发明名称
（3-甲基-5-苯基-戊醇）及其制备方法

摘要
本发明涉及（3-甲基-5-苯基-戊醇）及其工艺，并提供了新型催化剂在香料3-甲基-5-苯基-戊醇合成中的应用方法。
1. 一种制备 3-甲基-5-苯基-戊醇的方法，包括以下步骤：
在酸性催化剂影响下苯甲醛与 3-甲基-5-丁烯醇的反应以提供氢化吡喃，和
随后在过氧化金属催化剂的影响下氢化苯基氢化吡喃以提供 3-甲基-5-苯基-戊醇。

2. 如权利要求 1 所述的方法，其特征在于，所述有机酸是硫酸铁。

3. 如权利要求 1 所述的方法，其特征在于，所述过氧化金属催化剂是钯催化剂。

4. 如权利要求 1 所述的方法，其特征在于，所述过氧化金属催化剂是镍催化剂。

5. 如权利要求 4 所述的方法，其特征在于，所述镍催化剂中镍和氧化镍的有效含量为
50-70％，和/或硅藻土含量为 30-50％。

6. 如权利要求 4 所述的方法，其特征在于，所述反应的温度为 100-180℃，和/或所述
反应的压力为 8-50 巴。

7. 如权利要求 5 所述的方法，其特征在于，所述反应的温度为 100-180℃，和/或所述
反应的压力为 8-50 巴。

8. 由上述权利要求中任一项所述的方法制得的 3-甲基-5-苯基-戊醇产品。

9. 如权利要求 8 所述的产品，其特征在于，
所述产品为液体，其色泽为无色至淡黄色；和/或
所述产品中 3-甲基-5-苯基戊醇的含量为 95.00-100.00％；和/或
所述产品的香气为扩散力良好的清新花香和玫瑰精油香；和/或
所述产品的相对密度（20℃/4℃）为 0.9560-0.9640；和/或
所述产品的折光系数为 1.5090-1.5140。

10. 一种香料制剂，其包含有嗅觉可接受含量的如权利要求 8 或 9 所述的产品。

11. 如权利要求 10 所述的香料制剂，其被加入到选自于下组的产品中：香水、古龙水、
花露水、化妆品、个人护理产品、织物护理产品、清洁产品、和空气清新剂。

12. 如权利要求 11 所述的香料制剂，其特征在于，所述清洁产品选自下组：去污剂、洗
碗组合物、洗刷混合物、和窗户清洁剂。

13. 一种通过以嗅觉可接受的量添加如权利要求 8 或 9 所述的产品来改善、增强或改进
香料制剂的方法。
（3-甲基-5-苯基-戊醇）及其制备方法

技术领域
[0001] 本发明涉及化合物（3-甲基-5-苯基-戊醇）及相关工艺，并提供了新型镍催化剂在香料3-甲基-5-苯基-戊醇合成中的应用方法。

背景技术
[0002] 香料工业对于提供新化学品的需求在增长，新化学品给予香料制造者和其他人员创造新的用于香水、古龙水和个人护理产品的香料的能力。本领域技术人员理解分子的化学结构的差异可以如何导致分子的气味、香型和特征的显著差异。这些差异以及新香料的开发中对于发现和使用新化学品的需求的增加容纳香料制造者使用新的化合物来创造新的香料。
[0003] 3-甲基-5-苯基-戊醇是一种常用的玫瑰香气系列香料。由于其具有非同寻常的香气持久性以及其强烈的天然玫瑰香油般的花香，因此，3-甲基-5-苯基-戊醇在高档日用香精、个人护理用品、纺织护理品和家庭护理品中得以广泛应用。目前，全球3-甲基-5-苯基-戊醇的年产量在200吨以上。
[0004] 瑞士专利（专利号：6559323）报道了3-甲基-5-苯基-戊醇的合成方法，由苯甲醛和异戊二烯醇在酸性条件下聚合生成苯基二氢吡喃，将后者氢解即得3-甲基-5-苯基-戊醇。

[0005]

由于钯催化剂的低耐毒性及高昂的价格，使得3-甲基-5-苯基-戊醇的成本在相当长的时间里一直无法下降到一定的程度，从而使得3-甲基-5-苯基-戊醇的使用受到了极大的限制。而镍催化剂作为非贵金属催化剂，具有价格低廉的优点，同时其对起始物料中杂质的容忍性要远高于钯催化剂，但是，一般的镍催化剂还原二氢吡喃环的活性很低，而且选择性不是很理想，因此，开发一种高效的镍催化剂具有相当重要的意义。

[0006] 发明概述
[0007] 本发明提供了（3-甲基-5-苯基-戊醇），其通式为：

[0008]

[0009] 在一种实施方式中，提供了制备3-甲基-5-苯基-戊醇的工艺，包括以下步骤：在酸性催化剂影响下苯甲醛与3-甲基-3-丁烯醇的反应以提供二氢吡喃，和随后在过渡金属
催化剂的影响下氢化苯基二氢吡喃以提供 3- 甲基-5- 苯基- 戊醇。

[0011] 在进一步的实施方式中，提供了一种使用酸性催化剂和过渡金属催化剂按述一般反应方案将苯基 - 二氢吡喃氢化成 3- 甲基 -5- 苯基 - 戊醇的工艺：

[0012]

苯甲酸 3-甲基3-丁烯醇

苯基-二氢吡喃

3-甲基-5-苯基-戊醇

[0013] 在进一步的实施方式中，提供了使用钯催化剂将苯基 - 二氢吡喃氢化成 3- 甲基 -5- 苯基 - 戊醇的工艺，其中反应温度在约 100 到约 180°C 并且反应压力在约 8 到约 50 巴。

[0014] 在进一步的实施方式中，提供了使用镍催化剂将苯基 - 二氢吡喃氢化成 3- 甲基 -5- 苯基 - 戊醇的工艺，其中反应温度在约 100 到约 180°C 并且反应压力在约 8 到约 50 巴。

[0015] 在进一步的实施方式中，该新型催化剂是镍催化剂，其中镍和氧化镍的含量在约 50 到约 70%，硅藻土含量在约 30 到约 50%。

[0016] 发明详述

[0017] 本发明提供了 (3- 甲基 -5- 苯基 - 戊醇)，其通式为：

[0018]

[0019] 在一种实施方式中，提供了制备 3- 甲基 -5- 苯基 - 戊醇的工艺，包括的步骤有，在酸性催化剂影响下苯甲酸与 3- 甲基 -3- 丁烯醇的反应以提供二氢吡喃，和随后在过渡金属催化剂的影响下氢化苯基二氢吡喃以提供 3- 甲基 -5- 苯基 - 戊醇。

[0020] 在另一种实施方式中，提供了一种使用酸性催化剂和过渡金属催化剂按述一般反应方案将苯基 - 二氢吡喃氢化成 3- 甲基 -5- 苯基 - 戊醇的工艺：

[0021]

苯甲酸 3-甲基3-丁烯醇

苯基-二氢吡喃

3-甲基-5-苯基-戊醇

[0022] 所提供的工艺包含相应的芳香醇与相应的高烯丙醇在酸性催化剂的影响下的反应。酸性催化剂可以是全氟化和氢有机磺酸、路易斯酸或布朗斯台德酸获得。为了有效地在生成二氢吡喃时除去水分，需要高沸点的共沸芳香溶剂，如甲苯、二甲苯、乙苯。把所形成的二氢吡喃催化氢化（一种烯烃还原和氢解）生成出所需产品。

[0023] 该工艺还包含通用过渡金属催化剂用作上述过渡金属催化剂的应用。非均相催化剂的示例包括钯、铑、钌、兰尼 (Raney)、铂、和镍 ; 包括碳加载的催化剂如 Pd- 碳、Rh- 碳和
说明书

Ru-碳：无机物质加载的催化剂如Pd-Al₂O₃, Rh-Al₂O₃和Ru-Al₂O₃;氧加载的催化剂如PtO₂;基于金属的催化剂如Pt;基于合金的催化剂如兰金镍;和蛋白质加载的催化剂如Pd。此外,均相催化剂的示例包括威尔金森复合物(Wilkinson complex,RhCl(PPh₃)₃)。就易于反应后分离而言,优选非均相催化剂,并且其中最有效的是钯。在其余催化剂中,优选碳加载的催化剂,最优选Pd-碳。碳加载催化剂中的碳还包括活性炭。

[0024]在另一种实施方式中,提供了使用钯金属催化剂将苯基-二氢吡喃氢化成3-甲基-5-苯基-戊醇的工艺,其中反应温度在约100到约180°C并且反应压力在约8到约50巴。

[0025]本发明还提供了一种新型的镍催化剂,使用它可以大大降低3-甲基-5-苯基-戊醇的成本。由于Ni催化剂对微量杂质的高耐性,因此使得催化剂的使用寿命得到了大幅度的延长。因此,在本发明进一步的实施方式中,使用新型的Ni催化剂,在8-50Bar的压力,100-180°C的温度下还原苯基二氢吡喃,从而得到和贵金属钯催化剂收率相当的3-甲基-5-苯基-戊醇。更重要的是,催化剂的使用寿命得到明显提高,三次重复使用的催化剂活性和选择性没有明显下降,仍然达到了90%的转化率。然而,使用普通贵金属钯催化剂时,三次重复使用的加氢转化率分别为90%,86%和81%。另外,工业上常用的兰尼镍催化剂对于苯基二氢吡喃加氢的转化率为76%,三次重复使用之后的转化率仅仅达到65%。

[0026]在进一步的实施方式中,该新型催化剂是镍催化剂,其中镍和氧化镍的含量在约50-70%,硅藻土含量在约30到约50%。

[0027]在本发明的一些实施方式中,得到的3-甲基-5-苯基-戊醇产品为液体,其色泽为无色至淡黄色,3-甲基-5-苯基-戊醇的含量为95.00-100.00%,其香气为扩散力良好的清新花香和玫瑰精油香,产品的相对密度(20°C/4°C)为0.9560-0.9640,其折光系数为1.5090-1.5140。

[0028]本领域技术人员应当了解在氢化前得到的中间产物可以使用本领域技术人员已知的技术来进一步分离。合适的包括,例如,蒸馏和色谱,如被称为HPLC的高效液相色谱,特别是硅胶色谱,和公知为GC捕集的气相色谱捕集。分离产物并不影响氢化反应。市售产品为消旋异构体的混合物。

[0029]本发明所述化合物的使用可广泛应用于现有的加香产品,包括香水和古龙水的制备、个人护理产品（如肥皂、沐浴露）、头发护理产品、织物护理产品、空气清新剂、和化妆品配制等的加香。本发明还用于清洁剂的加香，例如，但不限于去污剂、洗碗材料、洗刷组合物、窗户清洁剂及类似产品。

[0030]在这些配制品中,本发明的化合物可以单独使用或与其它香料组分、溶剂、助剂及类似物组合使用。可一起使用的其它成分的本质和种类是本领域技术人员已知的。本发明中可以应用于多种类型的日用香精中,唯一的限制在于与所使用的其它成分的兼容性。适宜的日用香精包括但不限于:果味,如杏仁、苹果、樱桃、葡萄、梨子、菠萝、桔子、草莓、覆盆子;麝香、花香,如薰衣草型、玫瑰型、鸢尾型、康乃馨型。其它令人愉快的气味包括;药草香和松树、云杉产生的林地的气味以及其它森林的气味。香料还可以从各种油（例如各种精油),或从植物材料（例如胡椒薄荷、留兰香及类似物)中衍生出来。

[0031]美国专利US Pat. No. 4,534,891中提供了合适香料的列表,其全部内容通过参考文献纳入本文。另一个合适的香料的资料可以从W.A.Poucher编辑、1959年出版的
Perfumes, Cosmetics and Soaps（《香料、化妆品和肥皂》，第二版）中提到。该论著中提供的香料有：阿拉伯树胶、金合欢、素心兰、仙客来、羊齿蕨、栀子、山楂、向日葵、金银花、风信子、茉莉、丁香、百合、木兰、含羞草、水仙、现切干草、桔花、兰花、木樨、甜豆、三叶草、晚香玉、香草、紫罗兰、桂竹香、等。及其它。

【0032】在短语“改善、增强或修饰日用香精配方”中的术语“改善”应当理解为是指提升日用香精的配方到更合意的香质。术语“增强”应当理解为是指使日用香精有更高的效力或赋予日用香精一种改善的香质。术语“修饰”应当理解为是指赋予日用香精香质的改变。

【0033】术语“日用香精配方”、“日用香精组分”和“香水组分”应当理解为具有相同意思，是指一种配方，其目的在于赋予香水、古龙水、花露水、个人产品、织物护理产品及类似物某种香味的香质。本发明中的日用香精配方是一种包含着本发明的化合物的组合物。

【0034】嗅觉有效用量应当理解为是指在香水组合物中单一成分可对其特定的嗅觉香质有贡献的化合物的用量，但香水组合物的嗅觉效果将是每种香水或香原料的效果的总和。因此，本发明的化合物可以用来改变香水组合物的芳香特质，或用以修饰组合物中另一成分所贡献的嗅觉反应。用量的变化依赖于多种因素，包括其它成分、各成分的相对量以及所需要的效果。

【0035】本发明的化合物在香料制剂中的用量从约0.005到约70wt%，优选从约0.005到约50wt%，更优选从约0.5到约25wt%，更优选从约1到约10wt%。本领域技术人员可以使用所需的量来提供所需的香味效果和强度。除了本发明的化合物以外，其它材料也可与日用香精配方联合使用。公知的材料，例如表面活性剂、乳化剂、用于香精微胶囊的聚合物，也可使用而不违背本发明的范围。

【0036】若在日用香精配方中使用时，该原料提供了非常感官的并且自然的玫瑰气息。该香气被白色花特有的花香所加强。该香气配以一种甜香以及合成玫瑰香所不常见的自然清香。该原料还具有令人愉快的香味和如天竺葵般的嗅觉特征，该香气是极为短暂的头香，但仍具有持久的气息使日用香精更合意并明显，且增加了对价值的感受。该原料的香气质量帮助美化和增强最终的香氛效果并改善日用香精中其它原料的表现。

【0037】以下提供的是本发明的具体实施方式。本发明的其它修正对本领域技术人员是显而易见的。这些修正应当理解为在本发明的范围内。除非另有注释，此处所用的所有百分比都是重量百分比，ppm 应当理解为表示百万分率，L 应当理解为升，ml 应当理解为毫升，g 应当理解为克，mol 应当理解为摩尔，mmHg 应当为毫米汞柱（Hg）。在实施例中所用的 IFF 应当理解为是指美国纽约州纽约市的国际香料和香精公司。

具体实施方式
【0038】实施例 I
【0039】（3-甲基-5-苯基-戊醇）工艺
【0040】
[0041] 苯基-二氯吡喃（步骤 1）
[0042] 在设有迪安斯达克阱（Dean Stark • trap）和附加漏斗的 5L 反应器中充入
1kg（9.43mol）苯甲酸、1L 乙基苯和 1g（2.5mmol）硫酸铁。将物料加热至 135-140°C 后加入
0.860kg（10mol）3-甲基 3-丁烯醇，并充分去副产物水（～180mL）。
[0043] 反应用 0.5g（8.3mol）乙酸终止，然后用 500mL 盐水洗涤。分离除去水层，对有机
层进行蒸馏。蒸馏回收乙基苯（100mmHg 下沸点 Bp 为 55°C）和纯度大于 90% 的苯基-二
氯吡喃 1.4kg（3mmHg 下沸点 Bp 为 110°C）。
[0044] 把 400g（2.3mol）二氯吡喃和 5% Pd/C 催化剂（2g）装入 1L 的 Zipper 高压釜。将
高压釜密封，用氮气吹扫后，用氮气加压至 400 psi。将高压釜加热至 135-140°C。当氮气摄
取达到约 4.6mol 时，将高压釜冷却至室温，减压并用氮气吹扫。通过硅藻土过滤除去催化
剂。最终产物通过蒸馏纯化得到 370g 纯度高于 95% 的（3-甲基-5-苯基-戊醇）（1mmHg
下的沸点 Bp 为 135°C）。
[0045] 实施例 II
[0046] 下面举例的香料制剂显示了（3-甲基-5-苯基-戊醇）并提供了一种更合意和明
显的香料制剂。

<table>
<thead>
<tr>
<th>成分</th>
<th>份数</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALD AA Triplial BHT</td>
<td>0.64</td>
</tr>
<tr>
<td>ALD C-10PRG STABILIFF</td>
<td>0.53</td>
</tr>
<tr>
<td>ALD C-11Ulenic BHA</td>
<td>2.13</td>
</tr>
<tr>
<td>ALLYL Heptanoate（庚酸烯丙酯）</td>
<td>1.06</td>
</tr>
<tr>
<td>AMBERIFF TPM 20PCT</td>
<td>1.06</td>
</tr>
<tr>
<td>BENZ SAL</td>
<td>2.13</td>
</tr>
<tr>
<td>CITRONALVA</td>
<td>1.06</td>
</tr>
<tr>
<td>CITRONELLOL COUER</td>
<td>5.32</td>
</tr>
<tr>
<td>CITRUS OIL DIST “PFG” BHT</td>
<td>5.32</td>
</tr>
<tr>
<td>COURMARIN（香豆素）</td>
<td>1.06</td>
</tr>
<tr>
<td>CYCLACET（乙酸三环癸烯酯）</td>
<td>5.32</td>
</tr>
<tr>
<td>DAMASCONE DELTA BHT</td>
<td>0.11</td>
</tr>
<tr>
<td>HEXENYL ACT., CIS-3</td>
<td>0.11</td>
</tr>
<tr>
<td>成分</td>
<td>重量（%）</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>INDOLE</td>
<td>0.21</td>
</tr>
<tr>
<td>INTRELEVEN ALD BHA</td>
<td>1.06</td>
</tr>
<tr>
<td>KHARISMAL</td>
<td>10.64</td>
</tr>
<tr>
<td>LINALOOL SUPER (超级芳樟醇)</td>
<td>1.06</td>
</tr>
<tr>
<td>LINALYL ACET</td>
<td>4.26</td>
</tr>
<tr>
<td>LYRAL BHT</td>
<td>10.64</td>
</tr>
<tr>
<td>MANZANATE (母菊酯)</td>
<td>1.06</td>
</tr>
<tr>
<td>METH IONONE ALPHA</td>
<td>1.06</td>
</tr>
<tr>
<td>METH NONYL ACETALD</td>
<td>2.13</td>
</tr>
<tr>
<td>NEBULONE</td>
<td>10.64</td>
</tr>
<tr>
<td>PHEN ETH ACET</td>
<td>5.32</td>
</tr>
<tr>
<td>PHEN ETH ALC WHITE EXTRA</td>
<td>2.13</td>
</tr>
<tr>
<td>(3-甲基-5-苯基-戊醇)</td>
<td>7.45</td>
</tr>
<tr>
<td>POLYSANTOL</td>
<td>1.06</td>
</tr>
<tr>
<td>ROSE OXIDE PRG TOCO</td>
<td>0.53</td>
</tr>
<tr>
<td>ROSETONE PRG</td>
<td>2.13</td>
</tr>
<tr>
<td>SEVENIFF</td>
<td>7.45</td>
</tr>
<tr>
<td>VERDOX</td>
<td>5.32</td>
</tr>
<tr>
<td>总计</td>
<td>100.00</td>
</tr>
</tbody>
</table>

[0048] 实施例 III

将 400 克苯基二氢吡喃, 2 克 5% Pd/C 催化剂和 100 克甲醇加入 1 升的高压釜中，
缓慢升温至 130°C，充氢气压力达到 50Bar，开始加氢。反应 5 小时时取样，GC 显示苯基二氢
吡喃的转化率达到了 90%。粗品精馏后的 3-甲基-5-苯基-戊醇 346 克 (86% 的收率)。
三次使用后的转化率为 81%。

[0050] 实施例 IV

将 400 克苯基二氢吡喃, 2 克兰尼镍催化剂和 100 克甲醇加入 1 升的高压釜中，缓
慢升温至 130°C，充氢气压力达到 50Bar，开始加氢。反应 5 小时时取样，GC 显示苯基二氢
吡喃的转化率达到了 76%。粗品精馏后的 3- 甲基 -5- 苯基 - 戊醇 286 克（71%的收率）。三次使用后的转化率仅为 65%。

[0052] 实施例 V

[0053] 将 400 克苯基二氢吡喃，2 克新型镍催化剂和 100 克甲醇加入 1 升的高压釜中，缓慢升温至 130℃，充氢气压力达到 50Bar，开始加氢。反应 5 小时后取样，GC 显示苯基二氢吡喃的转化率达到了 91%。粗品精馏后的 3- 甲基 -5- 苯基 - 戊醇 356 克（88%的收率）。三次使用后的转化率为 90%。