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(57) Abstract: A video surveillance system is disclosed. The system includes a model database storing a plurality of models and a
vector database storing a plurality of vectors of recently observed trajectories. The system includes a model building module that
builds a new motion model corresponding to the motion data of the current trajectory data structure. The system generates a cur-
rent trajectory data structure having motion data and abnormality scores. The system also includes a database purging module con-
figured to determine a subset of vectors that is most similar to the current trajectory data structure based on a measure of similarity
between the subset of vectors and the current trajectory data structure. The database purging module is further configured to re-
place one of the motion models in the model database with the new motion model based on an amount of vectors in the subset
vectors the recentness of the subset of vectors.
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VIDEO SURVEILLANCE SYSTEM

FIELD
[0001] The present disclosure relates to a video surveillance system
that adaptively updates models used to determine the existence of abnormal
behavior detection.

BACKGROUND

[0002] More so than ever, security issues are rising to the level of
national attention. In order to ensure the safety of people and property,
monitoring at risk areas or spaces is of utmost importance. Traditionally,
security personnel may monitor a space. For example, at an airport a security
official may monitor the security check point, which is generally set up to allow
people to exit the gate area from an exit and enter the gate area through the
metal detectors and luggage scanners. As can be imagined, if the security
guard temporarily stops paying attention to the exit, a security threat may enter
the gate area through the exit. Once realized, this may cause huge delays as
airport security personnel try to locate the security threat. Furthermore, each
space to be monitored must be monitored by at least one security guard, which
increases the costs of security.

[0003] The other means of monitoring a space is to have a single
camera or a plurality of video cameras monitoring the space or a plurality of
spaces and have security personnel monitor the video feeds. This method,
however, also introduces the problem of human error, as the security personnel
may be distracted while watching the video feeds or may ignore a relevant video
feed while observing a non-relevant video feed.

[0004] As video surveillance systems are becoming more automated,
however, spaces are now being monitored using predefined motion models. For
instance, a security consultant may define and hard code trajectories that are
labeled as normal, and observed motion may be compared to the hard coded
trajectories to determine if the observed motion is abnormal. This approach,
however, requires static definitions of normal behavior. Thus, there is a need in
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the automated video surveillance system arts for an automated and/or adaptive
means of defining motion models and detecting abnormal behavior.

[0005] This section provides background information related to the
present disclosure which is not necessarily prior art.

SUMMARY

[0006] In one aspect, a video surveillance system having a video
camera that generates image data corresponding to a field of view of the video
camera is disclosed. The system comprises a model database storing a plurality
of motion models defining motion of a previously observed object. The system
also includes a current trajectory data structure having motion data and at least
one abnormality score, the motion data defining a spatio-temporal trajectory of a
current object observed moving in the field of view of the video camera and the
abnormality score indicating a degree of abnormality of the current trajectory
data structure in relation to the plurality of motion models. The system further
comprises a vector database storing a plurality of vectors of recently observed
trajectories, each vector corresponding to motion of an object recently observed
by the camera and a model building module that builds a new motion model
corresponding to the motion data of the current trajectory data structure. The
system also includes a database purging module configured to receive the
current trajectory data structure and determine a subset of vectors from the
plurality of vectors in the vector database that is most similar to the feature the
current trajectory data structure based on a measure of similarity between the
subset of vectors and the current trajectory data structure. Additionally, the
database purging module further configured to replace one of the motion models
in the model data base with the new motion model based on an amount of
vectors in the subset vectors and an amount of time since the recently observed
trajectories of the subset of vectors were observed.

[0007] This section provides a general summary of the disclosure, and
is not a comprehensive disclosure of its full scope or all of its features. Further
areas of applicability will become apparent from the description provided herein.
The description and specific examples in this summary are intended for
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purposes of illustration only and are not intended to limit the scope of the present

disclosure.

DRAWINGS

[0008] Figure 1 is a block diagram illustrating an exemplary video
surveillance system;

[0009] Figure 2 is a block diagram illustrating exemplary components
of the surveillance system;

[0010] Figure 3A is a drawing illustrating an exemplary field of view
(FOV) of a video camera;

[0011] Figure 3B is a drawing illustrating an exemplary FOV of a
camera with a gird overlaid upon the FOV.

[0012] Figure 4 is a drawing of an exemplary trajectory vector;

[0013] Figure 5 is a flow diagram illustrating an exemplary method for
scoring a trajectory;

[0014] Figure 6 is a block diagram illustrating exemplary components
of the metadata processing module;

[0015] Figure 7 is a drawing illustrating a data cell broken up into
direction octants;

[0016] Figure 8 is a block diagram illustrating exemplary components
of the abnormal behavior detection module;

[0017] Figure 9 is a drawing illustrating an exemplary embodiment of
the dynamic model database and the feature vector database;

[0018] Figure 10 is a block diagram illustrating exemplary components
of the database purging module;

[0019] Figure 11 is a drawing illustrating an exemplary Haar transform;

[0020] Figure 12 is a flow diagram illustrating an exemplary method for
matching a feature vector of a trajectory;

[0021] Figure 13 is a block diagram illustrating exemplary components
of an alterative embodiment of the metadata processing module;

[0022] Figure 14 is a flow diagram illustrating an exemplary method for

determining a the existence of an outlier;
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[0023] Figure 15 is a flow diagram illustrating an exemplary method for
determining the existence of an outlier in the bounding box size;

[0024] Figure 16 is a flow diagram illustrating an exemplary method for
determining the existence of an outlier in an observed velocity;

[0025] Figure 17 is a flow diagram illustrating an exemplary method for
determining the existence of an outlier in an observed acceleration;

[0026] Figure 18 is a state diagram illustrating a method for performing
outlier confirmation;

[0027] Figure 19 is a block diagram illustrating the exemplary
components of a Haar filter;

[0028] Figures 20A-20C are graphs illustrating various means to
increment and decrement a count of an octant of a cell; and

[0029] Figure 21 is a drawing showing a partial Haar transform used to
perform coefficient smoothing.

[0030] The drawings described herein are for illustrative purposes only
of selected embodiments and not all possible implementations, and are not
intended to limit the scope of the present disclosure. Corresponding reference
numerals indicate corresponding parts throughout the several views of the

drawings.

DETAILED DESCRIPTION

[0031] An embodiment of the automated video surveillance system is
herein described. The system receives a video stream, or image data, and
detects an object that is observed moving in the field of view (FOV) of the
camera, hereinafter referred to as a motion object. The image data is processed
and the locations of the motion object is analyzed. A trajectory of the motion
object is generated based on the analysis of the motion object. The trajectory of
the motion object is then scored using at least one scoring engine and may be
scored by hierarchical scoring engines. The scoring engines score the observed
trajectory using normal behavior models as a reference. Based on the results of

the scoring engines, abnormal behavior may be detected.
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[0032] The normal behavior models define trajectories or a motion
pattern of an object corresponding to expected or accepted behavior, or behavior
that may not ordinarily rise to the level of an alarm event. For example, in a
situation where a parking garage entrance is being monitored, a vehicle stopping
at the gate for a short period of time and then moving forward into the parking
area at a slow speed would be considered “normal” behavior.

[0033] As can be appreciated, however, in certain spaces what is
considered normal behavior may change multiple times during the day.
Furthermore, special events may occur where certain trajectories may be
unexpected, yet may still be normal. For example, in a situation where a door in
a school building is being monitored. Ordinarily, during class periods, an
observed trajectory of an object, e.g. a student, exiting the building may be
classified as abnormal. If, however, at that particular time the student’s class
was going outside for a special lesson, then the student’s trajectory was actually
normal. As more students are observed exiting the building, the system can
learn this trajectory and subsequently store a new normal motion model
corresponding to the trajectory. As the incident was a special occasion,
however, the new normal motion model should be purged from the system, as
such trajectories would no longer be normal. This new normal motion model will
be replaced by a newer motion model corresponding to more recently observed
trajectories. As can be appreciated, the system gauges what is “normal”
behavior based on an amount of similar trajectories observed and the
recentness of the similar trajectories. Once an indicator of at least one of the
recentness and the amount of the similar trajectories to the normal motion
model, or a function thereof, falls below a threshold or the indicator of another
set of observed trajectories, the particular normal motion model can be purged or
faded from the system. As can be appreciated, this allows for not only accurate
detection of abnormal behavior but may also minimize the amount of storage
that the system requires.

[0034] Referring to Figure 1, an exemplary automated video
surveillance system 10 is shown. The system may include sensing devices, e.g.
video cameras 12a-12n, and a surveillance module 20. It is appreciated that the
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sensing devices may be other types of surveillance cameras such as infrared
cameras or the like. For purposes of explanation, the sensing devices will be
herein referred to as video cameras. Further, references to a single camera 12a
may be extended to cameras 12b-12n. Video cameras 12a-12n monitor a space
and generate image data relating to the field of view (FOV) of the camera and
objects observed within the FOV and communicate the image data to
surveillance module 20. The surveillance module 20 can be configured to
process the image data to determine if a motion event has occurred. A motion
event is when a motion object is observed in the FOV of the camera 12a. Once
a motion object is detected, an observed trajectory corresponding to the motion
of the trajectory of the motion object may be generated by the surveillance
module 20. The surveillance module 20 may then score the trajectory using at
least one scoring engine, which uses normal motion models as reference. |If the
observed trajectory is determined to be abnormal, then an alarm notification may
be generated. The features of the observed trajectory, including score or scores
corresponding to the observed trajectory, are then compared to features of other
recently observed trajectories. If a relatively large number of recently observed
trajectories are similarly scored, then the surveillance module 20 updates the
normal motion models to include a new normal motion model corresponding to
the recently observed trajectories. The surveillance module 20 can also manage
a video retention policy, whereby the surveillance module 20 decides which
videos should be stored and which videos should be purged from the system.

[0035] Figure 2 illustrates exemplary components of the surveillance
module 20 in greater detail. A video camera 12 generates image data
corresponding to the captured video. An exemplary video camera 12 includes a
metadata generation module 28 that generates metadata corresponding to the
image data. It is envisioned that the metadata generation module 28 may be
alternatively included in the surveillance module 20. The metadata processing
module 30 receives the metadata and determines the observed trajectory of the
motion object. It is appreciated that more than one motion object can be
observed in the FOV of the camera and, thus, a plurality of observed trajectories
may be generated by metadata processing module 30.
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[0036] The observed trajectory is received by the abnormal behavior
detection module 32. The abnormal behavior detection module 32 then
communicates the trajectory to one or more scoring engines 34. The scoring
engines 34 retrieve normal motion models from the dynamic model database 44
and score the observed trajectory relative to the normal motion models. In some
embodiments the scoring engines are hierarchical, as will be discussed later.
The individual scoring engines 34 return the scores to the abnormal behavior
detection module 32. The abnormal behavior detection module 32 then
analyzes the scores to determine if abnormal behavior has been observed. If so,
an alarm event may be communicated to the alarm generation module 36.
Further, the observed trajectory, normal or abnormal, is communicated to a
database purging module 38.

[0037] Database updating module 38 adaptively learns and analyzes
recently observed trajectories to determine if a change in the motion patterns of
the motion objects, e.g. the general direction of motion objects, has occurred. If
so, the database updating module 38 generates a normal motion model
corresponding to the new flow pattern and stores the new normal motion model
in the dynamic model database 44. Further, if trajectories corresponding to a
normal motion model are no longer being observed, database updating module
38 purges the model from the dynamic model database 40.

[0038] It is envisioned that the surveillance module 20 can be
embodied as computer readable instructions embedded in a computer readable
medium, such as RAM, ROM, a CD-ROM, a hard disk drive or the like. Further,
the instructions are executable by a processor associated with the video
surveillance system. Further, some of the components or subcomponents of the
surveillance module may be embodied as special purpose hardware.

[0039] Metadata generation module 28 receives image data and
generates metadata corresponding to the image data. Examples of metadata
can include but are not limited to: a motion object identifier, a bounding box
around the motion object, the (x,y) coordinates of a particular point on the
bounding box, e.g. the top left corner or center point, the height and width of the
bounding box, and a frame number or time stamp. Figure 3A depicts an
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example of a bounding box 310 in a FOV of the camera. As can be seen, the
top left corner is used as the reference point or location of the bounding box.
Also shown in the figure are examples of metadata that can be extracted,
including the (x,y) coordinates, the height and width of the bounding box 310.
Furthermore, the FOV may be divided into a plurality of cells. Figure 3B depicts
an exemplary FOV divided into a 5x5 grid, i.e. 25 cells. For reference, the
bounding box and the motion object are also depicted. When the FOV is divided
into a grid, the location of the motion object can be referenced by the cell at
which a particular point on the motion object or bounding box is located.
Furthermore, the metadata for a time-series of a particular cell or region of the
camera can be formatted into a data cube. Additionally, each cell’s data cube
may contain statistics about observed motion and appearance samples which
are obtained from motion objects when they pass through these cells.

[0040] As can be appreciated, each time a motion event has been
detected, a time stamp or frame number can be used to temporally sequence the
motion object features. At each event, metadata may be generated for the
particular frame or timestamp. For example, the following may represent the
metadata corresponding to a motion object, where the time-stamped metadata is
formatted according to the following <t, x, y, h, w, obj_id>:

<t1,5,5,4,2,1>,<t5,4,4,4,2, 1>, ... <15, 1,1, 4,2, 1>

[0041] As can be seen, the motion object having an id tag of 1, whose
bounding box is four units tall and two units wide, moved from point (5,5) to point
(1,1) in five samples. As can be seen, a motion object is defined by a set of
spatio-temporal coordinates. It is also appreciated that any means of generating
metadata from image data now known or later developed may be used by
metadata generation module 28 to generate metadata.

[0042] The metadata generation module 28 communicates the
metadata to the metadata processing module 30. The metadata processing
module 30 generates a trajectory vector for a motion object from the metadata.
For example, the metadata processing module 30 may receive a plurality of data
cubes relating to a particular motion object. From the time stamped or otherwise
sequenced metadata, the metadata processing module 30 can create a vector
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representing the motion of the motion object. The vector representing the
trajectory may include, but is not limited to, the location of the bounding box at
particular times, the velocity of the motion object, the acceleration of the motion
object, and may have fields for various scores of the trajectory at the particular
point in time.

[0043] Figure 4 illustrates an exemplary vector representation of a
trajectory. As can be seen from the vector, the trajectory of the motion object
can be easily passed to the scoring engines 34 and when the trajectory is
scored, the fields designated by an SE are set to the corresponding score,
thereby indicating a degree of abnormality. While a vector representing the
trajectory is disclosed, it is appreciated that other types of data structures may
be used to represent the trajectory.

[0044] Metadata processing module 30 can also be configured to
remove outliers from the metadata. For example if received metadata is
inconsistent with the remaining metadata then the metadata processing module
30 determines that the received metadata is an outlier and marks in the
trajectory data.

[0045] Figure 6 illustrates components of an exemplary embodiment of
the metadata processing module 30. Metadata processing module 30 receives
the metadata from the metadata generation module 28. Vector generation
module 60 receives the metadata and determines the amount of vectors to be
generated. For example, if two objects are moving in a single scene, then two
vectors may be generated. Vector generation module 60 can have a vector
buffer that stores up to predetermined amount of trajectory vectors.
Furthermore, vector generation module 60 can allocate the appropriate amount
of memory for each vector corresponding to a motion object, as the amount of
entries in the vector will equal the amount of frames or time stamped frames
having the motion object observed therein. In the event vector generation is
performed in real time, the vector generation module can allocate additional
memory for the new points in the trajectory as the new metadata is received.
Vector generation module 60 also inserts the position data and time data into the
trajectory vector. The position data is determined from the metadata data cubes.
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The position data can be listed in actual (x,y) coordinates or by identifying the
cell that the motion object was observed in.

[0046] Velocity calculation module 62 calculates the velocity of the
trajectory at the various time samples. |t is appreciated that the velocity at each
time section will have two components, a direction and magnitude of the velocity
vector. The magnitude relates to the speed of the motion object. The magnitude
of the velocity vector, or speed of the motion object, can be calculated for the

trajectory at teur by:
— '\/(('x(tcuur) - x(tcuur—l ))2 + ((y(tcuur) - y(tcuur—l ))2
(tcuur - tcuur—l )

Alternatively, the magnitude of the velocity vector may be represented in its

Vi (1)

CUrr )

individual components, that is:
— ((y(tcuur ) - y(tcuur—l ))

— (('x(tcuur ) B x(tcuur—l )) and VY(ICW) — (2)
(tcuur - tcuur—l ) (tcuur - tcuur—l )

It is further appreciated that if data cell representation is used, that is the position

Vx(t

CUrr )

of motion object is defined by the data cell which it is found in, a predetermined
(x,y) value that corresponds to the data cell may be substituted for the actual
location. It is appreciated that the calculated velocity will be relative to the FOV
of the camera, e.g. pixels per second. Thus, objects further away will appear
slower than objects closer to the camera, despite the fact that the two objects
may be traveling at the same or similar speeds. While it is envisioned that the
relative speed may be used, a conversion may be made so that the speed is the
actual speed of the object or an approximation thereof. For example, motion
objects at the bottom of the FOV can be scaled by a first lesser scalar, motion
objects in the middle of the FOV can be scaled by a second intermediate scalar,
and objects near the top of the FOV can be scaled by a third larger scalar. In
this example, it is assumed that the objects at the bottom of the FOV are closer
than those in the middle of the FOV, which are closer than those near the top of
the FOV. It is further envisioned that other means of calculating the relative or
actual velocity may be implemented.

[0047] The direction of the velocity vector can be represented relative

to its direction in a data cell by dividing each data cell into predetermined sub

10



10

15

20

25

30

WO 2011/102871 PCT/US2010/060745

cells, e.g. 8 octants. Figure 7 illustrates an example of a data cell 70 broken into
8 octants 1-8. Depending on the direction of the trajectory between the t., and
teurr+1 S@Mples, the direction may be approximated by determining which octant
the trajectory could fall into. For example, a trajectory traveling in any direction
near NNE, e.g. in a substantially upward direction and slightly to the right, can
be given a single trajectory, as shown by reference 72. Thus, any velocity vector
for a data cell may be represented by the data cell octant identifier and
magnitude.

[0048] The acceleration calculation module 64 operates in
substantially the same manner as the velocity calculation module. Instead of the
position values, the magnitude of the velocity vectors at the various time
samples may be used. Thus, the acceleration may be calculated by:

NV ) =Vl )+ (V) =V )’
(tcuur - tcuur—l )

Alternatively, the magnitude of the acceleration vector may be represented in its

At (3)

CUrr )

individual components, that is:
— ((Vy(tcuur ) - Vy(tcuur—l ))

— ((Vx(tcuur ) B Vx(tcuur—l )) and Ay (tcurr ) — (4)
(tcuur - tcuur—l ) (tcuur - tcuur—l )

[0049] With respect to the direction, the direction of the acceleration

Ax(t

CUrr )

vector may be in the same direction as the velocity vector. It is understood,
however, that if the motion object is decelerating or turning, then the direction of
the acceleration vector will be different than that of the velocity vector.

[0050] The outlier detection module 66 receives the trajectory vector
and reads the values of the motion object at the various time samplings. An
outlier is a data sample that is inconsistent with the remainder of the data set.
For example, if a motion object is detected at the top left corner of the FOV in
samples t1 and t3, but is located in the bottom right corner in sample t2, then the
outlier detection module 66 can determine that the time sample for time t2 is an
outlier. It is envisioned that any means of detecting outliers may be implemented
in outlier detection module 66. Further, if an outlier is detected, outlier detection
module may interpolate the position of the motion object based on the other data
samples. This can be done, for example, by averaging the locations at the data

11
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point directly preceding and directly following the outlier data point. Other means
of interpolating the data may be used as well. For example, the accelerations
and the velocities of the preceding and following data points may be used in the
interpolation to result in a more accurate location estimation.

[0051] It is noted that the metadata processing module 30 may
calculate the velocities and accelerations of the motion object by other means,
including a Haar filter, discussed below. Additionally, the trajectory vector can
also be scored in real time, as is discussed below. In these embodiments, as a
motion event occurs, the metadata processing module 30 determines the current
data and passes the updated trajectory vector to the abnormal behavior
detection module 32.

[0052] The metadata processing module 30 can be further configured
to generate data cubes for each cell. A data cube is a multidimensional array
where each element in the array corresponds to a different time. Each entry
motion data observed in the particular cell at the corresponding time. Thus, in
the data cube of a cell, the velocities and accelerations of various motion objects
observed over time may be recorded. Further, the data cube may contain
expected attributes of motion objects, such as the size of the minimum bounding
box.

[0053] The observed trajectory vector corresponding to the motion
object observed in the image data is then communicated to the abnormal
behavior detection module 32. Abnormal behavior detection module 32 receives
the observed trajectory vector and communicates the trajectory vector to one or
more scoring engines. The scoring engines return abnormality scores for the
trajectory. The abnormality scores can correspond to particular events in the
trajectory vector, e.g. for each time stamp in the trajectory vector an abnormality
score corresponding to the motion of the motion object up until that time may be
returned. For example, for each time stamp, the trajectory vector up to the
particular time stamp is scored by the various scoring engines. Thus, if a
trajectory vector started off as being scored as a normal trajectory, the scores
would be relatively low until the motion of the object deviates from the normal

motion models, at which point the abnormality score would increase.

12
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[0054] Figure 5 depicts an exemplary method that may be performed
by the abnormal behavior detection module 32. The abnormal behavior
detection module 32 receives the observed trajectory vector, as shown at step
501. The observed trajectory vector can include a plurality of undefined fields
representing the abnormality score of the trajectory at a particular point in time.
Thus, the abnormal behavior detection module 32 communicates the trajectory
vector to a plurality of scoring engines, as referenced at step 503. The scoring
engines, which are described in greater detail below, will score the trajectory at
various points in time and record the score in the appropriate field of the
trajectory field.

[0055] As can be appreciated, once the trajectory vector has been
scored by the scoring engines, the abnormal behavior detection module 32 will
receive the scored trajectory vectors, as shown at step 505, and can then
determine if any abnormal behavior has been detected. This determination may
be achieved by examining each row in the trajectory vector that relates to a
scoring engine. For each row, if a consecutive or nearly run of scores have
abnormality scores that are greater than a predetermined threshold, then it can
be assumed that during the consecutive run, the behavior was abnormal. |If
abnormal behavior is detected, then the scoring engine may optionally initiate
sub scoring engines, as shown at step 511.

[0056] Once a trajectory vector is scored by a scoring engine 34 and
possibly the sub scoring engines, and abnormal behavior is detected from one or
more of the scoring engines 34, the abnormal behavior detection module 32 may
classify the trajectory of the motion object based on the abnormality scores, as
shown at step 509. Furthermore, the abnormal behavior detection module 32
can be configured to classify separate segments of the trajectory vector based
on the abnormality score.

[0057] An exemplary abnormal behavior detection module 32 and
exemplary scoring engines are now described in greater detail. Once the
position, velocity, and acceleration data are calculated, the abnormal behavior
detection module 32 receives a trajectory vector from the metadata processing
module 30. Figure 8 illustrates exemplary components of the abnormal behavior
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detection module 30. The exemplary components of the abnormal behavior
detection module include a score accumulation module 82 in communication
with a plurality of scoring engines and a behavior classification module 84 that
classifies the motion objects behavior based on the accumulated scores. The
score accumulation module 82 communicates the trajectory vector to a plurality
of scoring engines 86a-n. Each scoring engine is configured to evaluate a
trajectory vector in relation to one or more normal motion models defining a
particular expected or accepted behavior. The scoring engines will return a
score at each time sample indicating a degree of conformity with the one or more
models. Thus, a trajectory vector having 16 entries can have 16 scores returned
from each scoring engine. It is appreciated, however that not every time entry
requires a corresponding score.

[0058] The scoring engines 86a-n receive a trajectory vector and score
the trajectory by comparing the trajectory to motion models stored in the dynamic
model database 44. As discussed, the scoring engines 86a-n may be
hierarchical. For example, a speeding scoring engine receives a trajectory and
compares the trajectory with one or more models defining “normal” behavior. If
speeding is detected in the trajectory, then the trajectory may be communicated
to various sub scoring engines, which are all related to detecting different types
of speeding. For example, speeding sub scoring engines may include scoring
engines configured to detect: burst speeding, constant acceleration speeding,
long distance speeding, or any other type of speeding. A wandering sub scoring
engine may detect loitering or staying around. An abnormal motion sub scoring
engine may detect motion opposite to the traffic flow, motion perpendicular to the
traffic flow, zigzag through the traffic flow, or a u-turn in traffic. Various scoring
engines have been described in previously submitted applications, including:
U.S. Application Serial No. 11/676,127, which is herein incorporated by
reference.

[0059] To provide context to the reader, an exemplary speeding
scoring engine and a burst speeding scoring engine will be described. The
speeding scoring engine receives a trajectory vector. For example, a trajectory

of {...,[t(i-1), X(i-1), Yi-1)s V(i-1),...], [ti, Xi, Yi, Vi,...]} may be received. In this example,
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observations for the same object at times t.1y and t; (the current frame and the
previous frame) are included in the trajectory data. Furthermore, the trajectory
data can include any or all observations starting at to, i.e. the first frame where
the object is detected. The speeding engine will then retrieve a normal velocity
motion model from the dynamic model database 44. While the speeding scoring
engine is described using only a single model for a particular behavior, the
scoring engine may utilize a plurality of normal velocity motion models. Thus, if
the observed trajectory matches with at least one of the models, i.e. has low
abnormality scores when compared with a particular normal motion model, then
the behavior is normal. If the scores are all abnormal, then the scoring engine
can provide scores for the trajectory in a number of ways, e.g. average
abnormality score, median abnormality score, highest abnormality score, or
lowest abnormality score.

[0060] A velocity motion model can contain the expected velocity (u) or
expected velocity components (Uyx) and (Jy) and standard deviations for the
expected velocity (o), or (0x) and (oy). Using the velocity components the raw

speeding score at t; may be calculated by:

Vx(@)—p,) Wy —pu,)
pa—

()

RawSpeedingScore(i) = max{
(o}

It is appreciated that the raw speeding score may be further processed by a
function that maps the raw speeding score into an interval between [0,1]
depending on how far away the score is from k* o, where k equals 3 for
example.

[0061] The speeding score of the ith frame can be determined in many
ways. One possible method is to determine the median score of a time window.
For example, the speeding score of the th frame may be determined by:

SpeedingScore(i) = median{ RawSpeedingScore(i —k —1),..., RawSpeedingScore(i —1),
RawspeedingScore(i)}
(6)
Again, the foregoing is but one way to determine a speeding score, and other
means of determining speeding scores and other types of scores are

contemplated.
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[0062] As the trajectory is analyzed, each time stamp or frame will
have a speeding score associated therewith. Once the trajectory is scored by a
general scoring engine, e.g. the speeding scoring engine, the scoring engine will
examine the scores for the trajectory and determine if the sub scoring engines
need to be called. Thus, if the scoring speeding engine detects that a
predetermined amount of scores, e.g. 3, are greater than a threshold score then
the speeding sub scoring engines are called, including, for example, a burst
speeding scoring engine.

[0063] An exemplary burst speeding scoring engine can count the
number of score values within a time window that are above a burst speeding
threshold. For example, for the jth frame, the burst speeding scoring engine will
look at the previous m scores, e.g. 5, and determine how many are above the
threshold. Next the burst speeding engine calculates a ratio of scores in the
window that are over the burst speeding threshold,

BurstSpeedingScore( j) = count | window _ size (7)

where count is the amount of scores above the burst speeding threshold in the
time window and window_size is the sample size of the burst speeding score,
i.,e. m. In some embodiments, the burst speeding threshold can be exiracted
from the score values in the time window by calculating the median of scores
and the median of deviations from the median of scores instead of computing a
standard deviation and a robust threshold can be define as “median+median of
deviations” for easier threshold configuration.

[0064] The foregoing description of the speeding engine and the burst
speeding engine were provided for exemplary purposes. It is appreciated that
other implementations for speeding scoring engines and burst speeding sub
scoring engines are contemplated. Further, any type of scoring engines and sub
scoring engines can be implemented in the system.

[0065] Once the scoring engines return their respective scores and
sub scores to the abnormal behavior detection module 32, the abnormal
behavior detection module 32 can classify the behavior of the motion object. For
instance, if a motion object has three distinct segments having different types of
motion, the trajectory may be classified as <Burst Speeding, Wandering,
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Constant Acceleration Speeding>, which indicates that the motion object first
engaged in burst speeding, then it wandered in the FOV of the camera, then it
accelerated at a constant acceleration as it exited the FOV of the camera. It is
appreciated that the trajectory vector has scores from different scoring engines
and sub-scoring engines associated therewith. Thus, the abnormal behavior
detection module 32 reads the various scores of the trajectory vector and
classifies each segment of the trajectory vector based on the abnormality scores
of the particular segment. If a particular segment has a very high speeding
score, then that particular segment will be classified as speeding, or a sub
classification thereof.

[0066] Once the trajectory vector is scored, the abnormal behavior
module 32 communicates and the database purging module 38 receives the
scored trajectory vector and determines if the trajectory should be included as a
motion model in the dynamic model database 44. The database purging module
38 is further configured to adaptively learn the temporal flow patterns of motion
objects. The abnormal behavior detection module 36 uses the learned temporal
flow patterns to accurately generate abnormal behavior scores, as models
corresponding to relevant temporal flow patterns can be generated by the
database purging module 38 and stored in the dynamic model database 44.

[0067] The database purging module 38 manages the dynamic model
database 44 by removing older irrelevant motion models and adding newer
relevant models to the dynamic model database 44. As can be appreciated,
during the course of the day, many trajectories may be observed and the general
traffic flow observed in the FOV of a camera may change. Thus, feature vector
database 42 stores feature vectors of recently observed trajectories. The feature
vectors are extracted from particular rows of the trajectory vectors of the recently
observed trajectories. In other embodiments, the feature vector database 44
may store the actual trajectory vectors of the recently observed trajectories.
When a large number of trajectories are observed having similar feature vectors
or trajectories, the database purging module 38 may add a new motion model
corresponding to those trajectories in the dynamic model database 44 and if a

maximum amount of models is reached, the model purging module 38 may

17



10

15

20

25

30

WO 2011/102871 PCT/US2010/060745

replace a less relevant normal motion model with the new motion model.
Greater detail on the database purging module 38, the dynamic model database
44 and the feature vector database 42 are provided below.

[0068] The dynamic model database 44 contains various normal
motion models used by the scoring engines. Thus, in some embodiments, the
dynamic model database 44 has specific motion models for each type of scoring
engine. For example, the dynamic model database 44 may store three specific
models for the speeding scoring engine, three specific models for a wandering
scoring engine and three specific models for a traffic flow scoring engine.

[0069] Further, the dynamic model base 44 may have an upper limit
for the amount of motion models a specific scoring engine can store in the
dynamic model database 44. For example, the dynamic model database 44 may
be limited to only storing three velocity models for the speeding scoring engine.

[0070] Additionally, each model stored in the dynamic model database
44 can include a relevancy score or other indicator of how the particular model
compares with the other models. The relevancy score of a model is a value that
is a function of both the amount of similar trajectories in the feature vector
database 42 and the recentness of those trajectories.

[0071] Figure 9 illustrates an exemplary organization of the dynamic
model database 44 and the feature vector database 42. The dynamic model
database 44 stores models for the speeding scoring engine and models for the
wandering scoring engine. As was discussed, other scoring engines may also
have corresponding models stored in the dynamic model database 44. Each
model that is stored in the dynamic model database 44, will have the model data
92. In the figure, exemplary model data 92 is shown for speeding model 3. As
can be seen, there is also a relevancy score corresponding to the model. As will
be discussed below, when a new model is added to the dynamic model
database 44, the new model will replace an old model if the maximum amount of
models for a particular scoring engine are already stored in the dynamic model
database 44. The relevancy scores of the models determines the order in which
the database purging module 38 will purge the models from the dynamic model
database 44. Furthermore, the dynamic model database 44 also stores time
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stamps for the most recent trajectories that matched to the model so that the
relevancy scores of the models can be updated, as will be discussed below.

[0072] Feature vector database 42 stores feature vectors of recently
observed trajectories, wherein the features of the feature vectors can correspond
to the abnormality score of the trajectory vectors. When a trajectory is scored by
the various scoring engines and sub scoring engines, feature extraction may be
performed on the score vectors of the trajectory. Furthermore, the starting
location of the trajectory and the time of the trajectory may also be included in
the feature vector. The feature vectors stored in the feature vector database 42
are used by the database purging module 38 to determine if a normal motion
model in the dynamic model database 44 needs to be replaced by a new normal
motion model. This would occur when a group or cluster of recently observed
trajectories have a relevancy score that is higher than one of the models in the
dynamic model database 44.

[0073] Figure 10 illustrates components of an exemplary model
purging module 38. Model purging module 38 receives a current trajectory
vector 102 and determines if a new motion model based on the current trajectory
vector should replace one of the motion models in the dynamic model database
44. In particular, a feature extraction module 104 receives the current trajectory
and performs feature extraction on the vector. The extracted feature vector is
then compared and matched with the feature vectors stored in the feature vector
database 42. The feature vector matching module 106 is configured to
determine if the feature vector of the current trajectory vector is similar to one or
more of the feature vectors of the recently observed trajectories stored in the
feature vector database 42. A relevancy score calculator 108 will then calculate
a relevancy score of the group of similar feature vectors. A database updating
module 110 receives the relevancy score and compares it with the relevancy
scores of the models in the database. If so, a model building module 112 will
generate a motion model based on the current trajectory vector, which is then
stored in the dynamic model database 44. The extracted feature vector is stored

in the feature vector database 42.
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[0074] The feature extraction module 104 receives the current
trajectory vector and generates a feature vector by performing feature extraction
on the current trajectory vector. In some embodiments, feature extraction is
performed on the individual rows corresponding to the scores generated by a
particular scoring engine, i.e. the score vectors of the trajectory vector. Thus, if
the system has 10 scoring and sub scoring engines, then up to 10 feature
vectors can be generated per iteration of the feature extraction module 104.
Furthermore, the feature extraction module 104 can associate a starting location
and time of the trajectory vector to the feature vector.

[0075] It is envisioned that the feature extraction module 104 can be
configured to perform many different feature extraction techniques. One
technique is to perform Haar transforms on the scores of the current trajectory
vector. To perform a Haar transform on a vector, the input vector should have a
length the order of 2". If a trajectory vector does not have a length of 2", it can
be lengthened by interpolating additional elements from the various scores in the
row or by zero-filling the vector.

[0076] Figure 11 illustrates an example of a Haar transform. For
explanatory purposes, a vector of length 8 or 2% is depicted. As will become
more apparent, when the Haar transform is performed on a vector, the length of
the vectors should be of fixed length. The vector in Figure 11 contains 8
coefficients <al, a2..., a8>. The Haar transform is performed in three iterations
and results in 8 coefficients. The first iteration takes the average of the adjacent
elements and the differences between adjacent elements. As can be seen, after
the first iteration Col. 1 has the average of A1 and A2 and Col. 2 has the average
of A3 and A4, while Col. 5 has (A1-A2)/2 and Col. 6 has (A3-A4)/2. As can be
seen from the figure, after the first iteration, the coefficients in Cols. 5-8 of level 0
drop down into the fifth, sixth, seventh, and eighth Haar Coefficients,
respectively, at the bottom of the chart. The second iteration calculates the
averages of the adjacent elements, but only in Cols. 1-4, and takes the
differences between the adjacent elements. For example, after the second
iteration, the result in Col. 1 is ((a1+a2) + (a3 +a4)) / 4 and the result in Col. 3 is
((a1+a2) - (a3 +ad)) / 4. After the second iteration, the coefficients in Col. 3 and
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Col. 4 of level 1 drop down into the third and fourth Haar coefficients at the
bottom of the chart. The third iteration is similar to the first and second
iterations, but only the coefficients from level 2, Col. 1 and Col. 2 of level 2 are
considered. Thus, after the third iteration, the result in Col. 1 is ((a1+a2) + (a3
+a4) + (ab+ab) + (a7 +a8))/ 8 and the result in Col. 2 is ((a1+a2) + (a3 +a4) -
(ab+ab) + (a7 +a8))/ 8. The results of Col. 1 and Col. 2 drop down into the first
two Haar Coefficients at the bottom of the chart.

[0077] It is appreciated that in some embodiments, the system is
configured so that at each motion event, i.e. time stamp, various data and scores
may be generated. At each one of these iterations, the feature extraction
module 104 receives the updated vector and performs the Haar transform on the
updated data. As mentioned, the length of the input vector is 2". It can be
appreciated that the first few motion events will have trajectory vectors that have
lengths that are less than 2". For example, if n=3, then the Haar transform
receives input vectors of length 8. If, however, a motion object has been
detected only 7 times, the trajectory vector will only have length 7. In these
situations, the feature extraction module 104 interpolates the remaining scores of
the trajectory prior to performing the Haar transforms, e.g. the 8™ data sample
may be interpolated based on the previous 7 scores. It is envisioned that any
interpolation techniques may be used.

[0078] Furthermore, once the length of the trajectory vector exceeds
the input length for the Haar transform function, then feature extraction module
104 can use a sliding window that looks back at the previous 2" entries in the
trajectory vector. Thus, in the example where the Haar transform is performed
on vectors of length 8, after the ninth sample is received and scored, the Haar
transform function may receive an input vector having the second through the
ninth score instances of the trajectory vector. After the tenth, the Haar transform
function would receive the third through the tenth score.

[0079] Once the Haar transform is performed on an input vector, the
feature extraction module performs coefficient selection from the Haar
coefficients. It is appreciated that the leftmost coefficients, e.g. coefficients 1-4,
are lower frequency components of the score vectors and the rightmost
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coefficients, e.g. 5-8, are higher frequency components of the frequency vector.
Thus, in the example provided above, the feature extraction module 104 selects
the first four coefficients. It is envisioned, however, that other coefficients may
be selected as well. Furthermore, if the Haar transform function receives longer
vectors, i.e. 16 or 32 scores, then more coefficients may be selected.

[0080] While the foregoing has been described with respect to a single
score vector, it is appreciated that the Haar transforms may be performed on
some or all of the score vectors of a trajectory vector. For example, at each
iteration a Haar transform may be performed on the scores generated from the
speeding scoring engine, the wandering scoring engine, the traffic flow scoring
engine, and one or more of the respective sub scoring engines.

[0081] Once feature extraction is performed, the feature vector
matching module 106 matches the extracted feature vector with the feature
vectors of previously scored trajectory vectors in the feature vector database 42.
The feature matching module 106 determines if there is one or more feature
vectors in the feature vector database that are similar to the extracted feature
vector.

[0082] One possible way to identify similar feature vectors is to
perform a k-nearest neighbor (K-NN) search on the feature vector database 42.
The k-nearest neighbor search algorithm receives the extracted feature vector as
an input and searches the feature vector database 42 for and returns the k-
closest feature vectors. It is appreciated that a measure of similarity, such as a
distance, is used to determine “closeness.” The k-nearest neighbor search will
determine the distance between the extracted feature vector and all of the
previously extracted feature vectors in the feature vector database 42. The k-
nearest neighbor search will then return the k-closest feature vectors and may
also return the distance from each of the extracted feature vectors. While the
returned distance in some embodiments is the Euclidean distance between the
extracted feature vector and the selected feature vector, it is envisioned that
other distance measurements may also be used. The feature vector matching
module 106 can then determine if any of the k-returned vectors are within a
threshold distance from the extracted feature vectors. The subset of feature
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vectors within the threshold distance from the extracted feature vectors can then
be communicated to the relevancy score calculator.

[0083] While a K-NN search algorithm is contemplated, it is
understood that other algorithms may be used to identify similar trajectories. For
example, a k-means clustering algorithm may be used. In such embodiments, a
distance between the extracted feature vector and the feature vectors in the
same cluster can be calculated. Those vectors within the threshold distance
from the extracted feature vector may be included in the subset described
above.

[0084] Once the subset of vectors within the threshold distance from
the extracted feature vector has been identified, the relevancy score calculator
108 can determine the relevancy score of the subset of feature vectors and the
extracted feature vector. The relevancy score calculator also updates the score
of a model in the dynamic model database 44 when a trajectory is scored as
‘normal,” by a scoring engine. For example, when a trajectory is scored as
normal, the relevancy calculator will calculate a new relevancy score for the
model using the new trajectory and the k-most recent trajectories. Furthermore,
so that the relevancy score of each model is current, the relevancy score
calculator may also update the scores of the models at each iteration of the
database purging module 38. As will be discussed, the relevancy score is
dependent on the passage of time. Thus, the relevancy score of each model
should be updated so that the relevancy score accurately represents the
relevancy of the model as time passes.

[0085] As mentioned, the relevancy score is a measure of how
relevant a subset of feature vectors are in comparison to a model in the model
database, or vice-versa. In some embodiments, the relevancy score is a
function of the amount of feature vectors in the subset of vectors and the
recency of those feature vectors, or the recency of the previous k trajectories
that a scoring engine maiched to the model whose relevancy score is being
calculated.

[0086] The relevancy score function can be implemented in a number
of ways. Essentially, the function gives greater weight to trajectories that are
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more recent than to those that are less recent. One possible way is to calculate
a recentness score and a density score of a model. The recentness score can

be calculated by calculating the following:

ATmodel(i) = Tmodel(i) -1, (8)

A71currfspan = 71curr - Told (9)
AT ,

RSmodel(i) = Amﬂ (1 0)

curr _span
where Tmodeliy IS the time at which the model was last used, Teur is the current
time, and Tqqis the time at which the model that was least recently used was last
used. It is understood that the recentness score can be expressed by another
type of function, such as a exponential decay function or a sigmoid function.
[0087] The density score can be calculated by using the following:

Dmodel(i) (l)
D

max

DSmodel(i) = (1 1)

where Dmodel) is the number of feature vectors in the feature vector database 42
that matched to the last trajectory to match to model(i), and where Dmax = K,
where k is the number used to perform the k-nearest neighbor search.

[0088] Based on these two scores, the relevancy score can be
calculated according to:

Relevancy _ Scoremodel(i) = WIRSmodel(i) = WZDSmodel(i) (12)

Where the weights w1 and w2 are the weights given to each score.

[0089] The relevancy score of an observed trajectory can be scored
using equation 12, where the recent score is 1, and the density score is the
number of feature vectors that matched to that of the observed trajectory divided
by k.

[0090] Database updating module 110 receives the calculated
relevancy score from the relevancy score calculator 108. In the instance where
a trajectory matched to a model in the dynamic model database, database
updating module 110 will simply update the relevancy score of the model, as
calculated by the relevancy score calculator 108. In the instance where the
current trajectory was determined to be abnormal, the relevancy score of the
current trajectory and the subset of the closest vectors will be compared with the
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relevancy scores of the models in the dynamic model database 44. |If the
computed relevancy score is higher than one or more of the models in the
dynamic model database 44, then the database updating module 110 will
replace the model having the lowest relevancy score with a new model, which is
generated by model building module 112. In the case of a tie, the model that
was least recently used can be purged or the model with the least amount of
matching feature vectors can be removed.

[0091] Moreover, if the dynamic model database 44 does not contain
the maximum amount of models for a particular scoring engine, then the new
model may be entered into the database without replacing a preexisting model.
To ensure that a model of abnormal behavior is not included in the dynamic
model database 44, the database updating module 110 may require that the
relevancy score of the subset exceed a predetermined threshold prior to storing
the new model in the dynamic model database 44.

[0092] An exemplary model building module 112 receives the current
trajectory 102 and generates a motion model to be stored in the dynamic model
database 44. The model building module 112 also receives a type of model to
generate. For example, a model to be used for a speeding scoring engine, then
model building module 112 will generate a model having data specific to the
speeding scoring engine. It is appreciated that model building is dependent on
the configurations of the scoring engines and the operation thereof. Examples of
model building may be found in U.S. Patent Publication Number 2008/0201116.
Once the model building module 112 generates a new model, the new model is
communicated to database updating module 110, which then stores the new
model in the dynamic model database 44.

[0093] In another aspect of the disclosure, the surveillance system can
be configured to clean the data by removing outliers and smoothing the data. In
these embodiments the metadata processing module 30 may further include a
data cleansing module and a Haar filter. The following provides alternative
means for processing metadata and is not intended to be limiting.

[0094] Figure 13 includes an alternative embodiment of the metadata
processing module 30. It is envisioned that the alternative embodiment of the
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metadata processing module 30 may be used interchangeably with metadata
processing module 30 described above. In the alternative embodiments, the
metadata processing module 30 comprises a vector generation module 130, a
data cleansing module 132, an outlier detection module 134, and a Haar filter
136. The data cleansing module 132 is configured to detect abnormal position
data that is received from metadata generation module 28 and is further
configured to label the abnormity of the position data. The data cleansing
module 132 filters burst noises in the position data based on the 1) normal
behavior statistics recorded in a motion velocity map or 2) previous motion
measurements of the same trajectory. A motion velocity map is a slice of a data
cube, where the “width” of the slice corresponds to an amount of time. The level
of deviation to the normal distribution of the normal behavior statistics is defined
as a sigma level of outlier, i.e. level*o, where o is the standard deviation. It is
also considered as a confidence level of an outlier being detected. For testing
and validation purpose, the statistics of the number of outliers of different sigma
are summarized for analysis purposes. For performance optimization, a pre-filter
is used to filter out the normal points in the motion data. A sigma level for each
data point is calculated for each point in the trajectory vector. The sigma level
can be used for filtering and scoring operations in order to discount or adjust the
confidence level of a score. The data cleansing module 132 can save processed
position data into a metadata position buffer.

[0095] In the alternative embodiments the metadata processing
module 30 also includes an outlier detection module 134. Figure 14 illustrates
an exemplary method that may be used to perform outlier detection. In this
particular embodiment, it is assumed that the minimum bounding box size
(height and width), velocity in both the x and y direction, and acceleration in both
the x and y direction in a data cube follow a Gaussian distribution. Thus, any
position of a trajectory is determined to be an outlier if one of the 6 above
mentioned variable has a value that is too far from the average value, e.g. 6
sigmas.

[0096] As can be seen in the figure, a trajectory for a motion object is
received at step 1402. The outlier detection module 134 will first calculate the
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change of the size of the bounding box, the velocity and accelerations for a
trajectory, as shown at step 1404. If none of the changes are too large, then the
trajectory is determined to be normal and the method steps 1420. If however,
one of the changes is too extreme the method steps to step 1406 where the data
cube for a particular cell is retrieved. The amount of motion objects observed in
the cell is counted at step 1408 and compared with a predetermined threshold
at step 1410. |If there is not enough data in the cell, then the features of the
trajectory will be calculated, as shown at step 1412. In this case, the simple
average from the positions of the trajectory are used to calculate z-values, which
is computed according to the following:
s
o

[0097] If there is enough data in the data cube, then the features will
calculate for the data cube itself, as shown at 1414. Figures 15-17 illustrate
exemplary methods to calculate outlier features for a particular type of data in a
data cube. At step 1416 outlier confirmation is performed. The outlier
confirmation determines if a position is an outlier according to the 6 determined
outlier features, i.e. the z values of the 6 features. The state diagram depicted in
Figure 18 can be used to perform outlier confirmation by categorizing the outlier
features. Table I, shown below, provides categorizations for the various outlier
features. It is appreciated that when a tracking error or a jump happens in the
data, the position will be labeled as an outlier.

Variable Normal Abnormal HighAbnormal | TrackingError
Z(MBR_dW) | <2.0 (2.0, 2.5) (2.5, 3.0) >3.0
Z(MBR_dH) |<2.0 (2.0, 2.5) (2.5, 3.0) >3.0
Z(VELX) <2.5 (2.5, 4.0) (4.0, 6.0) >6.0
Z(VELY) <2.5 (2.5,4.0) (4.0, 6.0) >6.0
Z(ACCX) <2.5 (2.5, 4.0) (4.0, 6.0) >6.0
Z(ACCY) <2.5 (2.5, 4.0) (4.0, 6.0) >6.0

[0098] As mentioned, if there is enough data in the data cube, then the
features will calculate for the data cube itself. Figures 15-17 illustrate methods
for determining the features of a data cube. Figures 15-17 all contain
substantially the same steps, so the description of Figure 15 can be used to

understand Figures 16 and 17.
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[0099] A position of an object in a trajectory is received at step 1502.
The data cube corresponding to the position is retrieved at step 1504 and the
count of the data cube, i.e. how many trajectories have passed through the cell
over a given period of time, is retrieved at step 1506. If the count is greater than
a predetermined threshold, e.g. 5, then the method steps to 1510, where the
average and standard deviation of the heights and widths of the bounding boxes
observed in the cell are calculated. If, however, the count for the cell is less then
the predetermined threshold, then the data cubes of the eight neighboring cells
are retrieved at step 1512. If the count of the cell and the eight neighboring cells
is greater than the predetermined threshold, the average and standard deviation
of the bounding boxes observed in those nine cells is calculated or estimated, as
shown at step 1516. If the count for the nine cells is less than five, however,
then the average and standard deviation of the height and width of the bounding
box as observed in the trajectory is calculated at step 1518.

[00100] At step 1520 a z score for the height and width of the bounding
boxes is calculated based on the averages and standard deviations that were
determined at one of steps 1510, 1516 and 1518. The z-score of the data, i.e.
the height and width of the bounding box of the currently observed motion object,
can be calculated using the following:
|BB_H - Avg _H|

z(BB_H)=
max(AVG _H,std _dev_H)

|BB_W — Avg _W|

zZ(BB_W)=
max(AVG _W,std _dev_W)

Where z(BB_H) is the z-value of the height of the currently observed bounding
box and z(BB_W) is the z-value of the width of the currently observed bounding
box. Once calculated, the z-values are stored for confirmation.

[00101] It is appreciated that the z-scores of the observed velocities and
trajectories can be calculated according to the methods shown in Figures 16 and
17, which substantially correspond to Figure 15. Calculating the z-scores of the
velocity and the acceleration may further require the calculation of the current
velocity and acceleration of the motion object if outlier detection is performed
prior to these values being calculated.
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[00102] Also included in the alternative embodiment of the metadata
processing module 30 is a filter 136. It is envisioned that the filter may be a
Kalman filter, a Haar filter, or any other type of data filter. For explanatory
purposes, a Haar filter 136 is assumed.

[00103] The Haar filter 136 provides the adaptive trajectory filtering to
reduce the impact of non-linear noise in the motion data caused by tracking
errors. To optimize the design for performance and code base reduction, the
Haar filter 136 is configured to perform a simple Haar transform on the motion
data. The Haar filter 136 may have at least one of the following properties:

1. Produces more accurate velocity and acceleration values in the
trajectory vectors using multiple sample points to reduce random
white noise;

2. Uses more data points to calculate macro level motion based on
the outlier confidence sigma measure when bursty outliers are
detected in the motion data;

3. Haslog N complexity and is only involved in binary shift operation;

4. The estimated point generated by the Haar filter 136 is based on
weighted sum of predicted point and the measurement point from
input weighted by a function of outlier sigma;

5. Produces smooth and shape preserving outputs; and

6. Reduces the number of points needed to represent the motion,
velocity, and acceleration for each trajectory.

It is appreciated that the Haar filter 136 operates on the data from metadata
position buffer and can output filtered and smooth data into the metadata
position buffer.

[00104] The outlier detection module 134 communicates the outlier
magnitude to Haar filter 136 to control the Haar transformation depth in outlier
situation. The Haar filter 136 can estimate one level D coefficients and by
performing an inverse Haar transformation, the Haar filter 136 can output
smoothed lower-level S coefficients. The estimated D coefficients are used in
velocity and acceleration estimation. S coefficients are the low frequency
coefficients in a Haar transform and D coefficients are the high frequency
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coefficients. The S coefficients generally relate to the averaging portion of the
Haar transform, while the D coefficients generally relate to the differencing
portion of the Haar transform.

[00105] Figure 19 shows an exemplary Haar filter. The Haar filter
comprises a first Haar transform module 190, a second Haar transform module
192, a third Haar transform module 194, a D coefficient smoothing module 196
(shown thrice), and a inverse Haar transform module 198 (shown thrice). The
output of the inverse Haar transform module 198 when receiving the S
coefficients of the first Haar transform module 190 and the first set of smoothed
D coefficients produces the location estimates of the trajectory. The output of
the inverse Haar transform module 198 when receiving the S coefficients of the
second Haar transform module 192 and the second set of smoothed D
coefficients produces the velocities of the trajectory. The output of the inverse
Haar transform module 198 when receiving the S coefficients of the third Haar
transform module 194 and the third set of smoothed D coefficients produces the
accelerations of the trajectory.

[00106] It is appreciated that the Haar transformation modules 190-194
perform a Haar transformation in a similar manner to the Haar transformation
discussed above, with respect to Figure 11. The caveat is that each successive
Haar transform module only receives the D coefficients of the previous Haar
transform. Thus, the size of the input vector is reduced by a factor of two in each
successive Haar transform module. For example, if the first Haar transform
module receives a 32 entry vector, the second Haar transform module 192 will
receive a 16 entry vector, and the third Haar transform module 194 will receive
an 8 entry vector.

[00107] The outputs of the first Haar transform module 190 are the S
coefficients, which are communicated to the inverse Haar transform module 198,
and the D coefficients which are communicated to the second Haar transform
module and the D coefficient smoothing module. It is appreciated that the D
coefficients outputted by the first Haar transform module 190 represent the x and

y components of the velocities of the input trajectory.
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[00108] The outputs of the second Haar transform module 192 are the
S coefficients, which are communicated to the inverse Haar transform module
198, and the D coefficients, which are communicated to the third Haar transform
module and the D coefficient smoothing module 196. It is appreciated that the D
coefficients outputted by the second Haar transform module 192 represent the x
and y components of the accelerations of the input trajectory.

[00109] The outputs of the third Haar transform module 194 are the S
coefficients, which are communicated to the inverse Haar transform module 198,
and the D coefficients, which are communicated the D coefficient smoothing
module 196. It is appreciated that the D coefficients outputted by the second
Haar transform module 194 represent the x and y components of the change of
the accelerations of the input trajectory.

[00110] As can be seen from the figure, the D coefficients are also
communicated to the D coefficient smoothing module 196. After the D
coefficients are smoothed then the S coefficients and the smoothed D
coefficients are communicated to the inverse Haar transform module 198. The
inverse Haar transform module 198 performs the inverse of the Haar transform
to reconstruct the input vector. As can be appreciated the result of the inverse
Haar transform module will correspond to the input fed into the respective Haar
transform module 190-194 but will be performed on the resulting S coefficients
and the smoothed D coefficients. Thus, the inverse Haar transform of the S
coefficients from the first Haar transform module 190 and the corresponding
smoothed D coefficients represent the locations of the trajectory. The inverse
Haar transform of the S coefficients from the second Haar transform module 192
and the corresponding smoothed D coefficients represent the velocities of the
trajectory. The inverse Haar transform of the S coefficients from the third Haar
transform module 194 and the corresponding smoothed D coefficients represent
the accelerations of the trajectory. The output of the Haar filter 136 is the motion
data of the trajectory vector.

[00111] The D smoothing module 196 is configured to receive the D
coefficients from a Haar transform and performs D smoothing on the coefficients.
The D smoothing module 196 is described in reference to Figure 21. Figure 21
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illustrates various levels of a Haar transform 210. As can be appreciated from
the Figure, the level 3 coefficients are not shown, as those coefficients are not
required to perform D smoothing. The shaded portions of the figure represent

the D coefficients. For purposes of explanation, the D coefficients are

referenced by D(level, position), such that D(1,0)= [Mj , D(1,1)=

[x(6) - x(S)j
2

(x(8) + x(7)) = (x(6) + x(5))
4

j, etc. Using the Haar transform of Figure 20

D(2,0)= [

as reference, the D coefficients can be smoothed using the following:
D(1,0).X= (D(2, 0).X * W)/2+ D(1, 0).X*W,,
D(1,1).X= (D(2, 0).X * W4)/2+ D(1, 1).X* Wy

D(1,2).X= (D(2, 1).X * W1)/2+ D(1, 2).X* W5
D(1,3).X= (D(2, 1)

X * W,)/2+ D(1, 3).X* W,
D(1,0).Y= (D(2, 0).Y * W4)/2+ D(1, 0).Y* W,
D(1,1).Y= (D(2, 0).Y * W1)/2+ D(1, 1).Y* W,
D(1,2).Y= (D(2, 1).Y * W1)/2+ D(1, 2).Y* W,
D(1,3).Y= (D(2, 1).Y *W4)/2+ D(1, 3).Y* W,

where W, and W, are predetermined weights. In some embodiments, W is set
to ¥4 and W, is set to 3. The result of the smoothing is the smoothed D
coefficients which are communicated to the inverse Haar transform module 198.
It is appreciated that the foregoing frame work can be applied to larger or smaller
sets of D coefficients.

[00112] The inverse Haar transform module 198 receives S coefficients
and D coefficients and performs an inverse Haar transformation on said
coefficients. As can be seen from Figure 11, the coefficients of the Haar
transform are derived from different levels. The inverse Haar transform begins
at the lower level coefficients, i.e. the S and D coefficients and iteratively solves
for the coefficients of the previous levels, such that the original low level
coefficients can be solved for from the successive higher level coefficients. For
example, referring to Figure 11, the inverse Haar transform module 198 can use
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the values of the coefficients in columns 0 and 1 to solve for the values of the
level 2 coefficients. It is appreciated in this iteration of the example, the value of
((a1+a2) +(a8 + a4)) and the value of ((a5+a6) +(a7 + a8)) can be solved for
knowing that ((a1+a2) +(a3 + a4) +(a5+a6) +(a7 + a8))/8 is the expression used
to obtain the value of the coefficient of column 0 and (((a1+a2) +(a3 + a4)) —
((a5+a6) +(a7 + a8)))/8 is the expression used to obtain the value of the
coefficient in column 1. It is appreciated that this logic is used to solve for the
level 1 values, using the values of level 2 and the coefficients of columns 2 and
3. The same logic can be applied to solve for the level 0 values using the level 1
values and the coefficients from columns 4-7. Finally, the original elements can
be solved for using the level 0 values. The output of the inverse Haar transform
module 198 will correspond to the input of the Haar transform module 190-194
providing the coefficients, but may differ therefrom due to the D coefficient
smoothing.

[00113] The outputted trajectory of the Haar filter 136 preserves the
shape, velocity, and direction of the original trajectory in the image plane. The
time interval of the trajectory is preserved in each point.

[00114] For a motion object that moves slowly in the far FOV such that
the accuracy of position is not sufficient to detect the velocity accurately, the
Haar filter 136 uses multiple points to generate a low resolution estimation of the
trajectory points to reduce the computational overhead. The outputted down-
sampled points are bounded in time and space. In the time domain, the Haar
filter 136 outputs minimal trajectory points in a range from a minimal time default
to a maximum time default, e.g. 1.6 seconds. In the space domain, the Haar
filter 136 outputs observation in either the x or y direction for a default value of a
cell distance of the size, e.g. 16 pixels. The output decision is based on the
time and space thresholds. If the object is not moving the time thresholds
ensure that there is a minimal rate for output. If an object is moving, the space
threshold ensures that the output is always produced when the displacement of
the object is considerable.

[00115] The outlier smoothing can be the outlier detection indicators
from the data cleansing module 132 as input to decide the range of points
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needed to calculate estimated trajectory points. Estimating or interpolating
trajectory points achieves higher level of accuracy by smoothing out the effects
of large jumps in the trajectory. In order to perform smoothing, the Haar filter
136 will estimate the D coefficients of some level from higher level D coefficients
and then perform a Haar inverse transform to get better estimates of lower-level
S or D coefficients. Generally, the outlier smoothing process can include two
operations: D coefficients smoothing and Haar Inverse Transformation.

[00116] The Haar filter 136 can predict the incoming points of a
trajectory based on internal Haar coefficients. For example, an upcoming x
coordinate in a trajectory can be predicted by:

X, @A) =X(L,i-)+V(Li-1)*At

Where X (L,i—1)is the previous Haar S coefficient, and V(L,i—1)is the previous

Haar D coefficient, and At is a change in time. L is the level in the Haar pyramid.
An example of a Haar pyramid is shown in Figure 11. A Haar pyramid includes
the coefficients as well as the intermediate levels of the Haar transform. In order
to reduce the computation load, suitable estimation of the Haar transformation
depth can be implemented based on the magnitude of the outlier detection, i.e.
the z-value. When the outlier magnitude is higher, the Haar transformation
depth is deeper. The prediction can also use non-linear curve fitting techniques.
For example, using interpolation the following can be used to predict the X, (i):
[, @) =Curve _ fitting (X (0,i =1), X (L,i 1) X (2,i —2))

here f,(t), for example, is a polynomial function, Zaiti , and Xp(i)=fx(ti) where

i=0

X(O,i-1 )=X(t(i.1)), at t=t(i-1)

X(‘| ,i-‘| )=£X(t(i_1));x(t(i_2))], at t=£t(i_1) ';t(i—Z)] and

X(2,i-1)=£

X(Epy) F Xt o))+ Xt o)) + X(E )] at e [t(i_l) L+l s
4 T 4
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where X(0,i-1),X(,i-1),X(2,i—1) are the level-0, level-1, and level-2 Haar
coefficients. For example, suppose the incoming point the coordinates are at
X(i), Z would then be the value of X speeding and W is the adaptive weighting
factor. The function mapping of the Z value to W weighting factor is listed as
shown in table 1.

TABLE 1

Z L(Level of prediction) | W

0 0 1

1 0 1

2 0 1

3 0 1

3<z<6 Floor(4z/3-4) 2-2/3 or exp (3-2)
>=6 4 0

X@O=X,0OA-W)+X OW

where X (i) is the final input for the Haar transformation pyramid. The following

is an alternative W calculation table:

Z-Value W
Z<1 1
1<=/<2 0.5
2<=/<3 0.125
3<=/<4 0.06
d<=7<5 0.03
5<=/<6 0.01
6<=7 0

[00117] The Haar filter 136 may be further configured to implement a
Haar transformation sliding window, which records all the Haar pyramid nodes.
This window can be implemented by an array or another data structure type. In a
situation where the Haar filter 136 receives a 32 element vector, the highest level
will be 5. Each node in the pyramid can be accessed by a level index and a
position index, e.g. indices (level, pos). The level index is 0 to 4. Because it is a
sliding window, the position varies from 0 to an upper bound. For example, for
level 0, pos varies from 0 to 16. Once pos passes 16, it resets to 0. The most
current index of each level is saved into a second array.
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[00118] The structure of the Haar window is implemented by a one-
dimensional array. In some embodiments, only the last two nodes of each level
are saved in the array. The index of the array is mapped to the Haar pyramid
according to the following table 2.

Table 2
Level O 0 1
Levell 2 3
Level2 4 5
Level3 6 7
Leveld 8 9

[00119] By structuring the Haar pyramid in this fashion, a point in the
Haar pyramid can be accessed by specifying a level and position. In the table
provided above, there is five levels, where level 4 is the highest and the positions
from each level vary from 0 to 1. For reference, the terms D(level, pos) will be
used to stand for a D coefficient at a specific level and position, and S(level, pos)
will be used to stand for an S coefficient at a specific level and position.

[00120] The two points resulting from an Inverse Haar transformation of
node (level, pos) are:

S(level-1,2*pos).x = S(level, pos).x + D(level, pos).x, pos=0, 1,2, ...
S(level-1,2*pos).y = S(level, pos).y + D(level, pos).y, pos=0, 1,2, ...

S(level-1,2*pos+1).x = S(level, pos).x - D(level, pos).x, pos=0, 1, 2, ...
S(level-1,2*pos+1).y = S(level, pos).y - D(level, pos).y, pos=0, 1, 2, ...

[00121] If no D and S coefficients are changed from a previous level,
the Inverse Haar transformation from higher level node should output the exact
same results as the S coefficients in the lower level nodes. But if one or more
high level D coefficients are changed, after performing and inverse Haar
transformation, the lower level S coefficients are also changed.

[00122] All the above operations can be performed by a recursive

function The function performs an n-th level Haar
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transformation, smoothing, and inverse Haar transformation
based on two lower level S coefficients pos1 and pos2. The

pseudo code for the above described is shown in Table 3:

Table 3
1. Get curpos1 <= S(level,pos), dcurpos1 <= D(level,pos).
2. Advance pos in current level by 1, turn around when necessary.
3. Perform two-point Haar Transformation to update the node (level,pos)
based on pos1 and pos2.
4. If level+1 is greater than transformation depth, return.
5. If pos is odd number
5.1 curpos2<=S(level,pos), dcurpos2 <= D(level,pos).
5.2 invoke FirstHaarUpdate for next level from curposi and
curpos2
5.3 performing smoothing to dcurpos1 and dcurpos2
5.4 performing two-point inverse haar to update curposi and curpos2
End

[00123] There are five situations where the Haar filter 136 can output
metadata to the metadata buffer based on different criteria. The different criteria
include: the initial point output, the down-sampling output for slow moving
objects, interpolation output for very fast moving objects, long delay forced
output for even slow moving objects, and trajectory end output

[00124] When the initial point of one trajectory is not the first point in the
metadata buffer, it may be the 2-level Haar transformed points of the first 4
points in the metadata buffer. However, if the trajectory is very slow, all the first
4 points are inside one cell. Thus, the direction of the first 4 points is unlikely to
be accurate. Therefore, the initial point is output when the slow moving object
moves out of one cell.

[00125] Once all the smoothed Haar coefficients are obtained, the

down-sampling procedure can be performed to pick nodes from the smoothed
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nodes. Down-sampling is used to reduce total sample number. The pseudo
code the down-sampling procedure is shown in table 4 below:

Table 4

1. Get last output node in the meta data buffer if it is valid

2. Search latest points in the Haar window buffer from lowest level to
highest level to see if the distance to the last output node is large than
cell size, if larger, continue to higher level, otherwise exit

3. find the two adjacent level where lower level is larger than cell size and
higher level is smaller than cell size, output the higher cell Haar point and
advance the outLastPosID index

[00126] If the Haar filter 136 detects there are long jumps (larger than
one cell in size) between adjacent original points in the metadata buffer, the
Haar filter 136 will interpolate several points in between the jumping points to
make sure the trajectory can cover all the cells the motion object passed with
proper time stamps.

[00127] If the Haar filter 136 does not output anything for a period
greater than a predetermined amount of time, e.g. over 1.6 seconds, it means
the motion object is likely very slow. The distance from last output points is less
than one cell dimension. However, in order to keep real-time requirement the
Haar filter 136 needs to output a point even though the points is not far from
previous output point.

[00128] When a trajectory is finished, new points may also be outputted
into the metadata buffer, the Haar filter needs to process those points and output
metadata at the end of the trajectory.

[00129] As mentioned above, the Haar filter 136 can be further
configured to determine the velocity and the acceleration of a motion object. The
velocity can be calculated using the speed of two adjacent outputted points:
Velocity_x = ( CurPos.x-PrePos.x)/ ( CurPos.time-PrePos.time)

Velocity y = ( CurPos.x-PrePos.x)/ ( CurPos.time-PrePos.time)

For the down-sampled node (level, pos), the local velocity of the node is just the
corresponding higher level D coefficients divided by time duration, e.g.:

38



10

15

20

25

30

WO 2011/102871 PCT/US2010/060745

Velocity (level , pos).x D (level+1,pos/2).x/ D (level+1,pos/2).time

Velocity (level , pos).y D (level+1,pos/2).y/ D (level+1,pos/2).time

pos=0, 1, 2, ...

In addition, the Haar filter 136 can refer to the S coefficients in the second Haar
transformation, where the velocity in different resolutions is listed. After a
second Haar transformation, the accelerations are listed as the D coefficients. It
is envisioned that the trajectory vector may be calculated with these velocities
and accelerations.

[00130] In another aspect of the disclosure the database purging
module 38 is configured to further include a fading module (not shown). The
fading module is configured to adaptively learn the temporal flow of motion
objects with respect to each cell. The model building module 112 can use the
learned temporal flow patterns to generate motion models used to score
abnormal behavior. As described above, each cell can have a data cube
associated therewith, where the data cube stores a time-series of motion data
from motion objects passing through the cell. Included in the stored motion data
are the directions of the motion objects observed passing through the cell.
Referring back to the cell depicted in Figure 7, the direction of a motion object
can be defined by associating the direction to one of the octants. The fading
module can be configured to update a count for each octant in a cell. Thus, each
octant will have its own count associated therewith, whereby a direction most
observed in the cell, hereinafter referred to as the “dominant flow” of the cell, can
be determined by comparing the counts of each octant in the cell.

[00131] The fading module can keep track of the dominant flow of the
cell using an asymmetric function that retains a minimal direction count for each
octant. The count of an octant of a cell can be incremented or decremented in
two different situations. One situation is a detection based situation and the
other is time based situation. A detection based situation is when a motion
object is detected in the cell. In these instances the octant corresponding to the
direction of the motion object will have its count incremented and the other seven
octants will have their counts decremented. In the time based situation, no
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object has been detected in a cell for more than a predetermined amount of time.
In this situation the counts of the cells will be decremented.

[00132] In both instances the amount that a count of an octant gets
incremented or decremented is dependant on the value of the octant’s count.
For example, if a count of an octant is to be incremented, the amount by which
the count is incremented is determined by a function that receives the value of
the count as input and that outputs the amount to increment the count by.

[00133] For purposes of explanation, three thresholds are defined, and
will be discussed below. The three thresholds are Thiow, Thrime, and Thyigh.
Furthermore, there is a counter for the entire cell, which is Cell.xy.mem_cnt.

[00134] Figures 20A and 20B illustrate the amount to increment and
decrement, respectively, the count of an octant based on the value of the
particular octants count. For example, referring to the graph 200 of Figure 20A,
if the count of an octant to be incremented is below Thyy, then the count is
incremented by the value corresponding to section A, e.g. 50. If the count of the
octant to be incremented is greater than Thiow but less than or equal to Thpign,
then the count is incremented according to section B, e.g. 100. If the count of
the octant to be incremented is greater than Thygs, then the count is
incremented according to section C, e.g. 20. Thus, when the fading module
determines that a motion object has passed through a particular cell in the
direction of a particular octant, the fading module will determine the amount to
increment the particular octant's count by using the function depicted in graph
200. It is understood that the numbers provided are exemplary and not intended
to be limiting. Further, while a step function is shown, the various sections may
be defined by other types of functions, such as linear, quadratic, exponential,
logarithmic, etc.

[00135] Referring now to Figure 20B, the graph 202 illustrates the
amount that the count of an octant is decremented by in a detection situation. If
the count of an octant is less then Thyey. If the count of an octant is greater than
Thiow, then the count of the octant to be decremented is decremented by the
value corresponding to section F, e.g. 100. Thus, when the fading module
determines that a motion object has passed through a particular cell in the
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direction of a particular octant, the fading module will determine the amount to
decrement each of the counts of the other octants using the function depicted in
graph 200. It is appreciated that other function types besides a step function
may be used to define the amount that the count will be decremented by.

[00136] Referring now to Figure 20C, the graph 204 illustrates an the
amount that the count of an octant is decremented by in a time based situation.
It is appreciated that in a time based situation, an object has not been detected
for more than a predetermined amount of time. In these instances, no octant will
be incremented. In the time based situation, an octant having a count that is
less than Trime is Not decremented. An octant having a count that is greater than
Trime but is less than Thyign, Will be incremented by an amount corresponding to
section H. As can be appreciated, section G in this example is defined by a
linear function, thus depending on the actual count of the octant, the amount to
be decremented will vary. Finally, if the count of an octant is higher than Thgn,
the count will be decremented according to section |, e.g. 100. Thus, when the
fading module determines that a motion object has not passed through a
particular cell for more than a predetermined amount of time, the fading module
will determine the amounts to decrement each of the counts of the octants using
the function depicted in graph 204. The graph in Figure 20C is provided for an
example of one possible decrementing scheme. It is envisioned that other
functions may define the various sections of graph 204.

[00137] Additionally, with respect to Figures 20A-20C, whenever the
count of any octant is incremented the total count of the cell, e.g.
Cell.xy.mem_cnt is incremented by the same amount. Further, whenever the
count of any octant is decremented the total count of the cell is decremented by
the same amount.

[00138] It is envisioned that in some embodiments, the fading module
may increment the counts of an octant by a predetermined amount, e.g. 1, when
an object is detected moving through the cell in the direction corresponding to
the octant and decrement the count of the other octants by the same

predetermined amount.  Similarly, the counts of all the octants may be
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decremented by the predetermined amount when an object has not been
observed in the cell for more than a predetermined amount of time.

[00139] As used herein, the term module may refer to, be part of, or
include an Application Specific Integrated Circuit (ASIC), an electronic circuit, a
processor (shared, dedicated, or group) and/or memory (shared, dedicated, or
group) that execute one or more software or firmware programs, a combinational
logic circuit, and/or other suitable components that provide the described
functionality.

[00140] The foregoing description of the embodiments has been
provided for purposes of illustration and description. It is not intended to be
exhaustive or to limit the invention. Individual elements or features of a
particular embodiment are generally not limited to that particular embodiment,
but, where applicable, are interchangeable and can be used in a selected
embodiment, even if not specifically shown or described. The same may also be
varied in many ways. Such variations are not to be regarded as a departure from
the invention, and all such modifications are intended to be included within the
scope of the invention.
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CLAIMS
What is claimed is:
1. A video surveillance system having a video camera that generates
image data corresponding to a field of view of the video camera, the
system comprising:

a model database storing a plurality of motion models, wherein the
motion models define motion of previously observed objects;

a current trajectory data structure having motion data and at least
one abnormality score, wherein the motion data defines a spatio-temporal
trajectory of a current object observed moving in the field of view of the
video camera and wherein the abnormality score indicates a degree of
abnormality of the current trajectory data structure in relation to the
plurality of motion models;

a vector database storing a plurality of vectors of recently observed
trajectories, each vector corresponding to motion of an object recently
observed by the camera;

a model building module that builds a new motion model
corresponding to the motion data of the current trajectory data structure;

a database purging module configured to determine a subset of
vectors from the plurality of vectors that is the most similar to the current
trajectory data structure based on a measure of similarity between the
subset of vectors and the current trajectory data structure; and

the database purging module further configured to replace one of
the motion models in the model data base with the new motion model
based on an amount of vectors in the subset vectors and amounts of time
since the recently observed trajectories of the subset of vectors were

observed.

2. The video surveillance system of claim 1, wherein the plurality of
vectors stored in the vector database are feature vectors, each feature
vector having features derived from abnormality scores of the recently
observed trajectories.
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3. The video surveillance system of claim 2, wherein the database
purging module comprises:

a feature extraction module configured to receive the current
trajectory data structure and to generate a feature vector of the current
trajectory data structure by performing feature extraction on the at least
one abnormality score of the current trajectory data structure;

a feature vector matching module configured to receive the
extracted feature vector and to determine the subset of vectors based on
a similarity measure between the feature vector of the current trajectory
data structure and the feature vectors in the vector database;

a database updating module configured to receive the new motion
model and to replace one of the motion models in the model database
based on the amount of vectors in the subset of vectors and amount of
time since the recently observed trajectories of the subset of vectors were
observed.

4. The video surveillance system of claim 3 wherein the feature
extraction module is configured to generate a Haar transform of the
current trajectory data structure and to select a predetermined subset of
coefficients from the Haar transform.

5. The video surveillance system of claim 3 wherein the feature vector
matching module is configured to perform a k nearest neighbor search to
find the k most similar feature vectors in the vector database to the
feature vector of the current trajectory.

6. The video surveillance system of claim 5 wherein the subset of

vectors is comprised of feature vectors having a measure of similarity to

the feature vector that is below a predetermined threshold.
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7. The video surveillance system of claim 3 further comprising a
scoring engine configured to receive the current trajectory data structure
and to generate the abnormality score of the current trajectory data
structure based on the motion data of the current trajectory data structure
and the plurality of motion models in the model database, wherein the
motion models define a particular type of motion and the scoring engine is
configured to detect the particular type of motion.

8. The video surveillance system of claim 7 further comprising a sub
scoring engine corresponding to the scoring engine, the sub scoring
engine configured to generate an abnormality sub score based on at least
one of the motion data of the current trajectory data structure, the
abnormality score of the current trajectory data structure and the plurality
of motion models, wherein the sub scoring engine is configured to detect
a sub classification of the particular type of motion.

9. The video surveillance system of claim 8 wherein the feature
extraction module is further configured to perform feature extraction on
the abnormality sub score of the current trajectory data structure and to
generate a feature vector that is based on the abnormality sub score of
the current trajectory data structure.

10. The video surveillance system of claim 1 wherein the current
trajectory data structure is a vector.

11. A method for maintaining a model data base that stores a plurality
of motion models, the motion models defining motion of previously
observed objects, the method comprising:

generating a current trajectory data structure having motion data
and at least one abnormality score, wherein the motion data defines a
spatio-temporal trajectory of a current object observed moving in the field
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of view of the video camera and the abnormality score indicating a degree
of abnormality of the current trajectory data structure in relation to the
plurality of motion models;

building a new motion model corresponding to the motion data of
the current trajectory data structure;

determining a subset of vectors from a plurality of vectors of
recently observed trajectories stored in a vector database, wherein each
vector corresponds to the motion of an object recently observed by the
camera, and wherein the subset of vectors have a highest amount of
similarity to the current trajectory data structure, wherein an amount of
similarity is based on a similarity measure; and

replacing one of the motion models in the model data base with the
new motion model based on an amount of vectors in the subset of vectors
and amounts of time since the recently observed trajectories of the subset

of vectors were observed.

12.  The method of claim 1, wherein the plurality of vectors stored in the
vector database are feature vectors, each feature vector having features

derived from abnormality scores of the recently observed trajectories.

13.  The method of claim 12, further comprising:

performing feature extraction on the at least one abnormality score
of the current trajectory data structure;

generating a feature vector from said feature extraction;

determining the subset of vectors based on a similarity measure
between the feature vector of the current trajectory data structure and the

feature vectors in the vector database;

14.  The method of claim 13 wherein said performing feature extraction
further comprises performing a Haar transform on the current trajectory
data structure and selecting a predetermined subset of coefficients from
said Haar transform.
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15. The method of claim 3 wherein said determining a subset of
vectors from a plurality of vectors further comprises performing a k
nearest neighbor search in the vector database, wherein the subset of

vectors has at most k vectors.

16.  The method of claim 15 wherein the subset of vectors is comprised
of feature vectors having a measure of similarity to the feature vector that

is below a predetermined threshold.

17.  The method of claim 13 further comprising generating the
abnormality score of the current trajectory data structure based on the
motion data of the current trajectory data structure and the plurality of
motion models in the model database, wherein the motion models define

a particular type of motion.

18. The method of claim 17 further comprising generating an
abnormality sub score based on at least one of the motion data of the
current trajectory data structure, the abnormality score of the current

trajectory data structure and the plurality of motion models.

19. The method of claim 18 further comprising performing feature
extraction on the abnormality sub score of the current trajectory data
structure and generating a feature vector that is based on the abnormality

sub score of the current trajectory data structure.

20. The method of claim 10 wherein the current trajectory data

structure is a vector.
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