Office de la Propriete Canadian CA 2519001 A1 200//03/13

Intellectuelle Intellectual Property
du Canada Office (21) 2 51 9 001
v organisme An agency of 12 DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada CANADIAN PATENT APPLICATION
(13) A1
(22) Date de dépbt/Filing Date: 2005/09/13 (51) Cl.Int./Int.Cl. GO6Q 10/00(2006.01),
(41) Mise a la disp. pub./Open to Public Insp.: 2007/03/13 GO6F 17730(2006.01)

(71) Demandeur/Applicant:
COGNOS INCORPORATED, CA

(72) Inventeurs/Inventors:
AZlZlI, SOUFIANE, CA;
POTTER, MIKE C., CA

(74) Agent: GOWLING LAFLEUR HENDERSON LLP

54) Titre : SYSTEME ET METHODE DE DEMANDE DE RENSEIGNEMENTS D'AFFAIRES INDEPENDANTE DES
DONNEES

54) Title: SYSTEM AND METHOD OF DATA AGNOSTIC BUSINESS INTELLIGENCE QUERY

70

L

02
78

Ul Report

Data Agnostic Bl
Query

/8

62 64

/

66

7

2 4

76

(57) Abréegée/Abstract:

A data agnostic business intelligence query system and method are provided. The system comprises a query set component for
defining data to be retrieved from a database, and a query result definition component for describing the dimensional structure of a
result set for the data to be retrieved. The method comprising the steps of translating the gesture Iinto a data agnostic business
Intelligence query, divide data agnostic business intelligence query into sub-queries grouped Iinto data source gquery types, and
sending each sub-guery to a data source query engine based upon its data source query type.

B

.

'

e
ok [[f
RO . e s
. M "c'-'-.n:‘-:{\: .«me . m s
.
.

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 02519001 2005-09-13

Abstract

A data agnostic business intelligence query system and method are provided. The
system comprises a query set component for defining data to be retrieved from a
database, and a query result definition component for describing the dimensional structure
of a result set for the data to be retrieved. The method comprising the steps of translating
the gesture into a data agnostic business intelligence query, divide data agnostic business
intelligence query into sub-queries grouped into data source query types, and sending

each sub-query to a data source query engine based upon 1its data source query type.

10

15

20

25

CA 02519001 2005-09-13

System and Method of Data Agnostic Business Intelligence Query

FIELD OF THE INVENTION

[0001] The invention relates generally to data access middleware, and 1n particular to a

system and method of data agnostic business intelligence query.

BACKGROUND OF THE INVENTION

[0002] Many organizations use data stores for storing business data, such as financial
data and operational data. In order to assist business users to examine their data, various
data analyzing applications are proposed. Those data analyzing applications provide
various views or reports of data to users. The data analyzing applications have query
engines that access the data stores to obtain desired data. Some data analyzing
applications have online analytical processing (OLAP) engines to provide

multidimensional views of data.

[0003] Data extraction, conversion, transformation, and integration are database 1ssues.
Their solutions rely on low-level query languages: relational (such as structured query
language (SQL)), multidimensional (MDX), or proprietary enterprise resource planning
(ERP) application programming interfaces (APIs). Business intelligence (BI) users,

systems, and applications use tools that support the following tasks:

e Reporting on a wide range of data extracted from various types of database

systems.

e Ad-hoc querying of data residing in relational, multi dimensional, and ERP

databases.

e Analysis and exploration of data residing in relational, multi dimensional,

and ERP databases.

e Integration of data from multiple data sources into a single report or

analysis session.

[0004] BI systems can have data from relational databases, dimensional databases, and

ERP APIs. In such scenarios, the BI system would extract information from each of the

10

15

20

25

30

CA 02519001 2005-09-13

data sources and then merge the results into a report. However, the extraction of
information from each data source is different. The BI system or a query author 1s
presented with a query language that 1s tied to a specific database technology. The user
interface is required to be aware of the type of data source it is reporting against and the
query language or query tools used vary with the data source type. The user can be
presented with a user interface that uses a semantic layer to insulate him from knowledge
of low level query syntax, such us SQL or MDX. However, the user experience is

Inconsistent across data source types.

[0005] There 1s a need for a better way of providing a query that 1s operable for a

plurality of data sources.

SUMMARY OF THE INVENTION

In accordance with an embodiment of the present invention, there is provided a
data agnostic business intelligence query system. The system comprises a query set
component for defining data to be retrieved from a database, and a query result definition
component for describing the dimensional structure of a result set for the data to be

retrieved.

In accordance with another embodiment of the present invention, there is provided
a data agnostic business intelligence query method. The method comprising the steps of
translating the gesture into a data agnostic business intelligence query, divide data
agnostic business intelligence query into sub-queries grouped into data source query

types, and sending each sub-query to a data source query engine based upon its data

source query type.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] These and other features of the invention will become more apparent from the

following description in which reference is made to the appended drawings wherein:
[0007] Figure 1 shows a typical data access environment.

[0008] Figure 2 shows in a diagram a non-data agnostic approach to merging data source

queries.

10

15

20

25

30

CA 02519001 2005-09-13

[0009] Figure 3 shows in a block diagram a data agnostic business intelligence query

system, in accordance with an embodiment of the present invention.

[0010] Figure 4 shows in a tree diagram an example of a data agnostic BI query
approach, in accordance with an embodiment of the data agnostic business intelligence

query system.

[0011] Figure 5 shows in a flowchart an example of a method of data agnostic business
intelligence query, in accordance with an embodiment of the data agnostic business

intelligence query system.

[0012] Figure 6 shows in a diagram a representation of a shaped result set, in accordance

with an embodiment of the data agnostic business intelligence query system.

[0013] Figure 7 shows in a diagram an example of the organization of the rowsets in the
result set, in accordance with an embodiment of the data agnostic business intelligence

query system.

[0014] Figure 8 shows 1n a diagram an example of the organization of the row edge
rowsets, in accordance with an embodiment of the data agnostic business intelligence

query system.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0015] Figure 1 shows a typical data access environment 10 for processing data.
Typically, data is stored in a database 12. A database server 14 (such as a structured
query language (SQL) server or a multidimensional (MDX) server) accesses the raw data
stored in the database 12. A report server 16 is used to generate reports on the raw data
and instruct the database server 14 to obtain information pertaining to the raw data in the
database 12. An end user uses a client application 18, running on a client server, to
facilitate report server 16 operations. Typically, a report server 16 has a query engine 20

for universal data access (UDA).

[0016] Data extraction, conversion, transformation, and integration are all database
problems. Their solutions rely on low-level query languages: relational (such as SQL),
multidimensional (MDX), or proprietary ERP APIs. BI users, systems, and applications
use tools that support the following tasks:

10

15

20

25

30

CA 02519001 2005-09-13

o Reporting on a wide range of data extracted from various types ot database

systems.

e Ad-hoc querying of data residing in relational, multi dimensional, and ERP

databases.

e Analysis and exploration of data residing in relational, multi dimensional,
and ERP databases.

e Integration of data from multiple data sources into a single report or

analysis session.

[0017] Figure 2 shows in a tree diagram a non-data agnostic approach 50 to merging data
source queries. Gestures 52 are translated into data source queries such as SQL 62 or
MDX 64. The queries are used to generate reports 68 that are then merged into a user

intertace (Ul) report 58.

[0018] Figure 3 shows in a block diagram a data agnostic business intelligence query
system 100, in accordance with an embodiment of the present invention. The data
agnostic business intelligence query system 100 is suitable for fulfilling the BI user,
system, or application without the need to use the low-level query languages and without
the need to tailor the application for a specific data source technology. The data agnostic
business intelligence query system 100 comprises a query set component 102 for defining
the data to be retrieved from the database, and a query result definition component 104
for describing the shape, or dimensional structure, of the result set to be returned for

rendering.

[0019] Figure 4 shows in a tree diagram an example of a data agnostic BI query approach
70, in accordance with an embodiment of the data agnostic business intelligence query
system 100. Gestures 52 are translated by the data agnostic business intelligence query
80 and sent to respective data source queries 54, 56, 66 to retrieve data from the
respective data sources 72, 74, 76. The retrieved information 1s processed and compiled

into a report sent to the Ul 78.

[0020] Figure 5 shows in a flowchart an example of a method of data agnostic BI query
(200), in accordance with an embodiment of the data agnostic business intelligence query
system 100. The method (200) begins with translating gestures into a data agnostic Bl

query (202). Next, the data agnostic query is divided into respective data source queries

_4 -

10

15

20

25

30

CA 02519001 2005-09-13

(204). Each data source query is sent to the respective data source query engine for

processing (206). The processed data is compiled into a report (208). The method 1s

done. Other steps may be added to this method.

[0021] The data agnostic BI query is a high a level query language supported for any data
agnostic BI application. Complex business queries are expressed easily in this query

language. A data agnostic BI query relies on the metadata model it 1s based on. It

provides functionality for professional report authoring, casual ad-hoc querying, and

sophisticated business analysis. To address the requirements of a business user, the data
agnostic BI query provides powerful query capabilities with a minimum of specifications.
This implies that the data agnostic business intelligence query system 100 interprets many
defaults rules in a sensible way. A single data agnostic BI query can span multiple data
source technologies and can be resolved by the query framework 100 and 1ts stack of
software components at the coordination, planning, and execution layers into multiple

SQL, MDX, and vendor specific queries.
[0022] The data agnostic BI query has the following features:
o Itisdeclarative.

o It is simple enough that known database techniques for query optimization,

cost estimation, and query rewriting could be extended to this query.

o It provides functionality for professional report authoring, casual ad-hoc
querying, and sophisticated business analysis against various data source

technologies through a consistent user experience.

[0023] The data agnostic BI query specification is encapsulated within a querySet section
of the Query Service API <execute> command. This command represents a request that
is submitted to the query framework, i.e., a query engine, by one of its clients. When the
command is a request to retrieve the result set for the enclosed querySet, data results are

returned as specified by the data agnostic BI query result set APIL

[0024] A querySet has one or more named queries (or query components 102) and one or
more named queryResultDefinitions (QRDs) 104. A query 102 in the querySet defines
the data to be retrieved from the data source while a queryResultDefinition 104 defines

the result set structure to be returned. In most cases, the query simply relies on the

10

15

20

25

30

CA 02519001 2005-09-13

metadata model referenced in its source. The QRD 104 is the syntactic representation of

the result set expected from the execution of a data agnostic BI query.

10025] The QRD 104 is the main mechanism for query framework clients to tie a
particular query to a particular result set. In a querySet, each QRD 104 is based on a
single query that which it references. Multiple QRDs 104 in the same querySet can
reference the same query 102. This allows query authors to use the same query 102 in a
crosstab and a chart result sets for example. This also allows the data agnostic business
intelligence query system 100 to execute a single query against a data provider and

structure the results in multiple ways. A query framework API MasterDataset is returned

for each queryResultDefinition specified in a querySet.

[0026] The data agnostic business intelligence query system 100 provides the ability to
provide a query language that is not tailored to the data source technology that is meant to
query. The data agnostic business intelligence query system 100 may be implemented as
a translator in a query framework that provides the ability to build various types of BI
user experiences for reporting, ad-hoc querying, and analysis that can use the query
language in a consistent manner across various data source technologies. Furthermore,
the query framework provides the ability to extract, convert, transform, and integrate data
from multiple data sources and multiple data source types into a single report or analysis

session using this high level data agnostic query language.

0027} The query result definition (QRD) 104, which is part of the data agnostic query, is
a data agnostic high level definition of a rendered result set. It allows a Bl system to

express the structure of the results of a data agnostic query for rendering purposes.

[0028] Advantageously, a high-level query language with rich semantics allows a
business intelligence (BI) system user and/or a user interface (Ul) software layer to pose
BI queries to a query engine in a manner that is independent of the type of database from

which the results of the query are retrieved.

[0029] Advantageously, a data agnostic query language with minimum specification
allows a BI system user to perform reporting, ad-hoc querying, analysis and exploration
on top of a large array of data base technologies (relational, rollup, OLAP, HOLAP, ERP)
without the need to understand SQL, MDX, or other low level query languages tied to a

10

15

20

25

30

CA 02519001 2005-09-13

specific data base technology. The user experience is seamless and consistent across BI

- capabilities and across data source technologies.

The Query Set Component 102

(0030] The query set component 102 comprises a source 106 for defining the metadata
upon which the query is based, and a selection 108 for identifying the metadata upon
which the query is based. A query does not define the structure or presentation of the
retrieved data. Optionally, the query set component can also comprise filters, dimension
information, and query hints. Preferably, each query is identified by a name attribute that

1s unique to the querySet.

[0031] The source 106 defines the metadata upon which the query is based. The source
will mostly be a model reference, but the data agnostic business intelligence query system
100 supports referencing other queries as well. In addition, the data agnostic business

intelligence query system 100 supports direct queries against an underlying data source

' technology such as MDX, SQL, or a vendor interface that can be encoded within the

spectfication. The source 106 could be the outcome of a query operation involving one or
more queries followed by a unary, binary or nary commands. The result is a projection of

query items that can be used by the selection and the queryResultDefinition 104.

10032] An sqlQuery is an explicit definition of a SQL select, exec or call statement that
returns a row based result. The sql element contains the SQL definition as expressed in
an SQL format. While not required to execute, each column in the result is preferably set
to be described by a queryltem element in the projectionList so that these queryltems may

be referenced in the selection and or queryResultDefinition.

[0033] An mdxQuery is an explicit definition of an MDX statement that returns a
multidimensional result. The mdx element contains the MDX definition as expressed in
an MDX format. The projectionList describes the projected queryltems that can be used
in the selection and queryResultDefinition. The dimension information describes the
cube result. Queries in the query set that reference this mdxQuery and use it as a source
can use the dimension information as their default dimension info. They can also

override, restrict, or extend it.

10

15

20

23

30

CA 02519001 2005-09-13

[0034] Query set operations combine the results of two or more queries into a single

result. UNION, INTERSECT, and EXCEPT (MINUS) operations on two or more

queries result in a projection list upon which other queries can be based.

[0035] A join operation defines a relationship between query subjects in a metadata
model. Typically, these relationships are defined in the metadata model. This element 1s
typically used to define the relationships between database tables in non-modeled data

sources during a modeling application import.

[0036] The selection 108 identifies the metadata elements upon which the query is based.

[0037] A dataltem represents a set of data values or members. The data values or
members that correspond to a dataltem are defined by an expression element. The
content of an expression element is specified in accordance with the data agnostic query
expression grammar. Most often, a dataltem expression refers to a query item from a
metadata model. Logical constructs, arithmetic operators, other query operators, and
unified functions representing both relational and set (dimensional) algebra may be

defined in the more complex use cases.

[0038] Aggregate functions such as total(), minimum(), maximum(), count(), average()
are special query operations. While they can be specified in the dataltem expressions,

these operators are typically specified using the aggregation rules discussed in the next

section.

[0039] Each dataltem is identified by a name that is unique to the selection in which the
dataltem is defined. It can be aliased with an alias that can be more meaningful than its
name if the client application chooses to do so. References to other data items in the
same selection are permissible, whether unqualified or qualified by the query name in
which the dataltem is defined. Such references imply that the expression associated with
the dataltem is used in place of where it is referenced. Aggregate operations of the

referenced dataltem are not transferred with the expression. For example:

— "

<query name="sampleQuery">
<source> ...</source>
<selection autoSummary="true">
<dataltem name="Amt" aggregate="sum">
<expression>[NS].[Product].[UnitPrice] * [Qty]</expression>
</dataltem>
<dataltem name="Qty" aggregate="sum">

10

15

20

235

30

35

40

CA 02519001 2005-09-13

<expression>[NS].[OrderDetail].[Quantity]</expression>
</dataltem>

</selection>
</query>

[0040] The expression for the “Amt” item refers to the “Qty” item. In one embodiment
of the data agnostic business intelligence query system 100, the actual “Amt” expression

that would be executed resembles:
<expression>[NS].[Product].[UnitPrice] * [NS].[OrderDetail].[Quantity J</expression>

[0041] Note that the aggregate operator that 1s implicit with the “Qty” item (aggregate

attribute is ”sum”) 1s not part of the resulting expression.

[0042] References to a dataltem from another query must be qualified with the name of
query 1n which the dataltem 1s defined. Following the syntax conventions currently
employed, each name is enclosed in square brackets; for example, “[query].[item]”. Such
references can be used anywhere that a query item reference from a metadata model 1s

valid. The expression of the referenced dataltem 1s used in the in place of the query item

reterence. For example:

<querySet>
<query name="SubQuery">
<source>
<model name="Model"/>
</source>

<selection autoSummary="true">
<dataltem name="Unit Price" aggregate="sum">
<expression>[Model].[Product].[UnitPrice]</expression>
</dataltem>
<dataltem name="Qty" aggregate="sum">

<expression>[Model].[OrderDetail].[Quantity]</expression>
</dataltem>

</selection>
</query>
<query name="ParentQuery">
<source-~>
<queryRef refQuery="SubQuery"/>
</source>
<selection autoSummary="true">
<dataltem name="Amt" aggregate="sum">

-0 .

10

15

20

25

30

CA 02519001 2005-09-13

<expression>[SubQuery].[Unit Price] *
[SubQuery].[Qty]</expression>
</dataltem>

</selection>
</query>

</querySet>

[0043] The dataltem may define the aggregation rules to be applied to the expression via
the aggregate and rollupAggregate attributes. The aggregation rules suggest an aggregate
function to wrap the expression when the dataltem are summarized. Each attribute may
specify an explicit aggregate function [automatic, summarize, none, calculated, total,
minimum, maximum, average, count]. The expression itself may define the aggregate
function [calculated], or the appropriate function may be derived from the underlying
metadata model. In addition, aggregation may be inhibited [none], in which case the
dataltem is grouped instead of summarized. Default aggregate rule is derived from the
underlying metadata model. If the rollupAggregate rule is omitted, it defaults to the
aggregate specification, if any; otherwise, it is also derived from the underlying metadata

model.

[0044] The “automatic” and “summarize” aggregation types are reduced to the other

options in accordance with defined aggregation rules.

[0045] In one embodiment of the data agnostic business intelligence query system 100,
examples of aggregation types includes “none”, “calculated” and “total to “count”.
“none” means that no aggregation is supposed to be applied. “calculated” means that the
expression content drives the expression aggregation. “total” to “count” are the standard

aggregation types.

[0046] The aggregation context expression of a dataltem having one of these aggregation
types (directly or as a results of interpretation of “automatic” or “summarize” aggregation
types) consists of the corresponding aggregation function applied to the dataltem’s
expression. For example, the dataltem defined as:

<dataltem name="Qty" aggregate="total">

<expression>[GO].[OrderDetail].[Quantity |</expression>
</dataltem>

will have the aggregation context expression:

-10-

10

15

20

25

30

CA 02519001 2005-09-13

total([GO].[OrderDetail].[Quantity])

[0047] The aggregate attribute of a dataltem 1s ignored for an OLAP source, because the
OLAP source has reduced the original data by applying this type of aggregation during
building of the cube.

[0048] In the data agnostic query, the selection 106 element by itself does not specity any
result set that can be consumed by a client of the data agnostic business intelligence query
system 100. A queryResultDefinition is used for that purpose. In the limited sense that a
selection defines a data extract that can be operated on internally within the query
framework system, this data extract may be sorted in the sense that the set of data values
or members represented by a dataltem may be sorted. The sort attribute on each dataltem
may specify an ascending or descending sequence, or it may inhibit sorting on the values
of that dataltem. This intermediary data extract that is represented by the selection will
be sorted according to the specifications on each dataltem, and nested in the order of the
data item 1n the selection list. The default is unsorted. This sorting is in essence a pre-
sort. It is the groupSort of the QRD that affects the final sort of data values in the result
set of the query.

[0049] In the data agnostic query, the selection by itself does not specify any result set
that can be consumed by a client of the data agnostic business intelligence query system
100. A queryResultDefinition is used for that purpose. In the limited sense that a
selection defines a data extract that can be operated on internally within the query
framework, this data extract may be grouped and summarized automatically — an all-or-
nothing operation that is controlled by the autoSummary attribute. When enabled, all
non-additive dataltems will be grouped into a single summary level, and the additive and
semi-additive dataltems are summarized. The result set will contain a single row for each
unique combination of the non-additive dataltem values, and an aggregate value for each
additive or semi-additive dataltem. When disabled, the individual database records will
be extracted as they appear in the database. The default i1s enabled (“true). When the
data item expression identifies a single member value or a specific member set, the

autoSummary attribute has no meaning.

[0050] A query may contain one or more filters that eliminate data values or members
from the result set and potentially affect the values of calculations. Each filter element

contains at least one filterExpression. Two or more filterExpressions specified within a

-11-

10

15

20

235

30

CA 02519001 2005-09-13

filter are conjoined via AND operators. Multiple filter specifications are also conjoined
via AND operators. Any filter or filterExpression may be designated as optional, in
which case it is not applied when no values are provided for the parameters to which the

filter or filterExpression refers.

[0051] Logically, one can think of the set of related queries in a querySet as blocks of
operations and transformations performed on a data stream. In this logical representation,
the querySet can be visualized as a tree of query operations where each node, represented
by a <query>, performs operations and transformations on an input data stream defined in
its source section then feeds the resulting output data stream to the next query node,
which uses it as an input data stream. At the end of this process, a QRD 104 is defined to
represent the structure of the last output data stream for authoring purposes. Filtering and
aggregation are two special query operations performed by a query node 1n this logical
tree. It is important to clearly specify their order. To do so, a detail filter 1s defined
which is applied at the input data stream of a query node and hence before any
calculations and aggregations are performed in that node. A summary filter is also
defined, which is performed after aggregations. This summary filter is logically

equivalent to the detail filter of the next query node that consumes the output data stream

of the current node.

[0052] A query author can control the order in which filtering and aggregation should
occur by using this mechanism in the data agnostic query querySet (1.e., query based on
query also known as subquery). In one embodiment, some sensible defaults and
interpretations are provided for cases where the query author would like a minimum

specification in a single query. The author might not seek a granular control over desired

query operations expressions.

[0053] The concept of a Tabular filter can be set to pre or post summary to control the
order of filtering and aggregations in the context of the Tabular query. The Tabular query
output 1s a logical data stream that is used in the Cube query, which applies, among other
operations, a pivot transformation to the input stream. A filter is also specified in the
cube section. One proposed solution was to add an “apply” attribute is added to the Cube
filter with values “pre and post aggregation” to clearly specify the order or timing of the
filter with respect to aggregations and calculations performed in the cube query. The

output data stream of the Cube query 1s “ted” to the Summary section of the query,

-1~

10

15

20

25

30

CA 02519001 2005-09-13

another embodiment adds a filter to the Summary query. This filter is applied after all
cube query operations, and hence post cube aggregations. This problem illustrates an
inherent deficiency in a non-data agnostic BI query. A non-data agnostic query
specification is not flexible and general enough to clearly specify an arbitrary sequence of
query operations. It reliance on a “Tabular to Cube to Summary” logical operations
limits its semantics to three stages of macro query operations. The data agnostic query
generalizes this paradigm to any number of stages that the author wishes to specify.
Advantageously, the author also has control of the sequence of operations and in

particular as to the order of filtering and aggregation.

10054] Without the optional level attribute, a detailFilter defines filters that are applied to
the source of a query, before any aggregates are calculated. If the selection is
summarized (see autoSummary), this filter inhibits source data values or members from
participating in the calculation of the aggregate values; otherwise, it inhibits source data

values or members from appearing in the data extract represented by the selection.

[0055] The detailFilter can optionally specify the level at which the filter is applied. If

unspecitied, the overall (or root) level of a dimension is assumed.

[0056] Without the optional level attribute, a summaryFilter defines filters that are

applied after aggregates are calculated, also known as a post-aggregation filter.

Logically, while the detailFilter is applied to the input data stream of a query, the
summary filter 1s applied to its output. This distinction and the timing of the filter
operation are critical only with respect to the aggregate calculation operation. For
example, the final output of the query operations represented by a query is not affected by

whether we sort then filter or conversely, we filter then sort. Performance requirements
dictate that the latter is chosen during query planning; however, one sequence or the other

does not affect the result set.

[0057] Typically, in most practical cases, the query author specifys a single query in the

querySet to define the data to be retrieved from the database, and a single QRD 104 to
define the result set structure. Headers and Footers are specified in the QRD 104 that

represent aggregations at various nesting levels of the result set. In these cases, a

detailFilter 1s applied to the data values (rows or members) in the data source, while a
summaryFilter is applied to the footer or header values, which represent aggregate

calculations. The summaryFilter can optionally specify the level at which the filter is

13-

10

15

20

25

30

CA 02519001 2005-09-13

applied. If unspecified, the overall (or root) level of a dimension is assumed.

Calculations at and above the specified levels are subject to the filter conditions (i.e., their

values can be changed due to the filter condition).

[0058] Dimension information augments the selection. It is optional and is specified by

an advanced query author when
There 1s no dimension information available in the source.
The author wishes to override the dimension information in the source.

The author wishes to extend or restrict dimension information in the

SOUrce.

[0059] The intent of dimension information is not to define the presentation of the
Information, but to help query planning. In other words it can be considered a form of
hint. If the dimension information is omitted then dimension information is used from the

source if available. If not available, it will be defaulted by the query framework system.

[0060] A data agnostic query will undergo a series of transformations before SQL, MDX,
and or vendor specific APIs are produced and sent to the database. For example, a join
strategy must be derived from the underlying metadata. In addition, the generated query
may be optimized to better retrieve the first N rows rather than all rows, push most
operations to the database, or automatically sort based upon group by structure. These
algorithms may be controlled through rowLimit, executionOptimization,

queryProcessing, autoSort, joinOptimization and subjectOrdering hints.

The Query Result Definition Component 104
[0061] The query result definition (QRD) component 104 describes the shape, or the

dimensional structure, of the result set to be returned for rendering. It is generally
generated from the layout specification and is used to assist the rendering operation by

delivering the data to be iterated in the expected form. The QRD 104 unambiguously
specifies a result set structure and represents a meta-model of the data agnostic query

result set API.

|0062] In non-data agnostic query architecture, there is a disconnect between the manner

in which queries were posed in a request to a common query engine and how data is

-14-

10

15

20

235

30

CA 02519001 2005-09-13

returned via the query set API. The intent with the data agnostic query result set API is to
align 1t with the data agnostic query specification such that there is a correspondence
between the structure of the queryResultDefinition of the data agnostic query and the
objects presented in the master/partial datasets of the result set API.

[0063] The QRD 104 can be specified either as one of the available templates or as a set
of named canonical edges. The template specification is meant to provide the authoring
tools and the software developer kit (SDK) with a simple specification for the most
common use cases. The QRD 104 can contain optional master-detail links, generated
from the layout containment relationships, which define the master and detail contexts of
the relationships. The master-detail links can be specified equivalently in the QRD 104
of the master or detail query.

[0064] Simple list, grouped list, and cross tab results can be specified in a QRD 104 in a
unitfied manner using the canonical edge specification. Simple and grouped list results
have a single edge. A cross tab result has two or more edges (row, column, section 1 to
section N). These edges are uniquely named. The order in which the edges are specified
in the QRD 104 1s also the order in which they appear in the result set. The edge
information in the result set contains the unique name of the edge as specified in the QRD
104. A query framework 100 client can use the edge’s unique name to relate the edges
specified in the QRD 104 and the edges returned in the result set. A cross tab with an
empty row or column edge can be specified with a named empty edge <edge
name="Tow />. A single edge cross tab and a grouped list with no details are represented
by the same canonical edge specification. The result sets for a single edge cross tab and a

grouped list with no detail columns are also represented by the same result set API

structure.

[0065] An edge has a list of one or more edgeGroups. These are the outer-most groups in
the edge. They represent member sets (or data values) that are unioned together. Each
one of these edgeGroups has one or more valueSets (that are also unioned within the
edgeGroup), and a one or more edgeGroups that are nested or cross joined within the
valueSets. In other words, the edge represents an arbitrary shaped result set, that is

composed by stitching and intersecting sets of members. Figure 6 shows in a diagram a

representation of a shaped result set 300, 1n accordance with an embodiment of the data

-15-

CA 02519001 2005-09-13

agnostic business intelligence query system 100. An example of a QRD 104 for this case
1s the following:
<queryResultDefinition xmlns:xsi="http://www.w3.0org/2001/XMLSchema-instance"

xsi:noNamespaceSchemal.ocation="E:\bering\bering v5 specs\main\QuerySpec\V5Quer
yResultDefinition.xsd" name="SampleQRD" refQuery="Don'tCare">

10

15

20

25

30

35

40

435

<edges>
<edge name="axis0">
<edgeGroups>
<edgeGroup>
<valueSets>
<valueSet refDataltem="G1"/>
</valueSets>
<edgeGroups>
<edgeGroup>
<valueSets>
<valueSet
refDataltem="G3"/>
<valueSet
refDataltem="G4"/>
</valueSets>
<edgeGroups>
<edgeGroup>
<valueSets>
<valueSet
refDataltem="G6"/>
</valueSets>
</edgeGroup>
</edgeGroups>
</edgeGroup>
</edgeGroups>
</edgeGroup>
<edgeGroup>
<valueSets>
<valueSet refDataltem="G2"/>
</valueSets>
<edgeGroups>
<edgeGroup>
<valueSets>
<valueSet
refDataltem="G5"/>
</valueSets>
<edgeGroups™>
<edgeGroup>
<valueSets>
<valueSet
refDataltem="G7"/>
</valueSets>

-16-

10

15

20

25

30

CA 02519001 2005-09-13

</edgeGroup>
</edgeGroups>
</edgeGroup>
</edgeGroups>
</edgeGroup>
</edgeGroups>
</edge>
</edges>

</queryResultDefinition>

[0066] The data agnostic query result set API presents each group as a rowset that can be
iterated using an IQSSetlterator object. Group headers and footers are presented as
separate rowsets that can be accessed within context of a group’s corresponding rowset.
The name of the rowset corresponding to a group is unique and is that of the dataltemRef
of the valueSet that represents the level key of the group in the QRD 104, making it clear
to the client application how the data in the result set corresponds to the layout

specification.

[0067] Just as the data agnostic query specification maintains a consistent approach to
specifying groups in both list and cross tab queries, the data agnostic query result set API
presents a single approach to iterating values in a list report as when iterating values
along the edges of a cross tab report. In the data agnostic query result set API, list reports
are accessed via the same IQSSetlterator class that is used to navigate the edgés of cross
tab result sets. At any grouping level (represented by a separate rowset), header and
footer values may be obtained at any time. All of the detail rows of a report are contained

in the single, innermost rowset named “details”.

[0068] In the data agnostic query result set API, there are no restrictions on how rowsets
are related. The result set is instead restricted by what can be authored in the data

agnostic query specitication.

[0069] An edgeGroup represents an arbitrary shaped set of members (data values) on an
edge. A flat list of non-nested edge groups in an edge specification can be used to

represent the unioning of member sets. Each group can have one or more valueSets that
represent the group's members (based on a caption key and associated body attributes), an
optional header and/or footer, a sort, and suppression. Each group can also have one or

more nested groups.

-17-

10

15

20

25

30

CA 02519001 2005-09-13

[0070] An explorer-mode cross tab edge can be specified by a set of nested edge groups.
By nesting and unioning edge groups, a query framework client can specity a reporter-

mode crosstab edge.

[0071] A grouped list report can be specified by a set of nested edge groups with the
inner most edge group representing the details. This special group is not keyed on any
level (i.e., it valueSet has not refDataltem attribute) and its body references the detail

columns as level attributes.

[0072] A valueSet, also known as a memberSet, defines a collection of values or
members to be returned for an edgeGroup. It represents a (nesting) level in an explorer
style edge. The refDataltem attribute of this element represents the "key" associated with
the level. The name attribute identifies the valueSet within the QRD 104, and 1s unique
within the scope of the QRD 104.

[0073] The groupHeader and groupFooter child elements of the valueSet element define a
set of data values or members that represents a summary of the group members. In one

embodiment, group header footer rules include:

Any valueset (group, groupHeader, groupFooter, groupBody) can be
empty. If so then they result in a row with no columns and a cell

coordinate of —1.

If Header and/or Footers have no dataltem then the value of the query item
representing the caption key of the parent group for the out-most group,

“Summary” can be used (translated).
Headers and Footers can only contain a dataitem of the following

1. A dataitem referring to a set of measures. This means an aggregate
is created for each measure specified in the header and footer. This

is the only way to specify aggregation.
And/Or

2. Dataitem(s) that is/are found in the direct parent Valueset of the
current valueset. i.e for the below QRD you can see that the
groupFooter contains the dataltem of the parent valueSet
.'Country”

18-

10

15

20

23

30

35

40

CA 02519001 2005-09-13

[0074] For example, in one embodiment:
RIGHT Country is a direct parent of City

<edgeGroup>
<valueSets>
<valueSet refDataltem="Country">
</valueSet>
</valueSets>
<edgeGroups>
<edgeGroup>
<valueSets>
<valueSet refDataltem="City">
<groupFooter>
<dataltemRet
refDataltem="Country"/>
<groupFooter/>
</valueSet>
</valueSets>
</edgeGroup>
</edgeGroups>
</edgeGroup>

WRONG Province not a direct parent of City.. Country is

<edgeGroup>
<valueSets>
<valueSet refDataltem="Country">
</valueSet>
</valueSets>
<edgeGroups>
<edgeGroup>
<valueSets>
<valueSet refDataltem="City">
<grouplkooter>
<dataltemRef refDataltem="Province"/>
<groupFooter/>
</valueSet>
</valueSets>
</edgeGroup>
</edgeGroups>
</edgeGroup>

WRONG City is not a direct parent of City .. Country is

-19-

10

15

20

25

30

335

40

435

CA 02519001 2005-09-13

<edgeGroup>
<valueSets>
<valueSet refDataltem="Country">
</valueSet>
</valueSets>
<edgeGroups>
<edgeGroup>
<valueSets>
<valueSet refDataltem="City">
<groupkooter>
<dataltemRef refDataltem="City"/>
<groupFooter/>
</valueSet>
</valueSets>
</edgeGroup>
</edgeGroups>
</edgeGroup>

WRONG Footer dataltem not a direct parent of City.. Province is a direct parent not

Country
<edgeGroup>
<valueSets>
<valueSet refDataltem="Country">
</valueSet>
</valueSets>
<edgeGroups>
<edgeGroup>
<valueSets>
<valueSet refDataltem="Province">
</valueSet>
</valueSets>
<edgeGroups>
<edgeGroup>
<valueSets>
<valueSet retfDataltem="City">
<groupkooter>
<dataltemRef
refDataltem="Country"/>
<groupFooter/>
</valueSet>
</valueSets>
</edgeGroup>
</edgeGroups>
</edgeGroup>
</edgeGroups>

~()-

10

15

20

25

30

CA 02519001 2005-09-13

</edgeGroup>

[0075] The groupBody child element of the valueSet element defines the attributes to be

returned for each member in the group.

[0076] The groupSort child element of the valueSet element defines the sort order tor the
group members within a context defined by the entire result set. A query author can
define a sort using projected and non projected items. The groupSort can reference a data
item form the associated query even if the data item was not used in QRD 104. For a
detail group (i.e., a group with a valueSet that has no data item reference and has a group
body reference a list of items) the order of the groupSort items dictates the order in which

the details are sorted.

[0077] The suppression child element of the valueSet element defines the suppression

“mode applied to the group members. This mode is specified by one of the child elements

and results in removing some members from the group within a context defined by the

entire result set.

[0078] If a calculation does not explicitly reference a measure, and one is required to
resolve the calculation (e.g., top 10 customers, but no measure 1s referenced), a measure

must be chosen to resolve the expression. In one embodiment, rules include:

The rules are that if a calculation along an edge requires a measure and one
1s not specified, data access and mbdeling (DA&M) obtains a measure
reference in the following order. If there is only a single measure
referenced explicitly in the entire QRD 54, DA&M uses this measure.
Otherwise, if there is one and only one edge containing a reference to a
single measure (and nothing else), it uses that measure. Otherwise,
DA&M will use the default measure as defined by the underlying data

SOUrce.

[0079] In one embodiment, queryResultDefinition templates represent a choice of one of

three basic templates that cover the most common report types (lists, cross tabs, charts).
They are meant to provide authoring tools and the SDK with simple specifications for the

most common use cases,

D1-

10

15

20

235

CA 02519001 2005-09-13

Use Cases

Simple List

[0080] One basic data agnostic query that may be specified is the Simple List. The result
set may contain summary or detail database rows (autoSummary). In both cases, the
result set structure 1s the same as defined by the QRD 104. One grouping level may be
specified. Any aggregate specifications are applicable only to the lowest grouping level
1n a summary query — since there's only one grouping level, control break aggregates at
various grouping levels are not supported. The next example is of a Simple List report

containing [Order year|, {Order method], and [Quantity].

ki ————il —

 Order year | Order method | Quantity
2000 E-mail 86,884
2000 Fax 134,462
2000 Mail 54,874
2000 | Sales visit 135,262 |

Mail 43,672 |
Saleswvisit | 191,578
Email | 139,086
Fax | 39,824
Mail 25.684 |
| Sales visit 208,358

- pr—— promm A A— — ———— preg———— [Aape—— p————— [y——— Jrep————— -

[0081] The QRD for this example (using canonical edge specification) is the following

<queryResultDefinitions>
<queryResultDefinition name="rs1" refQuery="query1">

<edges>
<edge name="edge(">
<edgeGroups>
<edgeGroup>
<valueSets>
<valueSet>
<groupBody>
<dataltemRet
refDataltem="Order Year"/>
<dataltemRef
refDataltem="0Order Method"/>
<dataltemRef

refDataltem="Quantity"/>

).

10

15

20

25

30

CA 02519001 2005-09-13

</groupBody>
</valueSet>
</valueSets>
</edgeGroup>
</edgeGroups>
</edge>
</edges>

</queryResultDefinition>
</queryResultDefinitions>
</querySet>

[0082] The QRD for this example (using the list template specification) is the following

<queryResultDefinitions>
<queryResultDefinition name="rs1" refQuery="queryl">
<resultTemplate>
<listResult>
<details>
<dataltemRef refDataltem="Order Year"/>
<dataltemRef refDataltem="Order
Method"/>
<dataltemRef refDataltem="Quantity"/>
</details>
</listResult>
</resultTemplate>-
</queryResultDefinition>
</queryResultDefimtions>
</querySet>

Grouped List

[0083] The next example is of a list report containing [Order year], [Order method], and
[Quantity], grouped by [Order year] and with a report level summary.

| Order ar - | Order n-zethod ’ uti

| 2000 E-mail 86,884
Fax | 34,462 |

| Mail 54,874 |
Sales visit 135,262

2000 | 311,482

E-mail
Fax
Mal
Sales visit

p—— A p— [— [

2000 | 399,158

13-

CA 02519001 2005-09-13

2002 Eomal | 139,086
| | Fax | 39,824
| Mail - 25.684

_ [Salesvisit | 2083858

2002 413,452

Summary 1,123,872

[0084] The QRD for this example (using canonical edge specification) 1s the following

<queryResultDefinition name="groupedList" refQuery="some query">

<edges>
5 <edge name="edge0">
<edgeGroups>
<edgeGroup>
<valueSets>
<valueSet refDataltem="Order Year">
10 <groupFooter>
<dataltemRef
refDataltem="Quatity"/>
</groupFooter>
</valueSet>
15 </valueSets>
<edgeGroups>
<edgeGroup>
<valueSets>
<valueSet>
20 <groupBody>
<dataltemRef
refDataltem="Order Method"/>
<dataltemRef
refDataltem="Quantity"/>
25 </groupBody>
</valueSets>
</edgeGroup>
</edgeGroups>
</edgeGroup>
30 </edgeGroups>
</edge>
</edges>

</queryResultDefinition>

[0085] Figure 7 shows in a diagram an example of the organization of the rowsets in the
35 result set 320, in accordance with an embodiment of the data agnostic business

intelligence query system 100. Note that the [Order method] rowset contains both the

4.

CA 02519001 2005-09-13

[Order method] and [Quantity] data sets from the QRD 104. Also, the [Order

year| Footer rowset contains one row of data that represents the report summary.

Crosstab

5 [0086] A cross tab result presents a grid of summarized data values: effectively, 1t is an
intersection of two Grouped List results. A QRD 104 with two or more edges defines a
cross tab result. Aggregates at various intersections are calculated automatically. This

example 1s the same as the previous example, except the data is presented as a cross tab.

L20_OO) | E-mail
- Fax
- |JMail _
| |Saleswisit | 135,262
2000 | E-mail 122,350
. |Fax 41,558 |
L . Mail . ﬁ43,6724
Salesvisit | 191,578
2001 399,158
;L2022 | Email 139,086
i Fax 39,824
| Mail 25.684
i Sales visit_|
Order Year o 1,123,872
10
[0087] The QRD 104 for this example (using canonical edge specification) is the
following
<queryResultDefinition name="groupedList" refQuery="some query">
<edges>
15 <edge name="edge0">
<edgeGroups>
<edgeGroup>
<valueSets>
<valueSet refDataltem="Order Year">
20 <valueSet refDataltem="0Order Year">
<groupFooter>

5.

CA 02519001 2005-09-13

<dataltemRef
refDataltem="Quatity"/>
</groupFooter>
</valueSet>
5 </valueSets>
' <edgeGroups>
<edgeGroup>
<valueSets>
<valueSet
10 refDataltem="Order Method">
<grouplkooter>
<dataltemRef
refDataltem="Order Year"/>
</groupFooter>
15 </valueSet>
</valueSets>
</edgeGroup>
</edgeGroups>
</edgeGroup>
20 </edgeGroups>
</edge>
<edge name="edgel">
<edgeGroups>
<edgeGroup>
25 <valueSets>
<valueSet refDataltem="Quantity"></valueSet>
</valueSets>
</edgeGroup>
</edgeGroups>
30 </edge>
</edges>

</queryResultDefinition>

[0088] The representation of the rowsets is identical to the previous example, except that
the [Order method] rowset no longer contains the [Quantity] column — those values are

35 now contained within a cell rowset 1terator.

Crosstab 2

[0089] The first example presents simple cross tab report with [Country] nested within
[Product] along the row edge and [Quantity] along the column edge. Sub-totals are

40 calculated for each product.

_ Quantity
| Product] JUSA [1000

226-

10

15

20

25

30

35

| Product2 | USA 3000

CA 02519001 2005-09-13

pryp—— prpm—— T E—— ¢+ S—p—rpp———— c— a———t——

Canada | 2000 j'

France 500 |

P p—— [Re——— . —— Y — - ——— . —— —p—p—————. wa— -

T%ali 550'_0 1

[0090] The QRD 104 for this example (using canonical edge specification) is the

following:

L

<queryResultDefinition name="groupedList" refQuery="some query">
<edges>
<edge name="rows" >
<edgeGroups>
<edgeGroup>
<valueSets>
<valueSet refDataltem="Product"/>
</valueSets>
<edgeGroups>
<edgeGroup>
<valueSets>
<valueSet
refDataltem="Country">
<groupFooter>
</groupFooter>
</valueSet>
</valueSets>
</edgeGroup>
</edgeGroups>
</edgeGroup>
</edgeGroups>
</edge>
<edge name="columns">
<edgeGroups>
<edgeGroup>
<valueSets>
<valueSet refDataltem="Quantity"></valueSet>
</valueSets>
</edgeGroup>
</edgeGroups>
</edge>
</edges>
</queryResultDefinition>

=M

)7

10

15

CA 02519001 2005-09-13

[0091] Notice the empty group footer for the country valueSet. It indicates that the
rowset corresponding to this footer should have zero columns, which is a valid case.
Consumers of this result set will use the existence of this empty rowset to form grouping

breaks for example when rendering such a result set.

[0092] Figure 8 shows in a diagram an example of the organization of the row edge
rowsets 340, in accordance with an embodiment of the data agnostic business intelligence

query system 100.

[0093] The systems and methods according to the present invention may be implemented
by any hardware, software or a combination of hardware and software having the
functions described above. The software code, either in its entirety or a part thereof, may
be' stored 1n a computer readable memory. Further, a computer data signal representing
the software code that may be embedded in a carrier wave may be transmitted via a
communication network. Such a computer readable memory and a computer data signal
are also within the scope of the present invention, as well as the hardware, software and

the combination thereof.

[0094] While particular embodiments of the present invention have been shown and
described, changes and modifications may be made to such embodiments without

departing from the true scope of the invention.

08-

10

15

20

25

30

CA 02519001 2005-09-13

WHAT IS CLAIMED IS:

1. A data agnostic business intelligence query system for data agnostic querying, the
system comprising:

a query set component for defining data to be retrieved from a database; and

a query result definition component for describing the dimensional structure of a

result set for the data to be retrieved.

2. The data agnostic business intelligence query system as claimed in claim 1, wherein
the query set component includes:

a source element for defining metadata upon which the data agnostic query 1s
based:; and

a selection element for identifying metadata elements upon which the data

agnostic query is based.

3. The data agnostic business intelligence query system as claimed in claim 3, wherein
the query set component further includes one or more of:

a name attribute for uniquely identifying the query set component;

a filter element for eliminating data values or members from a result set;

a dimension information element for augmenting the selection element; and

a query hint element for transforming the data agnostic query.

4. A method of data agnostic business intelligence query, the method comprising the
steps of:

translating the gesture into a data agnostic business intelligence query;

divide data agnostic business intelligence query into sub-queries grouped into data
source query types; and

sending each sub-query to a data source query engine based upon its data source

query type.

5. The method as claimed in claim 4, wherein the step of dividing includes the steps of:

locating a data item type in a query specitication; and

-20.

CA 02519001 2005-09-13

allocating a sub-query associated with the data item type to a data source query

type group.

6. The method as claimed in claim 4, further comprising the steps of:
receiving a data set result from the data source query engine; and

compiling the data set result into a report.

-3()-

CA 02519001 2005-09-13

Data Access Environment

14
Client Application 10

Report Server 13
15

Query Engine
12
Database Server

> 11
_

Database

Figure 1

50

52 52

62 64

Report
68 68

Ul Report

58

Report

Figure 2

Gowling Lafleur Henderson LLP

CA 02519001 2005-09-13

Data Agnostic Business Intelligence Query System

Query Set Component 100

102

Query Result Definition Component

104

Figure 3

70

L

52
78

Ul Report

Data Agnostic Bl
Query

62 64

/

. /

Figure 4

4

66
° 76

Gowling Lafleur Henderson LLP

CA 02519001 2005-09-13

Translate gestures into a data agnostic Bl query

202

Divide data agnostic Bl query into respective data source queries

For each data source query

Send data source query to respective

204

data source query engine

Next data source query

Process query results into report

206

208

Figure S

:yowling Laflear Henderson LLP

CA 02519001 2005-09-13

L 300
G6
G3
G
G7
G5
G2

Figure 6

Gowling Lafleur Henderson LLP

CA 02519001 2005-09-13

ToParentRowset 320
g
>
P
o ToChildSet —
O, 2
=
— ToRowset
3
ToFooterRowset | &
Order year]| Foote
[Order method] Footer
ToRowset ToFooterRowset
Figure 7
ToParentRowset
340
9
<
&
A

ToRowset
ToChildSet

|Country] Footer
ToFooterRowset

Figure 8

(zowling Laflear Henderson LLP

e e /8

62

72

Data Agnostic Bl
Query

02

64

74

70

78

Ul Report

66

/6

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - claims
	Page 32 - claims
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - abstract drawing

