发明名称
在晶片流水线环境中通过等离子处理室处理半导体晶片的方法和装置

摘要
本发明提供了一种在晶片流水线系统内进行半导体晶片处理的等离子室。该处理室可以配置成晶片流水线室内的加热模块，用于将半导体晶片表面暴露于处理等离子体中。喷头电极和晶片卡盘组件可以设置在处理室内，用于对半导体晶片进行等离子增强处理。各种类型的气体供应源可以与喷头电极流体连接，以提供形成期望等离子体的气体混合物。气体流量可以通过控制器和一系列气体控制阀进行控制，以将预选定的气体混合物引入到处理室内，形成对半导体晶片表面暴露于其中的等离子体。对于不同的半导体晶片处理操作，例如表面底漆处理和底部抗反射涂层(BARC)沉积，可以配制预选择的气体混合物。
1. 一种实施晶片表面底漆处理的方法，包括如下步骤:
将半导体晶片引入位于晶片流水线系统内模块堆中的等离子处理室内，以便使该半导体晶片暴露于其中的处理等离子体中；
由选择的气体配方生成所述处理等离子体，用于将所述半导体晶片表面暴露于其中，其中所述气体配方包括氮，并包括0.5％-5％浓度范围内的甲烷和0.5％-5％浓度范围内的氢气；以及
将所述处理等离子体接触所述半导体晶片表面，以进行晶片表面底漆处理，其中所述晶片表面被热处理和/或化学处理以去除水分和保证疏水表面。

2. 根据权利要求1所述的方法，其中所选择的气体配方包括98％氮、1％甲烷和1％氢。

3. 根据权利要求1所述的方法，还包括加热所述晶片到130-150℃。

4. 一种进行底部抗反射涂层（BARC）沉积的方法，包括如下步骤:
将半导体晶片引入位于晶片流水线系统内模块堆中的等离子处理室内，该晶片流水线系统被配置成进行等离子增强化学气相沉积；
将半导体晶片加热到预定温度；
形成处理等离子体，使底部抗反射涂层（BARC）配方的气体离子化成为待引入到所述等离子处理室内的等离子，其中所述BARC气体配方包括25-75％乙炔（C₂H₂）、0-50％丙二烯（CH₂CCH₂）和25-75％二氧化碳（CO₂）；以及
将放置在所述等离子处理室内的半导体晶片暴露于所述处理等离子体BARC配方，以在所述半导体晶片上沉积抗反射涂层，其中所述BARC抗反射涂层表面被热处理和/或化学处理以去除水分和保证疏水表面。

5. 根据权利要求4所述的方法，其中所述BARC配方提供了一种有机BARC膜，所述膜具有可系统编程的光学常量特征，以形成高区域均匀度。

6. 根据权利要求4所述的方法，还包括:
在沉积所述抗反射涂层之后，移出所述半导体晶片；和
进行沉积室清洗步骤。

7. 根据权利要求 6 所述的方法，其中所述沉积室清洗步骤包括：应用氧等离子来从室内清除沉积物。

8. 根据权利要求 4 所述的方法，其中所述沉积的抗反射涂层包括具有合适的多阶梯式光学常量的膜。

9. 根据权利要求 4 所述的方法，其中所述沉积的抗反射涂层包括具有适当的分级光学常量的膜。

10. 一种具有用于进行半导体晶片处理的等离子室的晶片流水线系统，包括：
    盒端接口部分；
    扫描仪接口部分；和
    处理部分，其中所述处理部分包括：
    用于将抗蚀剂涂料涂覆在晶片上的处理模块堆，和
    配置在该晶片流水线系统内的处理室，用于将半导体晶片表面暴露于处理等离子体中；
    设置在所述处理室内的喷头电极和晶片卡盘组件，用于对所述半导体晶片进行等离子增强处理；和
    多个气体供应源，它们与所述处理室内的喷头电极流体连通，通过控制器和一系列气体控制阀调节它们，以提供预选定的气体混合物，其中所述气体混合物通过喷头电极生成所述使半导体晶片表面暴露于其中的处理等离子体。

11. 根据权利要求 10 所述的等离子室，其中所述预选定的气体混合物用于晶片表面底漆处理，其中所述表面底漆处理包括改变衬底表面的特性使其成为疏水表面。

12. 根据权利要求 10 所述的等离子室，其中所述预选定的气体混合物用于底部抗反射涂层（BARC）沉积，用于在对晶片涂覆抗蚀剂涂料之前在晶片表面上形成抗反射涂层。
在晶片流水线环境中通过等离子处理室处理半导体晶片的方法和装置

技术领域

本发明一般地涉及半导体生产工艺过程中的等离子处理。更具体地，本发明涉及在光刻晶片流水线内使用等离子处理室的薄膜材料沉积和表面底漆处理（surface prime treatment）。

背景技术

当前，半导体集成电路生产中所用的许多光刻集群系统都包括集成晶片流水线（integrated wafer track）和光刻或步进系统。晶片流水线系统内的各种模块执行某些特定功能，包括使用称之为光刻胶或抗蚀剂的光敏膜涂覆底下的半导体晶片衬底。涂有抗蚀剂的晶片随后可以输送到毗邻的步进系统，进行亚微米线宽的图案曝光，接着再返回晶片流水线系统，将曝光图案进行显影。已观察到衬底表面上水分的存在不利地影响沉积抗蚀剂膜的粘附品质。而且，当在光刻工艺过程中将涂有抗蚀剂的晶片输送到步进机，进行图案曝光时，其它问题继续存在于该工艺步骤期间，例如由从底下衬底传回穿过膜的光反射造成的光学干涉。可以通过在晶片处理过程中应用某些有利的薄膜或涂层来部分解决这些问题。

为了增加光刻膜对半导体晶片衬底的粘附，可以将衬底表面暴露，使用例如六甲基二硅氮烷（HMDS）的表面底漆（surface primer）对其进行疏水处理。衬底表面的 HMDS 处理意在增加抗蚀剂膜与晶片表面之间的粘附。在称之为蒸气底漆（VP）表面处理的工艺过程中，经常将 HMDS 作为蒸气与例如氮的气态试剂一起供入处理室内。HMDS 的 VP 已长期用于调节并化学处理晶片，以提供疏水表面。HMDS 可以以液化状态保存，并装在位于远处的罐内，该罐与处理室液体流通。可以将一鼓泡器连接到该罐，它将氮气或其它载气供给 HMDS 液体。这样 HMDS 液体蒸发，并与载气混合一同通过选定的管道供到 VP 处理室，这些管道通过流量计和阀
组件来调节。处理室内的半导体晶片在暴露于引入的 HMDS 蒸气之前，可以先将其加热到预定温度，例如 130℃。在 VP 表面处理后，最后可以将处理室排气。

HMDS 的沸点是 125℃，它是化学结构为 Si(CH₃)_3-NH-Si(CH₃)_3 的仲胺。它与亲水表面反应，主要是与氧化物表面上的硅烷醇基团(Si-O-H)反应，从而将硅烷醇基团酯化形成疏水的三甲基二硅氧烷-Si-O-Si(CH₃)_3。甲硅烷胺生成作为该反应的副产物。HMDS 和其它有效的 VP 化学试剂的使用所带来的有关健康危害已有文件证明，并且一般被承认。然而，由于性能优于其它替代化学试剂，HMDS 仍持续作为在自动晶片流水线中的优选 VP 剂，而它属于当前安全和健康标准所认同的有毒物质。

虽然在今天几乎所有的晶片流水线中都采用 HMDS 表面底漆处理，但是它存在若干严重的缺陷。例如，HMDS 是高度有毒物质，在其化学处理和废料处罩中要求特殊的工序和预防措施。HMDS 的输送以及控制它与晶片表面的相互反应方面可能也存在问题。例如 HMDS 之类的质子受体一般对深 UV 光刻有害。深 UV 光刻胶经常采用酸催化或化学增幅来提高量子效率。质子受体，特别是氨、胺和取代胺，通过局部（主要在光刻胶膜表面处）使催化剂失效，‘毒害’深 UV 光刻胶，这可能部分影响或完全抑制图案显影。最后，随时间推移微量飘散的 HMDS 可能涂覆步进机透镜，从而损害了它的可操作性。因而，从晶片流水线系统中排除 HMDS 是期望的，并将同时消除在晶片表面的蒸气底漆处理过程中前面提到的危害和性能限制。

半导体工艺还包括表面底漆处理和光刻胶涂覆过程之后的光成像工艺。这些光刻工艺发生在步进机系统内，通常包括将光投射到光刻胶表面上，以生成成像图案。接着可以有选择地去除用于选定的不曝光区域的光刻胶，如果希望，接收其它的物质。但是已观察到光可以传播通过光刻胶膜，并从衬底表面反射回通过光刻胶。这种反射光可能干扰其它传播通过光刻胶的光波，并可能降低待转印图像的品质和精确性。因此，光刻胶的特定区域可能曝光不均匀，这可能影响它在随后高选择性处理步骤过程中的去除。此外，从衬底表面反射的光可能散射，而使得光刻胶的未计划部
分也不利地曝光，这也损害了图案显影的准确性。已观察到在图案曝光过程中从该光刻胶膜/晶片表面界面反射的光化学辐射明显劣化了亚微米图案曝光结果。波长越短，紫外反射率一般增加；随着持续地向更细集成电路线宽尺寸的发展，曝光波长从 248 nm 降到 193 nm 再到 157 nm，这已愈来愈成为问题。

可以通过抗反射涂层来控制在光成像工艺过程中与反射光有关的某些问题。抗反射涂层吸收各种波长的辐射，并且通常用作在衬底表面与光刻胶之间的层。这些涂层抑制反射光穿过光刻胶，否则的话这些反射光会影响成像工艺。例如，普遍使用各种底部抗反射涂层（BARC）来吸收在光成像操作过程中从衬底表面反射的辐射。通常通过有机膜旋转浇铸或无机膜等离子增强化学气相沉积（PECVD）来进行 BARC 沉积。有机 BARC 旋涂膜往往是较贵的材料，并且可能在它的涂覆过程中难以控制。这些膜一般需要低粘度液体，而这种液体不可能全部涂覆到所有衬底表面上。而且，这些和其它可利用的有机旋涂处理可能难以充分地覆盖具有基本上波状外形拓扑（contoured topography）的衬底表面。同时，PECVD BARC 膜往往提供比旋涂选择远远更好的亚微米线宽。但是，这些使用较昂贵的单独工具沉积的无机 PECVD BARC 膜经常在膜沉积之后需要用氧来进行进一步等离子处理，以防止对光刻胶的有害影响。

因此，需要一种更环保的、全面的解决方案来进行表面底漆处理和 BARC 沉积。

发明内容

本发明提供了在晶片流水线（wafer track）环境中用等离子处理室进行半导体处理的方法和装置。本方法的各个方面可以单独地或共同地通过利用集成等离子处理模块来改进晶片流水线性能和方便性，从而提高了它的价值。

本发明的一个目的是提供在晶片流水线系统内的等离子处理室，用于促进衬底表面反应。在本发明的优选实施方案中，处理室被选择来接收表面底漆等离子体。等离子体可以进入该室内，进行各种处理来改进衬底表
面与随后沉积在其上的光刻胶涂层之间的粘附特性。这些等离子处理室提供了晶片表面底漆替换物，它们可以代替昂贵且有害的HMDS蒸汽底漆模块，以形成疏水衬底表面。本发明所提供的某些优点包括在疏水晶片表面处理过程中从晶片流水线环境中消除了HMDS。这里用于晶片表面底漆处理的一个可选工艺配方包括由氧和较低浓度的甲烷和氢组成的气体组合物形成的等离子体。

本发明的另一方面提供了使用等离子处理室用于改进BARC沉积的方法和装置。这里所述的有机BARC物质等离子增强化学气相沉积（PECVD）可以代替晶片流水线系统普遍使用的旋涂BARC工艺模块。根据本发明提供的配方和工艺，还可以消除附加的后沉积步骤，例如硬烘烤和氧等离子处理，这些通常是无机BARC物质所需要的。用于有机BARC沉积的优选工艺气体配方可以包括由乙块、丙二烯和二氧化碳组成的组合物。通过常规的物质流量控制器，可以可控地将这些和其它选择的气体引入到这里的等离子处理室内，以生成具有用户可定制（customized dial-in）抗反射性质的涂层。根据期望的特性和要求，可以单独或与其它晶片加工处理组合来涂覆这种共形涂层。

根据本发明另一方面提供的等离子体处理配方可以将各种对环境友好的气体物质供入普通的晶片流水线等离子室内，以给晶片衬底表面上底漆和/或沉积抗反射涂层。等离子底漆处理和抗反射涂层工艺可以在这里所述的同一处理模块内进行，并可集成到晶片流水线系统内的热处理堆中。利用常规的物质流量控制器，各种具有预定化学比的气态化学试剂组可以方便地输送到等离子处理室中。表面底漆配方可以在这里制得，并引入等离子室内，用于半导体晶片的表面处理。在同一等离子室内，可以配制另一组用于BARC沉积或其它涂层的气体并将其引入，而无需移动半导体晶片到另一晶片流水线模块中。这些节约空间、省时的等离子处理模块可以以更少的成本集成到晶片流水线环境中，并能够支持多晶片处理功能。

当结合下面的描述和附图考虑时，本发明的其它目的和优点将被进一步认识和理解。虽然下面的描述可能包含描述本发明特定实施方案的具体细节，但不应视为是对本发明范围的限制，而只是优选实施方案的举例。
对于本发明的每一方面，如这里所建议的，许多变化对本领域技术人员都是可能的。在本发明的范围内，不脱离本发明的精神，可以进行各种变化和修改。

附图说明

本说明书中所包括的附图图示了本发明的优点和特征。应该理解到，图中相近或类似的标号和标记可能表示本发明相同或类似的特征。还应该注意，这里提供的附图没有必要按比例绘制。

图 1 是晶片流水线系统布局的总图示。

图 2 是等离子处理室的简化截图视图。该处理室可以根据本发明的各方面被配置用来表面底漆处理晶片衬底表面和等离子沉积抗反射涂层和/或其它处理物质。

图 3 和 4 描述了根据本发明另一方面提供的等离子处理方法。

具体实施方式

这里，本发明可用于半导体处理设备，例如图 1 中所示的一般晶片流水线系统。该晶片流水线系统 10 可以基本包括 3 部分：盒端接口部分、扫描仪接口部分和处理部分。盒端接口部分包括将晶片从存放它们的盒中转移到流水线系统 10，并且相反在处理后将晶片从流水线系统转移回盒中的装置。扫描仪接口部分可以视为是另一过渡区，用来盛放在流水线系统 10 与光刻装置之间转移晶片的设备。同时，晶片流水线的处理部分基本包括晶片处理模块堆，例如抗蚀剂涂覆旋转模块、焙烤/冷激模块和抗蚀剂显影旋转模块。如图 1 系统布局所示的，晶片流水线内各种处理堆可以有组织地布置或以最佳配置来布置，以便实现某些优点和提高晶片处理效率。例如，两个或更多个处理站或“室”可以配置在处理部分内，该处理部分具有选来用于抗蚀剂涂覆（COT）和显影工艺（DEV）的处理模块堆。还包括包括热模块（THERM）堆，用于加热和冷却具有例如焙烤/冷激板的热交换装置的晶片。如图 1 所示的处理站可以包括一对光刻胶涂覆部分（COT）或用于将抗蚀剂涂料涂覆在晶片上的处理模块堆，和一对具有将
图案化的涂有抗蚀剂的晶片进行显影的模块的显影部分（DEV）。使用一系列机器臂或其它晶片处理装置，根据所期望的程序或指令集按预定的处理顺序，可以在流水线系统 10 内处理站之间运送晶片。

半导体晶片处理工艺包括高度组织化的工序集。起初，可以将晶片从存放在本地盒端部分的一个或多个盒送入晶片流水线中。如图 1 的俯视平面图所示的，一系列晶片盒 12 可以排列成一组支撑在盒安装桌子上的 4 个分开的柱。晶片搬运机器手可以进入期望的盒中，以响应从控制器（未示出）接收到的命令而将晶片转移到和转移出在晶片流水线系统内所选定的处理模块。在晶片衬底上形成光刻胶膜层之前，首先可以将晶片转移到涂底漆模块，其中可以对其进行加热/或化学处理以去除水分和保证疏水表面。接着利用例如冷激板的热设备冷却晶片，并将其运送到涂覆单元，其中光刻胶聚合物被均匀地分布在晶片表面上。随后，将涂有光刻胶的晶片转移到加热单元或烘烤板上，以加热并使光刻胶聚合物转化为稳定膜。一旦完成加热步骤，可以冷却处理过的晶片，并且或者将其运送到盒中进行存放，或者，在许多情况下将其直接通过步进机或扫描仪接口转移到邻近的步进机装置中。接着，在步进机装置内通过适当的光刻技术将晶片上的光刻胶涂层或膜曝光成电路图案。在曝光成稳定膜之后，可以将晶片送回流水线系统 10，并在烘烤模块中进行加热，以将电路图案固定在膜上。接着可以在冷激模块中冷却晶片，并将其转移到显影模块。在显影模块中，在膜上施加溶液而使部分膜显影，随后将清洗溶液施加到晶片上，以去除晶片表面上的显影剂溶液。然后可以在烘烤模块中热处理晶片，在冷激模块中进行冷却，接着将其送回盒 12 中存放。这些步骤的变量和它们的操作顺序都可以修改，以实现所期望的半导体晶片处理。

根据本发明提供的等离子处理室可以集成到晶片流水线系统内。图 2 描述了可以安装在晶片流水线系统内模块堆中的等离子处理室。该室可以被选择来执行单个或多个功能，例如晶片表面底漆处理和/或膜沉积，包括底部抗反射涂层（BARC）。根据本发明的这方面，通过将选定的气体配方暴露于高频放电，可以在本地或远程产生离子化气体。然后，这些离子可以与曝光的表面区域进行化学反应，以沉积薄材料层，或通过这里进一
步描述的疏水表面处理而改变衬底表面的特性。

等离子辅助或等离子增强处理是用于包括蚀刻和薄膜沉积的各种应用领域所具有的技术。等离子增强化学气相沉积（PECVD）经常被用来形成沉积电介质、铝、铜和其它材料的薄膜。等离子增强工艺中所用的等离子体可以远程地生成或在本地生成。远程生成的等离子体是通过放置在处理反应器外的等离子体生成设备产生的。所得的等离子体被导入处理室内，并与其中的半导体晶片相互作用，用于各种所期望的制备或表面处理工艺。但是，本地生成的等离子体是通过在处理室内或附近的近处等离子体生成带电电极接触合适的处理气体而产生的。常规用于蚀刻和沉积的等离子体处理反应器通常应用13.56 MHz 等离子体、2.5 GHz 远程等离子体或这些和其它在高频下生成的等离子体的组合。在配置成本地等离子体生成的反应器中，等离子体生成射频功率源可以电连接到称之为晶片基座或卡盘的导电晶片支撑设备。该射频功率允许卡盘和晶片在贴近晶片表面处产生射频等离子放电。等离子介质与半导体晶片表面相互作用，并促进所期望的制备工艺，例如晶片蚀刻或薄膜沉积。或者，可以将喷头组件放置在晶片和类似尺寸卡盘的平行相对侧，该卡盘位于用于将等离子体生成气体或气体混合物注入处理室内的其它系统中。就相对平行且尺寸接近的卡盘和喷头而言，这种特定的等离子体处理室设计可以称之为平行板结构。根据本发明选择的其它等离子体反应器结构可以包括连接到等离子体生成射频功率源的喷头组件，同时卡盘或反应器壁接地。

如图 2 所示，各种选定的处理气配方可以通过喷头反应器组件引入到等离子体处理室 20 内。喷头分配器 22 可以充当等离子电极，并且可以精确地设计成形成厚度高度均一的沉积膜。喷头中可以形成多个口或孔 24，以分配反应物气体。喷头电极可以如所示地电连接到 400 KHz 和 1300 W 的高频功率源 25。此外，卡盘电极 26 可以放置在喷头电极 22 下方，并接地。从而喷头 22 和卡盘电极 26 共同形成平行板等离子体生成电路，以如这里所述的对选定的气体配方进行离子化。等离子体处理室 20 可以包括各种排气口或真空口 28，以如本领域技术人员已知的抽空室内的气体。根据本发明，可以选择并修改其它本地或远程生成等离子体反应器，以生成
所期望的用于衬底表面和薄层沉积的等离子体。

而且，本发明选用的工艺化学试剂优选是可商购的、易于处理的压缩气体。通过一系列管道和质量流量控制器或阀，可以准确地控制这些进入这里所述的等离子体处理室内的气体的调节和输送。气体源控制面板可以调节各种用于晶片表面底漆处理、用于有机 BARC 沉积、或用于这两者和其它晶片表面处理和加工的气体。使用可以提供用户可定制抗反射性状的配制气体混合物，可以沉积选定的涂层或薄膜。要注意到，这里配置来执行 BARC 沉积方法的本发明的某些实施方案可以包括室清洗步骤，该步骤在膜沉积工序完成，将晶片从沉积室中移出后进行。

可以以各种方式修改和配置这里的等离子体处理室，以进行所期望的衬底表面处理和薄层沉积。某些可选的工艺变量实例可以包括被选择来生成等离子体的各种高频范围，例如 400 KHz、2.0 MHz、13.56 MHz 和其它频率。供给喷嘴组件或其它用来实施本发明的等离子体生成设备的功率也可以选择成提供用于 200 mm 晶片处理室的约 20－1000 W 的输出，或用于 300 mm 晶片室的更高输出功率。类似地，由待处理的晶片尺寸可以确定用于批量或单个晶片处理的喷嘴反应器的直径。对于某些应用，也可能希望在晶片流水线系统的热模块内将热板上的衬底晶片加热到落在各种范围（例如约 100－400℃）内的预选定温度。喷头与晶片之间的距离或间距也可以如希望地选择为约 5－20 mm。这个高度是等离子室设计的重要参数，该参数又改变了室体积和表面与体积比。由此可以调节停留时间，已知该参数强烈地影响到等离子体与晶片表面之间相互作用的程度。而且，可以使半导体晶片衬底接触这里所述的由各种处理气体组合物形成的等离子体。气体组合物或其组分可以引入到等离子体处理室内，并保持在所期望的压力范围中，例如约 1－15 torr。所选定的气体流速还可以选择成获得所期望的约 100－15,000 sccm（对于 200 mm 晶片处理室）的气体混合物。根据所期望的真空度和上述参数，可以改变暴露时间。此外，本发明的某些实施方案可以包括处理室与高真空源的连接以及真空负荷锁定接口（例如带有转移臂的双叠层室负荷锁定）。这种设备的复杂程度可能稍高，并且占据超出晶片流水线系统的更多空间，其可以如美国专利申请
No. 09/223,111（1998 年 12 月 30 日递交，题为 “Apparatus for Processing Wafers”，这里通过引用将其全部内容合并于此）所述的被集成到毗邻的盒端站（CES）区域内。应理解到，用于配置此处等离子体处理室的这些和其它参数可以适当地调节，以用于 300 mm 晶片处理室和其它所期望的应用。

根据本发明这里所用的化学试剂优选是无毒、对环境友好的。如图 2 所示，控制器 27 和一系列阀 23 或其它物质传输设备可以调节各种气体源 21，例如氧气、氦气、甲烷、氢气或其它气体的流量。这些物质可以提供简单、方便的废物处理和处理，不像 HMDS。这里等离子体沉积物质相对不贵，并可轻易地从多种渠道购得。而且，这些物质还具有相对较长的存放寿命，使用质量流量控制器可以将其方便、低廉地输送到处理室。不象分配 HMDS 蒸气的系统那样需要泵或鼓风机。通过控制等离子体成分的化学比，可以选择不同的气态组合物来进行表面处理和/或薄膜沉积。而且，实际上可以提供单组气态化学试剂，用于与表面涂底硅和抗反射涂层的形成相关的所有选定要求。对于本领域的技术人员，宽的可能工艺变量替换范围和化学配方选择范围是显然的，并且包括在公开的范围内。这里的实例仅是用来说明解释本发明的原理，并非意在以任何方式限制其范围和外延。

衬底表面改性

这里所述的本发明一方面提供了一种更环保的 HMDS 蒸气底涂处理的替换方案。对于等离子体表面底涂涂层，本发明可以明显降低健康风险和 HMDS 对化学增幅光刻胶的毒害的可能性。在晶片上形成相对疏水区的重要目的之一是对其表面进行改性，而不会不利地影响在其上形成的光刻胶涂层。在这种表面改性处理过程中，根据本发明可以将等离子体引入到处理室内，以将亲水的表面硅烷醇基团转化为稳定的疏水表面，而不会不利地影响所期望的集成电路膜性质。与硅烷醇基团相关的化学结合能大致如下：（1）-O-H 键大约 5.1 eV（对应于与 243 nm 质子相关的能）；和（2）-Si-O-键大约 5.8 eV。-Si-O 键反常地强（例如甲烷中-C-H 共价键强度大约 4.5 eV），所以硅烷醇中最容易发生化学相互作用的是氢氧键。
根据本发明的一种优选实施方案，在处理室 20 中，晶片表面可以暴露于氮基等离子体中，该处理室 20 集成到晶片流水线系统内。由于与这里所建议的某些方案相关的能量较高，特定衬底温度可能不是关键的。在优选的方案中，晶片处理过程中的晶片温度接近一般用于蒸气底涂的温度，大约 130－150℃，主要将晶片表面预脱水。晶片表面可以（1）在置于等离子体处理室内之前在晶片流水线系统内的热模块中进行加热；（2）短暂地暴露于低能氮等离子体中；以及（3）在其上形成光刻胶涂层之前在冷却板上进行冷却。但是，优选在暴露于氮等离子体之前，在等离子体处理室内的热板上加热晶片。氮等离子体配方可以包括较低浓度的甲烷，约 0.5％－5％，还可以任选地包括较低浓度的氢气，约 0.5％－5％。氮等离子体实现了多种目的，包括产生真空紫外辐射和对晶片表面的轻微轰击。一般而言，氮等离子体往往相对非常稳定。由于各种因素，包括氢的较低原子量，所以对晶片表面的等离子轰击较轻，而且由于二者之间大致匹配的质量，向硅烷醇的氢转移动量往往相对有效。

除了氮之外，可以加入较低浓度的甲烷，以提供高反应性的亚甲基自由基和高反应性的甲基自由基。较低浓度的氢也可以提供大部分发出的真空紫外辐射，并抑制有机聚合物在室壁上的沉积。已知含有低浓度氢的高频氮等离子体主要发射 121.5 nm 下的氢 Lyman α 辐射（由原子氢从第一电子激发态电子迁移到基准电子态所产生的），这对应于 10.22 eV 的光子能。这些光子光子可以离解表面硅烷醇基团。这种能量真空紫外光子还可以高效地与甲烷发生化学相互作用（即光分解），主要生成亚甲基自由基和分子氢：

$$CH_4 + h\nu \rightarrow CH_3 + H_2^*$$

其中 $H_2^*$ 表示激发态的分子氢。

除了光分解反应以外，这种含有甲烷的气态等离子体中的主要非光分解化学反应包括：

$$CH_4 \rightarrow CH_3 + H$$

$$CH_4 \rightarrow CH_2 + H_2^*$$
除了正离子之外（通过电子俘获形成负离子的发生概率可以忽略）。已知
CH₄(Σ)的反应性高到如此程度以致亚甲基自由基可以分子内插入。亚甲基
自由基能够与硅烷醇基团反应（插在氢和氧之间），形成-Si-O-CH₃基团，
从而形成疏水表面基团。而且，甲基自由基（CH₃）能够不均匀地结合不
稳定的-Si-O-表面悬挂键，也形成疏水-Si-O-CH₃表面基团。

根据本发明，对于选定的应用可以配制最佳的等离子体气体组合物，
如可以通过具体设计的实验来确定。某些相关的工艺变量和参数包括如
下：等离子体频率（例如 400 kHz，2.0 MHz，13.56 MHz）、等离子体功
率（例如约 200－2000 瓦）、晶片温度（可以约为 100－400℃，但可以不
是关键的）、工艺气体组合物（包括单组合物或两种或更多种组合物序
列）、工艺气体压力和流速、喷头与晶片的间距、工艺暴露时间。本发明
的优选实施方案可以自由选择包括如下的工艺变量：
晶片温度：
工艺气体：
工艺压力：
工艺气体流速：
喷头与晶片的间距：
等离子体功率：
等离子体暴露时间：

如这里所述的，较低等离子体功率水平对于许多蒸气底漆涂覆已经足够，
并且经常是优选的。

这里所述的基于等离子体表面底漆处理和方法带来了许多优于 HMDS
蒸气底漆处理的优点。这些等离子体配方，例如所述的氨基混合物可以代
替有毒 HMDS 的使用，而 HMDS 需要有危险的化学处理和处置工序。选
择相对无毒、非易燃化学试剂代替它，相对容易处理。而且，已普遍证实
会危害深 UV 光刻胶显影的质子受体化学试剂被不会影响这种显影的化学
试剂取代。还提供了一种可能有助于抑制光刻胶“移动（footing）”的表
面底漆工艺的更稳固的方法。等离子体处理甚至还可能改善 157 nm 抗蚀
剂的粘附，根据前面的指示，否则这种抗蚀剂可能往往仅表现出少量可接
受的粘附。本发明的这些和其它优点明显平衡掉并超出了某些增加硬件复杂度的措施的不利影响，这些措施包括需要等离子体生成反应器和设备，需要提供充分的真空环境，例如可用干的集成式使用点泵浦（IPUP），这些泵小且较便宜。其它附加的与这里等离子体处理室相关的考虑包括需要防止晶片在真空中滑动，这可以通过在装载晶片后，在晶片周边使用能够抬高的销针（pin）来解决。

应该理解到，对于这里的表面底漆处理，可以进行某些其它的实验来获得所期望的结果。例如，关于对集成电路膜性质的潜在影响，在晶片处十分之几 mW/cm²量级的高真空紫外辐射和 10¹⁴ 光子/cm² 左右的集成光子流足以在典型晶体管栅隔离体中引起辐射损害，从而导致严重的平带（flatband）电压平移。在辐照期间升高的衬底温度改善了损害，但是可以仔细地选择这些和其它工艺变量，以避免晶体管栅隔离体平带电压平移和增加的栅泄漏（晶体管栅泄漏是新一代超薄栅隔离体膜在任何情况下都存在的问题）。对于关键的关键变量，可以应用重复多变量设计实验来优化晶片表面底涂处理工艺参数。在评估所期望的工艺参数时，可以选择各种晶片类型。大部分晶片表面底漆处理评估步骤可以利用商购的、具有薄（〜15 nm）热生长氧化物的低电阻率 p⁺晶片来进行，包括（1）水滴润湿角；（2）旋涂法粘附；（3）用于化学的电子能谱法（ESCA），一种对晶片表面进行的分析化学检查；（4）利用 C-V 梅式探针进行 C-V 测量，以寻找可能的平带电压平移；和（5）利用晶片和电学测试的栅泄漏表征。其它技术可以包括利用仅暴露于短波长紫外辐射（无直接的等离子体暴露）的工艺，其可以平行评估。这种工艺通过可透过相关波长的窗将晶片表面暴露于短波长紫外辐射下。最短的波长（例如氯的 123.6 nm 共振辐射线，它接近氢 Lyman α-辐射）可以透过氟化锂窗，中等 UV 波长可以透过氟化钙或氟化镁窗，较长的 UV 波长可以透过非常纯的熔凝硅石窗。晶片表面接触的环境可以是真空、氢或类似于上述等离子体工艺，低压甲烷或甲烷/氢。对于含有甲烷的气态环境（甲烷会吸收辐射），光源可能必须相对靠近晶片表面放置，因为随着与光源的距离增强，光强呈指数级地下降。而且，照射可能需要相当均匀地分配在晶片表
面上。工艺恒定不变的风险包括由于窗的变暗和/或在窗上的沉积物，到达晶片面的 UV 辐射减少。这些和其它设计因素可以与将这里的等离子体处理室集成进晶片流水线中的总目标（可能是主要、甚至可能是压倒性的考虑因素）权衡考虑。

PECVD BARC 模块

根据本发明的另一方面，各种等离子增强化学气相沉积（PECVD）被提供用于底部抗反射涂层（BARC）工艺。这些等离子工艺提供高度共形的涂层，从而改善了临界尺寸（CD）控制。通过控制等离子体组分混合物，本发明可以提供用户可定制的抗反射性质。本发明这方面所提供的优点是能够从广泛可用的、易于处理的无毒气态化学试剂源中定制或设计具有期望的光学常量（例如曝光波长下的折射率、衰减系数）的配方。例如，BARC 膜可以由局部共轭的聚烯结构组成。甚至还可以等离子沉积具有光学常量的膜，该常量设计为进入膜深度的函数。具有适当分级光学常量的膜（或甚至具有合适的多阶梯式光学常量的膜）比具有均一光学常量的膜可以提供改进的抗反射特性。分级光学常量的膜可以通过在沉积膜的同时控制气体组成来沉积出，这可能需要至少两个独立的质量流量受控气体供应源。本发明的一个实施方式包括用于有机 BARC 沉积的优选气体配方，包括约 25－75% 乙炔（C2H2）、0－50% 丙烯（CH2CCH2）和 25－75% 二氧化碳（CO2）。根据本发明，这些组分的其它比例和百分率可以根据特定应用进行选择。

如使用这里所述的其它等离子体处理室 20，有可能开发出可与晶片流水线集成以等离子增强沉积 BARC 膜的装置和方法。本发明甚至更优选的、节约空间的实施方案包括也可以配置成实施如这里所述的晶片表面底漆处理和/或 BARC 沉积的等离子室。该等离子室可以占据晶片流水线内部模块堆中大约 6 英寸的区域。这样，方便的、改进的等离子体处理模块可以代替专用于进行旋涂 BARC 的模块或单独的设备，结合到现有的晶片流水线系统内，以进一步提供蒸气底漆晶片表面处理。在 BARC 沉积单独可以消除对先前晶片表面底漆处理的需要的情况下，多用途室的功能得以保留。本发明可以选择晶片表面底漆处理和/或 BARC PECVD，包括继续选
择将先前选定的芯片表面底漆处理方便地转化更新为包括 BARC PECVD
功能。而且，PECVD BARC 往往比旋涂 BARC 提供了明显更好的线宽定
义。这里等离子增强处理所提供的其它优点还包括消除了如许多当前旋涂
BARC 技术所需要的附加沉积后高温热板焙烤步骤。BARC 沉积的优选方
法可以包括以下步骤：将半导体芯片引入位于晶片流水线环境内模块堆中
的等离子室 20 内；将半导体芯片暴露于等离子体中，以进行晶片处理工
序，例如 BARC 沉积；和随后在热板上加热半导体晶片。每次有机
PECVD BARC 膜沉积之后，可以优选地应用氧等离子体进行沉积室清洗
步骤，以清除沉积室内的沉积物。氧等离子体比无机 BARC 所应用的工艺
（需要氪基沉积室清洗）可以更容易、更低廉地实施。

根据本发明提供的 BARC 等离子沉积室可以沉积具有优异的膜厚和光
学常量均一性的膜。这些要求是 300 mm 晶片涂覆特别要求的，300 mm 晶
片涂覆经常要求优异的喷头设计，以将气态化学试剂前驱体最佳地分配在
晶片表面上，并均匀地施加等离子功率，从而获得高均匀性的区域沉积膜
厚度。BARC 工艺开发可能要求合适的度量工具，例如 n&k Technology,
Inc.（Santa Clara,CA）或 Sopra（Westford,MA）商业生产的光谱椭圆率测
量仪。

本发明的另一方面提供了各种用于在晶片流水线环境内处理半导体晶
片或衬底的方法。如图 3 所示的，通过首先选择例如这里所述的等离子处
理室 20，可以进行晶片处理工序，例如表面底漆处理。处理室可以配置成
放置在晶片流水线处理站或室的热堆内。晶片可以放置在室内，并静置在
位于其中以将晶片加热到所期望的衬底温度或范围的热板上。在加热的同
时或之后也可以排空室。由例如氢的预选定气态物质混合得到的等离子体
可以生成，并且随后引入到处理室内。各种物质输送控制设备和管道可以
被选择来调节气体组合。通过等离子体生成设备，例如处理室内的平行板
喷头电极组件，可以使气体离子化。然后，处理室内的半导体晶片表面可
以暴露于等离子体中，以进行表面底漆处理或其它所期望的表面改性。所
期望的表面处理之后，可以终止气流和/或等离子体流。在将处理过的半导
体晶片或衬底移出之前，处理室可以恢复到正常的大气压力。
图 4 描述了本发明的另一实施方案，它提供了用于沉积 BARC 膜或涂层的方法。如这里所述的，首先可以选择晶片流水线等离子处理室 20 来进行 BARC 沉积。可以在同一室内的热板上加热半导体晶片，以进行 BARC 沉积工艺。接着，可以选用各种气态物质，例如乙炔、丙二烯和二氧化碳，以获得所期望的光学性质。随后，将该气体配方离子化，以形成与处理室内暴露的半导体晶片表面进行反应的有机 BARC 处理等离子体。应该理解到，这里所述的这些和其它方法可以组合和/或替代以达到所期望的结果。

虽然已参照前述说明书描述了本发明，但是这里对优选实施方案的描述和说明并非意味着有限制的意义。应该理解到，本发明的所有方面并不限于这里依据各种条件和变量提到的特定描绘、配置或相对比例。本领域的技术人员参考本公开内容，显然可以对本发明实施方案的形式和细节进行各种修改，以及对本发明进行其它变化。因此，要认识到所附权利要求也涵盖了任何这样的修改、变化或等同物。
晶片流水线等离子室选择

处理等离子体配方

暴露于处理等离子体

图3
选择等离子处理室

将晶片加热到预定温度

形成处理等离子体BARO配方

使晶片在等离子处理室内暴露

图4