用于太阳能电池的冶金硅的提纯设备和方法

一种形成高品质硅材料，例如多晶硅的系统。在特定实施例中，熔化材料包括硅材料和杂质，例如磷物质。该系统包括具有内部区域的坩埚。在特定实施例中，所述坩埚由合适材料制成，诸如石英材料或其它。该石英材料能够承受至少1400摄氏度的温度，以使加工硅。在特定实施例中，所述坩埚被配置为处于竖直位置并且具有露出熔化材料的开口区域。在特定实施例中，本系统具有能量源。此能量源可以是弧加热器或其它合适的加热装置，包括可以相同或不同的多个加热装置。弧加热器被配置在所述开口区域之上并且在露出的所述熔化材料和所述弧加热器的喷口区域之间隔开一个间隔，以在露出的所述熔化材料的中心区域的附近形成确定的温度分布，同时保持所述熔化材料的外部区域的温度低于所述坩埚的石英材料的熔点。在特定实施例中，该系统产生
1. 一种用于形成光伏装置的高品质硅材料的系统，所述系统包括：
 具有内部区域的坩埚，所述坩埚由石英材料制成，该石英材料能够承受至少 1400 摄氏度的温度，所述坩埚被配置为处于竖直位置并且具有露出熔化材料的开口区域；
 包括弧加热器的能量源，被配置在所述开口区域之上并且在被露出的熔化材料和所述弧加热器的喷口区域之间隔开一个间隙，以在被露出的熔化材料的中心区域的附近形成确定的温度分布，同时保持所述熔化材料的外部区域的温度低于所述坩埚的石英材料的熔点，以及
 被配置为使得蒸发的熔化材料的一部分返回所述熔化材料的运载气体。

2. 根据权利要求 1 所述的系统，其中，所述弧加热器是被配置为发射受激氯物质以将热量传递到一部分的所述熔化材料的等离子枪，所述弧加热器配置有热传递装置，以冷却所述弧加热器。

3. 根据权利要求 1 所述的系统，其中，所述弧加热器能够通过电源点火。

4. 根据权利要求 1 所述的系统，其中，所述弧加热器包括 20kW 以上的预热功率并且能够根据占空比产生脉冲。

5. 根据权利要求 1 所述的系统，其中，所述喷口区域具有 0.5 厘米至 2 厘米的最大尺寸。

6. 根据权利要求 1 所述的系统，其中，所述确定的温度分布大于 3000 摄氏度，以从所述熔化材料去除磷元素。

7. 根据权利要求 1 所述的系统，其中，所述熔化物质包括由至少所述确定的温度分布所形成的温度梯度导致的对流。

8. 根据权利要求 7 所述的系统，其中，所述对流导致所述熔化材料内的混合。

9. 一种用于形成太阳能电池的高品质硅材料的系统，所述系统包括：
 具有内部区域的坩埚，所述坩埚由石英材料制成，该石英材料能够承受至少 1400 摄氏度的温度，所述坩埚被配置为处于竖直位置并且具有露出熔化材料的开口区域；
 包括弧加热器的能量源，被配置在所述开口区域之上并且在被露出的熔化材料和所述弧加热器的喷口区域之间隔开一个间隙，以在被露出的熔化材料的中心区域的附近形成确定的温度分布，同时保持所述熔化材料的外部区域的温度低于所述坩埚的石英材料的熔点，以及
 喷嘴区域，被配置为输出氩气，以在所述熔化材料的所述中心区域的附近形成浅凹区域。

10. 根据权利要求 9 所述的系统，其中，所述氩气具有适当形成所述浅凹区域的流速，所述浅凹区域包括多个凹陷区域，各个凹陷区域被上升区域分隔开。

11. 根据权利要求 9 所述的系统，其中，所述喷嘴区域与氩气源耦接，所述喷嘴区域包括陶瓷材料。

12. 根据权利要求 11 所述的系统，其中，所述氩气源能够与弧管相独立地操作，其中，所述熔化材料包括 0.7 帕斯卡·秒的粘度，并且其中，所述氩气源的纯度为 99.99% 以上。

13. 根据权利要求 9 所述的系统，其中，所述浅凹区域设置有增大的表面区域，以使气流与所述熔化材料相互作用，其中，所述浅凹区域具有至少 1 厘米的深度。

14. 根据权利要求 13 所述的系统，其中，所述增大的表面区域比没有所述浅凹区域的
表面区域大至少三倍。

15. 根据权利要求13所述的系统，其中，所述增大的表面区域比没有所述凹凹区域的表面区域大至少五倍，其中，所述熔化材料的特征在于湍流，并且其中，所述弧加热器被配置为面对所述熔化材料的所述露出区域的选定部分。

16. 根据权利要求1所述的系统，其中，所述坩埚经受覆盖气体，以保持所述坩埚内的所述熔化材料。

17. 根据权利要求1所述的系统，其中，所述坩埚经受含氯气的覆盖气体，以保持所述坩埚中的所述熔化材料，所述覆盖气体适于保持所述熔化材料不被氧化。

18. 根据权利要求1所述的系统，进一步包括多个表面区域，所述多个表面区域被配置为使得磷物质的主要部分被耗尽，同时使硅物质的主要部分返回所述熔化材料。

19. 根据权利要求1所述的系统，进一步包括多个翅片区域，所述翅片区域被配置为使得磷物质的主要部分被耗尽，同时使硅物质的主要部分返回所述熔化材料，其中，所述熔化材料包括硅材料和磷物质，并且其中，所述熔化材料包括0.1ppm及0.1ppm以下的最终磷物质。

20. 一种用于形成光伏装置的高纯度硅材料的方法，所述方法包括：

传送具有内部区域的坩埚中的原料硅材料，所述坩埚由石英材料制成，该石英材料能够承受至少1400摄氏度的温度；

使所述坩埚中的所述原料硅材料经受热能，以使得所述原料硅材料熔化为液体状，从而在低于1400摄氏度的温度下形成熔化材料，所述熔化材料具有由所述坩埚的所述内部区域界定的露出区域；

使所述熔化材料的露出的内部区域经受包括弧加热器的能量源，该能量源被配置在所述露出的区域之上并且在所述露出区域和所述弧加热器的喷口区域之间留有一个间隙，以在露出的所述熔化材料的内部区域的附近形成确定的温度分布，同时保持所述熔化材料的外部区域的温度低于所述坩埚的石英材料的熔点；以及

从所述熔化材料中去除一种或多种杂质，以在坩埚中形成纯度更高的硅材料；

其中，该方法还包括，提供运载气体，该运载气体使得蒸发的熔化材料的一部分返回所述熔化材料。
用于太阳能电池的冶金硅的提纯设备和方法

【0001】相关申请的交叉引用

【0002】本申请要求2010年8月16日提交的序列号No.61/374,213的美国申请，2011年2月8日提交的序列号No.13/023,467的美国申请，2011年2月9日提交的序列号No.13/024,292的美国申请，以及2010年2月12日提交的台湾申请No.099104551的优先权，上述申请与本申请是共同受让的，并且其内容通过引用合并于此。

技术领域

【0003】本发明涉及用于提纯材料的设备和方法。更具体地，本发明涉及用于提纯冶金硅的情况和系统，从而以较低成本生产适于制造用于太阳能电池的单晶硅锭和多晶硅锭的原料。尽管以上描述了提纯硅方面，但是本发明也可以用于其它用途。

背景技术

【0004】通常通过所谓的西门子过程（Siemens process）生产用于制造太阳能电池的常规多晶硅材料。此过程完善、稳定且生产用于制造太阳能电池的具有一定品质的硅。然而，西门子过程具有限制。就是说，由于其制造过程的性质，西门子过程难以被调节并且不能满足过去数年内急剧增加的需求以及对较低价格的需求。此外，它在制造过程中涉及使用有毒的原材料，诸如HCl和SiHCl₃，并且产生有毒的副产物SiCl₄。这些材料也是高度易燃的。西门子法也是危险的，并且对环境有害。

【0005】作为选择，提出了利用冶金法的硅提纯方法。然而，这种提纯方法具有限制。就是说，这种方法还不能达到规模化生产。利用冶金技术已经获得了一些其它成果。不幸的是，为这种技术打造（scale）仪器的付出的努力是巨大的，并且因此生产成本仍高。通过整个说明书，更具体地是以下说明书，所描述的技术可以克服这些和其它限制。

【0006】从上可知，非常需要改进的硅生产技术。

发明内容

【0007】本发明涉及提纯材料的设备和方法。更具体地，本发明涉及提纯冶金硅矿的方法和系统，从而以较低成本生产适于制造用于太阳能电池的单晶硅锭和多晶硅锭的原料。尽管以上描述了提纯硅方面，但是本发明也可以用于其它用途。

【0008】上述制造方法生产具有可以用于太阳能电池的品质足够高的硅。但是随着对更清洁更灵活的产品、更低的成本和批量生产能力的增长的需求，常规方法具有限制。根据实施例，可以克服这些限制中的一个或多个。

【0009】在特定实施例中，本发明提供一种形成高品质硅材料（例如多晶硅）的系统。在特定实施例中，熔化材料包括硅材料和杂质，例如磷物质。该系统包括具有内部区域的坩埚。在特定实施例中，所述坩埚由合适材料制成，诸如石英材料或其它。该石英材料能够承受至少1400摄氏度的高温，以便加工硅。在特定实施例中，所述坩埚被配置为处于竖直位置并且具有露出熔化材料的开口区域。在特定实施例中，本系统具有能量源。此能量源可以是
弧加热器或其它合适的加热装置，包括可以相同或不同的多个加热装置。弧加热器被配置在所述开口区域之上并且在被露出的所述熔化材料和所述弧加热器的喷口区域之间隔开一个间隙，以在被露出的所述熔化材料的中心区域的附近形成确定的温度分布，同时保持所述熔化材料的外部区域的温度低于所述坩埚的石英材料的熔点。在特定实施例中，该系统产生包括 0.1ppm 及 0.1ppm 以下的最终磷物质的熔化材料，这是经提纯的硅。

在特定实施例中，本发明提供一种形成高品质硅材料（例如多晶硅）的方法。所述方法包括传送具有内部区域的坩埚中的原料硅材料。所述坩埚由石英材料或其它合适的材料制成，所述材料能够承受至少 1400 摄氏度的温度。所述方法包括使坩埚中的所述原料硅材料经受热能，以使得所述原料硅材料熔化为液体状态，从而在低于约 1400 摄氏度的温度下形成熔化材料。优选地，所述熔化材料具有由所述坩埚的所述内部区域界定的露出区域。所述方法还包括使所述熔化材料的露出的内部区域经受包括弧加热器的能量源。该能量源被配置在被露出的区域之上并且在被露出区域和所述弧加热器的喷口区域之间隔开一个间隙，以在露出的所述熔化材料的内部区域的附近形成确定的温度分布，同时保持所述熔化材料的外部区域的温度低于所述坩埚的石英材料的熔点。优选地，所述方法从所述熔化材料中去除一种或多种杂质，以在坩埚中形成纯度更高的硅材料。

在特定实施例中，所述弧加热器是被配置为发射受激氮物质以将热量传递到所述熔化材料的一部分的等离子枪。在特定实施例中，所述弧加热器被配置为面对熔化材料的露出区域的选定部分。所述弧加热器配置有热传递装置，以冷却所述弧加热器。在特定实施例中，所述弧加热器能够通过电源点火。优选地，所述弧加热器包括 20kW 及 20kW 以上的额定功率并且能够根据约 30%~50% 或其它的占空比产生脉冲。例如，30%的占空比表示 30% 开启，70% 关闭，这是本领域普通技术人员了解的。在特定实施例中，所述喷口区域具有约 0.5 厘米至约 2 厘米的最大尺寸。当然，可以有其它变型、改进和替换。

在特定实施例中，确定温度分布以获得一定结果。就是说，此温度分布是大于约 3000 摄氏度的最高温度分布，以从所述熔化材料去除磷杂质。在优选实施例中，此温度对于从熔化材料去除任何磷杂质和 / 或其它是重要的。在特定实施例中，坩埚中的熔化物质的特征在于由至少所述最高温度分布和熔化材料边缘附近的较低温度所形成的温度梯度导致的对流。在特定实施例中，对流导致所述熔化材料内的混合。在特定实施例中，对流也是湍流，以帮助熔化材料内的混合。

在优选实施例中，所述系统和方法还具有喷嘴区域，该喷嘴区域被配置为输出氢气，以在所述熔化材料的所述中心区域的附近形成浮凹区域。在一个或多个实施例中，所述喷嘴区域是多个喷嘴等。在特定实施例中，所述浮凹区域设置有增大的表面区域，以使气流与所述熔化材料相互作用，其中，所述浮凹区域具有至少 1 厘米及 1 厘米以上的深度。优选地，所述增大的表面区域比没有所述浮凹区域的表面区域大至少三倍，或者更优选地，所述增大的表面区域比没有所述浮凹区域的表面区域大至少五倍。以硅为例，所述熔化材料包括 0.7 帕斯卡・秒的粘度，这可以稍微增大或减小。在优选实施例中，氢气具有 5L/ 分钟至 20L/ 分钟的流速。在特定实施例中，撞击在熔化材料上的气体形成浮凹区域，该浮凹区域的特征在于具有多个凹陷区域，各个凹陷区域被上升区域部分隔开。在特定实施例中，与氢气源耦接的所述喷嘴区域由陶瓷材料制成。优选地，所述氢气源能够与弧管的能量的运作相独立地操作。在优选实施例中，所述氢气源的纯度为 99.99% 及 99.99% 以上。在其它实施例
中，也可以使用其它合适的非反应气体。当然，可以有其它变形、改进和替换。

在优选实施例中，本系统和方法使用覆盖气体或按压气体来封闭坩埚中熔化材料的主要部分。就是说，坩埚内受覆盖气体，以保持所述坩埚中的所述熔化材料。在优选实施例中，坩埚内受含覆盖气体的氢气或其它合适的一种惰性气体或多种惰性气体，以保持所述坩埚中的所述熔化材料。优选地，所述覆盖气体适于保持所述熔化材料不被氧化或不受其它不期望条件的影响。覆盖气体设置在腔室/或外壳中以封闭坩埚。当然，可以有其它变形、改进和替换。

在优选实施例中，所述系统和方法还包括被配置为使得蒸发的熔化材料的一部分返回所述熔化材料的运载气体。在特定实施例中，运载气体可以是适于使由硅实体构成的任何蒸发的熔化材料返回所述熔化材料的氮气或其它惰性气体。在特定实施例中，所述系统包括多个表面区域，所述多个表面区域被配置为使得磷物质的主要部分被耗尽，同时使硅物质的主要部分返回所述熔化材料。优选地，所述表面区域包括多个翅片区域，所述翅片区域被配置为使得磷物质的主要部分被耗尽，同时使硅物质的主要部分返回所述熔化材料。当然，可以有其它变形、改进和替换。

在其它实施例中，本发明包括克服常规技术的限制的提纯冶金硅的设备。在特定实施例中，本装置和系统改进常规单晶硅拉晶机设备。该拉晶机设备通常包括容器/坩埚，坩埚支撑件和加热器。通过在现有设备中实现现有装置中的至少一个，同时利用所述装置中的一个、一些或全部进行冶金硅的提纯。

独立的喷射装置，设置在坩埚之上，用于以高速射流将提纯所需的等离子体，气体和化学制品提供到硅熔化物的表面，通过它的供应管并合并合由于温度梯度产生的横跨硅熔化物的温度分布而在硅熔化物表面形成浅凹，有助于热循环和增加循环反演半径，以及增加提纯气体和化学制品与硅熔化物之间的接触面积，由此提高提纯效率。

上面设置有翅片的导引件，设置在坩埚中的硅熔化物之上相对于坩埚及提纯气体和化学制品供应管的适当位置，用于导引因加热硅熔化物导致的从硅熔化物表面升起的潮湿气体流返回硅熔化物表面，从而潮湿气体有效地接触硅熔化物。其中，导引件和硅熔化物表面之间的距离，翅片和硅熔化物之间的距离以及坩埚内周和翅片之间的距离是关键的。

操控装置，设置在容器之下，用于相对于加热器竖直地和水平地转移或转动坩埚，以调节固液界面，从而获得单向冷却面，而不需要对硅熔化物中剩余杂质的浓度相对于固液线进行温度调节系数管理，因此使得潮湿气体有效回流，并且通过调节坩埚和导引件之间的距离控制经由来自喷射装置的射流在硅熔化物表面上形成的浅凹形状，其中在操控装置中进一步设置能够水平转移的一组阀门，以便减少通过打开/关闭容器而将坩埚取出或插入容器时碳部与氧气的反应；以及

真空泵，设置为调整容器内的压力或真空度并且适应各种杂质的蒸发条件。

根据特定实施例，本技术通过增加简单结构，诸如独立的气体和化学制品喷射装置、坩埚转移操控装置、气体导引件和用来调整容器内的压力的真空泵，克服了这些限制中的一些或全部，从而利用这些小的改进可以提高提纯效率。同时，所述设备简单、容易维护，并可以有单晶硅拉晶机设备进行小的改进并且具有短的建造时间，因此可以降低成本，并且可以大量生产。此外，本技术的设备不使用有毒原材料并且产生无毒的副产物，同时确保提纯过程的安全性。
根据特定实施例，本发明提供通过改进现有单晶硅拉晶机设备而获得的冶金硅提纯设备，该拉晶机设备包括容器、坩埚、坩埚支撑件和加热器。本设备包括用于冶金硅提纯的以下装置中的一个、一些或全部：独立的喷射装置，设置在坩埚之上，用于以高速射流将提纯所需的等离子体、气体和化学制品提供到硅化物的表面；导引件，设置在坩埚中的硅化物之上的适当位置处，用于导引从硅化物表面升起的气体返回硅化物表面；操控装置，设置在容器之下，用于相对于加热器和导引件竖直地和水平地转移和转动坩埚，以获得最佳的提纯效率；以及真空泵，调整容器内的压力或真空度并且适应各种杂质的蒸发条件。

相比常规技术，本发明的方式可以实现很多益处。例如，本技术提供依赖常规技术的易于使用的系统。在一些实施例中，所述方法利用模块化途径提供高度提纯的硅。在优选实施例中，本方法和系统使用以下中的一个或多个：（1）用于在熔化材料中形成浅凹区域的气体喷嘴；（2）用于保持熔化材料的覆盖气体或环境；以及（3）用于使蒸气的熔化材料返回熔化物的运载气体或环境。此外，所述方法提供与常规过程技术兼容的过程和系统，而不需要对常规机器和过程进行大量改进。根据实施例，可以实现这些益处中的一个或多个。将在整个说明书中或以下的特定说明书中更详细地描述这些和其它益处。

参照下面的详细描述和附图可以更全面地理解本发明的各种额外目的、特征和优点。

根据特定实施例，本发明提供形成用于光伏装置的高品质硅材料的方法。所述方法包括：传送具有内部区域的坩埚中的原料硅材料，所述坩埚由石英材料制成，该石英材料能够承受至少1400摄氏度的温度；使所述坩埚中的所述原料硅材料经受热能，以使得所述原料硅材料熔化为液体状态，从而使在低于约1400摄氏度的温度下形成熔化材料。所述熔化材料具有由所述坩埚的所述内部区域界定的露出区域；使所述熔化材料的露出的内部区域经受包括弧加热器的能量源。该能量源被配置在露出的区域之上并且在所述露出区域和所述弧加热器的喷口区域之间隔开一个间隙，以在露出的所述熔化材料的内部区域的附近形成确定的温度分布，同时保持所述熔化材料的外部区域的温度低于所述坩埚的石英材料的熔点，并从所述熔化材料中去除一种或多种杂质，以在坩埚中形成纯度更高的硅材料。此外，所述方法包括通过喷嘴区域输出惰性气体，以在熔化材料的中心区域附近形成浅凹区域。惰性气体可以包括氩气，氩气的特征在于流速适于形成浅凹。所述浅凹区域包括多个凹陷区域，各个凹陷区域被上升区域分隔开。喷嘴区域可以与氩气源耦接，所述喷嘴区域包括陶瓷材料。浅凹区域可以设置有增大的表面区域，以使气流与所述熔化材料相互作用，其中，所述浅凹区域具有至少1厘米及1厘米以上的深度。所述熔化材料可以包括0.7帕斯卡秒的粘度。所述方法可以进一步提供覆盖气体以保持所述坩埚内的所述熔化材料。所述方法可以进一步提供被配置为使得蒸发的熔化材料的一部分返回所述熔化材料的运载气体。所述方法可以进一步包括利用多个表面区域，使得磷物质的主要部分被耗尽，同时使硅物质的主要部分返回所述熔化材料。所述熔化材料可以包括硅材料和磷物质。所述熔化材料可以包括0.1ppm及0.1ppm以下的最终磷物质。

附图说明

通过参照附图阅读优选实施例的以下详细描述可以更全面地理解本发明，在附图
中:
[0027] 图1是描绘用于生长单晶硅锭的简化的传统设备的剖视图；
[0028] 图2是描绘本发明的改进设备的第一实施例的剖视图；
[0029] 图3是描绘用于容易地传送坩埚的本发明的改进设备的第二实施例的剖视图；
[0030] 图4是描绘将坩埚插入图3的容器或从图3的容器中移除坩埚的剖视图；
[0031] 图5是描绘本发明的提纯材料供应系统的管道末端的剖视图；
[0032] 图6（包括图6A和6B）是描绘本发明的提纯材料供应系统的多个管道的剖视图；
[0033] 图7是描绘本发明的导引件的剖视图；
[0034] 图8是描绘在本发明的设备中等离子弧加热器的气体流的剖视图；
[0035] 图9是图示由本发明的等离子弧加热器和高压气体产生的硅熔化物的浅凹和循环的示意图；
[0036] 图10是图示在本发明的设备内的喷射装置和导引件的位置关系的示意图；
[0037] 图11（包括图11A至11D）是图示本发明的多个弧加热器的布置的示意图；
[0038] 图12是图示本发明的多个喷射装置相对于坩埚的位置的示意图；
[0039] 图13（包括图13A和13B）是图示由本发明的多个等离子弧加热器产生的硅熔化物表面中心处的浅凹区的示意图；
[0040] 图14是根据本发明的实施例的拉晶设备的简图。

具体实施方式
[0041] 本发明涉及用于提纯材料的设备和方法。具体地，本发明涉及提纯冶金硅的
方法和系统，从而以较低成本生产适于制造用于太阳能电池的单晶硅和多晶硅的原
料。尽管以上描述了提纯硅方面，但本发明也可以用于其它用途。尽管前面已经描述了
提纯硅方面，但也可以应用于其它用途。
[0042] 现在利用以下实施例描述本发明的实施方式。
[0043] 图1是描绘通常用于生长单晶硅的简化的设备的剖视图。该图仅是例子，不应该
不恰当地限制权利要求的范围。本领域普通技术人员识别处其它变型、改进和替换。在图
中，附图标记1表示容器，2表示坩埚支撑件，3表示坩埚操控装置，且表示加热器，5表示坩
埚。通过由低密度热材料制成的坩埚支撑件2支撑容器1中的石英坩埚5，以防止由于硅提
纯过程中的热应力导致坩埚5破裂。坩埚5位于加热器4中，加热器4辐射热并且在容器1
中产生热场以熔化坩埚5中的硅原料，由此产生硅熔化物。硅熔化物吸收从加热器4辐射
的热并且从其表面吸热或者经由熔液界面转移至生长中的硅（未示出）并且从该锭的
表面吸热，产生硅生长现象。坩埚操控装置3向上或向下转移坩埚5，以便硅生长。这
是因为在硅生长期间，锭缓慢地上升转动，同时硅熔化物表面下降，以便使液体表面保持在
恒定高度并且持续加热硅材料的固液界面；坩埚5必须缓慢升高，以确保硅生长过程的稳
定性。
[0044] 应该注意，为了避免硅在高温下氧化，通常在惰性氩（Ar）气气氛下在容器中进行
操作，其中可以通过容器的顶部送入Ar气体，以通过潮湿的Ar气和硅熔化物的反应促进提
纯。
[0045] 在优选实施例中，本系统和方法使用覆盖气体或按压气体将熔化材料的主要部分
封闭在坩埚中。即是说，坩埚一经受覆盖气体，以将熔化材料保留在坩埚中。在优选实施例中，坩埚经受含有覆盖气体的氩气或其它适合的一种或多种惰性气体，以将熔化材料保留在坩埚中。优选这，覆盖气体适于使熔化材料保留在不被氧化或不受其它不期望的条件影响。覆盖气体设置在包围坩埚的腔和/或外壳中。当然，可以有其它变型、改进和替换。

图 2 是描绘根据常规拉晶机改进的冶金硅提纯设备的第一实施例的视图。该图仅是例子，不应该不恰当地限制权利要求的范围。本领域普通技术人员识别出其它变型、改进和替换。在图中，附图标记 10 表示容器，10a 表示容器上部，10b 表示容器主体，11 表示加热器，12 表示降压管，15 表示排放通道控制帽，20 表示坩埚，30 表示坩埚操控装置，61 表示化学制品和气体供应管，62 表示高压气体供应管，70 表示气体流导引件，100 表示硅熔化物。

容器 10 由上部 10a 和容器主体 10b 组成。在硅熔化物 100 的表面之上是由化学制品和气体供应管 61 和高压气体供应管 62 组成的独立的喷射装置。通过供应管 61，将提纯所需的化学制品和气体，诸如钙 (Ca)、硅 (Si) 和镁 (Mg) 的可溶化合物、氢 (H₂) 气或氧 (O₂) 气，传送到硅熔化物 100 的表面。同时，将诸如水蒸气 (H₂O) 或 Ar 气的高压潮湿气体化合物通过高压气体供应管 62 由高压射流传送至硅熔化物 100 的表面中心，由此在硅熔化物 100 表面处形成凹凸 70 (见图 9)，并与配合坩埚 20 中硅熔化物 100 内的温度梯度，可以实现热循环和/或大量对流。射流不仅有助于坩埚 20 中硅熔化物 100 的混合，还增加化学制品/气体和硅熔化物 100 之间的接触面积，从而提高提纯过程的效率。

此外，导引件 70 设置在坩埚 20 中硅熔化物 100 之上的一适位置处并与与坩埚 20 以及供应管 61 和 62 相距一定距离。通过导引件 70，从硅熔化物 100 的表面升起的热气被导引回到硅熔化物 100 的表面，使得潮湿气体与硅熔化物 100 有效接触，因此提高提纯过程的效率。下面进一步讨论导引件 70。

在优选实施例中，所述系统包括连同运载气体一起的导引件，被配置为使得蒸发的熔化材料的一部分返回到该熔融材料。在特定实施例中，运载气体可以是氩气或适于使得任何被蒸发的由硅或其它熔化材料构成的其它惰性气体。在特定实施例中，所述系统包括被配置为使得大部分熔化材料被耗尽同时使大部分硅物质返回到熔化材料中的多个表面区域。优选的，表面区域包括被配置为使得大部分硅物质被耗尽同时使大部分硅物质返回到熔化材料中的多个翅形区域。当然，可以有其它变型、改进和替换。

此外，为了防止硅在高温下氧化和过度加热硅熔化物，改变容器 10 中的真空度，以适应原料硅中所含的各种杂质的蒸发条件，从而确保安全的冶金硅提纯过程。特别地，可以使用真空泵（未示出）和气流量阀（未示出）来控制容器 10 中的气体和气体流量，其中泵组件由降压管 12 调节压力，这避免了由连续供应水蒸气（提纯材料）导致压强升高导致的任何危险，由此提供安全和稳定的冶金硅提纯过程条件。

图 3 和 4 是描绘根据常规拉晶机改进的冶金硅提纯设备的第二实施例的视图。在图中，附图标记 10 表示容器，11 表示加热器，12 表示降压管，13 表示一组合成门和/或端口或负载锁，14 表示一组门锁控制装置，15 表示排风通道控制帽，20 表示坩埚，30 表示坩埚操控装置，31 表示坩埚操控装置底座，32 表示坩埚操控装置转轴，33 表示坩埚操控装置电机，40 表示坩埚传输装置，41 表示坩埚传送带，50 表示等离子弧加热器，60 表示提纯材料供应系统，61 表示化学制品和气体供应管，62 表示高压气体供应管，70 表示气体流导引件，100 表示硅熔化物。
在硅熔化物 100 的表面之上是由化学制品和气体供应管 61 和高压气体供应管 62 组成的独立的喷射装置。通过供应管 61 , 将提纯所需的化学制品和气体，诸如钙 (Ca) 、硅 (Si) 和钾 (K) 的可溶化合物，氢 (H₂) 气或氧 (O₂) 气，提供到硅熔化物 100 的表面。同时，将诸如水蒸气 (H₂O) 或 Ar 气的高压潮湿气体混合物通过高压气体供应管 62 经由高压射流提供到硅熔化物 100 的表面中心，由此形成硅熔化物 100 表面处形成浅凹 90（见图 9）。浅凹 90 配合坩埚 20 中硅熔化物 100 内的温度梯度，可以实现热循环和 / 或对流。射流不仅有助于坩埚 20 中硅熔化物 100 的混合，还扩大化学制品 / 气体和硅熔化物 100 之间的接触面积，从而提高提纯过程的效率。此外，等离子弧加热器 50 设置在硅熔化物 100 之上。与提纯材料系统 60 一起形成独立的喷射装置的等离子弧加热器 50 朝向坩埚 20 中硅熔化物 100 的表面倾斜和局部地发射等离子体。这横跨硅熔化物 100 产生可再现的温度分布。同时，通过等离子弧加热器 50 供应的燃烧的氢气 (H₂) 提供来自低压气体供应管 62 的氧气 (O₂) 并且氧气进入坩埚 20 中硅熔化物 100 的表面中心，经由氢气燃烧形成水蒸气 (H₂O)。水蒸气通过高压氧气射流的力进一步传送到硅熔化物 100 中，向硅熔化物 100 有效地提供硅熔化物 100 所需的水蒸气。

此外，第二实施例中，坩埚操作装置 30 设置在容器 10 之下，以提供升高 / 降低、转动和水平转移。坩埚操作装置 30 包括坩埚操作装置底座 31 、坩埚操作装置转移轴 32 和坩埚操作装置电机 33。由于本发明不用于硅生长的晶种管 (seed ingot)，因此在提纯过程期间，坩埚 20 中硅熔化物 100 的表面高度不下降。通过坩埚操作装置 30 , 不仅可以控制容器 10 内坩埚 20 的竖直移动以便安装或拆除坩埚 20 , 而且在硅提纯过程的最后可以协同坩埚转移装置 40 和坩埚传送带 41 传输坩埚 20 。此外，通过坩埚操作装置 30 可以控制坩埚 20 的竖直移动和转动，从而相对加热器 11 的位置调节硅熔化物 100 的固液界面，从而实现与偏析理论相关的单向冷却提纯，而不需要对硅熔化物 100 中杂质的浓度相对于固液线进行温度偏析系数管理。通过通过坩埚操作装置 30 相对于加热器 11 的位置调节硅熔化物 100 的固液界面进行硅提纯之外，通过坩埚操作装置 30 还可以控制坩埚 20 和导引件 70 之间的距离，从而使得来自表面的潮湿气体可以被有效地引导返回硅熔化物 100。以帮助供应用于提纯的水。同时，通过控制所述距离，可以控制由来自喷射装置的射流的直接作用导致的在硅熔化物 100 表面上的浅凹 90（见图 9）的形成。此外，参照图 3 和 4，除了坩埚操作装置 30 , 一组阀门 13 设置在容器 10 之下，该组阀门 13 可以水平地关闭或打开，并且通过能够水平转移的一组阀门操作臂 14 控制该组阀门 13。当将坩埚 20 安装到容器 10/ 从容器 10 拆除坩埚 20 时，阀门 13 水平地打开或关闭，以降低容器中的碳产物与氧的反应，该反应会影响硅熔化物 100 的提纯反应。

此外，导引件 70 设置在坩埚 20 中硅熔化物 100 之上相对于坩埚 20 以及供应管 61 和 62 的适当位置处。通过导引件 70 , 将来自提供到硅熔化物 100 表面的提纯气流的热空气流入导引返回硅熔化物 100 的表面，使得潮湿气体与硅熔化物 100 有效地接触，由此提高提纯过程的效率。

此外，为了防止硅在高温下氧化，容器 10 必须保持一定程度的真空。特别地，可以使用真空泵（未示出）和气流阀（未示出）来控制容器 10 中的气体和气体流量，其中该泵经由降压管 12 调整压力，这避免了由持续供应水蒸气（提纯材料）致使压强升高导致的任何危险，由此提供安全和稳定的冶金硅提纯过程条件。
图 5 是描绘图 2、3、4 中描述的本发明的提纯材料供应系统 60 的管末端的示意图。为了提供高压潮湿气体混合物从而在硅熔化 100 的表面中心上形成增大提纯材料与硅熔化 100 的接触面积和接触时间的浅凹 90 并且改善坩埚 20 中硅熔化物 100 的混合以便提纯，提纯材料供应系统 60 的管被设计为具有收缩的圆锥形状，以增加喷射压力和流速。应该仔细选择此圆锥形管的材料，以降低当用于供应化学制品和气体以及作为热源时的损失。为此，该管优选涂覆有诸如石英的材料。

图 6 是描绘本发明的独立的提纯材料供应系统 60 的实施方式的示意图。提纯材料供应系统 60 由图 2、3、4 中描述的化学制品和气体供应管 61 和高压气体供应管 62 组成的。图 6 示出用于提供不同提纯材料（例如，化学制品、气体和可溶性化学制品）组合的两个同轴管的设计，包括外管 a 和内管 b。附图字母 / 标记 a0 和 b0 分别表示外管 a 和内管 b 的出口。然而，本发明不限于这些，而是可以具有三个或更多管，只要它们向硅熔化物的表面提供不同的提纯材料组合。

图 6（A）和 6（B）是描绘用于将提纯材料供应到硅熔化物 100 的表面的多管设计的实施方式的剖视图。如图 6（A）所示，内管从外管突出，其中内管的出口 b1 供应高压潮湿气体（例如 Ar）和 / 或水，外管的出口 a1 供应 Ar 气。通过此设计，高压潮湿气体和 / 或水可以经由浅凹 90（见图 9）的中心穿过硅熔化物的表面，将提纯所需的潮湿气体和 / 或水有效地传送到坩埚 20 中的硅熔化物 100 中。如图 6（B）所示，内管比外管短，并且外管的出口 a2 供应 H2气体来与 O2反应以形成水，内管的出口 b2 供应与燃烧的氢气反应时用来形成水所需的 O2。由于内管比外管短，因此通过外管的出口 a2 提供的 H2可以扩散到硅熔化物 100 的表面并且由于高温而燃烧，并且如果从内管的出口 b2 向燃烧的 H2的中心提供 O2，则产生水蒸气。此水蒸气和一部分未反应的自由氧气有效地到达硅熔化物 100 的表面进行提纯。

图 7 是描绘本发明的气体辅导引件 70 的设计的示意图。如上所述，考虑到等离子弧加热器 50 和提纯材料供应系统 60，导引件 70 位于距离坩埚 20 中的硅熔化物 100 适当距离的位置处。导引件 70 改变上升热空气的方向使其返回硅熔化物 100 的表面，使得潮湿气体与硅熔化物 100 有效地接触，由此提高提纯过程的效率。导引件 70 包括主体 74 和从主体 74 的下缘延伸的若干翅片 71、72 和 73。

图 8 是描绘上升的热潮湿气体的流动的示意图。当等离子弧加热器 50 照射坩埚 20 中的硅熔化物 100 时，硅熔化物 100 的温度升高并且产生上升的热潮湿气体流（由虚线示出），该气体流在坩埚 20 中的硅熔化物 100 表面之上扩散。

此外，图 10 示出导引件 70 相对于坩埚 20 和硅熔化物 100 的表面的距离和位置，以及它们与上升热潮湿气流的相对关系。以下距离和位置是从发明人执行的实际实验中获得的，这不能视为限制本发明。

图 10 所示，附图标记 11 表示加热器，50 表示等离子弧加热器，60 表示提纯材料供应系统，61 表示化学制品和气体供应管，62 表示高压气体供应管，70 表示气体辅导引件，71 和 72 表示翅片，20 表示坩埚，100 表示硅熔化物，h1 表示等离子弧加热器出口和硅熔化物表面之间的距离，h2 表示导引件 70 的翅片 71 和硅熔化物 100 表面之间的距离，h3 是最长的翅片 71 的长度，h4 是从气体供应管 61 到等离子弧加热器 50 的出口的距离，s1 是导引件 70 的孔到等离子弧加热器 50 之间的距离，s2 是从等离子弧加热器 50 到内翅片 72 的距
离，s3 是翅片 71 和 72 之间的间隔。距离 h4 取决于提纯材料供应系统 60 的喷射力和通过导流件 70 的气流供应量(V)。

[0063] 基于实验结果，当供应量(V)为 100~800L/小时时，距离 h4 为 10cm，这是最大值。

[0064] 对于距离 h1，从实验结果可知，当距离 h1 达到 5cm 时，结果最佳。合适范围是从 1cm 到 18cm。

[0065] 对于第一距离 s1，从实验结果可知，此距离 s1 应该尽可能短，以加快气流通过的速度。根据实验结果，在化学制品和气体供应管 61 和高圧气体供应管 62 降低到导引件 70 的下游的高度的情形中，距离 s1 优选在 1cm 和 6cm 之间。

[0066] 距离 s2 取决于提纯材料供应系统 60 的压力和气体供应量(V)，即通过该空间的气体的流速。根据实验结果，在供应量为 100~800L/小时的情形中，当距离 s2 在 2cm 和 8cm 之间时结果最佳。

[0067] 距离 s2 和 s3 还取决于翅片 71 和 72 的数量。根据实验结果，当翅片数量为 2 时，距离 s2 和 s3 的和优选为距离 s2 加 5mm 至 30mm。

[0068] 对于距离 h2，理论上认为该距离越小，结果越好。但是考虑到温度等的影响，距离 h2 优选在 5mm 和 50mm 之间。

[0069] 距离 h3 与距离 h2 和导引件 70 的位置有关。根据实验结果，距离 h3 优选在 5mm 和 30mm 之间。

[0070] 对于距离 h1，在实验中使用等离子弧加热器 50 的情形中，5cm 是合适的。然而，等离子弧加热器 50 的使用存在潜在危险，因此如果距离 h1 在 1cm 和 18cm 之间可以获得不错的结果。

[0071] 此外，图 9 是描绘通过等离子弧加热器 50 的照射和 / 或提纯材料供应系统 60 导致的硅熔化物 100 中的循环形成浅凹 90 的示意图。当等离子弧加热器 50 发射等离子体并且提纯材料供应系统 60 向硅熔化物 100 的表面中心供应高压和高速射流时，在硅熔化物 100 表面中心上形成浅凹 90，并且当等离子体照射浅凹 90 时，硅熔化物 100 表面的高温区域扩大。配合通过等离子弧加热器 50 横跨坩埚 20 中的硅熔化物 100 所形成的温度分布，在硅熔化物 100 中产生更大的热循环反演半径。热循环更均匀地重新分布硅熔化物 100 中的杂质。射流有助于坩埚 20 中硅熔化物 100 的混合，并且还扩大硅熔化物 100 和提纯材料(例如气体和化学制品)之间的接触面积，由此提高提纯效率。此外，可以间歇地施加来自等离子弧加热器 50 的等离子体，以防止整个硅熔化物 100 过热并且保持横跨坩埚 20 中的硅熔化物 100 的适当的温度分布。

[0072] 图 11.12 和 13 是描绘利用不同组等离子弧加热器 50 照射坩埚 20 中硅熔化物 100 的表面的示意图。

[0073] 当需要提纯大量原料硅时，可以使用多个等离子弧加热器 50 来产生更高能量的照射。然而，当使用多个等离子弧加热器 50 同时照射硅熔化物 100 的表面中心时，会使提纯设备过热和损坏，例如使坩埚 20 的底部过热和损坏。为了克服这种问题，本发明围绕硅熔化物 100 的表面中心以相等角距离布置多个等离子弧加热器 50。例如，图 11（A）是描绘三个等离子弧加热器 50 围绕表面中心 a 的示意图；图 11（B）描绘四个等离子弧加热器 50；图 11（C）描绘五个等离子弧加热器 50；图 11（D）描绘六个等离子弧加热器 50。在等离子弧加热器 50 的以上组合中，来自多个等离子弧加热器 50 的照射需要聚焦在硅熔化物
100 表面之下的某个位置，以避免坩埚 20 过热，同时确保硅熔化物 100 的良好热循环。

[0074] 参照图 12，可以将等离子弧加热器 50 布置为与硅熔化物 100 表面成一定角度。不同角度产生不同形状的浅凹 90。所述角度应该小于或等于 90°（≤ 90°）。如图 12 所示，等离子弧加热器以角度 α 和 β 布置在硅熔化物 100 表面之上，这决定等离子体的照射焦点。一般地，照射得越深，角度 α 和 β 越大。此外，随着等离子弧加热器 50 的角度改变，坩埚 20 中硅熔化物 100 的温度分布也将改变。形成的浅凹 90 将不同，这表示改变照射角度使得硅熔化物 100 的蒸发速率改变。如图 13（A）和 13（B）所示，当等离子弧加热器 50 以不同角度照射硅熔化物 100 的表面时，形成不同的浅凹 90。此外，应该注意到，通过利用坩埚控制装置 30 控制等离子弧加热器 50 的位置，可以获得最佳等离子体照射的不同位置和温度，并且浅凹 90 的形状取决于等离子弧加热器 50 的照射角度 α 和 β。

[0075] 下面将参照前述附图详细描述本发明的优选实施例。

[0076] 本发明解决如何有效地将提纯材料（例如化学物质和气体）混入待提纯的冶金硅中的问题。

[0077] 冶金硅的熔化温度为约 1425°C。由于硅熔化物的辐射热的循环，提纯材料可能在达到硅熔化物之前就成为雾状并耗尽。

[0078] 鉴于此，常规技术提出以下方法。

[0079] 从坩埚底部吹入提纯材料。此方法理论上可行，但在实践中产生避免问题。需要足以抵抗液态硅熔化物粘性的压力。此外，为了避免倒流，必须在高于硅熔化物表面的高度完成吹入，这加长了吹入管，因此需要更高的压力。在压力暂时下降的情形中，硅熔化物倒流到管中并且在低温区凝固，这会导致管由于机械压力增加而破裂。因此，必须使管保持在一定温度内。

[0080] 因此该方法具有以下问题；

[0081] a）不可避免加入杂质，即，产品纯度低；

[0082] b）设备昂贵；

[0083] c）安全问题。

[0084] 此外，尽管通过机械搅拌装置混合和搅拌硅熔化物，但是考虑到高温和粘性环境，搅拌杆的材料和机械强度要求导致没有容易的解决方案。

[0085] 另一方法，所谓的风化方法，也被用于提纯。

[0086] 此提纯方法通常用于制造铁和铝，并且被证明是有效的。

[0087] 此方法通过玻璃化来去除杂质和添加剂（例如氧化镁和钙）。

[0088] 被玻璃化的杂质漂浮在经提纯金属的表面上，并且在冷却之后，可以通过机械装置从表面去除杂质，以获得提纯的产品。

[0089] 此方法在最终产品的纯度级别方面存在限制。然而，如果此方法同时采用本发明的设备，则可以提高纯度。

[0090] 本发明涉及可以有效地将提纯材料混合入硅熔化物中的提纯设备的开发。

[0091] 应该理解，可以通进改进现有的单晶硅晶体设备获得本发明提出的冶金硅提纯设备。现有设备通常包括容器、坩埚、坩埚支撑件和加热器。通过在现有设备中提供以下装置中的至少一个，同时利用所述装置中的一个，一些或全部来执行冶金硅的提纯；

[0092] 独立的喷射装置，设置在坩埚之上，用于将高速射流将提纯所需的等离子体、气体
和化学制品提供到硅熔化物的表面，通过它的供应管并且配合横跨硅熔化物的温度分布在
硅熔化物表面形成浅凹，有助于热循环和增加循环反演半径，以及增加提纯气体和化学制
品与硅熔化物之间的接触面积，由此提高提纯效率。

[0093] 上面设置有翅片的导引件，设置在坩埚中的硅熔化物之上相对于坩埚和用于供应
提纯气体和化学制品的供应管的适当位置，用于导引从硅熔化物表面升起的潮湿气体流返
回硅熔化物表面，从而消除气体有效地接触硅熔化物，其中，导引件和硅熔化物表面之间的
距离，翅片和硅熔化物之间的距离以及坩埚内周和翅片之间的距离是关键的。

[0094] 操控装置，设置在容器之下，用于相对于加热器竖直地和水平地转移或转动坩埚，
以调节固液界面，从而获得单向冷却提纯，而不需要对硅熔化物中剩余杂质的浓度相对于
固液线进行温度偏析系数管理，并且使得潮湿气体有效回流，并且通过调节坩埚和导引件
之间的距离控制由来自喷射喷射装置的射流在硅熔化物表面上形成的浅凹形状，其中在操控
装置中进一步设置能够水平移动的一组阀门，以便减少通过打开/关闭阀门而将坩埚取出
或插入容器中时碳部分与氧气的反应；以及

[0095] 真空泵，设置为调整容器内的压力或真空度并且适应各种杂质的蒸发条件。

[0096] 总之，本发明提供一种通过改进现有设备而获得的用于提纯在太阳能电池制造中
用作原料的冶金硅的设备，来替代传统的西门子法。

[0097] 根据以上实施例，包括以下方面的一个或多个。

[0098] 1. 一种提纯冶金硅的设备，通过改进包括容器、坩埚、坩埚支撑件和加热器的现有
单晶硅拉晶机设备而获得，并且增加用于提纯冶金硅的以下装置中的一个，一些或全部；

[0099] 独立的喷射装置，设置在坩埚之上，用于以高速射流将提纯所需的等离子体、气体
和化学制品提供到硅熔化物的表面，并且通过其独特的设计的供应管在硅熔化物表面形成浅
凹；

[0100] 上面具有翅片的导引件，设置在坩埚中的硅熔化物之上相对于坩埚和硅熔化物表
面的适当位置和距离（h1）（h2）（h3）（h4）（s1）（s2）（s3）处，用于导引从硅熔化物表面
升起的潮湿气体（由于加热硅熔化物的表面而导致的）流返回硅熔化物表面，从而消除气体
有效地接触硅熔化物；

[0101] 操控装置，设置在容器之下，用于相对于加热器竖直地和水平地转移或转动坩埚，
来调节固液界面，以便提纯并且进一步控制坩埚与以上导引件和喷射装置的相对位置，从
而获得最佳的提纯效率；以及

[0102] 真空泵，设置为调整容器内的压力或真空度并且适应各种杂质的蒸发条件。

[0103] 2. 根据权利要求 1 所述的设备，其中，所述喷射装置包括用于将化学制品、气体和
可溶气体供应到硅熔化物表面中心进行提纯的独立的化学制品和气体供应管。

[0104] 3. 根据权利要求 1 所述的设备，其中，所述喷射装置包括用于将高压潮湿气体混
合物供应到硅熔化物表面中心进行提纯的独立的高压气体供应管。

[0105] 4. 根据权利要求 1 所述的设备，其中，所述喷射装置包括独立的提纯材料供应系
统，该系统包括用于分别将化学制品、气体和可溶气体以及高压潮湿气体混合物供应到硅
熔化物表面中心进行提纯的化学制品和气体供应管以及高压气体供应管。

[0106] 5. 根据权利要求 4 所述的设备，其中，提纯材料供应系统中的管的末端具有缩小
的圆锥形状，用于增加喷射压力和流速。
6. 根据权利要求 5 所述的设备，其中，管的材料包括上面涂覆石英的材料。

7. 根据权利要求 4 所述的设备，其中，提纯材料供应系统具有同轴多管设计，用于供应化学制品、气体、可溶化学制品、酸性气体和水中的至少一个。

8. 根据权利要求 7 所述的设备，其中，同轴的多个管包括比外管长的内管。

9. 根据权利要求 8 所述的设备，其中，内管的出口供应高压酸性气体和水中的至少一种，外管的出口供应氮气。

10. 根据权利要求 7 所述的设备，其中，同轴的多个管包括比外管短的内管。

11. 根据权利要求 10 所述的设备，其中，外管的出口供应氧气以与氧气反应生成水，并且内管的出口供应氧气以与燃烧的氮气反应生成水。

12. 根据权利要求 1 所述的设备，其中，喷射装置包括至少一个等离子弧加热器，用于照射硅熔化物表面并且喷射提纯所需的化学制品和气体。

13. 根据权利要求 12 所述的设备，其中，将等离子体间歇地和局部地照射在硅熔化物的表面上，以在硅熔化物中形成可再现的温度梯度。

14. 根据权利要求 12 所述的设备，其中，围绕硅熔化物表面中心以相等角距离布置多个等离子弧加热器，并且相对于硅熔化物的平面以预定角度倾斜等离子弧加热器，从而使得照射聚焦在硅熔化物表面之下的一点，以在硅熔化物表面上形成不同形状的浅凹。

15. 根据权利要求 14 所述的设备，其中，等离子弧加热器相对于硅熔化物表面的倾斜角小于或等于 90°（≤90°）。

16. 根据权利要求 1 所述的设备，其中，操控装置包括坩埚操控装置底座、坩埚操控装置转移轴和坩埚操控装置电机，用于控制容器内坩埚的竖直移动，以便安装或拆除坩埚，并且用于控制坩埚的竖直移动和转动，以便相对于加热器移动坩埚，从而调节在界面以使双向冷却提纯，并且为了控制以上硅熔化物表面和导引件之间的距离，从而使得从表面产生的潮湿气体可以被有效地引导返回硅熔化物，以帮助供应用于提纯的水，并且，通过控制该距离，控制由来自喷射装置的射流的直接作用导致的在硅熔化物表面上产生的浅凹的形状。

17. 根据权利要求 16 所述的设备，其中，操控装置进一步包括用于在提纯过程最后传输坩埚的传输装置和坩埚传送带。

18. 根据权利要求 1 所述的设备，其中，操控装置进一步包括设置在容器之下可以通过一组阀门操控底平面地关闭或打开的一组阀门，从而在将坩埚装配到容器中或从容器中拆除坩埚的情况下，可以水平地打开和关闭阀门，以减少容器中碳部分与氧气的反应，该反应会影响硅熔化物的提纯。

19. 根据权利要求 1 所述的设备，其中，导引件包括主体和从主体下缘延伸的至少一个翅片。

20. 根据权利要求 1, 2, 3, 12 或 19 所述的设备，其中，在通过导引件的气体流量（V）为 100–800L/小时的情形中，从喷射装置的气体供应管到等离子弧加热器出口的距离 h4 为 10cm，这是最大值；从等离子弧加热器出口到熔化物表面的距离 h1 的范围在 1cm 和 18cm 之间，优选为 5cm；在化学制品和气体供应管以及高压气体供应管降低到导引件的高度的情形中，从等离子弧加热器到导引件的孔的距离 s1 优选在 1cm 和 6cm 之间；在供应量（V）为 100–800L/小时的情形中，取决于喷射装置的压力和气体供应量（V）（即通过该空间
说明

的气体的流速) 的等离子弧加热器到导引件的内翅片的距离 s2 优选在 2cm 和 8cm 之间;距离 s2 和导引件的翅片之间的距离 s3 也取决于设置的翅片的数量，从而当翅片数量为 2时，距离 s2 和 s3 的优选为距离 s2 加 5mm 至 30mm;从翅片到熔化物表面的距离 h2 优选在 5mm 和 50mm 之间，以及导引件中最长的翅片 h3 优选在 5mm 和 30mm 之间。

[0122] 21. 根据权利要求 1 所述的设备，其中，使用真空泵和气流阀控制容器出口的气体和气体流速，其中该泵经由降压管调整压力，以避免由持续供应水蒸气导致压强升高导致的任何危险，以适应包含在原料硅中的各种杂质的蒸发条件，并且防止硅熔化物过热，由此确保安全的冶金硅提纯过程。

[0123] 还应该理解，这里描述的例子和实施例仅是说明目的的，将向本领域技术人员提出其各种改进或变型，并且这些改进和变型包括在申请的权利要求的范围内。

[0124] 例子：

[0125] 为了证明本发明的原理和操作，我们进行一些试验。我们利用几代改进的常规单晶硅相关实验进行多晶硅提纯实验。这样的实验包括很小和常规的实验(一次装载约 20Kg 硅)至中等尺寸的实验(一次装载约 80Kg 硅)。我们保留坩埚设备和控制装置，该设备和装置被改进以按与被配置为提纯冶金硅的本实用硅提纯设备一致的方式进行操作。通过根据本例子引入冶金硅、处理这种硅并且提纯此硅，我们得到 6N~7N(例如，99.9999 至 99.99999 的硅纯度)的提纯结果，达到适于太阳能电池应用的要求规格。本实用的实际运行的提纯装置是根据大尺寸常规实验(一次装载约 140Kg 硅)改进的。例如，见图 14。当然，可以有其它变型、改进和替换。

[0126] 还应该理解，这里描述的例子和实施例仅是说明目的的，将向本领域技术人员提出其各种改进或变型，并且这些改进和变型包括在申请的权利要求的范围内。
图 3