified transport control protocol, for
example a Transaction TCP (T/TCP), TCP with selection acknowledgements (TCPSACK), TCP
with large windows (TCP-LW), a congestion prediction protocol such as the TCP-Vegas
protocol, and a TCP spoofing protocol. In other embodiments, any type and form of user
datagram protocol (UDP), such as UDP over IP, may be used.

Referring now to FIG. 3, one embodiment of a method for creating an efficient update to
a previously stored file is shown. Although FIG. 3 depicts the method in the context of being
performed by a network appliance 209 and a client 213, the method may be performed by any of
the computing devices discussed herein either alone or in any combination. In brief overview,
the method comprises: receiving a first file comprising a first plurality of sequences of data (step
301); transmitting the first file to a client (step 303); receiving a second file comprising a second
plurality of sequences of data (step 309); creating a hash table having a plurality of entries, each
of the plurality of entries corresponding to a respective one of the first phurality of sequences,
and wherein at least two of said entries correspond to overlapping sequences of data (step 311);
computing hash values for said second plurality of sequences of data (step 313); comparing each
of the second plurality of sequences of data with sequences from the first plurality of sequences

having the same hash value to determine sequences of data present in both files (step 315);

WO 2008/005840 PCT/US2007/072490

storing representations of lengths and locations of said sequences of data present in both the first
and second files (step 317); creating a third file comprising sequences of data from the second
file and representations of locations and lengths of said sequences of data present in both the first
and second files (step 319); and transmitting the third file to a client (step 321).

Still referring to FIG. 3, and now in greater detail, the network appliance 209 receives a
first file comprising a first plurality of sequences of data (step 301). In some embodiments the
first file may be received from a network 211°, from a server 205, from a database, or from any
combination thereof. In some embodiments the first file may be read from a disk or other
storage medium, retrieved from a cache, or accessed from RAM. In other embodiments the first
file may be received from an application or process executing on the network appliance 209,

The first file may comprise sequences of data corresponding to sequences of bits or bytes
comprising the file. The first file may comprise any file protocol, including without limitation,
HTML, XML, WML, SVG, other document protocols, image file protocols, sound file protocols,
video file protocols, and binary file protocols. In some embodiments the file comprises a web
page or a portion of a web page. In some embodiments the file comprises any web page that is
updated with some frequency, including without limitation a news page, a web application page,
a chat room, a bulletin board, a sports page, an e-mail page, a directory listing, a tracking page,
and a webcam page. After receiving the first file, the network appliance 209 may store or cache
the first file to permit later retrieval. In some embodiments the network appliance 209 may
modify said first file in accordance with any of the network appliance functions described herein.

In some embodiments, after receiving the first file (step 301), the network appliance 209
transmits the first file to a client (step 303). The network appliance 209 may transmit the first
file via any of the networks, or protocols described herein, and to any of the clients described
herein. The network appliance 209 may modify the first file in accordance with any of the
functions performed by the network appliance, including compression, acceleration and
encryption. Although FIG. 3 depicts the network appliance 209 transmitting the first file
immediately after step 301, in other embodiments said transmittal could occur after any of the
steps (steps 305-321) occurring after the network appliance 209 receives the first file (step 301).

In some embodiments, the network appliance 209 may store a record of said
transmission. Said record may be stored in any memory element, including a data base or cache.

In one embodiment, the network appliance 209 may access said cache to determine whether a

WO 2008/005840 PCT/US2007/072490

given file has been previously transmitted to a client. In one embodiment, said records may be
set to expire after a set amount of time. For example, if a network appliance 209 has information
indicating that a given client 213 deletes all files from its cache at the end of each day, the
network appliance may set all records of files transmitted to the client 213 to expire at the end of
each day.

In the embodiment shown, after the network appliance 209 transmits the first file to the
client 213 (step 303), the client may then receive the first file (step 305), display the first file
(step 307), and store the first file (step 308). The client may perform these steps in accordance
with any of the embodiments described herein.

In the embodiment shown, after the network appliance 209 transmits the first file to the
client 213 (step 303), the network appliance receives a second file comprising a second plurality
of sequences of data (step 309). In other embodiments, the network appliance 209may receive
the second file (step 309) before or during the transmission of the first file to the client (step
303). The second file may comprise any of the file types, protocols, web pages and portions of
web pages discussed herein. After receiving the second file, the network appliance 209 may
store or cache the second file to permit later retrieval. In some embodiments the network
appliance 209 may modify said second file in accordance with any of the network appliance
functions described herein.

After receiving the second file comprising a second plurality of sequences of data (step
309), the network appliance may create a hash table having a plurality of entries, each of the
plurality of entries corresponding to a respective one of the first plurality of sequences, and
wherein at least two of said entries correspond to overlapping sequences of data (step 311). Said
hash table may be created according to any known hash table algorithm which provides
functionality to store sequences of data or references to sequences of data as entries and then
efficiently search said table for entries matching a given sequence. In other embodiments, the
network appliance may create the hash table (step 311) before or during receiving the second file
(step 309).

In some embodiments, the entries in the hash table may correspond to sequences of data
from the first file comprising sequences of bytes. The sequences of bytes may be of any length.
In one embodiment the sequences are four-byte sequences.

In the embodiment shown, at least two of the hash table entries correspond to overlapping

10

WO 2008/005840 PCT/US2007/072490

sequences of data. Overlapping sequences may have any number of bytes in common. For
example if the file comprised the sequence “abcdefghijkimnop”, examples of overlapping four-
byte sequences include “cdef” and “defg” in addition to “cdef” and fghi.” In one embodiment,
the hash table entries correspond to successive overlapping byte sequences. For example, if the
file comprised the sequence “abedefg”, a hash table comprising at least two successive
overlapping four-byte sequences may include entries corresponding to the sequences “abed”
“bede” “cdef” and “defg”.

In some embodiments, the hash table entries at a given time may only correspond to
sequences of data from a given portion or “window” of the first file. This allows the size of the
hash table to be smaller than the hash table might be if the entire file was hashed at once. In
some embodiments, only the first X bytes of the first file are hashed, and then, upon occurrence
of some conditions, Y entries are removed from the table followed by Y more entries being
added to the table. In one embodiment a window size of 64 kilobytes is used, and upon
occurrence of certain conditions, the window is moved by 32 kilobytes. In this embodiment, the
sequences from the first 64 kilobytes of the first file are hashed, and then upon occurrence of
certain conditions, the entries corresponding sequences from the first 32 kilobytes of the file are
removed, and entries corresponding to sequences from the next 32 kilobytes of the file are added.

The conditions upon which the hash window are moved may be any conditions which
improve the execution time, performance, or compression of the hashing aigorithm. In one
embodiment, the window is moved when matches have been found for more than 85% of the
sequences in a given half of the window. In another embodiment, the window is moved when a
given percentage of the second file has been compared with the existing hash entries. In one
embodiment, the window is moved when hash values have been computed and compared for a
proportionate portion of the second file compared to the first file. For example, if the first file is
100 kilobytes, and the second file is 80 kilobytes, the hash window may be moved when 80/ 100
* 64 kilobytes of the second file has been compared to sequences in the hash table.

After the network appliance 209 creates a hash table (step 311), the network appliance
209 may then compute hash values for said second plurality of sequences of data (step 313).
Said hash values may be computed according to the same method used to compute hash values
for the first plurality of sequences. The network appliance 209 may choose sequences of data

from the second file in the same manner in which the network appliance chose sequences of data

11

WO 2008/005840 PCT/US2007/072490

from the first file. For example, if the network appliance 209 created hash table entries
corresponding to successive overlapping four-byte sequences from the first file, the network
appliance may choose to compute hash values for successive overlapping four-byte sequences
from the second file.

After computing hash values for some or all of the second plurality of sequences of data
(step 313) the network appliance 209 may compare each of the second plurality of sequences of
data with sequences from the first plurality of sequences having the same hash value fo
determine sequences of data present in both files (step 315). The network appliance may
perform this step in accordance with any hashing algorithm presently available. Said
comparisons may comprise a comparison of subsequent bytes of matched sequences to determine
longer matches. For example, the first file may comprise the sequence “abedefghijklmno™ and
the second file may comprise the sequence “zyxwvutcdefghituv,” If the hashing is done on
successive four-byte sequences, the network appliance 209 may determine that the sequence
“cdef” is present in both files. The network appliance 209 may then compare subsequent bytes
of the matched sequences to determine that the sequence “cdefghi” is present in both files. Thus
in some embodiments the lengths of the sequences determined to be present in both files may
vary from the lengths of the sequences for which hash values are computed. In some
embodiments 2 minimum and maximum length on matching sequences may be set.

After determining sequences of data present in both files (step 315) the network
appliance 209 may store representations of lengths and locations of said sequences of data
present in both the first and second files (step 317). The network appliance 209 may store said
representations in any storage medium, including a cache, RAM, a disk, or tape. In some
embodiments, the network appliance 209 may store said representations on the network
appliance 209 itself. In other embodiments, the network appliance 209 may store said
representations on another computing device 100. In some embodiments, lengths and locations
of a sequences of data may be stored while the network appliance 209 is comparing each of the
second plurality of sequences of data with sequences from the first plurality of sequences having
the same hash value (step 313). In other embodiments a minimum length may be required for
the length and location of a given sequence to be stored. In one embodiment, the minimum
length may be specified to be four bytes.

The representations of lengths and locations of said sequences present in both files may

12

WO 2008/005840 PCT/US2007/072490

comprise any representation which identifies a length and location of a sequence. In some
embodiments the locations of said sequences are stored as absolute locations within a file. In
other embodiments, the locations of said sequences are stored as locations relative to a given
reference pointer within said first file. In one embodiment, said reference pointer may be fixed,
in another embodiment said reference pointer may move according to a rule set.

In one embodiment the reference pointer may be initially set to point fo the beginning of
the first file. The pointer may then be incremented every time a matching sequence of longer
than 5 bytes is found. The pointer may then be incremented to point to the last byte plus one of
the matching sequence in the first file. In this embodiment, locations of said sequences present
in both files are stored as a given number bytes, positive or negative, from the position of the
reference pointer.

In some embodiments, the lengths and locations of the matched sequences are stored as
fixed length integers. In one embodiment, the length of a matched sequence is stored as a 1 byte
integer, wherein the integer represents a length of between 4 to 1027 bytes. In this embodiment,
byte-lengths of matched sequences are restricted to multiples of 4. In other embodiments, any
other bit or byte length integers may be used to store said sequence lengths. In still other
embodiments, any other restrictions may be imposed on byte-lengths of matched sequences,
including minimum and maximum lengths, and limiting byte lengths to given multiples. In still
other embodiments, lengths of matched sequences may be stored as variable length integers. In
some embodiments locations of matched sequences may be stored as variable length integers. In
other embodiments, locations of matched sequences are stored as fixed length integers of a given
byte or bit length.

After the network appliance 209 stores representations of lengths and locations of said
sequences of data present in both the first and second files (step 317), the network appliance
209may create a third file comprising sequences of data from the second file and representations
of locations and lengths of said sequences of data present in both the first and second files. Said
creation (step 317) may occur after all the lengths and locations of matched sequences are stored,
or said creation (317) may occur contemporaneously as matched sequences are found. The third
file may contain representations of lengths and locations in any format discussed herein. In some
embodiments lengths and locations of shared sequences may be preceded by special byte or bit

Seguences.

13

WO 2008/005840 PCT/US2007/072490

For example, if a first file comprised the string “abedefghijklmnop,” and the second file
comprised the string “xxxxxxxdefghijkxxxxxxcdefxxx”, the third file may comprise the
sequence “xxxxxxx3,8xxxxxx2,4xxx”. In this example 3,8 is used to indicate a representation
indicating the sequence from the first file starting at byte 3 and 8 bytes long (in some
embodiments this representation could be two fixed-length binary integers). Likewise 2,4
indicates that a representation indicating the sequence from the first file starting at byte 2 and 4
bytes long.

As another example, if the first file comprised the string “abcdefghijklmnop,” and the
second file comprised the string “xxxxxxxdefghijkxxxxxxcdefxxx”, the third file may comprise
the sequence “xxxxxxx3,8xxxxxx-9,4xxx”. In this example, locations of shared sequences are
stored as relative distances from a reference pointer, incremented according to the method
described above. In this example, the network appliance 209 indicates the first matched
sequence in the same manner as the previous example, since the reference pointer initially points
to the beginning of the first file. The reference pointer would then be incremented to point to
location of the last byte plus one of the matching sequence in the first file. Thus, the second
matched sequence is indicated with -9,4 which indicates that the second matched sequence
occurs nine bytes prior to the byte following the previous matched sequence in the first file.

In one embodiment, the third file may be encoded in a byte protocol, such as ASCIL In
one embodiment, each group of 7 bytes of binary data may be encoded as 8 bytes of ASCII
characters. This conversion may be done by any known conversion method. The ASCII
characters may correspond to any existing character set definition, including ISO-8859-1. In
some embodiments, the third file may comprise an HTML file. In one embodiment, the third file
may comprise a Javascript variable comprising said sequences of data from the second file and
representations of locations and lengths of said sequences of data present in both the first and
second files. In one embodiment, the third file may also comprise a Javascript function
comprising functionality for assembling said second file by processing said Javascript variable.
In another embodiment the third file may contain a reference to a Javascript function comprising
said functionality.

The following HTML code illustrates one example of a third file that may be transmitted
to a client.

<HTML>

14

WO 2008/005840 PCT/US2007/072490

<HEAD>
<SCRIPT>
var updateFile = “e~mow~ »

«SCRIPT>
</HEAD>

<BODY onleoad=createPage (updateFile)>
</BODY>
</HTML>

In the above example, an HTML file comprises a Javascript variable named “updateFile.”
Said variable may comprise sequences of data from the second file and representations of
locations and lengths of said sequences of data present in both the first and second files. The
example above also comprises a call to a Javascript function named “createPage.” Said function,
which may either be included with the HTML file or stored on the client, may comprise
functionality for assembling said second file using the data from the Javascript variable
“updateFile.” In the example above, a standard HTML browser would execute the “createPage”
function upon loading the HTML page. The “createPage” function may also comprise
functionality for altering the HTML page to display said second file once the second file is
assembled.

After creating a third file comprising sequences of data from the second file and
representations of locations and lengths of said sequences of data present in both the first and
second files (step 319); and the network appliance 209 may transmit the third file to a client (step
321). Said transmission may occur via any of the networks and methods discussed herein. The
network appliance 209 may modify the third file in accordance with any function performed by
the network appliance 209 including compression, acceleration and encryption.

After transmitting the third file to a client (step 321), the client 213 may receive the third
file (step 323); execute a Javascript function to recreate the second file comprising sequences of
data from the second file and sequences in the first file indicated by the third file (step 325); and
display the second file (step 327). The client 213 may perform these steps in accordance with
any of the embodiments described herein.

Referring now to FIG. 4, a flow diagram depicting another embodiment of a method for
creating efficient updates to a previously stored file is shown. In brief overview, the method

comprises creating a hash table with entries corresponding to overlapping sequences of dataina

15

WO 2008/005840 ’ PCT/US2007/072490

first file {step 311); setting a reference pointer to the beginning of said first file (step 401);
computing a hash value for a sequence of data in a second file (step 313); and determining
whether said sequence is present in both files (step 315). The method may then comprise either
moving to the next sequence in the second file (step 409) or determining a total length for the
matching sequence (step 403) and determining whether said length exceeds a minimum threshold
(step 405). The method may then comprise either moving to the next sequence in the second file
(step 409) or storing the length and location of the matching sequence relative to reference
pointer (step 317). The method may then comprise setting the reference pointer to the last byte
plus one of the matching sequence in the first file (step 407) and then moving fo the next
sequence in the second file (step 409). In the embodiment shown, the method may be performed
by a network appliance 209.

Still referring to FIG. 4, now in greater detail, a network appliance 209 creates a hash
table with entries corresponding to overlapping sequences of data in a first file (step 311). This
step may be performed in accordance with any of the methods for creating a hash table described
herein.

After creating a hash table with entries corresponding to overlapping sequences of data in
a first file (step 311) the network appliance 209 may set a reference pointer to the beginning of
said first file (step 401). The reference pointer may comprise any type of pointer.

Afier setting a reference pointer to the beginning of said first file (step 401), the network
appliance 209 may compute a hash value for a sequence of data in a second file (step 313). This
step may be performed in accordance with any of the methods for computing a hash value
described herein.

After computing a hash value for a sequence of data in a second file (step 313), the
network appliance 209 may determine whether said sequence is present in both files (step 315).
This step may be performed in accordance with any of the methods described herein.

If a sequence is not present in both files, the network appliance 209 may move to the next
sequence of the second file (409). Said next sequence may comprise any sequence occurring
after the given sequence in the second file. In one embodiment, the next sequence may be the
sequence starting one byte after the previous sequence. In another embodiment, the next
sequence may be the sequence starting any other number of bytes after the previous sequence. In

some embodiments moving to the next sequence of the second file (step 409) may be

16

WO 2008/005840 PCT/US2007/072490

accompanied by moving a hash window as described previously herein. If no next sequence
exists, the method may terminate.

If a sequence is present in both files, the network appliance 209 may determine a total
length of a matching sequence by comparing subsequent bytes of the matched sequences (step
403). The total length may be determined in accordance with any of the methods described
herein.

The network appliance 209 may then determine if the total length of the matching
sequence exceeds a given threshold (step 405). This determination may be made in accordance
with any of the methods described herein. If the length of the matching sequence does not
exceed the minimum threshold, the network appliance 209 may move to the next sequence of the
second file.

If the length does exceed the minimum threshold, the network appliance 209 may then
store the length and location of the matching sequence relative to the given reference pointer in
accordance with any of the methods discussed herein. The network appliance 209 may then
increment the reference pointer according to any of the methods described herein (step 407).
The network appliance 209 may then move to the next sequence of the second file (step 409).

Now referring to FIG. 5, one embodiment of a method for efficiently receiving updates to
previously stored files is depicted. In brief overview, said method comprises: receiving a
assembly function (step 503), receiving a first file comprising sequences of data (step 305);
displaying said first file; storing said first file (step 308); receiving a third file comprising
sequences of data and representations of locations and lengths of sequences in the first file (step
323); executing a Javascript function to create a second file comprising sequences of data from
the second file and sequences in the first file indicated by the third file (step 325); and displaying
said second file (step 327).

Still referring to FIG. 5, now in greater detail, a network appliance 209 may transmit a
assembly function. Said assembly function may comprise any computer readable program
means for assembling a second file using a file comprising sequences of data from a second file
and representations of locations and lengths of said sequences of data present in both a first and
second files. Said assembly function may comprise any programming or scripting langunage,
including Javascript, or Java. In some embodiments, the assembly function may be transmitted

in accordance with any of the other network appliance functions described herein. In one

17

WO 2008/005840 PCT/US2007/072490

embodiment, the assembly function may be included in a program providing other client-side
acceleration functionality.

In the embodiment shown, after the network appliance 209 transmits a assembly function
(step 501), a client 213 receives the assembly function (step 503). The client may receive said
assembly function via any of the networks, protocols, or computing devices described herein. In
some embodiments, the client 213 receives the assembly function from a network appliance 209,
In one embodiment, the assembly function may be included as part of a client-side acceleration
program. In other embodiments, the assembly function may be installed on the client 213 via
any means of transferring software, including via a disk or other portable storage device.

In the embodiment shown, after receiving a assembly function (step 503), the client 213
receives a first file comprising sequences of data. In the embodiment shown, the client 213
receives the first file from a network appliance 209. In other embodiments, the client 213 may
receive the first file from any computing device. Said file may comprise any file type or protocol
discussed herein.

After a client 213 receives a first file comprising sequences of data (step 305), the client
213 may display said first file (step 307). The file may be displayed in any manner appropriate
for the given file. In some embodiments, the file may be displayed in a web browser. In other
embodiments, the file may be displayed in a business application, such as a word processor or a
spreadsheet. In still other embodiments the file may comprise a standalone application and be
displayed as such. In some embodiments, the file may correspond to an application running in a
virtual computing environment. In one embodiment, the file may correspond to a remotely
executing application. In another embodiment, the file may correspond to a streaming
application.

After a client 213 displays said first file (step 307), the client 213 may store said first file
(step 308). The client 213 may store the first file in any storage element, including storing in a
cache, disk, flash memory, or RAM. In some embodiments, the client 213 may compress the file
for storage. In other embodiments the client 213 may store only portions of the file. In some
embodiments the client 213 may store said first file (step 308) before or during the display of
said first file (step 307).

After a client 213 stores said first file (step 308), the client 213 may receive a third file

(step 323). In the embodiment shown, the client 213 receives the third file from a network

18

WO 2008/005840 PCT/US2007/072490

appliance 209. In other embodiments, the client 213 may receive the third file from any
computing device. Said file may comprise any file type or protocol discussed herein. In some
embodiments, the file may comprise ASCII characters. In other embodiments, the file may
comprise binary data.

After a client 213 receives said third file (step 323), the client may execute a Javascript
function to assemble a second file (step 325). In some embodiments, the Javascript function may
be included in said third file. In other embodiments, the Javascript function may be already
stored on the client 213. In some embodiments, the Javascript function may be provided in a
client-side acceleration program. In some embodiments, the third file may comprise a link to a
location where the client 213 may download the Javascript function.

The Javascript function may perform any technique, or the reverse of any technique
described herein to assemble said second file. In some embodiments, the Javascript function
may comprise the assembly function received in step 503. In other embodiments, the Javascript
function may comprise a reference to said assembly function. In still other embodiments, said
Javascript function may comprise means for downloading said assembly function.

After executing a Javascript function to assemble said second file (step 325), the client
may display said second file (step 327). The file may be displayed in accordance with any of the
methods described herein for displaying a file.

Referring now to FIG. 6, one embodiment of a method for assembling a second file from
a previously stored first file and a third file comprising sequences of data from the second file
and representations of locations and lengths of sequences of data present in both a first and
second files is shown. In brief overview, the method comprises reading a set of data from a third
file (step 601) and determining whether said set of data corresponds to a locations and length of
said sequences of data present in both the first and second files (step 603). The method then may
comprise reading the specified length of bytes at the specified location in said first file (step
603); adding said bytes to the second file (step 607); incrementing the reference pointer to the
location of the last byte plus one of the bytes read from the first file (step 609); and moving to
the next set of data from said third file (step 613). In one embodiment, said method may be
performed by a client 213. In another embodiment, said method may be performed by a
assembly function as described in FIG. 5.

Still referring to FIG. 6, now in greater detail, a client 213 may set a reference pointer to

19

WO 2008/005840 PCT/US2007/072490

the beginning of the first file. This may be performed in accordance with any of the methods
described herein.

After setting the reference pointer (step 601) a client 213 may read a set of data from a
third file (step 602). Said set of data may comprise any number of bits or bytes of said third file.
In one embodiment, said set of data is then stored in a memory element or cache.

After reading said set of data (step 602), a client 213 may determine whether said set of
data corresponds to a length and location of a sequence in the first file. In one embodiment, a
client may determine whether said set of data comprises a special character or bit sequence.

If said set of data does not correspond to a length and location of a sequence in the first
file, the client 213 may add said set of data to the second file (step 611). Said addition may
comprise appending said set of data to the end of the second file. The client 213 may then move
to the next set of data from the third file (step 613).

If said data does correspond to a length and location of a sequence in the first file, the
cHent 213 may then read the specified length of bytes at the specified location in the first file
(step 603). The client may determine the length and location specified by recognizing any of the
representations of lengths and locations described herein. In one embodiment, the client may
then store said specified bytes in a memory element or cache.

After reading the specified length of bytes at the specified location in the first file (step
605), the client 213 may then add said bytes to the second file (step 607). Said addition may
comprise appending said bytes to the end of the second file.

The client 213 may then increment the reference pointer to the location of the last byte
plus one of the bytes read from said first file (step 609). This may be performed in accordance
with any of the methods described herein. The client 213 may then move to the next set of data
from said third file. (step 613).

Referring now to FIG. 7, one embodiment of a method for determining a file transmission
method is shown. Said method may be performed by any of the machines or combinations of
machines described above, although the embodiment below describes the method being
performed by a network appliance 209. In brief overview, the method comprises receiving a
request from a client 213 for a resource (step 701); sending a request for said client’s capabilities
(step 703); receiving information conveying said client’s capabilities (step 705); and determining

a file transmission method (step (707).

20

WO 2008/005840 PCT/US2007/072490

Still referring to FIG. 7, now in greater detail, the network appliance 209 receives a
request from a client (step 701). In one embodiment receiving a request from a client (step 701)
comprises receiving a request directly from a client. In other embodiments, the request from a
client 213 may be received from any of the networks, connections, and appliances previously
discussed. Said request may comprise any of the protocols previously discussed. In some
embodiments the request may comprise the request exactly as transmitted from the client 213. In
other embodiments the request may comprise a modification of an original request from a client
213. Said modifications may comprise modifications in the course of providing any of the
network appliance services discussed above, and any other modifications to the content, format,
protocol, addressing, headers, or other portions of the request. request from a client 213, or a new
request. A request may comprise a resource directly requested by a client 213, and it may
comprise a resource requested in the course of performing any service for the client 213.

After receiving a request from a client (step 701), the network appliance 209 sends a
request for said client’s capabilities (step 703). In one embodiment, said request may be sent to
the client 213, In another embodiment, request may be sent to a collection agent as described in
U.S. Patent Application Serial No. 10/956832 “A METHOD AND APPARATUS FOR
ASSIGNING ACCESS CONTROL LEVELS IN PROVIDING ACCESS TO NETWORKED
CONTENT FILES” whose contents are expressly incorporated herein by reference. Said
collection agent may reside on the same physical machine as the network appliance sending the
request, or they may reside on different physical machines. Said request may also be sent to a
file, a cache, a database, a server, an executing application, or any other source of information
concerning the client 213.

After sending a request for the client’s capabilities (step 703) the network appliance 209
receives information conveying said clients capabilities (step 705). Said information may be
received from a chient 213, a collection agent, a file, a cache, a database, a server, an executing
application, or any other source of information concerning the client 213. Said information may
comprise, without limitation machine ID of a client node 213, operating system type, existence
of a patch to an operating system, MAC addresses of installed network cards, a digital watermark
on the client device, membership in an Active Directory, existence of a vilrus scanner, existence
of a personal firewall, an HTTP header, browser type, device type, network connection

information, authorization credentials, and any of the other capabilities or preferences discussed

21

WO 2008/005840 PCT/US2007/072490

above. In some embodiments, the network appliance may store or cache said information for
later retrieval.

After receiving information conveying said clients capabilities (step 705); the network
appliance may determine a file transmission method corresponding to said client 213 (step 707).
Said determination may be made on the basis of any of the information received.

In some embodiments, the network appliance 209 may determine, in response to
information received in step 705, to transmit files in accordance with the method for creating
efficient updates to a previously stored file described in FIG. 3. In one embodiment, said
determination may be made in response to information corresponding to the client’s 213 memory
size, connection speed, connection bandwidth, processor speed, or the prior existence of a stored
file.

In some embodiments, the network appliance 209 may determine, in response to
information received in step 703, to transmit a assembly function to the client 213. For example,
the network appliance may transmit a assembly function to a client 213 if the network appliance
209 receives information that the client 213 does not possess the assembly function, and the
information indicates the client has the capability to execute a assembly function. In some
embodiments, said assembly function may be transmitted along with any other files, including
requested content files, or other files transmitted in accordance with the functions of the network
appliance 209. In some embodiments, a network appliance may possess a plurality of assembly
functions. For example, a network appliance 209 may possess a number of assembly functions
optimized for different computing environments, operating systems, and hardware
configurations. The network appliance may then determine, in response to the information
received in step 705, which assembly function to transmit to a client 213.

While the invention has been particularly shown and described with reference to specific
preferred embodiments, it should be understood by those skilled in the art that various changes in
form and detail may be made therein departing from the spirit and scope of the invention as

defined by the appended claims.

22

WO 2008/005840 PCT/US2007/072490

We claim:
D A method for creating efficient updates to a previously stored file, said method
comprising:

(a) receiving a first file comprising a first plurality of sequences of data;

(b) receiving a second file comprising a second plurality of sequences of data;

(c) creating a hash table having a plurality of entries, each of the plurality of
entries corresponding to a respective one of the first plurality of sequences, and wherein
at least two of said entries correspond to overlapping sequences of data;

{(d) computing hash values for said second plurality of sequences of data;

(e} comparing each of the second plurality of sequences of data with
sequences from the first plurality of sequences having the same hash value to determine
sequences of data present in both files;

(H) storing representations of lengths and locations of said sequences of data

present in both the first and second files and

(g) creating a third file comprising sequences of data from the second file and
representations of locations and lengths of said sequences of data present in both the first

and second files.

2. The method of claim 1 wherein step (c) comprises creating a hash table with entries

corresponding to successive, overlapping byte sequences within the first file.

3. The method of claim 1 wherein step (c) comprises creating a hash table with entries

corresponding to successive, overlapping sequences of four bytes long within the first file.

4. The method of claim 1 wherein step (¢) comprises creating a hash table with entries

corresponding to sequences of data within a window covering a given N bytes of the first file.

5. The method of claim 1 wherein step (d) comprises:
(i) computing a hash value for a given sequence of data in said second file;

(i) checking said hash table for an entry corresponding to said hash value;

23

WO 2008/005840 PCT/US2007/072490

(iii) comparing said sequence of data from the second file with a sequence of data in
the first file corresponding to said hash table entry; and

(iv) comparing the bytes following said sequence from the second file with the bytes
following said sequence in the first file to determine a total length of a sequence present in both

the first and second files.

6. The method of claim 1 wherein step (g) comprises creating a third file comprising
sequences of data from said second file and representations of locations and lengths of sequences
present in both the first and second files, wherein said locations are represented as a relative

distance from a location in said first page.

7. The method of claim 1 wherein step (g) comprises creating a third file comprising
sequences of data from said second file and representations of locations and lengths of sequences
present in both the first and second files, wherein said third file is translated into a byte sequence

using a byte encoding protocol.

8. The method of claim I further comprises the step of:
(h) transmitting the third file to a client.

9. The method of claim § wherein step (h) comprises transmitting the third file to a client
via HTTP.

10. The method of claim 8 wherein step (h) comprises transmitting the third file to a client

via a Javascript variable.

11. The method of claim 8 wherein step (h) comprises transmitting the third file to a client

for reassembly into said second file.

12. A method for efficiently receiving updates to previously stored files, said method
comprising;

(a) receiving a first file comprising sequences of data;

24

WO 2008/005840 PCT/US2007/072490

(b) receiving a second file comprising sequences of data and representations of
locations and lengths of sequences in the first file; and
{c) executing a Javascript function to create a third file comprising sequences of

data from the second file and sequences in the first file indicated by the second file.

13. The method of claim 12 wherein the second file comprises a Javascript variable
containing sequences of data and representations of locations and lengths of sequences in the

first file.

14. The method of claim 12 wherein step (b) comprises receiving a second file comprising
sequences of data and representations of locations and lengths of sequences in the first file,

wherein said locations are represented as a relative difference from a location within said first
file.

15. The method of claim 14 wherein step (c) comprises:
(1) maintaining a reference pointer originally pointing to the beginning of said first
file;
(i) identifying sequences from said first file based on information received indicating
the distance of a sequence in the first file from a reference pointer; and
(iii) setting the reference pointer to point to the last byte plus one of the sequence in
said first file.

16. A computer system for creating efficient updates to a previously stored file, said system
comprising:

a transceiver which receives a first and second file, each file comprising a

respective plurality of sequences of data;

a hash engine which communicates with said transceiver and computes hash
values for sequences of data in the first and second file, wherein at least two of said
sequences overlap, and determines sequences of data present in both the first and second
files;

a storage element which communicates with said hash engine and which stores

25

WO 2008/005840 PCT/US2007/072490

representations of the lengths and locations of said sequences present in both the first and second
files; and

a processor which communicates with said storage element and which creates a
third file comprising sequences of data from the second file and representations of lengths and

locations of said sequences present in both files.

17. The computer system of claim 16 wherein said hash engine computes hash values for

successive, overlapping byte sequences within said first file.

18. The computer system of claim 16 wherein said hash engine computes hash values for

successive, overlapping sequences of four bytes long within said first file.

19, The computer system of claim 16 wherein said hash engine computes hash values for

sequences of data within a window covering a given N bytes of said first file.

20. The computer system of claim 16 wherein said hash engine compares bytes following a
sequence present in both the first and second files to determine a total length for a sequence of

data present in both the first and second files.

21. The computer system of claim 16 wherein said processor creates a third file comprising
sequences of data from the second file and representations of locations and lengths of sequences
of data in said first file, and wherein said locations are represented as a relative distance from a

reference pointer to said first file.

22. The computer system of claim 16 wherein said processor translates the created third file

into a byte stream.

23. The computer system of claim 16 wherein said computer system further comprises a

transmitter for transmitting said third file to a client.

24. 'The computer system of claim 23 wherein said transmitter transmits said third file to a

26

WO 2008/005840 _ PCT/US2007/072490

client via HTTP.

25. The computer system of claim 24 wherein said transmitter transmits the third file to a

client via a Javascript variable.

26. The computer system of claim 24 wherein said transmitter transmits said third file to a

client for reassembly into said second file.

27

WO 2008/005840 PCT/US2007/072490

118

100
\ /’\5128

W
0S
Software
121 122
- Mf
ain
cPy Memory ___gg_rage J
€ >
123\ Displa
/O dev?ces((s) Installation Network
CTRL L Device interface
126~ / N\ 1 12en 116 118
Keyboard | | P0inting
Device

Fig. 14

WO 2008/005840 PCT/US2007/072490
2/8
/-‘102
140
Main r
Processor Cache
144
/0 | /O |Memory Main
Port Port| Port Memory —130b
N
103 /O
Device
Bridge|— 170
/150
< >
//1303
1/0
Device

Fig. IB

WO 2008/005840 PCT/US2007/072490

3/8
Server Server Server
] — e [} 205n e [
m::wﬂ': unaenss I ICEC] ‘L [r———tn @ 0 o
2058 1 m'; 205b 1 R s tod O b
211 “_
Network
209 —___ Network
gooo

Appliance

213n

.

Client

Client Client

Fig. 2

WO 2008/005840 PCT/US2007/072490

303
\ fransmit first file to client
receive a first file
‘L \ comprising

receive a second file comprising

4/8 213
209
\Network Appliance Client 2
301 \ receive a first file comprising E
sequences of data :
¥ E /305

sequences of
data

309 \ a second plurality of sequences
of data

v

311 create a hash table with entries
™ __ | correspending to overlapping
sequences of data in first file

¥

313 \ compute hash values for second
plurality of sequences

v

315 \ determine sequences of data
present in both files

v

1
]
1
i
£
4
t
I
]
]
]
]
I
]
]
]
1
1
1
1
i
1
¥
¥
¥
]
]
3
13
E
E
]
]
1
i
i
i

317 \ store lengths and locations of 3
1
I
]
I
t
]
]
]
1
1
i
t
¥
]
3
3
]
1]
]
1
1
1
1
]
I
]
I
I
]
]
i
1
1
t
k
3
13
E
E
B

l 307

display first file |~

X, 308
b

store the first file

sequences present in both files

v

319 create a third file comprising sequences
\ of data from the second file and

representations of locations and lengths

of sequences of data present in both files

v

321 1 transmit third file to client

323
/‘\/

receive the third file

A

Y

execute a Javascript
function to assemble the
second file

v 327
display the second file | =~

Fig. 3

WO 2008/005840

PCT/US2007/072490

311 create a hash table with entries
\ corresponding to overlapping
sequences of data in first file

58

v

Set reference pointer to beginning
of first file

v

313 ™__| Compute hash value for four byte
sequence of second file

|

Match
found?

No

Yes

!

409 \

Determine total length of
malching sequence

'

Length
Exceeds

Move to next
sequence of
second file

minimum No
threshold?

l

Store length and location of
matching sequence relative
to reference pointer

h

Set reference pointer to the
last byte plus one of the
matching sequence in the
first file

WO 2008/005840 PCT/US2007/072490

209 6/8 213
\~Network Appliance Client -

501

503

)
]
T\ | transmit assembly function \:‘\’
' receive assembly function

303 E
1 transmit first file {o client \ o~
[}
receive a first file

305
. ! comprising
. : - i sequences of data
receive a second file comprising :
309 ™| @ second plurality of sequences !
of data !
; 307
E display first file |~
319 create a third file comprising sequences E
\— of data from the second file and ' 308
representations of locations and lengths : store the first file P
of sequences of data present in both files i
i 323
)
321 ~_ Y : -
transmit third file to client M“"“'—"{M receive the third file
_325
Y g

execute reassembly
function to assemble the
second file

5 327
display the second file |~

Fig. 5

WO 2008/005840 PCT/US2007/072490

718

601

\ Set reference pointer to beginning
of first file

602 l Read set of data from third file |«

603 \
611 613

Does data K \
correspond 1o length Adpl
and location of a said set Move to
matching | of data | next set of
sequence? to data from

ggecond third file

ile
-y

X

Read the specified length of bytes at
605 k the specified location in said first file.

607 ~_, L 4

Add said bytes to second file

h 4

increment the reference pointer to the
609 \ location of the last byte plus one of the
bytes read from said first file

h 4

Fig. 6

WO 2008/005840 J PCT/US2007/072490

8/8

7017\ _

Receive a request

y

703 Send a request for
- said client’'s capabilities

705 4
1 Receive information

conveying said client’s

capabilities

707
1 Determine file
transmission method

Fig. 7

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

