(54) Title: THERMAL EXCHANGE DEVICE

(57) Abstract: The invention concerns a thermal exchange device including a thermoelectric device and an absorption refrigeration device. The absorption device includes an evaporator (100) absorbing the thermal energy from a warm source (500), a generator (300) supplied with thermal energy from the warm side (602) of the thermoelectric device (600), an absorber (400), and a condenser (200). A case (10) houses the generator (300), the absorber (400), the evaporator (100) and the thermoelectric device (600). The thermoelectric device separates the case (10) into two compartments, with the compartment in contact with the warm side (602) forming the generator (300), and the compartment in contact with the cold side (601) forming the absorber (400) and the evaporator (100). A membrane (20, 30) that is impermeable to liquid phases and permeable to gas phases divides each compartment into two zones to maintain the absorbate/absorbant liquid solution solely in one of the zones of each compartment, the zones in which the absorbate/absorbant liquid solution is maintained being delimited by the thermoelectric device (600).

(57) Abrégé : L’invention concerne un dispositif à échanges thermiques comprenant un dispositif thermoelectrique et un dispositif de réfrigération à absorption. Le dispositif à absorption comprend un évaporateur (100) absorbant l’énergie calorifique d’une source chaude (500), un générateur (300) alimenté en énergie calorifique par la face chaude (602) du dispositif thermoelectrique (600), un absorbeur (400) et un condenseur
En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

Publiée :
— avec rapport de recherche internationale

(200). Un boîtier (10) renferme le générateur (300), l’absorbeur (400), l’évaporateur (100) et le dispositif thermoelectrique (600). Le dispositif thermoelectrique sépare le boîtier (10) en deux compartiments, le compartiment en contact avec la face chaude (602) formant le générateur (300), le compartiment en contact avec la face froide (601) formant l’absorbeur (400) et l’évaporateur (100). Une membrane (20, 30) imperméable aux phases liquides et perméable aux phases gazeuses divise chaque compartiment en deux zones de manière à maintenir la solution liquide absorbée/absorbant uniquement dans une des zones de chaque compartiment, les zones dans lesquelles est maintenue la solution liquide absorbée/absorbant étant délimitée par le dispositif thermoelectrique (600).
DISPOSITIF À ÉCHANGES THERMIQUES

Domaine de l’invention

5 L’invention se rapporte à un dispositif à échanges thermiques comprenant au moins un dispositif thermoélectrique et un dispositif de réfrigération à absorption. Le dispositif de réfrigération à absorption comprend un évaporateur absorbant l’énergie calorifique d’une source chaude, au moins un générateur alimenté en énergie calorifique par la face chaude du dispositif thermoélectrique et au moins un absorbeur. Le générateur et l’absorbeur contiennent une solution liquide absorbant/absorbant.

État de la technique

Les dispositifs de réfrigération à absorption sont largement utilisés comme alternatives aux dispositifs de réfrigération à compression classiques. Ces dispositifs sont en effet très similaires aux systèmes de réfrigération à compression, à la différence que le compresseur est remplacé par une pompe chimique. Un dispositif de réfrigération à absorption comprend un condenseur, un générateur, un absorbeur et un évaporateur. Le générateur contient le mélange d’un couple absorbant/absorbant qui est chauffé. Sous l’effet de la chaleur, l’absorbeur est libéré du mélange sous forme gazeuse. L’absorbeur s’écoule vers le condenseur comme dans un dispositif à réfrigération à compression normal. Au lieu que le gaz à la sortie de l’évaporateur soit envoyé dans un compresseur, l’absorbeur en phase gazeuse est envoyé dans l’absorbeur. L’absorbeur y est réabsorbé par un mélange
absorbat/absorbant pauvre en absorbat provenant du générateur. Le mélange absorbat/absorbant une fois enrichi en absorbat est réinjecté dans le générateur.

5 En utilisant une pompe chimique, on évite ainsi tous les inconvénients inhérents aux compresseurs dans les systèmes de réfrigération à compression, à savoir le bruit, la perte de place et l’encombrement, le risque de pannes, l’alimentation électrique imposante du compresseur. Cependant, ces dispositifs semblent moins performants que les systèmes de réfrigération à compression. Par ailleurs, les appareils munis de dispositif de réfrigération à absorption peuvent difficilement être bougés ou inclinés en fonctionnement sous peine de faire passer le mélange absorbat/absorbant dans le tout le circuit.

De nombreux efforts ont été faits afin d’améliorer les dispositifs de réfrigération à absorption, notamment en y incorporant des dispositifs thermoélectriques.

Les dispositifs thermoélectriques permettent d’utiliser des différentiels de températures afin de produire du courant et vice-versa. On peut notamment citer les cellules à effet Peltier qui sont des assemblages d’éléments semi-conducteurs entre deux semelles conductrices de la chaleur. Si l’on fait passer un courant continu électrique dans un tel montage, il apparaît une face froide qui absorbe des calories et une face chaude qui dégage des calories. Ils constituent des dispositifs de réfrigération fiable, de faible encombrement, de faible puissance et bon marché.
Le brevet US 2,979,923 divulgue un système de réfrigération où des unités thermoélectriques sont associées à un dispositif de réfrigération à absorption classique. Ces unités thermoélectriques permettent d’une part de transférer une partie de la chaleur émise par le condenseur ou l’absorbeur vers le générateur et d’autre part de refroidir en partie le condenseur ou l’absorbeur. Cependant, l’échange thermique entre les zones chaudes et les zones froides du système de réfrigération est effectué par l’intermédiaire d’un circuit de refroidissement séparé dans lequel une pompe assure la circulation du liquide de refroidissement. Un tel système est rendu plus encombrant, plus complexe (donc plus coûteux et moins fiable) en raison de la présence des circuits de refroidissement séparés. L’échange thermique entre les zones chaudes et froides du système n’y est d’ailleurs pas efficace, puisque des déperditions se produisent au niveau de ces circuits de refroidissement. Enfin, un tel système peut difficilement être bougé ou incliné en fonctionnement.

Le brevet japonais JP2000088424 divulgue un réfrigérateur comprenant un dispositif de réfrigération à absorption auquel on associe également un dispositif thermoélectrique. Le réfrigérateur comprend un container calorifuge qui sert d’emplacement aux éléments à refroidir. L’évaporateur est disposé à l’intérieur du boîtier de même qu’un dispositif thermoélectrique. La source chaude du dispositif thermoélectrique est connectée à des conduits de chaleur. Ces conduits de chaleur évacuent la chaleur émise par la face chaude du dispositif thermoélectrique et la transmette au générateur. Le générateur est ainsi alimenté en énergie calorifique à partir de la chaleur pompée à l’élément à refroidir par le dispositif thermoélectrique.
Cependant, l’échange thermique entre la zone à refroidir et le générateur n’est pas efficace, puisque des déperditions se produisent au niveau des conduits de chaleur. De plus, le réfrigérateur peut difficilement être bougé ou incliné en fonctionnement.

Un but de l’invention est de fournir un dispositif à échanges thermiques qui réponde aux problèmes de l’art antérieur.

Résumé de l’invention

L’invention vise à proposer un dispositif à échanges thermiques particulièrement efficace, peu coûteux, fiable, de faible encombrement, silencieux, qui nécessite une faible puissance électrique, qui ne souffrent pas des effets de la gravité, c’est-à-dire qui peut être installé dans des appareils pouvant être bougés, ou inclinés, etc.

A cette fin, le dispositif selon l’invention est caractérisé en ce qu’il comprend:
- un boîtier renfermant le générateur, l’absorbeur, l’évaporateur et le dispositif thermoélectrique, le dispositif thermoélectrique séparant le boîtier en deux compartiments, le compartiment en contact avec la face chaude du dispositif thermoélectrique formant le générateur, le compartiment en contact avec la face froide du dispositif thermoélectrique formant l’absorbeur et l’évaporateur,
- dans chaque compartiment du boîtier, au moins une membrane imperméable aux phases liquides et perméable aux phases gazeuses divisant chaque compartiment en deux
zones de manière à maintenir la solution liquide absorbat/absorbant uniquement dans une des zones de chaque compartiment, les zones dans lesquelles est maintenue la solution liquide absorbat/absorbant étant délimitée par le dispositif thermoélectrique.

Ainsi, l’absorbeur est formé par la zone en contact avec la face froide du dispositif thermoélectrique et dans laquelle la solution liquide absorbat/absorbant est maintenue. Le dispositif thermoélectrique en séparant directement l’absorbeur du générateur permet de réduire au maximum les déperditions de chaleur. Toute la face chaude du dispositif thermoélectrique est directement en contact avec le générateur, toute la face froide directement en contact avec l’absorbeur. Toute la chaleur de l’absorbeur pompée par le dispositif thermoélectrique est directement transférée au générateur, de même que la chaleur produit par effet Joule par le dispositif thermoélectrique. Un tel dispositif permet d’utiliser au maximum des avantages d’un dispositif thermoélectrique pour l’amélioration du dispositif de refroidissement à absorption.

Les zones formant l’absorbeur et le générateur étant divisées par le dispositif thermoélectrique, les membranes disposées dans le boîtier permettent d’emprisonner la solution liquide de part et d’autre du dispositif thermoélectrique tout en permettant l’arrivée et/ou l’évacuation d’absorbat sous forme gazeux. Les membranes et le dispositif thermoélectrique assurent une séparation particulièrement efficace de la solution liquide absorbat/absorbant du reste du dispositif à échange thermique, puisque la solution absorbat/absorbant liquide ne peut à aucun moment traverser les membranes et se
mélanger à l’absorbat pur. Le boîtier peut alors être bougé, incliné, retourné sans que le fonctionnement du dispositif à échanges thermiques en soit perturbé.

5 De plus, une membrane sépare directement l’absorbeur de l’évaporateur. On obtient ainsi une surface maximale et directe d’échange entre l’absorbeur et l’évaporateur, ce qui assure un rendement efficace du dispositif à échange thermique.

10 Par ailleurs, le dispositif selon l’invention présente un boîtier très compact qui avec les membranes et le dispositif thermoélectrique forme le générateur, l’évaporateur et l’absorbeur. On évite ainsi au maximum la déperdition de chaleur qui apparaît normalement au niveau des conduits reliant les différents éléments des dispositifs à absorption classique.

Le boîtier particulièrement compact peut être réalisé dans toutes les tailles, notamment de très petites tailles. Le dispositif peut ainsi être facilement incorporé dans des appareils électroniques de petites tailles tels que ordinateur portables, etc.

25 Le boîtier formant le générateur, l’évaporateur et l’absorbeur comprend un minium de pièces, ce qui rend le dispositif à échange thermique moins cher, plus léger, plus fiable et moins coûteux à réaliser.

30 Le dispositif selon l’invention peut être utilisé dans une multitude d’applications dans des domaines aussi variés et divers que l’électronique, l’automobile, l’aviation, la
navigation, l'industrie, l'électroménager, les télécommunications, l'informatique, etc.

Avantageusement, le courant fourni au dispositif thermoélectrique peut être fourni par des piles ou batteries ou à l'aide de d'énergie naturelle, par exemple à l'aide de panneaux solaires ou d'éolienne. Le dispositif selon l'invention peut fonctionner de façon autonome et peut facilement être embarqué (par exemple sur un bateau ou un planeur).

Avantageusement, le boîtier comprend une paroi de contact calorifère dont au moins une partie est destinée à être en contact direct avec la source chaude, la paroi de contact se trouvant dans le compartiment en contact avec la face froide du dispositif thermoélectrique, dans la zone ne contenant pas la solution liquide absorbat/absorbant et formant l'évaporateur. On réduit ainsi les déperditions de chaleur entre l'évaporateur et la source chaude à refroidir et on assure que l'évaporateur draine un maximum d'énergie calorifique de la source chaude.

De préférence, la surface de contact est complémentaire à une surface de l'élément à refroidir. On assure ainsi un drainage optimal de l'énergie calorifique de la source chaude.

Avantageusement, le boîtier comprend, dans chaque compartiment au niveau de la zone dans laquelle est maintenue la solution liquide absorbat/absorbant, au moins une ouverture d'arrivée de solution liquide et au moins une ouverture d'évacuation de solution liquide
Avantageusement, le dispositif à échanges thermiques comprend au moins un moyen de pompage et/ou un dispositif de refroidissement connecté de façon étanche entre une des ouvertures d'évacuation de solution liquide absorbant/absorbant du compartiment formant le générateur et une des ouvertures d'arrivée de solution liquide de l'autre compartiment.

On assure ainsi une circulation de la solution liquide absorbant/absorbant entre le générateur et l'absorbeur.

Selon un mode de réalisation particulier, le dispositif à échanges thermiques comprend au moins un dispositif de chauffage connecté de façon étanche entre une des ouvertures d'arrivée de solution liquide dans le compartiment formant le générateur et une des ouvertures d'évacuation de solution liquide de l'autre compartiment.

Avantageusement, le boîtier comprend dans chaque compartiment au moins une ouverture d'arrivée et/ou d'évacuation d'absorbant au niveau de la zone dans laquelle n'est pas maintenue la solution liquide absorbant/absorbant.

On assure ainsi une circulation de l'absorbant entre le générateur et l'évaporateur.

Avantageusement, le dispositif à échanges thermiques comprend au moins un condenseur connecté de façon étanche entre l'ouverture d'arrivée/évacuation d'absorbant du compartiment formant le générateur et l'ouverture d'arrivée/évacuation d'absorbant de l'autre compartiment.
Selon un mode de réalisation particulier, le dispositif à échanges thermiques comprend au moins un moyen de pompage connecté de façon étanche entre le condenseur et l'ouverture d'arrivée/évacuation d'absorbat de l'autre compartiment.

Selon un mode de réalisation particulier, les moyens de pompage utilisés comprennent une pompe à canal électro-osmotique.

Avantageusement, le boîtier est calorifuge, à l'exception de la surface de contact calorifère. On réduit ainsi au maximum les échanges de chaleur entre les différents éléments contenus dans le boîtier et le milieu ambiant. Cet aspect est d'importance notamment lorsque le dispositif à échanges thermiques est intégré dans un appareil où un ou plusieurs composants doivent être refroidis. Par ailleurs, on assure un maximum de transfert de chaleur entre l'évaporateur et le générateur.

Avantageusement, un dispositif de ionisation est disposé au niveau du générateur de sorte à forcer l'évacuation de l'absorbat évaporé vers le condenseur.

Ainsi le dispositif de ionisation permet d'accélérer l'évacuation de l'absorbat évaporé vers le condenseur. Il permet de diriger l'absorbat vers le condenseur lorsque le boîtier est incliné ou renversé ou non soumis aux effets de la pesanteur.

L'invention se rapporte également au boîtier compris dans le dispositif à échange thermique.
Brève description des figures

Ces aspects ainsi que d’autres aspects de l’invention seront clarifiés dans la description détaillée de modes de réalisation particuliers de l’invention, référence étant faite aux dessins des figures, dans lesquelles :

Fig.1 montre un schéma de principe de fonctionnement d’un dispositif de réfrigération à absorption classique;

Fig.2 montre un schéma de principe de fonctionnement de dispositif à échanges thermiques selon l’invention;

Fig.3 montre un dispositif à échanges thermiques selon un premier mode de réalisation de l’invention ;

Fig.4 montre un dispositif à échanges thermiques selon un deuxième mode de réalisation de l’invention ;

Fig.5 montre un dispositif à échanges thermiques selon un troisième mode de réalisation de l’invention ;

Fig.6 montre un dispositif à échanges thermiques réversible selon un troisième mode de réalisation de l’invention dans un premier mode de fonctionnement.

Fig.7 montre un dispositif à échanges thermiques réversible selon la figure 6 dans un deuxième mode de fonctionnement.

Les figures ne sont pas dessinées à l’échelle. Généralement, des éléments semblables sont dénotés par des références semblables dans les figures.

Description détaillée de modes de réalisation particuliers
Il sera évident pour l’homme du métier que la présente invention n’est pas limitée à ce qui a été divulgué et décrit en particulier ci-dessus. L’invention réside dans la présentation de toutes caractéristiques nouvelles et dans chaque combinaison de ces caractéristiques. Les références numériques dans les revendications, ne limitent pas la portée de leur protection. L’usage des verbes « comprendre, comporte ou inclure » et leurs formes conjuguées, n’exclut pas la présence d’autres éléments que ceux énumérés dans les revendications. L’usage de l’article « un/une » devant un élément, n’exclut pas la présence d’une pluralité de tels éléments.

La **figure 1** montre le principe de fonctionnement d’un dispositif 1 de réfrigération à absorption classique. Le dispositif comprend un évaporateur 100, un condenseur 200, un générateur 300 et un absorbeur 400.

Le générateur 300 contient le mélange 301 d’un couple absorbant/absorbat riche en absorbant qui est chauffé par un moyen de chauffage 305. Sous l’effet de la chaleur, l’absorbat 302 est libéré du mélange absorbant/absorbant 301 sous forme gazeuse.

Le générateur 300 est connecté au condenseur 200 par un conduit 303 permettant à l’absorbat 302 de s’écouler vers le condenseur 200. Le condenseur 200 est refroidi par un moyen de refroidissement 205 de sorte à permettre la condensation de l’absorbat 201.

Le condenseur 200 est relié à l’évaporateur 100 à l’aide d’un conduit 203 permettant le passage de l’absorbat 201 sous forme liquide vers l’évaporateur 100.
L'évaporateur 100 est disposé au niveau d'une source chaude 500 à refroidir. L'intérieur de l'évaporateur 100 est à faible pression de sorte à ce que la température d'ébullition de l'absorbat liquide 101 soit basse (par exemple proche de la température de la source chaude). Sous l'effet de la chaleur de la source chaude 500, l'absorbat sous forme liquide 101 s'évapore. Le processus d'évaporation de l'absorbat draine de l'énergie calorifique de la source chaude 500 qui en conséquence refroidit.

Une valve 202 est disposée au niveau du conduit 203 maintenant la différence de pression entre le condenseur 200 et l'évaporateur 100.

Une fois sous forme gazeuse, l'absorbat 102 s'écoule vers l'absorbeur 400 connecté à l'évaporateur 100 à l'aide d'un conduit 103. Dans l'absorbeur 400, l'absorbat 402 est réabsorbé par le mélanges absorbant/absorbant 401 pauvre en absorbat provenant du générateur 300 via un conduit 304. Le phénomène d'absorption étant exothermique, il est nécessaire de refroidir l'absorbeur 400 à l'aide d'un moyen de refroidissement 405. Le mélange liquide 401 absorbat/absorbant une fois enrichi en absorbat est réinjecté dans le générateur via un conduit 403.

La pression dans le générateur 300 et le condenseur 200 est élevée par rapport à la pression dans l'évaporateur 100 et l'absorbeur 400. La solution absorbant/absorbant circule entre l'absorbeur 400 et le générateur 300 sous le simple effet du différentiel de pression entre le générateur 300 et le condenseur 200. On peut si on le souhaite ajouter une pompe (non représentée) par exemple au niveau du conduit en
sortie de l’absorbeur 400 vers le générateur 300 pour augmenter le débit du mélange.

A titre d’exemple, les couples eau/bromure de lithium, ammoniac/eau, ammoniac/hydrogène, trifluoroéthanol/dimethylimidazole peuvent être utilisés comme couple absorbant/absorbant.

La figure 2 montre le principe de fonctionnement d’un dispositif 2 à échanges thermiques selon l’invention.

Le dispositif 2 à échanges thermiques comprend un dispositif de réfrigération à absorption 1 semblable au dispositif de la figure 1 ainsi qu’un dispositif thermoélectrique 600.

Par « dispositif thermoélectrique », on entend tout dispositif comprenant un module thermoélectrique ou un assemblage de modules thermoélectriques. Les cellules à effet Peltier peuvent être utilisés comme module thermoélectrique. L’assemblage peut être réalisé en empilant les modules (en parallèle thermiquement), la face chaude d’un module étant disposée contre la face froide d’un autre module et/ou disposant les modules les uns à côté des autres (en série thermiquement) de sorte à créer une face chaude/froide de grande dimension.

La face froide 601 du dispositif thermoélectrique 600 est placée en contact avec l’absorbeur 400 de sorte à refroidir ce dernier. La face chaude 602 du dispositif thermoélectrique 600 est placée en contact avec le générateur 300 de sorte à l’alimenter directement en énergie calorifique.
Le dispositif thermoélectrique 600 est choisi de sorte à ce que l'écart de température maximal qui peut être atteint entre la face froide 601 et la face chaude 602 est égal ou supérieur à l'écart de température optimal qui doit exister entre la température au sein de l'absorbeur 200 et celle au sein du générateur 300.

L'énergie fournie au générateur 300 par la face chaude 602 du dispositif thermoélectrique 600 provient à la fois de l'énergie drainée par la face froide 601 du dispositif, mais également par l'énergie due à l'effet Joule dans le dispositif thermoélectrique 600. Le dispositif thermoélectrique 600 permet ainsi d'une part de rediriger l'énergie calorifique de l'absorbeur 400 vers le générateur 300 et d'autre part d'utiliser l'effet Joule inhérent au dispositif thermoélectrique 600 pour chauffer ce même générateur 300.

Le dispositif à échanges thermiques 2 fonctionne grâce à une alimentation de faible puissance, à savoir celle du dispositif thermoélectrique 600. Son fonctionnement est très silencieux.

De plus, il est connu que lors de la mise en route des dispositifs à absorption classiques tels que présentés à la figure 1, l'amorçage des réactions d'absorption et de désorption peut être relativement long. Dans le dispositif selon l'invention, le dispositif thermoélectrique 600 possède une inertie très faible au démarrage ; l'absorbeur 400 est donc très rapidement refroidi, le générateur 300 très rapidement chauffé. Le dispositif thermoélectrique 600 fournit très rapidement l'énergie d'activation des
réactions d’absorption et de desabsorption. Le dispositif d’échange thermique 2 selon l’invention possède une inertié au démarrage faible.

La figure 3 montre un dispositif à échanges thermiques 3 selon un premier mode de réalisation de l’invention.

Le dispositif 3 comprend un boîtier 10 calorifuge renfermant le générateur 300, l’absorbeur 400, l’évaporateur 100 et le dispositif thermoélectrique 600.

Le dispositif thermoélectrique 600 sépare le boîtier 10 en deux compartiments. Le premier compartiment 300 en contact avec la face chaude 602 du dispositif thermoélectrique 600 forme le générateur 300; le deuxième compartiment en contact avec la face froide 601 du dispositif thermoélectrique 600 forme l’absorbeur 400 et l’évaporateur 100. Le dispositif thermoélectrique 600 est alimenté en courant continu (non représenté). Le courant peut par exemple être fourni à l’aide de batteries, de piles, panneaux solaires, d’éoliennes, etc. (non représenté).

Le premier compartiment formant le générateur 300 est séparé en deux zones 21, 22 par une première membrane 20. La membrane 20 est parfaitement imperméable aux phases liquides et perméable aux phases gazeuses. La membrane 20 permet ainsi de séparer le générateur 300 en une première zone 21 dans laquelle est maintenue la solution liquide absorbant/absorbant et en une deuxième zone 22 qui contient uniquement l’absorbant sous forme gazeuse.

La face chaude 302 du dispositif thermoélectrique 600 se trouve dans la première zone 21 contenant la solution
liquide absorbant/absorbant. Le dispositif thermoélectrique 600 chauffe la solution liquide absorbant/absorbant; sous l'effet de la chaleur, l'absorbant s'évapore et passe au travers de la membrane 20 pour se retrouver dans la deuxième zone 22 du générateur 300, tandis que la solution liquide absorbant/absorbant reste maintenue dans la première zone 21 du générateur 300.

Le deuxième compartiment est également séparé en deux zones 23, 24 par une deuxième membrane 30. La deuxième membrane 30 est d'une part parfaitement imperméable aux phases liquides et d'autre part permeable aux phases gazeuses. La membrane 30 sépare le deuxième compartiment en une troisième zone 23 dans laquelle est maintenue la solution liquide absorbant/absorbant et en une quatrième zone 24 qui contient uniquement l'absorbant sous forme liquide ou gazeuse.

La face froide 601 du dispositif thermoélectrique 600 se trouve dans la troisième zone 23 contenant la solution liquide absorbant/absorbant. La troisième zone 23 forme l'absorbeur 400; la quatrième zone 24 contenant uniquement l'absorbant sous forme liquide ou gazeuse forme l'évaporateur 100.

Le boîtier 10 comprend une surface 18 de contact disposée au niveau de l'évaporateur 100, c'est-à-dire au niveau de la quatrième zone 24 du deuxième compartiment. La surface de contact 18 assure un contact direct avec une source chaude 500 à refroidir. L'absorbant liquide contenu dans l'évaporateur 100 s'évapore drainant l'énergie calorifique de la source chaude 500. L'absorbant en s'évaporant traverse la deuxième membrane 30 et est absorbé par la solution
liquide absorbant pauvre en absorbant contenu dans l'absorbeur 400.

La surface de contact 18 est de préférence complémentaire à une surface de l'élément 500 à refroidir. On assure ainsi un drainage optimal de l'énergie calorifique de la source chaude 500. La forme de la surface de contact de l'élément à refroidir 500 est choisie de sorte à évacuer au mieux la chaleur. La surface de contact est par exemple réalisée dans un matériau calorifère, par exemple en métal tel que le cuivre.

Le dispositif thermoélectrique 600 sépare l'absorbeur 400 du générateur 300. Toute la face chaude 602 du dispositif thermoélectrique 600 est ainsi directement en contact avec le générateur 300, toute la face froide 601 directement en contact avec l'absorbeur 400. Toute la chaleur de l'absorbeur 400 pompée par le dispositif thermoélectrique 600 est directement transférée au générateur 300, de même que la chaleur produit par effet Joule par le dispositif thermoélectrique 600. On évite ainsi au maximum les déperditions de chaleur.

Le boîtier 10 peut être de différentes formes. De préférence, le boîtier 10 est cylindrique ou parallélépipédique. Les membranes 20, 30 ainsi que le dispositif thermoélectrique 600 sont de préférence disposés parallèlement les uns aux autres selon une direction particulière du boîtier 10, par exemple selon l'axe du boîtier 10 cylindrique ou la hauteur du boîtier 10 parallélépipédique. Les différentes zones 21, 22, 23, 24 ont de préférence des volumes substantiellement identiques,
avantageusement elles possèdent des formes substantiellement identiques.

Le boîtier 10 est de préférence calorifuge, à l’exception de la surface de contact 18, de sorte à réduire les déperditions de chaleur notamment entre l’absorbeur 400 et le dispositif thermoélectrique 600 et entre le dispositif thermoélectrique 600 et le générateur 300. Le boîtier 10 peut soit être réalisé dans un matériau calorifique (par exemple en matériau synthétique tel que le polyméthacrylate de méthyle, le polypropylène, le polyacrylate), soit avoir sa surface extérieure recouverte d’un matériau calorifique (par exemple en polypropylène ou en polytétrafluoroéthylène), soit sa intérieure couverte d’un matériau calorifique (par exemple en polypropylène ou en polytétrafluoroéthylène) résistant à l’absorbat et à l’absorbant.

Le boîtier 10 peut être moulé en une seule pièce, les bords des membranes 20,30 et/ou du dispositif thermoélectrique 600 et/ou de la surface de contact 18 étant directement moulées dans les parois du boîtier 10. Le boîtier 10 peut également comprendre différentes parties s’emboîtant les unes aux autres de façon connues de l’homme du métier. Les bords des membranes 20,30 et/ou du dispositif thermoélectrique 600 peuvent être maintenus enclipsés entre les bords de différentes parties.

De tels boîtiers 10 sont légers, robustes, faciles et peu chers à réaliser.
Les première et deuxième membranes 20, 30 sont de préférence, des membranes microporeuses, par exemple réalisées en film de polypropylène microporeux.

Le boîtier 10 comprend une première ouverture 11 prévue au niveau de la deuxième zone 22 de générateur 300, ainsi qu’une deuxième ouverture 12 au niveau de l’évaporateur 100 100, à savoir au niveau de la quatrième zone 24 du deuxième compartiment contenant uniquement de l’absorbat.

Un conduit 110 connecté de façon étanche à la première ouverture 11 permet la circulation de la vapeur du générateur 300 vers le condenseur 200. De façon similaire, un conduit 120 connecté de façon étanche à la deuxième ouverture 12 permet la circulation de l’absorbat sous forme liquide du condenseur 200 à l’évaporateur 100. Une valve anti-retour 95 peut être disposée au niveau de la deuxième ouverture 12.

Un détenteur 40 est disposé au niveau du conduit 120 entre le condenseur 200 et l’évaporateur 100. De préférence, un premier moyen de pompage 50 peut également être placé au niveau du conduit 120 entre le condenseur 200 et le détendeur 40.

De préférence, le condenseur 200 est refroidi à l’aide d’un échangeur thermique.

Le boîtier 10 comprend une troisième et quatrième ouverture 13, 14 au niveau de l’absorbeur 400, c’est-à-dire au niveau de la quatrième zone 24 du deuxième compartiment. La troisième ouverture 13 permet l’arrivée dans l’absorbeur 400 d’une solution liquide absorbant(absorbant pauvre en absorbant ; la quatrième ouverture 14 permet l’évacuation de
l'absorbeur 400 d'une solution liquide absorbat/absorbant riche en absorbant.

Le boîtier 10 comprend une cinquième et sixième ouverture 15,16 au niveau de la première zone 21 du générateur 300, c'est-à-dire de la zone dans laquelle est renfermée la solution liquide absorbat/absorbant. La cinquième ouverture 15 permet l'arrivée dans le générateur 300 d'une solution liquide absorbat/absorbant riche en absorbant ; la sixième ouverture 16 permet l'évacuation de l'évaporateur 100 d'une solution liquide absorbat/absorbant pauvre en absorbant.

Un conduit 130 connecté de façon étanche à la quatrième et cinquième ouverture 14,15 assure la circulation de la solution liquide absorbat/absorbant riche en absorbant de l'absorbeur 400 vers le générateur 300. De préférence, un dispositif de chauffage 60 est disposé au niveau du conduit 130. Une valve anti-retour 70 peut être disposée au niveau de la cinquième ouverture 15.

L'absorbeur 400, la première zone 21 du générateur 300, les deux conduits 130, 140 reliant ces deux zones 21,23 et le cas échéant, le deuxième moyen de pompage 80, le
dispositif de refroidissement 65 et/ou le dispositif de chauffage 60 forment un circuit de circulation de la solution absorbant/absorbant liquide fermé. Les membranes 20,30 assurent une séparation particulièrement efficace du circuit de circulation du reste du dispositif à échange thermique 3, puisque la solution absorbant/absorbant liquide ne peut à aucun moment traverser les membranes 20,30 et se mêler au circuit de l'absorbant entre le générateur 300 et l'évaporateur 100. Le boîtier 10 peut être bougé, incliné, retourné sans que le fonctionnement du dispositif à échanges thermiques en soit perturbé.

Le dispositif de refroidissement 65 et/ou le dispositif de chauffage 60 permettent de réguler la température de la solution liquide absorbant/absorbant en entrée dans l'absorbeur 400 et dans le générateur 300 respectivement. Cette régulation de température augmente la capacité de fonctionnement du dispositif thermoélectrique 600 et donc le rendement du dispositif à échanges thermiques 3.

Le premier moyen de pompage 50 assure de préférence un débit constant de la solution liquide absorbant/absorbant entre l'absorbeur 400 et le générateur 300, le deuxième moyen de pompage 80 entre l'absorbeur 400 et le générateur 300.

Le débit du premier moyen de pompage 50 est lié au débit du deuxième moyen de pompage 80. Le deuxième moyen de pompage 80 assure que l'absorbeur 400 est constamment suffisamment approvisionné en mélange absorbant/absorbant pauvre en absorbant de sorte à ce que l'absorbant liquide fourni à l'évaporateur 100 soit constamment entièrement absorbé par l'absorbeur 400. De même, le premier moyen de pompage 50
assure que l'évaporateur 100 est constamment suffisamment approvisionné en absorbat liquide de sorte à ce que la solution liquide absorbat/absorbant circulant dans l'absorbeur 400 absorbe une quantité maximale d'absorbat évaporé dans l'évaporateur 100.

Le débit des moyens de pompage 50, 80 dépend des volumes des zones 21, 22, 23, 24 du boîtier 10. De préférence, les zones sont de volumes identiques.

Selon un premier mode de réalisation, le premier et/ou le deuxième moyen de pompage 50,80 comprend des micro-pompes mécaniques comprenant de préférence un dispositif anti-retour.

Selon un autre mode de réalisation, le premier et/ou le deuxième moyen de pompage 50, 80 comprend un canal à écoulement électro-osmotique. Un champ électrique est créé au niveau d'une partie du conduit 140 reliant le générateur 300 à l'absorbeur 400, parallèle à cette partie du conduit 140. Par exemple, un solénoïde est disposé autour d'une partie du conduit 140 créant un champ électrique parallèle aux parois de cette partie de conduit 140.

Lorsque la solution liquide absorbat/absorbant s'écoule au travers du conduit 140 reliant le générateur 300 à l'absorbeur 400, les parois du conduit 140 en contact avec la solution liquide acquièrent spontanément une charge électrique. Les ions positifs présents dans la solution liquide sont attirés par la paroi chargée négativement ; les ions négatifs de la solution liquide sont repoussés. Deux sous-couches de quelques nanomètres apparaissent alors. Quand on applique un champ électrique parallèlement
aux parois, la couche formée par les ions négatifs se met en mouvement entraînant en blocs le reste de la solution liquide restée globalement neutre.

5 De façon similaire, on crée un champ électrique au niveau d’une partie du conduit 120 reliant le générateur 300 à l’évaporateur 100, parallèle à cette partie de conduit 120, de sorte à créer un champ électrique parallèle aux parois de cette partie de conduit 120.

10 Le dispositif à échanges thermiques 3 peut comprendre également, de façon connue de l’homme du métier, un ensemble de moyens de contrôle et capteurs (non représentés).

15 Le boîtier 10 forme ainsi un ensemble compact peu encombrant. Les autres éléments du dispositif à échanges thermiques 3, à savoir les moyens de pompage 50,80, le condenseur 200, le dispositif de chauffage 60, le dispositif de refroidissement 65, le détenteur 40 peuvent être disposés à quelque distance que ce soit du boîtier 10, loin ou proche selon les possibilités de l’appareil dans lequel le dispositif à échanges thermiques 3 doit être intégré. Les dimensions et la forme du boîtier 10 sont tout à fait adaptables en fonction de l’élément 500 que l’on souhaite refroidir et en fonction de l’appareil dans lequel le dispositif à échanges thermiques 3 doit être intégré. Notamment, les boîtiers 10 de petites tailles permettent l’intégration d’un tel dispositif de refroidissement dans de petits appareils (imprimantes, ordinateurs). Ce dispositif de refroidissement 3 est particulièrement adapté au refroidissement de composants électroniques (processeur, etc.), mais pas uniquement.
Le dispositif à échanges thermiques 3 pouvant être bougé, incliné, retourné sans que son fonctionnement n’en pâtisse, peut facilement être intégré dans des appareils portables ou embarqués (navires, avions, etc.).

Le dispositif à échanges thermiques 3 comprend un boîtier particulièrement compact et un ensemble de conduits très limités, ce qui réduit au maximum les pertes de chaleur.

La figure 4 montre un dispositif à échanges thermiques 4 selon un deuxième mode de réalisation de l’invention.

Le dispositif à réfrigération 4 comprend le dispositif à réfrigération 3 de la figure 3 comprenant un dispositif de ionisation 350 au niveau du générateur de sorte à accélérer la vitesse de l’absorbat pur évaporé vers le condenseur 200.

Le dispositif de ionisation 350 comprend une première grille de polarisation 351 disposée au dessus de la membrane 20 dans la deuxième zone 22. Une deuxième grille de polarisation 352 est disposée dans la deuxième zone 22 au niveau de la paroi du boîtier 10 opposée à la membrane 20, c'est-à-dire à proximité de la première ouverture 11. La deuxième grille 352 est de préférence disposée parallèlement à la première 351. Un solénoïde ou bobinage 353 est disposée autour du boîtier 10 au niveau de la deuxième zone 22 de sorte à créer un champ magnétique perpendiculaire aux grilles 351, 352.

Les grilles de polarisation permettent de ioniser les particules d’absorbat évaporées. Les particules d’absorbat
chargées sont entraînées par la présence du champ magnétique vers la première ouverture 11.

Le dispositif de ionisation 350 permet d’accélérer l’évacuation de l’absorbant évaporé vers le condenseur 200. Il permet également d’entraîner l’absorbant évaporé vers le condenseur 200 lorsque le boîtier 10 est renversé ou incliné ou lorsqu’il n’est pas soumis aux effets de la pesanteur.

La figure 5 montre un dispositif à échanges thermiques 5 selon un mode de réalisation de l’invention produisant également un courant continu.

Le dispositif à réfrigération 5 comprend le dispositif à réfrigération 3 de la figure 3 ainsi qu’un dispositif thermoélectrique 610 générateur de courant continu.

La face chaude 612 du dispositif thermoélectrique 610 est disposée au niveau de la surface de contact 18 du boîtier 10, la face froide 611 au niveau de l’élément à refroidir 500. En raison de l’écart de température qui existe entre l’évaporateur 100 et la source chaude à refroidir 500, le dispositif thermoélectrique 610 génère un courant continu.

Ce courant peut être utilisé en interne dans le dispositif à échanges thermiques 5 ou dans l’appareil dans lequel le dispositif 5 est placé (moyen de pompage, ventilateur, etc.).

La surface de la face chaude 612 du dispositif thermoélectrique 610 sont substantiellement identique à la
surface de contact 18 du boîtier 10, afin d’assurer une production de courant maximale.

Les figures 6 et 7 montrent un dispositif à échanges thermiques 5 réversible selon un autre mode de réalisation de l’invention. La figure 6 montre le dispositif selon un premier mode de fonctionnement, la figure 7 selon un deuxième mode de fonctionnement.

Le dispositif à échanges thermiques 5 comprend un dispositif à échanges thermiques 3 présenté à la figure 3 auquel ont été ajoutés des circuits de circulation de solution liquide absorbant/absorbant ainsi qu’un circuit de circulation de l’absorbant pur.

Le boîtier 10 comprend une septième ouverture 17 prévue au niveau de la quatrième zone 24, ainsi qu’une huitième ouverture 18 au niveau de la deuxième zone 22.

Un conduit 110b connecté de façon étanche à la septième ouverture 17 permet la circulation de la vapeur d’absorbant de la quatrième zone 24 vers un condenseur 200b. De façon similaire, un conduit 120b connecté de façon étanche à la huitième ouverture 18 permet la circulation de l’absorbant sous forme liquide du condenseur 200b vers la deuxième zone 22.

Un détenteur 40b est disposé au niveau du conduit 120b entre le condenseur 200b et la deuxième zone 22. De préférence, un troisième moyen de pompage 50b peut également être placé au niveau du conduit 120b entre le condenseur 200b et le détenteur 40b. Une valve anti-retour
95b peut être disposée au niveau de la huitième ouverture 18.

De préférence, le condenseur 200b est refroidi à l'aide d'un échangeur thermique.

Des électrovannes 760, 770 sont placées sur les conduits 120b et 110b juste au niveau de la huitième et septième ouverture 18, 17.

De façon similaire, des électrovannes 740, 750 sont placées sur les conduits 120 et 110 juste au niveau de la deuxième et première ouverture 12, 11.

Un conduit 140b est connecté au conduit 130 d'une part entre le dispositif de chauffage 60 et la cinquième ouverture 15 et d'autre part entre le dispositif de chauffage 60 et la quatrième ouverture 14. Une électrovanne 700, 710 est disposée au niveau de chaque connexion entre le conduit 140b et le conduit 130. De préférence, un quatrième moyen de pompage 80b et/ou un deuxième dispositif de refroidissement 65b, est disposé au niveau du conduit 140b.

Un conduit 130b connecté au conduit 140 d'une part entre le deuxième moyen de pompage 80 et la troisième ouverture 13 et d'autre part entre le dispositif de refroidissement 65 et la sixième ouverture 16. Une électrovanne 720, 730 est disposée au niveau de chaque connexion entre le conduit 140 et le conduit 130b. De préférence, un deuxième dispositif de chauffage 60b est disposé au niveau du conduit 130b.
Le troisième et/ou quatrième moyen de pompage 50b, 80b peut comprendre une micro-pompe anti-retour ou une pompe à canal électro-osmotique.

5 Le boîtier 10 comprend une deuxième surface de contact 18b calorifère disposée au niveau de la deuxième zone 22.

Le fonctionnement du dispositif à échanges thermiques réversible 6 va maintenant être expliqué. La figure 6 représente le dispositif 6 selon un premier mode de fonctionnement.

La première et la deuxième zone 21, 22 du boîtier 10 forment le générateur 100. La solution liquide absorbant/absorbant est maintenue dans la première zone 21.

La troisième zone 23 du boîtier 10 forme l’absorbeur 300, la solution liquide absorbant/absorbant étant maintenue dans cette zone 23. La quatrième zone 24 du boîtier 10 forme l’évaporateur. Une source chaude 500 à refroidir est disposée au niveau de la zone de contact 18 du boîtier 10.

Le courant continu fourni au dispositif thermoélectrique 600 est contrôlé de sorte à ce que la face froide 601 se trouve au niveau de la troisième zone 23 et la face chaude 602 au niveau de la première zone 21.

Les électrovannes 770 et 760 au niveau du conduit 120b sont commandées électriquement de façon connue de l’homme du métier de sorte à fermer le conduit 120b. Les électrovannes 700 et 710 sont commandées électriquement de sorte à ouvrir le conduit 110.
Le condenseur 200, le premier dispositif de pompage 50 et
le détenteur 40 sont actionnés. Le deuxième condenseur
200b, le troisième dispositif de pompage 50b et le
détenteur 40b sont désactivés. L’absorbat pur peut être
ainsi pompé par le premier dispositif de pompage 50 et
s’écouler de la deuxième zone 22 vers la quatrième zone 24.

Les électrovannes 720 et 730 sont commandées électriquement
de sorte à fermer le conduit 130b et à laisser ouvert le
conduit 140. Les électrovannes 700 et 710 sont commandés
electriquement de sorte à fermer le conduit 140b et à
laisser ouvert le conduit 130. Le deuxième dispositif de
pompage 80, le premier dispositif de chauffage 60, le
premier dispositif de refroidissement 65 sont actionnés ;
le quatrième dispositif de pompage 80b, le deuxième
dispositif de refroidissement 65b, le deuxième dispositif
de chauffage 60b sont désactivés.

La solution liquide absorbat/absorbant peut être ainsi
pompé par le deuxième dispositif de pompage 80 et s’écouler
de la première zone 21 vers la quatrième zone 24. De même,
elle peut s’écouler de la quatrième zone 24 vers la
première zone 21 à travers le dispositif de chauffage 60.

Dans ce mode de fonctionnement, le dispositif réversible 6
fonctionne de façon identique au dispositif à échanges
thermiques 3 présenté à la figure 3.

Il est également possible de disposer une source froide 800
to réchauffer au niveau de la deuxième surface de contact
18b. La chaleur émise par le générateur 300 peut également
être utilisée afin de chauffer la source froide 800.
La **figure 7** représente le dispositif 6 selon l'autre mode de fonctionnement.

La troisième et la quatrième zone 23, 24 du boîtier 10 forment le générateur 100. La solution liquide absorbant/absorbant est maintenue dans la troisième zone 23.

La première zone 21 du boîtier 10 forme l’absorbeur 300, la solution liquide absorbant/absorbant étant maintenue dans cette zone 21. La deuxième zone 22 du boîtier 10 forme l’évaporateur. Une source chaude 500b à refroidir est disposé au niveau de la deuxième zone de contact 18b du boîtier 10.

Le courant continu fourni au dispositif thermoélectrique 600 est inversé de sorte à ce que la face froide 601 se trouve au niveau de la première zone 21 et la face chaude 602 au niveau de la troisième zone 23.

Les électrovannes 770 et 760 au niveau du conduit 120b sont commandées électriquement de sorte à ouvrir le conduit 120b. Les électrovannes 700 et 710 sont commandées électriquement de sorte à fermer le conduit 110.

Le condenseur 200, le premier dispositif de pompage 50 et le détenteur 40 sont désactivés. Le deuxième condenseur 200b, le troisième dispositif de pompage 50b et le deuxième détenteur 40b sont actionnés. L’absorbant pur peut être ainsi pompé par le troisième dispositif de pompage 50b et s’écouler de la quatrième zone 24 vers la deuxième zone 22.

Les électrovannes 720 et 730 sont commandées électriquement de sorte à ouvrir le conduit 130b et à fermer le conduit
140. Les électrovannes 700 et 710 sont commandés électriquement de sorte à ouvrir le conduit 140b et à fermer le conduit 130. Le deuxième dispositif de pompage 80, le dispositif de refroidissement 65 et le dispositif de chauffage 60 sont désactivés ; le quatrième dispositif de pompage 80b, le deuxième dispositif de refroidissement 65b et le second dispositif de chauffage 60b sont actionnés.

La solution liquide absorbant/absorbant peut être ainsi pompé par le deuxième dispositif de pompage 80b et s'écouler de la quatrième zone 24 vers la première zone 21 à travers le conduit 140b. De même, elle peut s'écouler de la première zone 21 vers la quatrième zone 24 à travers le deuxième dispositif de chauffage 60b.

Il est possible de disposer une source froide 800 à réchauffer au niveau de la première surface de contact 18. La chaleur émise par le générateur 300 peut également être utilisée afin de chauffer la source froide 800.

Le passage d'un mode de fonctionnement à l'autre mode est très facile à contrôler. Il suffit d'inverser le courant de contrôle des électrovannes 700, 710, 720, 730, 740, 750, 760, 770 et le courant d'alimentation du dispositif thermoélectrique 600.

Le boîtier 10 est totalement réversibles, les premières et deuxièmes zones 21 et 22 peuvent former soit le générateur 300 ou soit l'évaporateur 100 et l'absorbeur 400 respectivement. De même, les troisièmes et quatrièmes zones 23 et 24 peuvent former soit l'absorbeur 400 et l'évaporateur 100 respectivement, soit le générateur 300.
La présente invention a été décrite en termes de réalisations spécifiques qui sont une illustration de l'invention et qui ne doivent pas être considérées comme limitatives.
Revendications

1. Dispositif à échanges thermiques comprenant au moins un dispositif thermoélectrique (600) et un dispositif de réfrigération à absorption, le dispositif de réfrigération à absorption comprenant un évaporateur (100) absorbant l’énergie calorifique d’une source chaude (600), au moins un générateur (300) alimenté en énergie calorifique par la face chaude (602) du dispositif thermoélectrique (600) et au moins un absorbant (400), le générateur (300) et l’absorbant (400) contenant une solution liquide absorbant/absorbant, caractérisé en ce qu’il comprend

- un boîtier (10) renfermant le générateur (300), l’absorbant (400), l’évaporateur 100 et le dispositif thermoélectrique (600), le dispositif thermoélectrique (600) séparant le boîtier (10) en deux compartiments, le compartiment en contact avec la face chaude (602) du dispositif thermoélectrique (600) formant le générateur (300), le compartiment en contact avec la face froide (601) du dispositif thermoélectrique (600) formant l’absorbant (400) et l’évaporateur (100),
- dans chaque compartiment du boîtier (10), au moins une membrane imperméable (20,30) aux phases liquides et perméable aux phases gazeuses divisant chaque compartiment en deux zones (21, 22, 23, 24) de manière à maintenir la solution liquide absorbant/absorbant uniquement dans une des zones (21, 23) de chaque compartiment, les zones (21, 23) dans lesquelles est maintenue la solution liquide absorbant/absorbant étant délimitée par le dispositif thermoélectrique (600).
2. Dispositif à échanges thermiques selon la revendication 1 caractérisé en ce que le boîtier (10) comprend une paroi de contact (18,18a) calorifère dont au moins une partie est destinée à être en contact direct avec la source chaude (500), la paroi de contact (18,18a) se trouvant dans le compartiment en contact avec la face froide (601) du dispositif thermoélectrique (600), dans la zone (22,24) ne contenant pas la solution liquide absorbant/absorbant et formant l’évaporateur (100).

3. Dispositif à échanges thermiques selon l’une des revendications précédentes caractérisé en ce que le boîtier (10) comprend, dans chaque compartiment au niveau de la zone (21, 23) dans laquelle est maintenue la solution liquide absorbant/absorbant, au moins une ouverture d’arrivée de solution liquide (13,14,15,16) et au moins une ouverture d’évacuation (13,14,15,16) de solution liquide.

4. Dispositif à échanges thermiques selon la revendication 3 caractérisé en ce qu’il comprend au moins un moyen de pompage (80, 80b) et/ou un dispositif de refroidissement (65, 65b) connecté de façon étanche entre une des ouvertures d’évacuation (13,14,15,16) de solution liquide absorbant/absorbant du compartiment formant le générateur 300 et une des ouvertures d’arrivée (13,14,15,16) de solution liquide de l’autre compartiment.

5. Dispositif à échanges thermiques selon la revendication 3 ou 4 caractérisé en ce qu’il comprend au moins un dispositif de chauffage (60, 60b) connecté de façon étanche entre une des ouvertures d’arrivée (13,14,15,16) de solution liquide dans le compartiment.
formant le générateur 300 et une des ouvertures d'évacuation (13,14,15,16) de solution liquide de l'autre compartiment.

6. Dispositif à échanges thermiques selon l'une des revendications précédentes caractérisé en ce que le boîtier (10) comprend dans chaque compartiment au moins une ouverture d'arrivée (11, 12, 17, 18) et/ou d'évacuation d'absorbat au niveau de la zone (22, 24) dans laquelle n'est pas maintenue la solution liquide absorbat/absorbant.

7. Dispositif à échanges thermiques selon la revendication 6 caractérisé en ce qu'il comprend au moins un condenseur (200, 200b) connecté de façon étanche entre l'ouverture d'évacuation (11, 18) d'absorbat du compartiment formant le générateur 300 et l'ouverture d'arrivée (12, 17) d'absorbat de l'autre compartiment.

8. Dispositif à échanges thermiques selon la revendication 7 caractérisé en ce qu'il comprend au moins un moyen de pompage (50, 50b) connecté de façon étanche entre le condenseur (200, 200b) et l'ouverture d'arrivée (12, 17) d'absorbat de l'autre compartiment.

9. Dispositif selon l'une des revendications 4 à 8 caractérisé en ce que le moyen de pompage (50, 50b, 80, 80b) comprend une pompe à canal électro-osmotique.

10. Dispositif à échanges thermiques selon l'une des revendications précédentes caractérisé en ce que le boîtier (10) est calorifique.
11. Dispositif à échanges thermiques selon l’une des revendications précédentes caractérisé en ce qu’il comprend un dispositif de ionisation (350) disposé du générateur (300) de sorte à forcer l’évacuation de l’absorbat évaporé vers le condenseur (200).

12. Boîtier (10) pour dispositif à échanges thermiques (3, 4, 5, 6) comprenant au moins un dispositif thermoélectrique (600) et un dispositif de réfrigération à absorption, le dispositif de réfrigération à absorption comprenant un évaporateur (100) absorbant l’énergie calorifique d’une source chaude (500), au moins un générateur 300 alimenté par la face chaude (602) du dispositif thermoélectrique (600) en énergie calorifique et au moins un absorbé (400), le générateur (300) et l’absorbé (400) contenant une solution liquide absorbat/absorbant, caractérisé en ce qu’il comprend

- un boîtier (10) renfermant le générateur (300), l’absorbé (400), l’évaporateur (100) et le dispositif thermoélectrique (600), le dispositif thermoélectrique (600) séparant le boîtier (10) en deux compartiments, le compartiment en contact avec la face chaude (602) du dispositif thermoélectrique (600) formant le générateur (300), le compartiment en contact avec la face froide (601) du dispositif thermoélectrique (600) formant l’absorbé (400) et l’évaporateur (100),

- dans chaque compartiment du boîtier (10), au moins une membrane (20,30) imperméable aux phases liquides et perméable aux phases gazeuses divisant chaque compartiment en deux zones (21, 22, 23, 24) de manière à
maintenir la solution liquide absorbant/absorbant uniquement dans une des zones (21, 23) de chaque compartiment, les zones (21, 23) dans lesquelles est maintenue la solution liquide absorbant/absorbant étant délimitée par le dispositif thermoélectrique (600).

13. Boîtier (10) selon la revendication 12 caractérisé en ce qu'il comprend une paroi de contact (18,18a) calorifère dont au moins une partie est destinée à être en contact direct avec la source chaude (500), la paroi de contact (18,18a) se trouvant dans le compartiment en contact avec la face froide (601) du dispositif thermoélectrique (600), dans la zone (22,24) ne contenant pas la solution liquide absorbant/absorbant et formant l'évaporateur (100).

14. Boîtier (10) selon la revendication 12 ou 13 caractérisé en ce qu'il comprend, dans chaque compartiment au niveau de la zone (21, 23) dans laquelle est maintenue la solution liquide absorbant/absorbant, au moins une ouverture d'arrivée de solution liquide (13,14,15,16) et au moins une ouverture d'évacuation (13,14,15,16) de solution liquide

15. Boîtier (10) selon l'une des revendications 12 à 14 caractérisé en ce qu'il comprend dans chaque compartiment au moins une ouverture d'arrivée (11, 12, 17, 18) et/ou d'évacuation d'absorbant au niveau de la zone (22, 24) dans laquelle n'est pas maintenue la solution liquide absorbant/absorbant.

16. Boîtier (10) selon l'une des revendications 12 à 15 caractérisé en ce qu'il est calorifuge.
A. CLASSIFICATION OF SUBJECT MATTER

INV. F25B15/14

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

F25B

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>SUPASUTEEKUL A: "INTEGRATED THERMOELECTRIC-ABSORPTION SYSTEM FOR COOLING"</td>
<td>1-16</td>
</tr>
<tr>
<td></td>
<td>SCIENCE ET TECHNIQUE DU FROID - REFRIGERATION SCIENCE AND TECHNOLOGY,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PARIS, FR, 29 August 2004 (2004-08-29), page COMPLETE, XP000962505</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISSN: 0151-1637, page 2; figure 1</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>JP 03 282167 A (YAZAKI CORP) 12 December 1991 (1991-12-12)</td>
<td>1-16</td>
</tr>
<tr>
<td></td>
<td>abstract</td>
<td></td>
</tr>
<tr>
<td></td>
<td>the whole document</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

A document defining the general state of the art which is not considered to be of particular relevance

E earlier document but published on or after the international filing date

L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the Invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

*" document member of the same patent family

Date of the actual completion of the international search

22 March 2007

Date of mailing of the international search report

29/03/2007

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2 NL, 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Fax: (+31-70) 340-3016

Authorized officer

Léandre, Arnaud
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
| Y | EP 1 128 136 A (SUN MICROSYSTEMS INC [US])
29 August 2001 (2001-08-29)
paragraphs [0012] - [0016]; figure 2 | 11 |
| A | WO 2004/104496 A (WEIMER THOMAS [DE];
HACKNER MICHAEL [DE]; HASSE HANS [DE];
STROH NORBE) 2 December 2004 (2004-12-02)
the whole document | 1-16 |
| A | JP 2004 271078 A (DENSO CORP)
30 September 2004 (2004-09-30)
abstract | 1-11 |
| A | JP 06 313650 A (WATANABE MASAYUKI)
8 November 1994 (1994-11-08)
abstract | 12-16 |
| A | US 2 979 923 A1 (HARRY BURY)
cited in the application
the whole document | |
| A | JP 2000 088424 A (MSC TECHNOLOGIES KK)
31 March 2000 (2000-03-31)
cited in the application
abstract | |
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP 3282167</td>
<td>12-12-1991</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2003062149 A1</td>
<td>03-04-2003</td>
<td>CN 1636124 A</td>
<td>06-07-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1576320 A2</td>
<td>21-09-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005525691 T</td>
<td>25-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 560238 B</td>
<td>01-11-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 03029731 A2</td>
<td>10-04-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005205241 A1</td>
<td>22-09-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003085024 A1</td>
<td>08-05-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003164231 A1</td>
<td>04-09-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004089442 A1</td>
<td>13-05-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005098299 A1</td>
<td>12-05-2005</td>
</tr>
<tr>
<td>EP 1128136</td>
<td>29-08-2001</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>WO 2004104496 A</td>
<td>02-12-2004</td>
<td>BR PI0410442 A</td>
<td>06-06-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1791773 A</td>
<td>21-06-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 10324300 A1</td>
<td>23-12-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1644673 A2</td>
<td>12-04-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2006529022 T</td>
<td>28-12-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006150665 A1</td>
<td>13-07-2006</td>
</tr>
<tr>
<td>JP 2004271078 A</td>
<td>30-09-2004</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>JP 6313650</td>
<td>08-11-1994</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 2979923 A1</td>
<td></td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>JP 2000088424 A</td>
<td>31-03-2000</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>
A. CLASSEMENT DE L'OBJET DE LA DEMANDE

INV. F25B15/14

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)

F25B

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si cela est réalisable, termes de recherche utilisés)

EPO-Internal

C. DOCUMENTS CONSIDERES COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents</th>
<th>no. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>SUPASUTEKUL A: "INTEGRATED THERMOELECTRIC-ABSORPTION SYSTEM FOR COOLING"</td>
<td>1-16</td>
</tr>
<tr>
<td></td>
<td>SCIENCE ET TECHNIQUE DU FROID - REFRIGERATION SCIENCE AND TECHNOLOGY, PARIS, FR, 29 août 2004 (2004-08-29), page COMPLETE, XP000962505</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISSN: 0151-1637 page 2; figure 1</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>JP 03 282167 A (YAZAKI CORP) 12 décembre 1991 (1991-12-12) abrégé</td>
<td>1-16</td>
</tr>
</tbody>
</table>

X Voir la suite du cadre C pour la fin de la liste des documents

X Les documents de familles de brevets sont indiqués en annexe

* Catégories spéciales de documents cités:

- "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- "E" document antérieur, mais publié à la date de dépôt international ou après cette date
- "L" document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- "P" document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée

**"I" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention

**"X" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément

**"Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier

**"S" document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée:

22 mars 2007

Nom et adresse postale de l'administration chargée de la recherche internationale

Office Européen des Brevets, P.B. 5816 Patentlaan 2 NL – 2280 HV Ljusdijk
Tel. (+31-70) 340-3040, Fax. 31 651 eps nl

Date d'expédition du présent rapport de recherche internationale

29/03/2007

Fonctionnaire autorisé

Léandre, Arnaud

Formulée PCT/ISA/210 (deuxième feuille) (avril 2003)
<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents</th>
<th>no. des revendications visées</th>
</tr>
</thead>
</table>
| Y | EP 1 128 136 A (SUN MICROSYSTEMS INC [US])
29 août 2001 (2001-08-29)
alinéas [0012] - [0016]; figure 2 | 11 |
| A | WO 2004/104496 A (WEIMER THOMAS [DE];
HACKNER MICHAEL [DE];
HASSE HANS [DE];
STROH NORBE) 2 décembre 2004 (2004-12-02)
le document en entier | 1-16 |
| A | JP 2004 271078 A (DENSO CORP)
30 septembre 2004 (2004-09-30)
abrégé | 1-11 |
| A | JP 06 313650 A (WATANABE MASAYUKI)
8 novembre 1994 (1994-11-08)
abrégé | 12-16 |
| A | US 2 979 923 A1 (HARRY BURY)
18 avril 1961 (1961-04-18)
cité dans la demande
le document en entier | |
| A | JP 2000 088424 A (MSC TECHNOS KK)
31 mars 2000 (2000-03-31)
cité dans la demande
abrégé | |
<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP 3282167</td>
<td>12-12-1991</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td>US 2003062149 A1</td>
<td>03-04-2003</td>
<td>CN 1636124 A</td>
<td>06-07-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1576320 A2</td>
<td>21-09-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2005525691 T</td>
<td>25-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 560238 B</td>
<td>01-11-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 03029731 A2</td>
<td>10-04-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005205241 A1</td>
<td>22-09-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003085024 A1</td>
<td>08-05-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003164231 A1</td>
<td>04-09-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004089442 A1</td>
<td>13-05-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005098299 A1</td>
<td>12-05-2005</td>
</tr>
<tr>
<td>EP 1128136</td>
<td>29-08-2001</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2004104496 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR PI0410442 A</td>
<td>06-06-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1791773 A</td>
<td>21-06-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 10324300 A1</td>
<td>23-12-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1644673 A2</td>
<td>12-04-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2006529022 T</td>
<td>28-12-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006150665 A1</td>
<td>13-07-2006</td>
</tr>
<tr>
<td>JP 2004271078 A</td>
<td>30-09-2004</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td>JP 6313650</td>
<td>08-11-1994</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td>US 2979923 A1</td>
<td></td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td>JP 2000088424 A</td>
<td>31-03-2000</td>
<td>AUCUN</td>
<td></td>
</tr>
</tbody>
</table>