

CONFÉDÉRATION SUISSE

OFFICE FÉDÉRAL DE LA PROPRIÉTÉ INTELLECTUELLE

_① CH 674364 **A5**

(51) Int. Cl.5: 309/32 333/16 C 07 D 43/16

43/10

A 01 N A 01 N

Brevet d'invention délivré pour la Suisse et le Liechtenstein Traité sur les brevets, du 22 décembre 1978, entre la Suisse et le Liechtenstein

TASCICULE DU BREVET A5

(21) Numéro de la demande: 1451/87

73 Titulaire(s): Shell Internationale Research Maatschappij B.V., Den Haag (NL)

22) Date de dépôt:

13.04.1987

30 Priorité(s):

14.04.1986 US 851609

(72) Inventeur(s): Pilgram, Kurt Hans Gerhard, Modesto/CA (US)

(24) Brevet délivré le:

31.05.1990

(45) Fascicule du brevet

publié le:

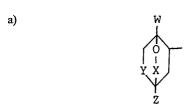
31.05.1990

- Mandataire: Kirker & Cie SA, Genève
- (A) Ethers hétérocycliques utilisés comme herbicides, leur préparation et composition les contenant.
- (57) On décrit des éthers hétérocycliques halogénés ayant une activité herbicide, en particulier des composés de formule

R1-O-CH2-R

où R est un groupe 3-halo-2-thiényle, 5-halo-3,4-dihydro-2H-pyran-6-yle, 2-halo-1-cyclopenten-1-yle ou 2-halo-1cyclohexen-1-yle où halo représente le chlore ou le fluor et R est le résidu hydrocarbyle de certains alcools hétérocycliques oxygénés connus (R¹OH).

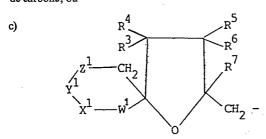
Utilisation comme herbicides et agents de réglage de la croissance de plantes.


REVENDICATIONS

1. Composé de formule I


$$R^1 - O - CH_2 - R$$
 (I) 5

où R est un groupe 3-halo-2-thiényle, 5-halo-3,4-dihydro-2-H-pyran-6-yle, 2-halo-1-cyclopentén-1-yle ou 2-halo-1-cyclohexén-1-yle où halo représente le chlore ou le fluor, et R¹ est le résidu d'un alcool hétérocyclique oxygéné non aromatique R¹OH, R¹ contenant jusqu'à 16 atomes de carbone et comprenant un système cyclique monocyclique, cyclique ponté ou spirocyclique de 5 à 11 atomes de noyau, dont un ou plusieurs sont des atomes d'oxygène et les autres sont des atomes de carbone.


2. Composé selon la revendication 1, caractérisé en ce que \mathbb{R}^1 est un groupe choisi parmi

où W est un groupe méthyle ou éthyle; X est une liaison simple ou $-CH(CH_3)_2-$; Y est une liaison simple ou $-CH_2-$, avec la condition que X et Y ne soient pas chacun une liaison simple; Z est H ou un groupe alcoyle éventuellement substitué contenant 1 à 4 atomes de carbone;

où chaque R² individuellement représente un atome d'hydrogène, un atome d'halogène, un groupe alcoyle, cycloalcoyle ou aryle éventuellement substitué, contenant chacun jusqu'à 6 atomes de carbone, ou deux R² représentent ensemble une portion alcoylène ayant jusqu'à 6 atomes de carbone; R³, R⁴, R⁵ et R⁶ représentent chacun individuellement un atome d'hydrogène, un atome d'halogène choisi parmi le chlore, le fluor et le brome, un groupe alcoyle, alcoxy, alcoylthio ou aryle éventuellement substitué contenant chacun jusqu'à 6 atomes de carbone, ou un de R³ et R⁴ et un de R⁵ et R⁶ représentent ensemble une liaison carbone-carbone ou une portion époxyde; R³ et R³ représentent chacun un atome d'hydrogène ou un groupe alcoyle éventuellement substitué contenant jusqu'à 6 atomes de carbone; ou

où $\overline{R^3}$, R^4 , R^5 , R^6 et R^7 sont chacun individuellement un atome d'hydrogène ou un groupe alcoyle contenant de 1 à 4 atomes de carbone, W^1 est un atome d'oxygène ou $-CH_2-$; X^1 est un atome d'oxygène ou $-CH_2-$; Y^1 est une liaison carbone-carbone ou un atome d'oxygène, $-CH_2-$, $-C_2H_4-$ ou $-CHR^9-$, où R^9 est un groupe alcoxyméthyle contenant de 1 à 4 atomes de carbone dans la portion alcoxy; Z^1 est une liaison carbone-carbone, un atome d'oxygène.

gène, $-CH_2-$ ou $-C_2H_4-$; avec les conditions que deux portions adjacentes parmi W^1 , X^1 , Y^1 et Z^1 ne soient pas simultanément des atomes d'oxygène ou $-C_2H_4-$ et que la somme des atomes de noyau dans W^1 , X^1 , Y^1 et Z^1 soit un nombre entier de 3 à 5.

3. Composé selon la revendication 2, caractérisé en ce que R^1 est un groupe de formule a), dans lequel 1) X est une liaison simple, Y est $-CH_2-$, W est un groupe méthyle et Z est un atome d'hydrogène ou un groupe 1-méthyléthyle et W et Z sont chacun un groupe éthyle, ou 2) X est $-C(CH_3)_2-$, Y est $-CH_2-$ et Z est un atome d'hydrogène;

ou de formule b), où chaque R² indépendamment est un atome d'hydrogène ou un groupe méthyle, ou les deux R² pris ensemble forment un groupe pentaméthylène; R³, R⁴, R⁵, R⁶ et R⁸ sont des atomes d'hydrogène et R⁷ est un atome d'hydrogène ou un groupe méthyle ou éthyle;

ou de formule c), où W^1 est un atome d'oxygène ou $-CH_2-$, X^1 est un atome d'oxygène ou $-CH_2-$, Y^1 est un atome d'oxygène, $-CH_2-$, $-C_2H_4-$ ou $-CHR^9-$, où R^9 est un groupe méthoxyméthyle, Z^1 est un atome d'oxygène ou $-CH_2-$, et la somme des atomes de noyau dans W^1 , X^1 , Y^1 et Z^1 est un nombre entier de 3 à 5.

4. Composé selon la revendication 3, caractérisé en ce que R¹ est un groupe de formule a), où X est une liaison simple; W est un groupe méthyle et Z est un groupe 1-méthyléthyle ou W et Z sont chacun un groupe éthyle;

ou de formule b), où chaque R² est un groupe méthyle, ou les R² pris ensemble forment un groupe pentaméthylène; ou de formule c), où 1) W¹ et Z¹ sont chacun $-CH_2$ – et un de X¹ et Y¹ est $-CH_2$ – et l'autre est un atome d'oxygène, ou 2) W¹ est $-CH_2$ – et X¹ et Z¹ sont chacun un atome d'oxygène et Y¹ est $-C_2H_4$ – .

- 5. Composé selon la revendication 4, caractérisé en ce que \mathbb{R}^1 est un groupe de formule a), où X est une liaison simple, W est un groupe méthyle et Z est un groupe 1-méthyléthyle.
- 6. Composé selon la revendication 4, caractérisé en ce que R¹ est un groupe de formule a), où X est une liaison simple et W et X sont chacun un groupe éthyle.
- 7. Composé selon la revendication 4, caractérisé en ce que R^1 est un groupe de formule b), où les R^2 pris ensemble forment un groupe 40 pentaméthylène et R^7 est un groupe éthyle.
 - 8. Composé selon la revendication 4, caractérisé en ce que R^1 est un groupe de formule c), où W^1 , Y^1 et Z^1 sont $-CH_2$ et X^1 est un atome d'oxygène.
- 9. Composé selon l'une des revendications précédentes, caracté-45 risé en ce que R est un groupe 3-chlorothién-2-yle.
- 10. Procédé pour la préparation d'un composé de formule I selon l'une des revendications 1 à 9, selon lequel on fait réagir un composé de la formule R¹-OH avec un composé de formule X-CH₂R, où R et R¹ sont tels que définis dans l'une quelconque 50 des revendications précédentes et X représente une portion qui part.
 - 11. Composé de formule générale I tel que préparé par le procédé selon la revendication 10.
- 12. Composition herbicide comprenant comme ingrédient actif une quantité efficace du point de vue herbicide d'un composé selon 55 l'une des revendications 1 à 9 et au moins un véhicule inerte et/ou un agent tensio-actif.
- 13. Procédé de lutte contre la croissance de plantes indésirables en un lieu, qui comprend l'application à ce lieu d'une quantité efficace du point de vue herbicide d'un composé selon l'une des revendi-60 cations 1 à 9.

DESCRIPTION

La présente invention concerne de nouveaux éthers hétérocycliques halogénés, leur préparation, leur utilisation comme herbicides et comme agents de réglage de la croissance de plantes et des compositions les contenant. La présente invention fournit des composés nouveaux de formule générale I

$$R^1 - O - CH_2 - R \tag{I}$$

3

où R est un groupe 3-halo-2-thiényle, 5-halo-3,4-dihydro-2H-pyran-5-yle, 2-halo-1-cyclopentén-1-yle ou 2-halo-1-cyclohexén-1-yle, où halo représente le fluor ou le chlore et R¹ est le résidu d'un alcool hétérocyclique oxygéné non aromatique (R¹OH), R¹ contenant jusqu'à 16 atomes de carbone et comprenant un système cyclique monocyclique, cyclique ponté ou spirocyclique de 5 à 11 atomes de noyau, dont un ou plusieurs sont des atomes d'oxygène et les autres sont des atomes de carbone. Les composés sont utiles pour combattre des plantes indésirables ou nuisibles.

Le groupe hétérocyclique oxygéné non aromatique R^1 représente le résidu d'alcools hétérocycliques oxygénés non aromatiques connus. Par exemple, R^1 est un groupe choisi parmi

où W est un groupe méthyle ou éthyle; X est une liaison simple ou $-CH(CH_3)_2-$, Y est une liaison simple ou $-CH_2-$, avec la condition que X et Y ne soient pas chacun une liaison simple; et Z est H ou un groupe alcoyle éventuellement substitué contenant de 1 à 4 atomes de carbone;

où chaque R² individuellement représente un atome d'hydrogène, un atome d'halogène, un groupe alcoyle, cycloalcoyle ou aryle éventuellement substitué, contenant chacun jusqu'à 6 atomes de carbone (chaîne/cycle), ou deux R² représentent ensemble une portion alcoylène ayant jusqu'à 6 atomes de carbone; R³, R⁴, R⁵ et R⁶ représentent chacun individuellement un atome d'hydrogène, un atome d'halogène choisi parmi le fluor, le chlore et le brome, un groupe alcoyle, alcoxy, alcoylthio ou aryle éventuellement substitué ayant jusqu'à 6 atomes de carbone, ou un de R³ et R⁴ et un de R⁵ et R⁶ représentent ensemble une liaison carbone-carbone ou une portion époxyde; R³ et R³ représentent chacun un atome d'hydrogène ou un groupe alcoyle éventuellement substitué ayant jusqu'à 6 atomes de carbone; ou

c)
$$R^{4}$$
 R^{5} R^{6} R^{7} X^{1} X

où R^3 , R^4 , R^5 , R^6 et R^7 sont chacun individuellement un atome d'hydrogène ou un groupe alcoyle contenant de 1 à 4 atomes de carbone, W^1 est un atome d'oxygène ou $-CH_2-$; X^1 est un atome d'oxygène ou $-CH_2-$; Y^1 est une liaison carbone-carbone ou un atome d'oxygène, $-CH_2-$, $-C_2H_4-$ ou $-CHR^9-$ où R^9 est un groupe alcoxyméthyle contenant de 1 à 4 atomes de carbone dans la portion alcoxy; Z est une liaison carbone-carbone, un atome d'oxygène

gène, $-CH_2-$ ou $-C_2H_4-$; avec les conditions que deux portions adjacentes parmi W^1 , X^1 , Y^1 et Z^1 ne soient pas simultanément des atomes d'oxygène ou $-C_2H_4-$ et que la somme des atomes de noyau dans W^1 , X^1 , Y^1 et Z^1 soit un nombre entier de 3 à 5.

Les substituants éventuels dans les formules I, a), b) et c) comprennent un ou plusieurs atomes de chlore, de fluor et de brome.

Des exemples de composés se trouvant dans le cadre général de l'invention comprennent le 2-((3-fluoro-2-thiényl)méthoxy)-1,4-diéthyl-7-oxabicyclo[2.2.1]heptane, le 2-((5-chloro-3,4-dihydro-2H-10 pyran-6-yl)méthoxyméthyl)-2-éthyloxaspiro[4.5]décane, le 2-((2-fluoro-1-cyclohexén-1-yl)méthoxyméthyl)-2-éthyltétrahydrofuranne, le 2-((2-fluoro-1-cyclopentén-1-yl)méthoxyméthyl)-2,5-diméthyltétrahydrofuranne et le 2-((5-fluoro-3,4-dihydro-2H-pyran-6-yl)-méthoxy)-1-méthyl-4-isopropényl-7-oxabicyclo[2.2.1]heptane.

Les composés de formule I peuvent présenter une isomérie géométrique et optique et peuvent être préparés dans des formes d'isomères géométriques et/ou des formes optiquement actives et sous forme de racémates. Les diverses combinaisons isomères optiques et géométriques individuelles des matières de l'invention ont habituellement des propriétés herbicides un peu différentes. La présente invention envisage toutes les formes à activité herbicide résultant d'une synthèse et les mélanges formés intentionnellement.

Les hétérocycles oxygénés non aromatiques préférés fournissant le groupe R^1 comprennent ceux de formule a), dans lesquels 1) X est une liaison simple, Y est $-CH_2-$, W est un groupe méthyle et Z est un atome d'hydrogène ou un groupe 1-méthyléthyle, ou W et Z sont chacun un groupe éthyle ou méthyle, ou 2) X est $-C(CH_3)_2-$, Y est $-CH_2-$ et Z est un atome d'hydrogène. De préférence, X est une liaison simple, Y est $-CH_2-$, W est un groupe méthyle et Z est ou groupe 1-méthyléthyle, ou W et Z sont chacun un groupe éthyle ou méthyle;

ceux de formule b) dans lesquels chaque R² indépendamment est un atome d'hydrogène ou un groupe méthyle, ou les deux R² pris ensemble forment un groupe pentaméthylène; R³, R⁴, R⁵, R⁶ et R³ sont des atomes d'hydrogène et R² est un atome d'hydrogène ou un groupe méthyle ou éthyle; de préférence, chaque R² est un groupe méthyle et R² est un groupe méthyle ou, spécialement, éthyle; et ceux de formule c) dans lesquels W¹ est un atome d'oxygène ou -CH₂-, X¹ est un atome d'oxygène ou -CH₂-, Y¹ est un atome d'oxygène, -CH₂-, -C₂H₄- ou -CHR³-, où R³ est un groupe méthoxyméthyle, Z¹ est un atome d'oxygène ou -CH₂-, et la somme des atomes de noyau dans W¹, X¹, Y¹ et Z¹ est un nombre entier de 3 à 5; de préférence, 1) W¹ et Z¹ sont chacun -CH₂- et un de X¹ et Y¹ est -CH₂- et l'autre est un atome d'oxygène, ou 2) W¹ est -CH₂-, et X¹ et Z¹ sont chacun un atome d'oxygène et Y¹ est -C₂H₄-.

R est de préférence un groupe 3-chloro-2-thiényle ou 3-fluoro-2-thiényle.

Un autre aspect de l'invention réside dans la préparation des 50 composés de formule I, où les composés de formule I selon l'invention sont préparés en traitant l'alcool hétérocyclique oxygéné non aromatique substitué de manière appropriée (R¹OH) par un composé XCH₂R, dans lequel R a la signification indiquée à propos de la formule I et X est un atome ou groupe qui part, par exemple 55 un atome d'halogène, comme de brome, de chlore ou d'iode, ou un groupe sulfonate, par exemple un groupe mésyloxy, tosyloxy ou un groupe du même genre, de préférence en présence d'une base forte et d'un diluant inerte. La base forte est de manière appropriée un hydrure, hydroxyde ou carbonate de métal alcalin, comprenant, par 60 exemple, l'hydrure de sodium, l'hydroxyde de sodium, le carbonate de potassium, etc. Les diluants inertes sont de manière appropriée des solvants organiques, tels que des éthers, des hydrocarbures aromatiques, etc., comprenant, par exemple, l'oxyde d'éthyle, le diméthylformamide, le tétrahydrofuranne, le diméthylsulfoxyde, le 65 toluène, le chlorure de méthylène, etc. La réaction est habituellement conduite à des pressions normales et aux températures ambiantes. Des températures convenables pour la réaction sont comprises entre

environ 0° C et environ 120° C, de préférence entre environ 20° C et

5

10

674 364

environ 100° C. Les éthers obtenus comme produits sont recueillis et isolés par des techniques classiques. Dans certains cas, les éthers peuvent être formés avant la formation du système d'oxabicycloaleane.

Le corps en réaction XCH₂R sont des espèces classiques de matières d'éthérification généralement connues dans la technique, et on les prépare facilement par des méthodes classiques connues pour préparer des halogénures et sulfonates d'alcools.

Par exemple, on prépare le 1-(bromométhyl)-2-chlorohexène en traitant l'alcool correspondant par PBr₃ dans du benzène. On prépare facilement l'alcool en traitant la cyclohexanone par POCl₃ dans du diméthylformamide [W. Ziegenbein et W. Lang, *Chem. Ber., 93, page 2743 (1960)] pour obtenir l'aldéhyde correspondant qui est traité par Red-Al (hydrure de sodium et de bis(2-méthoxy-éthoxy)-aluminium) dans du toluène pour donner l'alcool désiré. D'une manière similaire, on prépare un 2-(chlorométhyl)-3-halothiophène en traitant un 3-halothiophène par du formaldéhyde et HCl. On obtient le 3-bromothiophène par bromation de thiophène suivie d'un traitement par la poudre de zinc; le traitement du produit résultant par du chlorure cuivreux dans du diméthylformamide donne le composé chloré correspondant. On prépare les halogénures de (5-halo-3,4-dihydro-2H-pyran-6-yl)méthyle à partir de (5-halo-3,4-dihydro-2H-pyran-6-yl)méthanols.

Les corps en réaction oxabicycloalcanols pour préparer des composés dans lesquels R¹ est un groupe de formule a) sont obtenus en général par une ou plusieurs des méthodes suivantes: directement par a) époxydation-cyclisation d'alcools cycliques insaturés, avec ou sans isolement des produits intermédiaires époxy-alcools; et indirectement par b) des réactions de Diels-Alder de furannes avec des diénophiles, ou c) réduction de Birch.

Des méthodes détaillées sont décrites ci-après pour les différents systèmes cycliques.

Dans a), l'époxydation-cyclisation d'alcools cycliques insaturés comporte le traitement dans un solvant inerte par un agent oxydant et ensuite par un acide. Les alcools sont soit 1) des cycloalc-3-én-1ols, soit 2) des cycloalc-3-éne-1-méthanols. Les cycloalc-3-én-1-ols sont préparés à partir de 1-oxaspiro(2,5)oct-5-ènes par hydrogénolyse; à partir de cycloalc-3-én-1-ones par traitement par un réactif de Grignard; par désalcoylation ou hydrolyse, respectivement, de produits d'addition de Diels-Alder d'éthers ou d'esters vinyliques prépa- 40 rés à partir de diènes, comme l'isoprène, et de diénophiles éthers ou esters vinyliques dans lesquels la position alpha du groupe vinyle est substituée par un groupe alcoyle, CO₂R⁸ ou CON(R⁸)₂. Les cycloalc-3-ène-1-méthanols sont 1) l'alpha-terpinéol; 2) des produits d'addition de Diels-Alder d'alcools allyliques; ou 3) des produits obtenus à partir de produits d'addition de Diels-Alder de composés carbonylés insaturés en alpha-bêta, tels que des acrylates, des crotonates, l'acroléine ou des alcoylvinylcétones, par réduction partielle ou traitement par un réactif de Grignard; ou 4) à partir de 1-oxaspiro(2,5)oct-5-ènes par transposition et réduction partielle des composés carbonylés résultants; à partir de cycloalc-3-én-1-ones par réduction partielle.

Dans b), les produits d'addition du type de Diels-Alder du furanne avec des diénophiles peuvent exiger des conditions de réaction sévères, comprenant une forte pression et une basse température, par exemple, comme décrit par Dauben, W. G. et autres, J. Amer. Chem. Soc., 102, page 6894 (1980). Quand le diénophile est du nitroéthylène, le produit résultant est partiellement hydrogéné, transformé en la cétone et réduit en l'alcool correspondant, par exemple par traitement par un hydrure ou un métal. Quand cet alcool a la forme endo, il peut être épimérisé avec une base ou l'isopropylate d'aluminium en présence d'une cétone pour donner l'alcool exo correspondant.

Les produits intermédiaires *endo*- et *exo*-oxabicycloalcanols peuvent être séparés par des méthodes classiques, comme par cristallisation, chromatographie, etc., et les formes géométriques peuvent être dédoublées par des méthodes classiques de résolution pour donner un seul isomère optiquement actif sensiblement pur.

On présente ci-après des illustrations non limitatives de la préparation de composés représentatifs de l'invention.

Dans un mode d'exécution, R¹⁰ est dérivé d'un alcool ayant la formule I

où Z a la signification indiquée ci-dessus. Le composé I peut être préparé 1) à partir de cyclohex-3-én-1-ols par époxydation-cyclisation, ou 2) à partir de produits d'addition de Diels-Alder de furannes, comme le 2,5-diméthylfuranne, avec des diénophiles, comme le nitroéthylène, comme décrit ci-après.

L'époxydation de cyclohex-3-én-1-ols pour donner l'époxyalcool 20 correspondant est effectuée par action d'un agent oxydant, en particulier d'un peroxyde, comme l'acide m-chloroperbenzoïque, l'acide peracétique, l'hydroperoxyde de tert.-butyle (TBHP) ou des peroxydes équivalents. L'oxydation en cis-alcools avec TNHP est conduite en présence d'un catalyseur métal de transition approprié, par exemple du vanadium. De préférence, le complexe est un complexe organique, par exemple avec des bêta-dicétones, des o-hydroxybenzaldéhydes ou des o-hydroxybenzophénones et en particulier avec l'acétylacétone; par exemple, l'oxyde de bis(2,4-pentanedioate) de vanadium (IV) est préféré. La réaction est conduite de manière 30 appropriée en présence d'un solvant inerte comme des hydrocarbures chlorés qui contiennent de 1 à 4 atomes de carbone ou un noyau benzénique, par exemple le tétrachlorure de carbone, le chloroforme, le dichlorométhane, le chlorobenzène, le 1,2- ou le 1,3dichlorobenzène, etc. Les éthers sont généralement ceux contenant 35 de 4 à 6 atomes de carbone, par exemple l'oxyde d'éthyle, l'oxyde de méthyle et de tert.-butyle et l'oxyde d'isopropyle. Le tétrahydrofuranne et le dioxanne sont utiles aussi. Des alcanes utilisables contiennent de 5 à 10 atomes de carbone, par exemple le n-pentane, le n-hexane, le n-heptane, le n-octane, le n-nonane, le n-décane et leurs isomères. Des fractions de pétrole riches en alcanes sont utilisables aussi. L'éther de pétrole est utilisable aussi. Le cyclohexane et le méthylcyclohexane sont des exemples de solvants cycloalcanes utiles contenant de 6 à 8 atomes de carbone. Des solvants hydrocarbures aromatiques utilisables contiennent de 6 à 10 atomes de carbone, 45 par exemple le benzène, le toluène, les o-, m- et p-xylènes, les triméthylbenzènes, etc. La réaction est conduite à des températures comprises commodément entre environ −10° C et environ 50° C ou légèrement au-dessus. Généralement, la température est comprise entre environ -5° C et environ 40° C, de préférence entre environ 10° C et 50 environ 30° C. Le rapport molaire des corps en réaction peut varier. Généralement, le rapport molaire du cyclohex-3-én-1-ol à l'agent oxydant est compris entre environ 0,8 et environ 1. On conduit habituellement la réaction en formant un mélange de l'alcool et de l'agent oxydant, de préférence tout en agitant le mélange réaction-55 nel, par exemple par brassage, et en maintenant la température de réaction désirée. Le cis-époxyalcool résultant peut être purifié ou transformé sans isolement en 2-exo-hydroxy-7-oxabicyclo-[2.2.1]heptane correspondant par cyclisation comme décrit ci-après.

L'étape de cyclisation (fermeture de cycle) donne d'une manière surprenante un rendement élevé en produit ayant la configuration exo-hydroxy dans le 7-oxabicyclo[2.2.1]heptan-2-ol résultant. De nombreux acides catalyseront cette réaction, mais un acide relativement fort comme l'acide sulfurique ou l'acide p-toluènesulfonique est utilisable. De préférence, l'acide est l'acide méthanesulfonique ou ou nacide arylsulfonique, comme l'acide p-toluènesulfonique, l'acide benzènesulfonique, etc. Parmi eux, l'acide p-toluènesulfonique est préféré. La réaction est conduite de manière appropriée en ajoutant l'acide à l'époxyalcool contenu dans un solvant inerte du type décrit

5 **674 364**

précédemment pour utilisation dans la préparation de l'époxyalcool. La réaction est conduite à une température comprise commodément dans l'intervalle d'environ 0° C à environ 50° C ou légèrement audessus. Généralement, la température est comprise entre environ 5° C et environ 40° C, de préférence entre environ 10° C et environ 30° C. Le rapport molaire des corps en réaction peut varier. Généralement, le rapport molaire de l'acide à l'époxyalcool est compris entre environ 0,01 et environ 0,10, et de préférence entre environ 0,02 et environ 0,04.

Ainsi, un 1,4-disubstitué-3-cyclohexén-1-ol est transformé principalement en 2-exo-hydroxy-1,4-disubstitué-7-oxabicyclo[2.2.1]heptane par traitement par un agent oxydant, comme l'hydroperoxyde de tert.-butyle ou l'acide m-chloroperbenzoïque, et ensuite un acide fort, comme l'acide p-toluènesulfonique. Est spécialement utile, pour l'obtention d'un 2-exo-hydroxy-1,4-disubstitué-7-oxabicyclo-[2.2.1]heptane, le traitement du 3-cyclohexén-1-ol correspondant par l'hydroperoxyde de tert.-butyle et l'oxyde de bis (2,4-pentanedioate) de vanadium (IV) comme catalyseur dans du chlorure de méthylène, suivi du traitement de l'époxyde intermédiaire, de préférence in situ, par un acide sulfonique, en particulier l'acide p-toluènesulfonique. De plus, l'acide présent durant l'étape d'époxydation produit le produit désiré.

L'époxydation-cyclisation est décrite et revendiquée dans le brevet des E.U.A. N° 4487945.

Dans les cas où on désire la forme *endo*, elle peut être obtenue par oxydation du composé 2-*exo*-hydroxy pour former la cétone correspondante, suivie d'une réduction de la cétone par du borohydrure de sodium.

Les 3-cyclohexén-1-ols utiles pour la préparation du composé I peuvent aussi être préparés par synthèse comme décrit ci-après ou obtenus à partir de sources naturelles (ce qui offre l'avantage de matières optiquement actives).

a) Quand Z est le groupe 1-méthyléthyle, le composé de départ est le terpinén-4-ol, qui se trouve dans la nature. Le terpinén-4-ol est transformé en 2-exo-hydroxy-1-méthyl-4-(1-méthyléthyl)-7-oxabicyclo[2.2.1]heptane par traitement par un agent oxydant, par exemple un peroxyde comme l'acide m-chloroperbenzoïque, l'acide peracétique ou l'hydroperoxyde de tert.-butyle, dans un solvant inerte en présence d'un acide fort. La configuration spatiale du terpinén-4-ol utilisé se conserve dans le produit de réaction. Ainsi, on peut obtenir du (\pm) , (-) ou (+) 2-exo-hydroxy-1-méthyl-4-(1méthyléthyl)-7-oxabicyclo[2.2.1]heptane. Le 2-endo-hydroxy-1méthyl-4-(1-méthyléthyl)-7-oxabicyclo[2.2.1]heptane est connu d'après Garside et autres, J. Chem. Soc., pages 716-721 (1969). Les 2-exo- et endo-hydroxy-1-méthyl-4-(1-méthyléthyl)-7-oxabicyclo-[2.2.1]heptanes sont transformés pour donner les éthers de l'invention comme décrit ci-dessus. Bien que le terpinén-4-ol se trouve dans la nature dans des formes optiquement actives et racémiques, il peut aussi être préparé par époxydation de terpinolène, par exemple avec de l'acide peracétique dans du chlorure de méthylène, suivie d'une réduction de l'époxyde, par exemple avec de l'hydrure de sodium et de diéthylaluminium dans du tétrahydrofuranne.

b) La préparation de 3-cyclohexén-1-ols peut être effectuée à partir de phénols p-substitués dans lesquels le groupe substituant correspond au groupe méthyle dans la formule I de l'invention par des méthodes de la documentation technique publiée pour la réduction du type de Birch de dérivés du benzène, comme décrit par Rodd, Chemistry of Carbon Compounds, 2e édition, Vol. II, Part B, pages 1-4 (1968). Dans un exemple, on méthyle d'abord du paracrésol pour protéger le groupe hydroxy et l'on obtient ainsi le p-méthylanisole correspondant. Ce p-méthylanisole est traité par un agent réducteur, tel qu'une combinaison lithium-ammoniac ou sodiumammoniac, et le produit résultant est hydrolysé pour donner la 4méthyl-3-cyclohexén-1-one correspondante. Le traitement de cette cétone par un réactif organométallique (de Grignard) approprié, ZMgBr ou ZLi, où Z correspond à celui de la formule I de l'invention et est un groupe alcoyle, par exemple à 20-60° C en présence d'éthers anhydres, donne le produit intermédiaire 1,4-disubstitué-3cyclohexén-1-ol désiré. La 4-méthyl-3-cyclohexén-1-one peut aussi être réduite, par exemple par des hydrures, pour donner le 3-cyclohexén-1-ol correspondant non substitué à la position 4.

Les 2-hydroxy-7-oxabicyclo[2.2.1]heptanes utiles comme progéniteurs de composés de l'invention peuvent aussi être préparés à partir de produits d'addition de Diels-Alder de furannes substitués de manière appropriée, tels que des diènes, et de diénophiles. Par exemple, le 2,5-diméthylfuranne s'additionne facilement au nitroéthylène pour donner du 1,4-diméthyl-2-nitrobicyclo[2.2.1]hept-5-ène. Des produits d'addition similaires peuvent être préparés à partir de 2,5-dialcoylfurannes et de diénophiles, comme l'acroléine, et d'esters acryliques.

Dans un autre mode de mise en œuvre de l'invention, R^1O est dérivé d'un alcool ayant la formule II

où Z a les significations indiquées ci-dessus. Des composés II (2-oxabicyclo[2.2.2]heptan-6-ols) peuvent être préparés à partir 1) de terpènes, comme l'alpha-terpinéol, ou 2) de produits d'addition de Diels-40 Alder de butadiènes substitués de manière appropriée et de diénophiles contenant une fonction oxygène, comme illustré ci-après. Par exemple, 1) le composé est obtenu à partir de terpènes existant dans la nature. De manière très élémentaire, l'alpha-pinène est traité par un acide aqueux pour former de l'alpha-terpinéol, qui est lui-45 même une matière existant dans la nature. L'alpha-terpinéol, dans une forme racémique ou dans une forme complètement ou partiellement optiquement active, est oxydé, par exemple avec un peroxyde comme du peroxyde d'hydrogène ou de l'acide m-chloroperbenzoïque dans un solvant approprié comme du chlorure de méthylène, 50 pour donner une quantité majeure de 1,3,3-triméthyl-2-oxabicyclo[2.2.2]octan-6-exo-ol (groupe hydroxy en anti par rapport au pont contenant de l'oxygène).

L'oxydation de cet alcool, par exemple avec du N-bromoacétamide dans de l'acétone aqueuse à 5° C, donne la 1,3,3-triméthyl-255 oxabicyclo[2.2.2]octan-6-one. Une réduction ultérieure de cette
cétone, par exemple avec du borohydrure de sodium dans du tert.butanol, donne un mélange d'alcools contenant de manière prédominante l'isomère endo (groupe hydroxy en syn par rapport au pont
contenant de l'oxygène). La conversion en l'éther de formule I selon
60 l'invention suit les modes opératoires décrits précédemment avec
conservation de la configuration.

2) Des produits d'addition de Diels-Alder sont formés commodément à partir de diénophiles facilement disponibles comprenant un ester acrylique, l'acroléine, la méthacroléine, la méthylvinylcétone, 65 l'alcool allylique, un ester crotonique, etc. Le constituant diène est l'isoprène, le 2,3-diméthylbutadiène, etc. Par exemple, les produits d'addition de Diels-Alder IIa sont préparés en traitant la portion du composé de formule IIa au-dessus de la ligne formée de tirets

674 364

par un diénophile (acrylate de méthyle) correspondant à la portion du composé de formule IIa au-dessous de la ligne formée de tirets. Beaucoup de telles réactions sont décrites en détail par Rodd, *Chemistry of Carbon Compounds*, 2º édition, *Vol. II, Part B*, pages 5-6 (1968). Le traitement de IIa par le réactif de Grignard approprié (par exemple bromure de méthylmagnésium, bromure d'éthylmagnésium, etc.) donne un alpha,alpha-4-triméthyl-(ou triéthyl)-cyclohex-3-ène-1-méthanol de formule IIb ci-dessous

L'alcool IIb est oxydé, par exemple avec un peroxyde, comme le peroxyde d'hydrogène ou l'acide m-chloroperbenzoïque, dans un solvant approprié, comme le chlorure de méthylène, de préférence en présence d'un acide fort, pour donner une quantité majeure de 1,3,3triméthyl-2-oxabicyclo[2.2.2]octan-6-exo-ol. Cette forme exo peut être transformée, si on le désire, en une forme riche en endo ou en une forme endo sensiblement pure. Tout d'abord, l'oxydation en la cétone correspondante, la 1,3,3-triméthyl-2-oxabicyclo[2.2.2]octan-6-one, est effectuée avec un agent oxydant approprié. Par exemple, la forme exo est combinée avec du chlorure d'oxalyle et du diméthylsulfoxyde dans du chlorure de méthylène, cela étant suivi de l'addition de triéthylamine. Ensuite, la cétone résultante est transformée en l'endo-alcool par réduction. Par exemple, la cétone dans un mélange de diméthoxyéthane et de tert.-butanol est traitée par du borohydrure de sodium. Un dédoublement classique peut être appliqué aux 1,3,3-trialcoyl-2-oxabicyclo[2.2.2]octan-6-ols pour donner des formes optiques individuelles sensiblement pures. Les 1,3,3-trial-45 coyl-2-oxabicyclo[2.2.2]octan-6-ols sont transformés de manière à donner les éthers désirés selon l'invention, avec conservation de la configuration. Cette réaction est conduite de préférence en présence d'une base, telle que l'hydrure de sodium et, si on le désire, d'un solvant inerte, comme le N,N-diméthylacétamide, le N,N-diméthylformamide, le benzène, le toluène, etc. Les composés selon l'invention peuvent être recueillis et purifiés par des techniques classiques.

Dans un autre mode de mise en œuvre de l'invention, R^1O est dérivé d'un alcool ayant la formule III

Le composé III peut être préparé par condensation de 1,4-dibromo-2-méthyl-2-butène avec un acétoacétate d'alcoyle, en présence d'une base, suivie d'une thermolyse du produit intermédiaire 2-isopropényl-1-acétylcyclopropanecarboxylate pour donner un 1-

acétyl-3-méthyl-3-cyclopentènecarboxylate, qui est hydrolysé et décarboxylé pour donner la cétone correspondante. Le traitement de la cétone par deux équivalents du réactif de Grignard, le bromure de méthylmagnésium, donne le dérivé alcool correspondant. Cet alcool 5 est époxydé et cyclisé pour donner le 1,3,3-triméthyl-2-oxabicyclo-[2.2.1]heptan-exo-6-ol (III). Cet exo-alcool peut être oxydé pour donner la cétone correspondante, cela étant suivi d'une réduction en un endo-2-oxabicyclo[2.2.1]heptan-6-ol correspondant comme décrit pour les composés de formule II ci-dessus. Un exemple d'une autre méthode est la condensation d'un 1,4-dibromo-2-méthyl-2-butène avec un ester dialcoylique d'acide malonique, de nouveau en utilisant une base, cela étant suivi d'une thermolyse. Le dérivé de cyclopentène résultant est traité au moyen, par exemple, de chlorure de sodium dans du diméthylsulfoxyde pour élimination d'un des groupes fonctionnels ester. Le traitement du monoester résultant par le réactif de Grignard, le bromure de méthylmagnésium, donne le dérivé alcool décrit dans la première méthode. Voir aussi Spurlock et autres, Chemical Abstracts, 76: 153024e (1972) pour la préparation d'un 2-oxabicyclo-[2.2.1]heptan-6-ol.

Exemples

L'invention est illustrée par les exemples suivants qui décrivent la préparation d'espèces typiques selon l'invention. Les exemples sont présentés à titre d'illustration seulement et ne doivent pas être consi25 dérés comme limitant l'invention d'une manière quelconque. L'identité des produits, y compris les produits intermédiaires, a été confirmée par des analyses élémentaires, du spectre infrarouge, par résonance magnétique nuclaire (RMN) et des analyses spectrales de masse suivant le besoin.

Exemple 1: (\pm) -2-exo-hydroxy-1-méthyl-4-(1-méthyléthyl)-7-oxa-bicyclo[2.2.1]heptane

A une solution de 22,3 g d'acide m-chloroperbenzoïque à 85% dans 150 ml de chlorure de méthylène, on a ajouté en 40 minutes une solution de 15,4 g de (±)-terpinén-4-ol dans 30 ml de chlorure de méthylène à une température d'environ 0° C. Le mélange réactionnel a été agité pendant 20 heures à la température ambiante, puis refroidi à 5° C. Une matière solide a été séparée par filtration et rincée au chlorure de méthylène froid. Les filtrats combinés ont été lavés successivement avec une solution saturée à un huitième de carbonate de potassium, une solution saturée de sulfite de sodium et ensuite à l'eau, séchés et soumis à une distillation de Claisen pour donner 8,9 g de produit, point d'ébullition 109-113° C sous 8 mm de Hg (1060 Pa). Une recristallisation du distillat solidifié à partir de pentane a donné 5,5 g du produit désiré, point de fusion 42-58° C.

Exemple 2: (\pm) -2-exo-hydroxy-1-méthyl-4-(1-méthyléthyl)-7-oxabicyclo[2.2.1]heptane

A une solution de 30,8 g de (±)-terpinén-4-ol et de 0,8 g de vanadium (IV) bis(2,4-pentanedioate)oxyde dans 300 ml de chlorure de méthylène, on a ajouté 22,0 g d'hydroperoxyde de tert.-butyle à 90%. La réaction résultante, au début modérément exothermique, a été maintenue au reflux pendant 2 heures, pour donner l'époxyde, puis on a ajouté 0,8 g d'acide p-toluènesulfonique dans 10 ml de 55 glyme. Le mélange réactionnel résultant a été chauffé au reflux pendant 1,5 heure et refroidi et on a ajouté 0,8 g d'acétate de sodium anhydre en agitant. Après filtration, le filtrat a été concentré et soumis à une distillation de Claisen pour donner 24,8 g du produit désiré, point d'ébullition 80-95° C (2 mmHg; 270 Pa).

Exemple 3: (±)-2-exo-(2-chloro-1-cyclohexén-1-yl)méthoxy-1-méthyl-4-(1-méthyléthyl)-7-oxabicyclo[2.2.1]heptane

Une suspension de 0,6 g d'hydrure de sodium provenant d'une dispersion à 50% dans l'huile lavée à l'hexane dans 20 ml de dimé-65 thylformamide anhydre sous N₂ a été agitée à la température ambiante, tandis qu'on ajoutait 1,6 g de l'alcool de l'exemple 2. Le mélange a été chauffé progressivement à environ 80° C, agité jusqu'à cessation du dégagement d'azote (1,5 heure), refroidi à la tempéra-

ture ambiante et traité goutte à goutte par 2,0 g de 1-(bromoéthyl)-2-chlorocyclohexène avec agitation pendant deux jours. L'hydrure de sodium en excès a été décomposé par addition de 15 ml d'eau. Le mélange a été ensuite dilué avec de l'éther, lavé à l'eau plusieurs fois pour élimination du diméthylformamide, secoué avec de la saumure, séché sur Na₂SO₄ et dépouillé du solvant pour donner 3,2 g d'une huile brun foncé. Ce produit brut a été chromatographié sur une colonne à flash au gel de silice (CH₂Cl₂/Et₂O, 95/5 en volume) pour donner 0,95 g de l'éther désiré sous la forme d'une huile jaunâtre.

Exemple 4: (\pm) -2-exo-2-chlorocyclopentén-1-ylméthoxy-1-méthyl-4-(1-méthyléthyl)-7-oxabicyclo[2.2.1]heptane

Selon des modes opératoires semblables à ceux décrits dans l'exemple 3 ci-dessus, on a préparé le produit désiré en traitant l'alcool de l'exemple 2 par du 1-(bromométhyl)-2-chlorocyclopentène pour obtenir l'éther désiré sous la forme d'un liquide jaune.

Exemples 5-8:

Selon des modes opératoires semblables à ceux décrits dans l'exemple 3 ci-dessus, on a préparé le produit désiré en traitant les alcools R¹OH des exemples 5-8 par l'halogénure désiré, HalCH₂R, pour obtenir les éthers indiqués ci-dessous:

R¹OH + HalCH₂R → R¹OCH₂R

		_	
Exemple	$R^{I}OH$	R	$R^{1}OCH_{2}R$
5	2-éthyl-2-(hydroxy- méthyl)-1-oxaspiro- [4.5]décane	2-chlorocyclo- hexényle	sirop légèrement ambré
6	2-éthyl-2-(hydroxy- méthyl)-1-oxaspiro- [4.5]décane	2-chlorocyclo- pentényle	sirop légèrement ambré
7	2-éthyl-2-(hydroxy- méthyl)-1,7-dioxa- spiro[4.5]décane	2-chlorocyclo- hexényle	sirop légèrement ambré
8	2-éthyl-2-(hydroxy- méthyl)-1,7-dioxa- spiro[4.5]décane	2-chlorocyclo- pentényle	sirop légèrement ambré

Exemple 9: (±)-2-exo-(3-chloro-2-thiényl)méthoxy-1-méthyl-4-(1-méthyléthyl)-7-oxabicyclo[2.2.1]heptane

A une suspension agitée de 1,2 équivalent d'hydrure de sodium (provenant d'une dispersion à 50% dans l'huile lavée à l'hexane) dans du diméthylformamide anhydre sous azote, on a ajouté 1 équivalent de l'alcool de l'exemple 2. Le mélange a été chauffé progressivement à environ 70-80° C. Quand l'hydrogène ne se dégageait plus après environ 1 heure à température élevée, le mélange a été refroidi dans un bain de glace à 5-10° C pour l'addition goutte à goutte de 1 équivalent de 2-(bromométhyl)-3-chlorothiophène. On a continué l'agitation à la température ambiante. Le mélange de réaction a été recueilli comme décrit dans l'exemple 3 ci-dessus, et le produit désiré a été purifié par chromatographie à flash sur du gel de silice pour donner l'éther désiré sous la forme d'une huile ambrée.

Exemple $10: (\pm)$ -2-exo-(3-chloro-2-thiényl) méthoxy-1,4-diéthyl-7-oxabicyclo[2.2.1]heptane

Un ballon de 100 ml à fond rond, à 3 tubulures, équipé d'un agitateur, d'un thermomètre intérieur, d'un condenseur à reflux et d'un entonnoir à robinet a été chargé de 0,96 g d'hydrure de sodium à 50% dans de l'huile minérale et ensuite de 40 ml de diméthylsulfoxyde. On a agité le mélange tandis qu'on ajoutait goutte à goutte 3,4 g de 2-exo-hydroxy-1,4-diéthyl-7-oxabicyclo[2.2.1]-heptane et l'on a continué l'agitation en chauffant à 80° C pendant 1 heure. Le mélange foncé résultant a été agité à la température ambiante tandis qu'on ajoutait goutte à goutte 3,3 g de 2-(1-chlorométhyl)-3-chlorothiophène, une réaction exothermique faisant monter la température à 45° C. Le mélange de réaction agité a été chauffé à 80° C pendant 1 heure, versé sur de l'eau glacée, acidifié (HCl) et traité par extrac-

tion trois fois au chlorure de méthylène. Les extraits combinés ont été lavés deux fois à l'eau, séchés (MgSO₄), filtrés, concentrés et chromatographiés sur colonne à flash en utilisant du gel de silice et un éluant, le chlorure de méthylène, pour donner deux quantités séparées de 1,0 g du produit désiré sous la forme d'un sirop foncé.

Exemple 11: Ether (3-chloro-2-thiényl)méthylique de 2-éthyl-2-(hydroxyméthyl)-1,7-dioxaspiro[4.5]décane

Selon des modes opératoires similaires à ceux décrits dans l'exemple 9 ci-dessus, on a préparé le produit désiré en traitant du 2-éthyl-2-(hydroxyméthyl)-1,7-dioxaspiro-[4.5]décane par du 2-(1-bromométhyl)-3-chlorothiophène pour obtenir l'éther sous la forme d'un sirop ambré.

Exemple 12: Ether 3-chloro-2-thiénylméthylique de 2-éthyl-2-(hydroxyméthyl)1-oxaspiro[4.5]décane

Selon des modes opératoires similaires à ceux décrits dans l'exemple 9 ci-dessus, on a préparé le produit désiré en traitant du 2-éthyl-2-(hydroxyméthyl)-1-oxaspiro[4.5]décane par du 2-(1-bromométhyl)-3-chlorothiophène pour obtenir l'éther sous la forme d'une huile légèrement ambrée.

Pour application, un composé de formule I est ordinairement utilisé très efficacement en étant mis en composition avec un véhicule inerte approprié ou un agent tensio-actif ou les deux. L'invention comprend donc aussi des compositions utilisables pour lutter contre des plantes indésirables, ces compositions comprenant un véhicule inerte ou un agent tensio-actif ou les deux et, comme ingrédient actif, au moins un composé de formule I; et la préparation de telles compositions. Certains des composés de formule I sont utiles comme herbicides sélectifs, par exemple dans du soja, du coton, de la betterave à sucre, etc.

Le terme «véhicule» tel qu'utilisé ici désigne une matière inerte solide ou liquide, qui peut être minérale ou organique et d'origine synthétique ou naturelle, avec laquelle le composé actif est mélangé 35 ou mis en composition pour faciliter son application à la plante, aux semences, au sol ou à un autre objet à traiter, ou son stockage, son transport et/ou sa manipulation. N'importe lesquelles des matières couramment utilisées dans la préparation de compositions pesticides, herbicides ou fongicides — c'est-à-dire des véhicules accepta-

Des véhicules solides utilisables sont des argiles et silicates naturels et synthétiques, par exemple des silices naturelles telles que des terres d'infusoires; des silicates de magnésium, par exemple des talcs; des silicates de magnésium et d'aluminium, par exemple des attapulgites et des vermiculites; des silicates d'aluminium, par exemple des kaolinites, des montmorillonites et des micas; du carbonate de calcium; du sulfate de calcium; des oxydes de silicium hydratés synthétiques et des silicates synthétiques de calcium ou d'aluminium; des éléments tels que le carbone et le soufre; des résines naturelles et synthétiques telles que des résines de coumarone, du chlorure de polyvinyle et des polymères et copolymères du styrène; du bitume; des cires telles que la cire d'abeilles, la cire de paraffine et des cires minérales chlorées; des engrais solides, par exemple des superphosphates; et des matières fibreuses existant dans 55 la nature, broyées, comme des épis de maïs broyés.

Des exemples de véhicules liquides utilisables sont l'eau, des alcools comme l'alcool isopropylique et des glycols; des cétones comme l'acétone, la méthyléthylcétone, la méthylisobutylcétone et la cyclohexanone; des éthers tels que des cellosolves; des hydrocarbures aromatiques comme le benzène, le toluène et le xylène; des fractions de pétrole telles que le kérosène, des huiles minérales légères; des hydrocarbures chlorés tels que le tétrachlorure de carbone, le perchloroéthylène et le trichlorométhane. On peut aussi utiliser des composés liquéfiés, normalement gazeux et à l'état de 65 vapeur. Des mélanges de liquides différents sont souvent utilisables.

L'agent tensio-actif peut être un agent émulsionnant ou un agent mouillant; il peut être non ionique ou ionique. On peut utiliser n'importe lesquels des agents tensio-actifs habituellement utilisés dans la 674 364 8

préparation de compositions herbicides ou insecticides. Des exemples d'agents tensio-actifs utilisables sont les sels de sodium et de calcium d'acides polyacryliques et d'acides ligninesulfoniques; les produits de condensation d'acides gras, ou d'amines ou d'amides aliphatiques contenant au moins 12 atomes de carbone dans la molécule avec l'oxyde d'éthylène et/ou l'oxyde de propylène; des esters d'acide gras de glycérol, de sorbitanne, de sucrose ou de pentaérythritol; des produits de condensation de ces esters avec l'oxyde d'éthylène et/ou l'oxyde de propylène; des produits de condensation d'alcools gras ou d'alcoylphénols, par exemple de p-octylphénol ou de p-octylcrésol, avec l'oxyde d'éthylène et/ou l'oxyde de propylène; des sulfates ou sulfonates de ces produits de condensation; des sels de métaux alcalins ou alcalino-terreux, de préférence des sels de sodium, d'esters d'acide sulfurique ou d'acides sulfoniques contenant au moins 10 atomes de carbone dans la molécule, par exemple le laurylsulfate de sodium, des sec.-alcoylsulfates de sodium, des sels de sodium d'huile de ricin sulfonée et des alcoylarylsulfonates de sodium comme le dodécylbenzènesulfonate de sodium; et des polymères d'oxyde d'éthylène et des copolymères d'oxyde d'éthylène et d'oxyde de propylène.

Les compositions de l'invention peuvent être préparées sous forme de poudres mouillables, de poudres à saupoudrer, de granules, de solutions, de concentrés émulsionnables, d'émulsions, de concentrés en suspension et d'aérosols. Les poudres mouillables sont habituellement composées de manière à contenir 25 à 75% en poids 25 contre les plantes indésirables dépendra naturellement de l'état des de composé actif et contiennent habituellement, en plus du véhicule solide, 3-10% en poids d'un agent dispersant, 2-15% en poids d'un agent tensio-actif et, quand c'est nécessaire, 0-10% en poids d'un ou plusieurs stabilisants et/ou d'autres additifs tels que des agents de pénétration ou des adhésifs. Les poudres à saupoudrer sont habituellement préparées sous la forme d'un concentré en poudre ayant une composition semblable à celle d'une poudre mouillable, mais sans dispersant ni agent tensio-actif, et sont diluées à leur lieu d'utilisation avec du véhicule solide supplémentaire de manière à donner une composition contenant habituellement 0,5-10% en poids du composé actif. Les granules sont habituellement préparés de manière à avoir des grosseurs comprises entre 0,152 et 1,676 mm et peuvent être produits par des techniques d'agglomération ou d'imprégnation. Généralement, les granules contiendront 0,5-25% en poids du composé actif, 0-1% en poids d'additifs tels que des stabilisants, des 40 agents de modification à libération lente et des liants. Les concentrés émulsionnables contiendront habituellement, en plus du solvant et, quand c'est nécessaire, du cosolvant, 10-50% en poids par volume du composé actif, 2-20% en poids par volume d'émulsionnants et 0-20% en poids par volume d'additifs appropriés tels que des stabili- 45 sants, des agents de pénétration et des inhibiteurs de corrosion. Les concentrés en suspension sont composés de manière qu'on obtienne un produit fluide stable, ne se déposant pas, et contiennent habituellement 10-75% en poids du composé actif, 0,5-5% en poids d'agents dispersants, tels que des additifs antimousse, des inhibiteurs de corrosion, des stabilisants, des agents de pénétration et des adhésifs et, comme véhicule, de l'eau ou un liquide organique dans lequel le composé actif est substantiellement insoluble; certaines matières solides organiques ou des sels minéraux peuvent être dissous dans le pour l'eau.

Dans la pratique courante, des compositions granulaires dispersables dans l'eau sont particulièrement intéressantes. Elles se présentent sous forme de granules secs et durs qui sont essentiellement exempts de poudre fine et résistent à l'attrition lors de la manipulation, ce qui réduit au minimum la formation de poussière. Au contact de l'eau, les granules se désagrègent facilement pour former des suspensions stables des particules de matière active. Ces compositions contiennent 90% en poids ou plus (jusqu'à 95%) de matière active finement divisée, 3-7% en poids d'un mélange d'agents tensioactifs qui agissent comme agents mouillants, dispersants, de suspension et liants, et elles peuvent contenir jusqu'à 3% en poids d'un véhicule finement divisé, qui sert d'agent de remise en suspension.

Des dispersions et émulsions aqueuses, par exemple des compositions obtenues en diluant une poudre mouillable ou un concentré selon l'invention avec de l'eau, sont comprises aussi dans le cadre général de la présente invention. Ces émulsions peuvent être du type 5 eau-dans-l'huile ou du type huile-dans-l'eau et peuvent avoir une consistance épaisse de mayonnaise.

Il est évident d'après ce qui précède que la présente invention envisage des compositions contenant aussi peu qu'environ 0,5% en poids et jusqu'à environ 95% en poids d'un composé de formule I comme ingrédient actif.

Les compositions de l'invention peuvent contenir aussi d'autres ingrédients, par exemple d'autres composés possédant des propriétés pesticides, spécialement insecticides, acaricides, herbicides ou fongicides, selon ce qui est approprié pour le but visé.

L'invention concerne aussi la protection d'un endroit ou d'une zone contre des plantes indésirables, par application d'un composé de formule I, ordinairement dans une composition d'un des types mentionnés ci-dessus, à la terre dans laquelle les semences des plantes indésirables sont présentes, ou au feuillage des plantes indésirables. Evidemment, le composé actif est appliqué en quantité suffisante pour exercer l'action désirée.

La quantité du composé selon l'invention à utiliser dans la lutte plantes, du degré d'activité désiré, de la composition utilisée, du mode d'application, du climat, de la saison de l'année et d'autres variables. Des recommandations concernant les quantités précises ne sont donc pas possibles. En général, toutefois, l'application à 30 l'endroit à protéger de 0,1 à 10,0 kg par hectare du composé de formule I sera satisfaisante.

Exemples d'activité concernant des plantes

Dans les exemples suivants, les espèces de plantes essayées 35 étaient:

Pied-de-coq — Echinochloa crus-galli Grande digitaire - Digitaria sanguinalis Brome des toits - Bromus tectorum Sétaire jaune — Setaria lutescens Herbe aux cochons — Amaranthus retroflexus Casse — Cassia obtusifolia Abutilon — Abutilon theophrasti Cresson des jardins - Lepidum sativum Sorgho d'Alep - Sorghum halepense Volubilis des jardins — Ipomoea sp.

Méthodes d'essai

L'activité herbicide en préémergence (dans la terre) de composés de formule I a été évaluée en plantant des semences de pied-de-coq, de cresson des jardins, de brome des toits, d'abutilon, de sétaire jaune et de casse ou de volubilis des jardins dans des tubes à essai, mesurant nominalement 25 × 200 mm, remplis aux trois quarts véhicule pour aider à empêcher la sédimentation ou comme antigels 55 environ de terre non traitée, couverte dans chaque cas sur le dessus par environ 2,5 cm³ de terre traitée avec une certaine quantité du composé essayé. La terre traitée appliquée aux tubes contenant les semences de pied-de-coq et de cresson contenait 1 mg du composé essayé par tube, et elle contenait 0,1 mg du composé essayé pour 60 chaque tube contenant les semences des autres plantes. Les doses correspondaient approximativement à 22 et 2,2 kg de composé essayé par hectare, respectivement. Les semences étaient plantées sur le dessus de la terre traitée et recouvertes d'environ 1,5 cm³ de terre non traitée. La terre ensemencée était maintenue dans des conditions 65 contrôlées de température, d'humidité et de lumière pendant 9 à 10 jours. Les quantités de germination et de croissance dans chaque tube étaient évaluées sur une échelle de 0 à 9, les résultats numériques ayant les significations suivantes:

Résultat Signification numérique

- 9 Pas de tissu vivant
- 8 Plante sévèrement endommagée, mort prévisible
- 7 Plante gravement endommagée, mais survie prévisible
- 6 Dommage modéré, rétablissement complet prévisible
- 5 Dommage intermédiaire (probablement inacceptable pour des plantes cultivées)
- 3-4 Dommage observable
- 1-2 Plante légèrement affectée, peut-être par le produit chimique, peut-être pour des raisons de variabilité biologique
- 0 Pas d'effet visible

L'activité herbicide en postémergence (sur les feuilles) de composés de formule I a été évaluée en pulvérisant sur des plants de digi-

taire vieux de 10 jours, des plants d'herbe aux cochons vieux de 13 jours, des plants de sorgho d'Alep vieux de 6 jours, des plants d'abutilon vieux de 9 jours, des plants de sétaire jaune vieux de 9 jours et des plants de casse vieux de 9 jours ou des plants de volubilis des jardins vieux de 5 jours, jusqu'à écoulement, une composition liquide du composé essayé. Sur les plants de digitaire et d'herbe aux cochons, on a pulvérisé 2,4 ml d'une solution à 0,25% (environ 11 kg du composé essayé par hectare), et sur les autres plantes on a pulvérisé 2,4 ml d'une solution à 0,025% (environ 1,1 kg du composé essayé par hectare). Les plantes traitées par pulvérisation ont été maintenues dans des conditions contrôlées de température, d'humidité et de lumière pendant 7 à 8 jours, et alors l'effet du composé essayé a été évalué visuellement, les résultats étant notés sur l'échelle de 0 à 9 décrite ci-dessus.

Les résultats des essais d'activité herbicide en préémergence et en postémergence sont indiqués dans le tableau I.

Tableau I - Activité herbicide

9

	Préémergence					Postémergence						
Composé	Pied- de- coq	Cresson des jardins	Brome des toits	Abuliton	Sétaire jaune	Casse	Digitaire	Herbe aux cochons	Sorgho d'Alep	Abutilon	Sétaire jaune	Casse
12	9	4	6	0	7	0	7	6	2	4	4	2
11	9	6	6	4	5	4	7	4	3	5	5	2
9	9	6	9	4	9	0	9	5	5	4	7	2
10	9	7	9	5	8	0	7	3	7	6	7 ·	2
3	9	7	9	5	8	2	5	3	0	0	0	0
4	9	7	9	3	8	2	4	9	0	3	0	0
5	6	0	5	0	5	0	5	6	3	4	2	3
6	9	5	9	0	6	0	4	4	2	2	2	2
7	9	7	9	0	5	0	6	5	2	4	2	2
8	9	4	7	5	8	0	4	2	0	4	5	2

Méthode d'essai de sélectivité

L'activité en préémergence des composés des exemples 9 et 10 a été déterminée encore à propos de certaines espèces courantes de mauvaises herbes, en pulvérisant une composition du composé essayé sur de la terre dans de petits pots dans lesquels des graines des plantes avaient été semées. L'activité herbicide en postémergence, des composés des exemples 9 et 10 a été évaluée à propos des mauvaises herbes, en pulvérisant une composition du composé essayé sur 45 le feuillage des jeunes plantes en cours de croissance. Dans chaque série d'essais, on faisait pousser les plantes dans des pots placés dans de petits plateaux et on les soumettait à une pulvérisation de la composition. Les résultats des essais à environ 1,1 et 0,28 kg/ha étaient

évalués sur la base de l'échelle 0-9 décrite à propos des essais précédents. Les résultats des essais ont montré des dommages observables
par les deux matières contre des plantes nuisibles herbacées comme
le pied-de-coq, le brome des toits, le sorgho d'Alep, la folle-avoine et
la sétaire jaune dans les essais en préémergence. Le produit de
l'exemple 10 a montré aussi des dommages observables sur des
plantes nuisibles à feuilles larges, comme le volubilis des jardins, la
moutarde, l'herbe aux cochons, la casse et l'abutilon dans les essais
en préémergence. Les composés des exemples 9 et 10 ont présenté
aussi une activité en postémergence contre une ou plusieurs des
plantes nuisibles herbacées et à feuilles larges ci-dessus.