(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property
Organization
International Bureau
(43) International Publication Date
23 October 2014 (23.10.2014)
(81) Designated States (unless otherwise indicated, for every

(84) Designated States (unless otherwise indicated, for every

(54) Title: DISPLAY SCREEN MOUNTING

Abstract: A display screen surface-mounting structure (100) comprising a display screen connector (111, 113), a surface connector (115, 117) for connecting the structure to a surface in use, and further comprising a rotational movement mechanism for axial rotation of an attached display screen (400) in use, wherein the rotational movement mechanism comprises an electric drive (109) and a manual rotational adjustment mechanism, and wherein the rotational movement mechanism comprises first and second dampers (105, 109), arranged to be connected either side of a connected display screen (400), in use.
Published:

— with international search report (Art. 21(3))
DISPLAY SCREEN MOUNTING

This invention relates to display screen surface-mounting structures, and surfaces to which a display screen are mounted. The invention further relates to vehicle seal tables comprising a rotatable mounted display screen.

It is known to mount display screens, such as audio visual display screens and touch screen displays to the rear of vehicle seat. The display screen can be mounted directly to the backrest, or headrest, of a vehicle seat, in a fixed fashion or in which a user may adjust the viewing angle of the display by pushing or pulling the display screen about a rotational axis. In some vehicles, such as aircraft and other passenger carrying vehicles, it is known to mount a display screen to an interior surface of the vehicle such as the interior roof surface, and the display screen may be in a fixed position, or mounted such that it may be electrically stowed and rotated to a viewable position as and when required.

In other vehicles, tables are provided mounted on the back of a seat, or within an arm rest of a seat, and which must be deployed and stowed by a user as and when required. It is known to mount a display screen on such tables, such that in use, when the table is deployed, the user may manually rotate the display screen to a visible orientation.

With electrically operated display screen rotation, one advantage is that electrical rotation of the screen enables repeatable and secure rotation of the screen to a desired position. A disadvantage of electrically driven rotational display screen systems is the fixed nature of the mechanism, such that the screen is rotated to a predetermined final position, which may not be optimal for a user. For example different passengers within a vehicle will have different heights, or preferred seating positions, and differences in height or seating position may make the viewing angle of a predetermined display screen position sub-optimal. On the other hand, while manual rotation of display screens mitigates some of the aforementioned problems with electrically driven systems, manual systems tend to be less sturdy, and prone to inadvertent movement due to vibration or other vehicle motion. This can lead to a passenger needing to continually or periodically adjust the display screen during use.
Embodiments of the present invention have been made in consideration of these problems, with a view to mitigating or alleviating them.

According to a first aspect of the present invention there is provided a display screen surface-mounting structure comprising a display screen connector, a surface connector for connecting the structure to a surface in use, and further comprising a rotational movement mechanism for axial rotation of an attached display screen in use, wherein the rotational movement mechanism comprises an electric drive and a manual rotational adjustment mechanism, and wherein the rotational movement mechanism comprises first and second dampers, arranged to be connected on opposite sides of a connected display screen, in use.

The display screen surface-mounting structure enables a display screen to be mounted to a suitable surface, and which enables electric rotation of the display screen to a predetermined position, and further manual rotational adjustment by a user if desired.

The display screen connector may comprise a clamp. The clamp may, in use, be arranged to connect a display screen to the surface-mounting structure in any suitable configuration. In some embodiments the display screen connector is arranged to connect to an upper or lower edge of a display screen, such that in use rotation of at least a part of the surface mounting structure effects rotation of the display screen about an axis running parallel with the upper or lower edge of the display screen.

The display screen connector may comprise first and second connectors, arranged to be connected to a display screen on opposite edges thereof, in use. The first and second connectors may comprise the first and second dampers, which may be a rotary damper. At least one of the dampers may be connected to a motor drive.

In some embodiments, the first and second connectors comprise the respective first and second damper, and the second connector further comprises a motor drive connected to the second damper. The second damper connected to the motor may provide a higher damping force than the first damper. When the motor operates it may apply a force to the unattached display screen, which overcomes the damping force of the damper on the other connector, thereby ensuring display screen
movement. When a user manually adjusts the display screen, the motor does not move, and a user must overcome the higher damping force involved in moving both dampers. This arrangement provides an appropriate (higher) level of damping which much be overcome to allow manual adjustment, and a lower damping force for the motor drive to overcome. In some embodiments, mounting of a display screen to a display screen surface-mounting structure of an embodiment of the invention, which includes dampers on both the first and second connectors, prevents or reduces vibration of the display screen in use.

In some embodiments, the damper connected to the motor drive includes a stop which limits relative rotation between the two sides of the damper to less than 15° or less than 10°. In this way, manual adjustment is limited to less than 15° or 10°. In some embodiments there are no stops connected to a damper which is not connected to a motor drive.

The motor drive may be configured to enable rotational movement of a display screen, using the screen surface-mounting structure, to rotate no more than 120°, or 110°. This configuration ensures that when an attached display screen is rotated to a stowed position, the drive through the connected damper turns the motor side of the damper to a point where it reaches the end stop with the display screen in a closed position, in use.

The surface connector may comprise a clamp, arranged in use, to connect to a surface. Alternatively, in some embodiments the surface connector may be arranged integrally with a surface, such that the surface-mounting structure is formed with the surface.

According to a second aspect of the invention there is provided a surface comprising a display screen surface-mounting structure of the first aspect of the invention.

In some embodiments the surface-mounting structure comprises a switch, which is activated to rotate the display screen from a first, stowed position and a second, deployed position by way of the electric drive. In use, a user may activate the switch, in order to activate the electric drive, and move the display screen from the
first, stowed position to the second, deployed position. A user may then manually adjust the rotation of the display screen to a desired position, by manipulating the display screen manually, which activates the manual rotational adjustment mechanism. When it is desired to stow the display screen again, a user may activate the switch, at which point the electric drive effects rotation of the screen from the second, deployed position to the first, stowed position.

The surface may comprise a surface of a table, wall of a vehicle, wall of a building or any other suitable surface. In some embodiments the surface is a surface of a table located in a vehicle, and which may be mounted on the back of a vehicle seat. The vehicle seat table may be rotatable from a stowed position to a deployed position by any suitable mechanism.

The surface may include one or more cavities or compartments in which items may be stored. The opening of the or each cavity or compartment may be covered by the display screen in the stowed position. A cavity or compartment may comprise a keyboard, mouse or other computer peripheral item, for example.

The display screen surface-mounting structure may be connected directly or indirectly to the surface, or may be integrally formed with the surface.

According to a third aspect of the invention there is provided a vehicle seat table comprising a display screen surface-mounting structure of the first aspect of the invention. The vehicle seat table may be described as herein.

According to a fourth aspect of the invention there is provided a method of mounting a display screen to a surface, the method comprising providing a display screen surface-mounting structure of the first aspect of the invention, connecting the display screen surface-mounting structure to a surface, and connecting the display screen surface-mounting structure to a display screen. The display screen surface-mounting structure may be connected to the display screen and the surface in any suitable order, which may depend on the structure of the display screen and surface.

The display screen surface-mounting structure is particularly advantageous in relation to vehicle seat tables, and mounting display screens thereon. Tables connected to vehicle seats when deployed in a horizontal position, are affected by the
rotational angle and height of the vehicle seat to which they are mounted. Depending on the angle of the seat which they are mounted, and the subsequent height of the table from the vehicle floor, any predetermined position of a mounted display may not give optimal viewing angles to a user. The ability to manually adjust the rotation of a display screen on a vehicle table overcomes this problem, whilst the electrical drive mechanism enables efficient and secure stowing and deploying of the display screen.

According to a fifth aspect of the invention there is provided a vehicle seat table comprising a display screen rotatably mounted thereon by a mounting structure, the mounting structure comprising a rotational movement mechanism having an electric drive and a manual rotational adjustment mechanism.

The various aspects of the invention are now described in greater detail, by way of example only with reference to the accompanying drawings, in which:

Figure 1 is a top-down view of a surface mounting structure of the invention, connected to a screen.

Figures 2, 3 and 4 show sequential operation of a display screen surface-mounting structure of the invention connected to a vehicle seat table and a display screen.

Referring firstly to Figure 1, a display screen surface-mounting structure (100) of the invention includes a first (111) and second (113) display screen connector, connected to a display screen (400) in the region close to a bottom edge (401) of the screen. The display screen surface-mounting structure (100) also includes a first damper (105) and a second damper (107) connected to the first and second display screen connectors (111, 113). Connected outside of the second damper (107) is a motor drive (109). The first damper (105) is also connected to a surface connector (115), and the motor (109) is connected to a second surface connector (117). In use, the display screen (400) is connected to the display screen surface-mounting structure (100), via the first and second connectors (111, 113). The display screen surface-mounting structure (100) is mounted in a seat table, as shown by reference numeral (200) in Figures 2-4, via the surface connectors (115) and (117).
Referring now to Figures 2, 3 and 4, which illustrate sequential operation of a
display screen surface-mounting structure of the present invention, connected to a
vehicle seat table (200). The seat table (200) is rotatably mounted on the rear of a
vehicle seat (300). The seat table (200) is orientated such that a suitable display
screen (400) can be mounted thereon in a stowed configuration, as shown in Figure 2.
The display screen (400) is connected such that it may rotate about an axis of rotation
around a bottom edge (401) of the display screen (400). The bottom edge (401) is
connected to the display screen surface mounting structure as described above.

In use, the display screen may be moved from a stowed position, as shown in
Figure 2, in which the visible display screen surface (402) (as shown in figures 3 and
4) lies flush with an upper surface (202) of the table (200). When a user requires to
view the display screen (400), button (10) is pressed, which activates the electric drive
mechanism of the display screen surface mounting structure, to rotate to display-
screen (400) from the stowed position as shown in Figure 2 to the deployed position
as shown in Figure 3 in which the visible display surface (402a) faces the user. The
electric motor drive (109) and second damper (107) ensure smooth rotation, and are
arranged to rotate the display screen around 110°. At this point, the display screen
(400) is in the position shown in Figure 3, which, depending on the angle of the seat
(300), and the seating position of a user, may not be the optimal position for effective
viewing of the visible display screen (402a). If the optimal position is not obtained, a
user may manually adjust the position of the display screen (400), by manipulating the
screen, and manually rotating it about the bottom edge (401). Manual rotation effects
decoupling of the electric drive, and activation of the manual rotational adjustment
mechanism provided by the dampers (105) and (107) of the display screen surface-
mounting structure (100) in order to rotate the display screen to an optimal visible
display screen viewing position, as shown by reference numeral (402b) in Figure 4.
The second damper (107) connected to the motor drive (109) has a higher damping
force than the first damper (105) on the opposite edge of the screen (400). In this way
when the motor drive (109) operates it applies a force to the display screen (400)
which overcomes the damping force of the first damper (105), and the screen moves.
When a user manually adjusts the screen (400), the motor drive (109) does not move,
and the user has to overcome the higher damping force involved in moving both first (105) and second (107) dampers, thereby allowing an appropriate higher level of damping which must be overcome to allow manual adjustment.

Finally, when a user has finished viewing the display screen (400), it can be moved back to the stowed position shown in Figure 1, by activation of the button (10), which in turn activates the electric drive to rotate the display screen (400) to the stowed position.

In preferred embodiments, the display screen (400) is a tablet computer, smartphone or other electronic multi-media device. For example, the display screen (400) may be a display screen of an iPAD (RTM) tablet computer or other suitable tablet computer. The vehicle seat table (200) may include electrical connections for in-vehicle charging of a connected device, and/or connection of the device to further display screens within the vehicle. The display screen (400) may include a protective cover, which functions to protect the outer surface of the display screen from abrasive damage, and/or damage from food and beverage spillage. The protective cover may cover the rear surface of the display screen (400), such that in the stowed position, the rear surface is protected. The protective cover may alternatively or additionally cover the visible display screen (402), and any other surfaces or edges of the display screen.

The display screen (400) may be releasably connected to the display screen surface-mounting structure (100) such that it can be removed and attached by the user at their convenience. Alternatively, the display screen may be fixedly attached to the display screen surface-mounting structure (100), such that the display screen is an integral part of the vehicle seat or surface to which it is attached.

Whereas the invention has been described in relation to what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not limited to the disclosed arrangements but rather is intended to cover various modifications and equivalent constructions included within the spirit and scope of the invention. In this respect, it should also be noted that the invention could be applied to surfaces, vehicles and display screens having different constructions from that shown in the examples.
Where the term "comprise", "comprises", "comprised" or "comprising" are used in the specification, they are to be interpreted as specifying the presence of the stated features, integers steps or components referred to, but not to preclude the presence or addition of one or more other features, integers, steps, components or groups thereof.
Claims

1. A display screen surface-mounting structure comprising a display screen connector, a surface connector for connecting the structure to a surface in use, and further comprising a rotational movement mechanism for axial rotation of an attached display screen in use, wherein the rotational movement mechanism comprises an electric drive and an manual rotational adjustment mechanism, and wherein the rotational movement mechanism comprises first and second dampers, arranged to be connected either side of a connected display screen, in use.

2. A display screen surface-mounting structure as claimed in claim 1 wherein the second damper is operably connected to the electric drive, and has a higher damping force than the first damper.

3. A display screen surface-mounting structure as claimed in claim 1 or 2 wherein the display screen connector comprises a first connector and second connector arranged to couple the first and second dampers to a display screen, in use.

4. A display screen surface-mounting structure as claimed in any preceding claim comprising a switch, activated in use to rotate the display screen between a first, stowed position and a second, deployed position by way of the electric drive.

5. A surface comprising a display screen surface-mounting structure of any one of claims 1 to 4.

6. A surface as claimed in claim 5 comprising a tabic.

7. A vehicle seat table comprising a display screen surface-mounting structure of any one of claims 1 to 5.

8. A method of mounting a display screen to a surface, the method comprising providing a display screen surface-mounting structure of any one of claims 1 to 5, connecting the display screen surface-mounting structure to a surface, and connecting the display screen surface-mounting structure to a display screen.

9. A method as claimed in claim 8 wherein the surface is a vehicle table surface.

10. A vehicle seat tabic comprising a display screen rotatably mounted thereon by a mounting structure, the mounting structure comprising a rotational movement
mechanism having an electric drive and a manual rotational adjustment mechanism
and wherein the rotational movement mechanism comprises first and second dampers
connected on opposite sides of the display screen.

11. A vehicle seat table as claimed in claim 10 wherein the display screen
comprises the display screen of a tablet computer, mobile phone or laptop computer.

12. A display screen surface-mounting structure, surface, method or vehicle seat
table or vehicle as substantially described herein with reference to the accompanying
drawings.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>CN 101 098 601 B (XIAMEN OVERSEAS CN ELECT ENTPR [CN] XIAMEN OVERSEAS CHINESE ELECTRONIC) 14 July 2010 (2010-07-14) abstract; figures 1-5</td>
<td>1,3-12</td>
</tr>
<tr>
<td>Y</td>
<td>US 2008/196201 A1 (ANDERSON GLENN E [US]) 21 August 2008 (2008-08-21) paragraphs [0017] - [0019], [0030]; claim 1; figures 1-20</td>
<td>1,3-12</td>
</tr>
<tr>
<td>A</td>
<td>DE 20 120 100251 U1 (CRD CAR RES & DEV GMBH & CO KG [DE]) 27 February 2012 (2012-02-27) paragraph [0035]; figures 1-3</td>
<td>1,5-11</td>
</tr>
<tr>
<td>A</td>
<td>WO 2009/098381 A1 (ROTH THIERRY [FR]) 13 August 2009 (2009-08-13) claim 1; figures 1-4</td>
<td>1,5-11</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C. **X** See patent family annex.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier application or patent but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search: 24 June 2014
Date of mailing of the international search report: 02/07/2014

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,
Fax. (+31-70) 340-3016

Authorized officer: Matos Gonçalves, M
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 2006/075934 A1 (RAM PRANIL [PH]) 13 April 2006 (2006-04-13) the whole document</td>
<td>1,5-11</td>
</tr>
<tr>
<td>A</td>
<td>W0 00/02745 A1 (MILE HIGH MARKETING LIMITED [IE]; INGRAM MICHAEL PETER [GB]; GODDIN JE) 20 January 2000 (2000-01-20) figures 1-12</td>
<td>1,5-11</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>CN 101098601 B</td>
<td>14-07-2010</td>
<td>NONE</td>
</tr>
<tr>
<td>US 2008196201 A1</td>
<td>21-08-2008</td>
<td>CN 101680255 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 112200800441 T5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 54109995 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2010519116 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008196201 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2008103846 A2</td>
</tr>
<tr>
<td>DE 202012100251 U1</td>
<td>27-02-2012</td>
<td>DE 202012100251 U1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 2620321 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2923780 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2009098381 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2006075934 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0002745 A1</td>
</tr>
<tr>
<td>WO 2007016613 A2</td>
<td>08-02-2007</td>
<td>CN 101248239 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 1122006001959 T5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2009503619 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008189908 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2007016613 A2</td>
</tr>
<tr>
<td>US 2006006093 A1</td>
<td>12-01-2006</td>
<td>NONE</td>
</tr>
</tbody>
</table>