PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 :

GO6F 15/00 A2

(11) International Publication Number:

(43) International Publication Date:

WO 99/21098

29 April 1999 (29.04.99)

(21) International Application Number: PCT/US98/22161

(22) International Filing Date: 20 October 1998 (20.10.98)

(30) Priority Data:

08/955,885 21 October 1997 (21.10.97) Us

(71) Applicant: SUN MICROSYSTEMS, INC. [US/US]; 901 San
Antonio Road, Palo Alto, CA 94303 (US).

(72) Inventors; MOIIN, Hossein; 355 Crestmont Drive, San Fran-
cisco, CA 94131 (US). WIDYONO, Ronald; 1117 Wright
Avenue, Mountain View, CA 94043 (US). MODIR],
Ramin; 3459 Timberlake Avenue, San Jose, CA 95148 (US).

(74) Agents: HYMAN, Eric, S. et al.; Blakely, Sokoloff, Taylor &
Zafman, 7th floor, 12400 Wilshire Boulevard, Los Angeles,
CA 90025-1026 (US).

(81) Designated States: AL, AM, AT, AT (Utility model), AU, AZ,
BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (Utility
model), DE, DE (Utility model), DK, DK (Utility model),
EE, EE (Utility model), ES, FI, FI (Utility model), GB, GD,
GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR,
KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN,
MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
SK (Utility model), SL, TJ, TM, TR, TT, UA, UG, UZ, VN,
YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ,
UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD,
RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI
patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR,
NE, SN, TD, TG).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: DETERMINING CLUSTER MEMBERSHIP IN A DISTRIBUTED COMPUTER SYSTEM

(57) Abstract

Cluster membership in a distributed computer sys-
tem is determined by determining with which other nodes
each node is in communication and distributing that con-
nectivity information through the nodes of the system.
Accordingly, each node can determine an optimized new
cluster based upon the connectivity information. Specif-
ically, each node has information regarding with which
nodes the node is in communication and similar informa-
tion for each other node of the system. Therefore, each
node has complete information regarding interconnectiv-
ity of all nodes which are directly or indirectly connected.
Each node applies optimization criteria to such connec-
tivity information to determine an optimal new cluster.
Data represent the optimal new cluster is broadcast by
each node. In addition, the optimal new cluster deter-
mined by the various nodes are collected by each node.
Thus, each node has data representing the proposed new
cluster which is perceived by each respective node to be
optimal. Each node uses such data to elect a new clus-
ter from the various proposed new clusters. For example,
the new cluster represented by more proposed new clus-
ters than any other is elected as the new cluster. Since
each node receives the same proposed new clusters from
the potential member nodes of the new cluster, the new

100A 100B
SW
101
SW
102
100C 100D

cluster membership is reached unanimously. In addition, since each node has more complete information regarding the potential member
nodes of the new cluster, the resulting new cluster consistently has a relatively optimal configuration.

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG

BR
BY
CA
CF
CcG
CH
CI

CM
CN
CuU
CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenija
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Céte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Tceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
Lv
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
T
™
TR
T
UA
UG
us
vz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO 99/21098 PCT/US98/22161
1

DETERMINING CLUSTER MEMBERSHIP IN ADISTRIBUTED COMPUTER
SYSTEM

- SPECIFICATION

FIELD OF THE INVENTION

The present invention relates to fault tolerance in distributed computer systems and,
in particular, to a particularly robust mechanism for determining which nodes in a failing

distributed computer system form a cluster and have access to shared resources.

BACKGROUND OF THE INVENTION

The problems associated with providing membership services in a distributed
computer system have generated a considerable amount of interest in both academic and
industrial fronts. The Parallel Database (PDB) system available from Sun Microsystems,
Inc. of Palo Alto, California, being a distributed system, has used the cluster membership
monitor to provide mechanisms to keep track of the member nodes and to coordinate the
reconfiguration of the cluster applications and services when the cluster membership
changes. Herein, we define the general problem of membership in a cluster of computers
where the nodes of the cluster may not be fully connected and we propose a solution to it.

The general problem of membership can be encapsulated by the design goals for the
membership algorithm that are outlined below. We will further describe the problems that

we are trying to address after we state these goals.

1. A uniform and robust membership algorithm regardless of the system architecture
that is able to tolerate consecutive failures of nodes, links, storage devices or the
communication medium. Stated in other words, no single point of failure should result in

cluster unavailability.
2. Data integrity is never jeopardized even in the presence of multiple and simultaneous

faults. This is accomplished by:

(a) Having only one cluster with majority quorum operational at any given time.

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 5 PCT/US98/22161 _

(b) The cluster with majority quorum should never reach inconsistent agreement.
(c) Removal of isolated and faulty nodes from the cluster in a bounded time.

(d) Timely fencing of non-member nodes from the shared resources.

The hardware architecture of some conventional distributed computer systems
poses specific problems for the membership algorithm. For example, consider the
configuration shown in Figure 1. In this figure each of nodes 100A-D is supposed to be
connected to two switches 101-102; however, there are two link failures that effectively
disallow nodes /004 and 700D from communicating with each other. Some conventional
membership algorithms are not capable of dealing with such a failure and will not reach an
agreement on a surviving majority quorum. Those algorithms assume that the nodes are
fully connected and do not deal with the problem of a partitioned network. What is needed
is a generalized algorithm that deals with the issue of a partitioned network as well as
networks that are not partitioned.

Further complications arise when we need to make decisions about split-brain, or
possible split-brain situations. For example, consider the configuration shown in Figure 2.
In this configuration if the communication between nodes {200A, 200B} and {200C,
200D} is lost so that there are two sub-clusters with equal number of nodes, then the
current quorum algorithm may lead to the possible shut-down of the entire cluster. Other
situations during which the current algorithm is not capable of dealing with include when
there are two nodes in the system and they do not share an external device.

The above examples illustrate a new set of problems for the membership and
quorum algorithms that were not possible under the more simplistic architecture of some
conventional distributed computer systems where a fully connected network was assumed.
Our approach to solving these new problems is to integrate the membership and quorum
algorithms more closely and to provide a flexible algorithm that would maximize the cluster
availability and performance as viewed by the user.

A further impact of the configuration of external devices is the issue of failure
fencing. In a clustered system the shared resources (often disks) are fenced against
intervention from nodes that are not part of the cluster. In some distributed computer
systems, the issue of fencing was simple due to the fact that only two nodes existed in a

cluster and they were connected to all the shared resources. The node that remained in the

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 v 3 PCT/US98/22161

cluster would reserve all the shared resources and would disallow the non-member node
from accessing these resources until that node became part of the cluster. Such a simple
operation is not possible for an architecture in 'which all disks are not connected to all
nodes. Given that the SPARC Storage Arrays (SSA's) are only dual ported, there needs to
be a new way that would effectively fence a non-member node out of the shared resources.
The Cluster Membership Monitor, CMM, which is responsible for the membership,
quorum and failure fencing algorithms, handles state transitions which lead to changes in

the membership. These transitions are listed below.

. Failure of 2 Node: When a node fails, the remaining nodes will initiate a cluster
reconfiguration resulting in a membership that will not include the failed node.

. Joining of a Node: A node can join a cluster after the node is restarted and after
other members of the cluster accepted it as a new member, following a
reconfiguration.

. Voluntary Leave: A node can leave the cluster voluntarily, and the remaining
members of the cluster will reconfigure into the next generation of the cluster.

. Communication Failures: The cluster membership monitor handles communication
failures that isolate one or more nodes from those nodes with a majority quorum.
Note that the detection of the communication failure, 1.e. detecting that the
communication graph is not fully connected, is the responsibility of the
communication monitor which is not part of the membership monitor. It is assumed
that the communication monitor will notify the membership monitor of
communication failures and that the membership monitor will handle this via a

reconfiguration.

It is also important to note that the CMM does not guarantee the health of the
overall system or that the applications are present on any given node. The only guarantees
made by the CMM is that the system's hardware is up and running and that the operating
system is present and functioning.

We would like to explicitly define what failures are considered in the design of the
system. There are three failures that we consider; node failures, communication failures,

and device failures. Note that the failures of the client nodes, terminal concentrators, and

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 A PCT/US98/22161

the administration workstation are not considered to be failures within "our" system.

. Node Failures: A node is considered to have failed when it stops sending its
E periodic heart-beat messages (SCI or CMM) to other members of the cluSt_ér.

Furthermore, nodes are considered to behave in a non-malicious fashion, a node
that is considered failed by the system will not try to intentionally send conflicting
information to other members of the cluster. It is possible for nodes to fail
intermittently, as in the case of a temporary dead-lock, or to be viewed as failed by
only part of the remaining system, as in the case of a failed adaptor or switch. The
cluster membership monitor should be able to handle all these cases and should
remove failed nodes from the system within a bounded time.

. Communication Failures: The private communication medium may fail due to a
failure of a switch, a failure of an adaptor card, a failure of the cable, o failure of
various software layers. These failures are masked by the cluster communication
monitor (CCM or CIS) so that the cluster membership monitor does not have to
deal with the specific failure. In addition, the cluster membership monitor will either
send its messages through all available links of the medium. Hence, failure of any
individual link does not affect the correct operation of the CMM and the only
communication failure affecting CMM is the total loss of communication with a
member node. This is equivalent to a node failure as there are no physical paths to
send a heart-beat message over the private communication medium. It is important
to note that in a switched architecture, such as in the 2.0 release of Energizer, the
failure of all switches is logically equivalent to the simultaneous failure of 7 - 1
nodes where n is the number of nodes in the system.

. Device Failures: Devices that affect the operation of the cluster membership
monitor are the quorum devices. Traditionally these have been disk controllers on
the Sparc Storage Arrays (SSA's), however, in some distributed computer systems,
a disk can also be used as a quorum device. Note that the failure of the quorum
device is equivalent to the failure of a node and that the CMM in some conventional

systems will not use a quorum device unless it is running on a two node cluster.

Some distributed computer systems are specified to have no single point of failures.

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 PCT/US98/22161
5

Therefore, the system must tolerate the failure of a single node as well as consecutive
failures of # - 1 nodes of the system. Given the above discussion on communication
failures, this specification implies that we cannot tolerate the total loss of the
communication medium in such a system. While it may not be possible, or desirablé, to
tolerate a total loss of the private communication medium, it should be possible to tolerate
more than a single failure at any given time. First, let us define what a cluster is and how
various failures affect it.

A cluster is defined as having N nodes, a private communication medium, and a
quorum mechanism, where the total failure of the private communication medium is
equivalent to the failure of N - 1 nodes and the failure of the quorum mechanism is
equivalent to the failure of one node.

Now we can make the following fault-tolerance goal for the cluster membership
monitor;

A cluster with N nodes, where N > 3, a private communication medium, and a
quorum mechanism, should be able to provide services and access to the data, however
partial, in the case of [N/27] - 1 node failures. For a two node cluster the cluster can tolerate
only one of the following failures:

. Loss of one of its nodes.

. Loss of the private communication medium. Note that this case is logically

equivalent to the loss of one node.

. Loss of the quorum device.

. Loss of one of its nodes and the communication medium. Note that this case

is logically equivalent to the loss of one node.

Note that the total loss of the communication medium in a system with more than 2
nodes is indeed a double failure (as both switches would have to be non-operational) and

the system is not required to tolerate such a failure.

SUMMARY OF THE INVENTION
In accordance with the present invention, cluster membership in a distributed

computer system is determined by determining with which other nodes each node is in

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 6 PCT/US98/22161

communication and distributing that connectivity information through the nodes of the
system. Accordingly, each node can determine an optimized new cluster based upon the
connectivity information. Specifically, each node has information regarding with which
nodes the node is in communication and similar information for each other node of the
system. Therefore, each node has complete information regarding interconnectivity of all
nodes which are directly or indirectly connected.

Each node applies optimization criteria to such connectivity information to
determine an optimal new cluster. Data represent the optimal new cluster is broadcast by
each node. In addition, the optimal new cluster determined by the various nodes are
collected by each node. Thus, each node has data representing the proposed new cluster
which is perceived by each respective node to be optimal. Each node uses such data to
elect a new cluster from the various proposed new clusters. For example, the new cluster
represented by more proposed new clusters than any other is elected as the new cluster.
Since each node receives the same proposed new clusters from the potential member nodes
of the new cluster, the new cluster membership is reached unanimously. In addition, since
each node has more complete information regarding the potential member nodes of the new

cluster, the resulting new cluster consistently has a relatively optimal configuration.

BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a block diagram of a distributed computer system in which
communications between two nodes and two respective switches have failed.
Figure 2 is a block diagram of a distributed computer system which includes dual-

ported devices.

DETAILED DESCRIPTION

Agreement among the processors of a distributed system on which processors are

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 - PCT/US98/22161 _

members of that system is a fundamental problem in the design of highly-available
distributed systems. Changes in membership may occur when processors are shut down, °
fail, recover, or new processors are added. Currently, there is no agreed definition of the
processor membership problem and the existing membership protocols provide siéhiﬁcantly
different guarantees about their services. The protocols we are interested in lie toward the
stricter end of the spectrum, ensuring that processor in the current membership agree on
the set of member nodes and that membership changes occur at logically equivalent times in
different nodes.

With the failures described above, the cluster membership can be partitioned into
two or more fully-connected subsets of nodes having a majority of the votes, a minority of
the votes, or exactly half of the votes. The first two cases may be resolved by only allowing
a subset having a majority vote to form the next generation of the cluster. In the latter case,
a tie breaking mechanism must be employed. Some cluster membership algorithms take
advantage of the restrictions imposed by a two node architecture in resolving these issues.
To generalize for architectures involving more than two nodes, the following new issues

are resolved by the algorithm according to the present invention.

1. Resolving quorum and membership when not all pairs of nodes share a common
external device.

Integration of quorum and membership algorithms is sometimes necessary for
systems with more than two nodes and would result in some modifications in the
membership algorithm. There is really no need for an external device to resolve membership
and quorum issues if there are more than 2 nodes in a distributed system. However, a
system with only two nodes needs an external quorum mechanism.

In some distributed computer systems, this external device is a disk or a controller
that resides on the SSA's. The choice of a quorum device, particularly for a disk, has some
unfavorable properties which adversely affect the overall availability of the cluster.

The situation for a 4 node system with an architecture that does not allow all nodes
to be connected to all external devices can be more complicated. In such an architecture,
some combination of nodes that can form a cluster do not share any external devices, other
than the communication medium, and therefore if we are to allow for such clusters to exist,

we would need an alternative quorum mechanism. Given that the use of the public network

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 g PCT/US98/22161

is a serious security hole, we are left with the last resort, i.e. the human intervention. We
sometimes use this resort as described more completely below for cases in which a winner’
by the majority of votes cannot be automatically determined and explain a new user

interface in greater detail below.

2. Allowing for a majority quorum requirement that adapts to changing memberships.

With more than two configured nodes, requiring more than half the total configured
votes for majority quorum would limit the flexibility for the user. In a four node system, not
even two nodes could form a cluster. The modified algorithm bases the quorum

requirement on the votes of the current membership and of any joining nodes.

3. Treating the "voluntary leave" of a cluster member as a hint that the majority
quorum requirement may be lowered.
The original algorithm considers the explicit simultaneous cluster shutdown of more
than half the nodes to be equivalent to a partition excluding those nodes. To avoid the
resulting loss of quorum and the complete cluster shutdown, the new algorithm uses the

notification of an explicit shutdown by a node to reduce the quorum requirement.

4. Dealing with joins when the nodes are partitioned.

With a two node configuration and a tie-breaking quorum device, it is not possible
for the two nodes to form independent clusters when communication between them is
broken. With more than two nodes and the dynamic quorum requirement modification in
item 2, such an inconsistent state (two or more independent clusters) is possible, since all
fully connected subsets of nodes can form a cluster with quorum. The algorithm according
to the present invention differentiates between initial creation of the cluster and subsequent
joins. Except for this initial join, joins cannot independently form a cluster-a node can only

join an existing cluster. The user interface for this is discussed below.

5. Handling failures that occur during the membership algorithm.
With a dynamic quorum requirement, inconsistencies among nodes in the number of
votes required for quorum can occur when failures happen during a reconfiguration. To

avoid the possibility of two or more subsets having quorum and forming independent

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 9 PCT/US98/22161

clusters, the modified algorithm imposes a restriction on joiners-joiners may only join a
fully intact existing cluster. Note that this requires all nodes participating in the membership
algorithm to agree on the membership of the existing cluster.

6. Dealing with the partial connectivity situation depicted in Figure 1.

In such a scenario, the original algorithm does not reach an agreement. The
algorithm would converge when a set of nodes agree on the same membership proposal,
but this condition is never satisfied. In the algorithm according to the present invention,
when this condition is suspected (using a timeout), some nodes modify their membership

proposal to a subset that is maximally connected.

In the following subsections, we discuss the format of the messages that cluster
daemons exchange, define what an optimal membership set is and how to select one,
specify the assumptions made in the membership algorithm in addition to those made
above, describe how a change in membership may come about, describe the membership
algorithm, explain how CMM can suspend and resume a set of registered processes, discuss
how CMM checks for consistency of its configuration database, and specify some new user

interfaces that may be needed.

4.1 CMM Messages

The membership monitors on different nodes of a cluster exchange messages with
each other to notify that they are alive, i.e. exchange heart-beats, and to initiate a cluster
reconfiguration. While it is possible to distinguish between these two types of messages, in
practice they are the same message and we refer to them as RECONF msg messages to
stress that they cause reconfiguration on the receiving nodes.

Each RECONF msg will include the following fields:

. A sequence number, seq num, that distinguishes between different
reconfigurations.

. A vector, M, that contains node i's membership vote.

. A vector S; that contains node i's view of the most recent stable
membership.

. A vector, V;, that contains the connectivity information of node 7.

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 10 PCT/US98/22161

. A vector SD, that contains node #'s view of nodes that have voluntarily left

the cluster as of the time the most recent stable membership was established.

. The state of the node St..
e The node id of the originating node.
. A vector J,, that contains node #'s view of nodes that are attempting to join.
. A flag indicating whether the originating node considers itself a joining
node.

4.2 Definitions and Assumptions

The membership algorithm assumes that the cluster is made up of equally valuable
nodes, i.e. that the cluster is a homogeneous cluster. The membership algorithm is based on
a set of rules that are stated in the following precedence order and are used to develop the

membership algorithm:

1. A node must include itself in its proposed set.

2. A node will vote for nodes that are already in the cluster over the ones that are
trying to join it.

3. A node will propose a set that includes itself and has the maximum number of fully
connected nodes.

4, All nodes agree on a statically defined preference order among nodes, e.g. lower

numbered nodes are preferred to higher numbered ones.

The above set of rules define a hierarchy of rules with the statically defined
preference being at the bottom of such a hierarchy. Note that at the above set of rules also
defines an optimal membership set, .

To find the optimal membership set, A, in a cluster with one or more failures is a
computationally expensive task. This problem can be stated in terms of selecting the
optimal, according to the definition of optimality derived from the above rules, subset of a
set of nodes. Assuming that the cluster is composed of N nodes, finding A is equivalent to
finding an optimal matrix of size M x M from a matrix of size Nx N, where M <N. This

problem is indeed the well known problem of “N choose M" which is also known as

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 | PCT/US98/22161 _
1

binomial coefficients. The solution to this problem is of O(2") complexity if we assume that
the system is homogeneous so that each node can be represented by either 0, 1 or - 1.
While the cost of finding an optimal subset is prohibitively high for large N; for N < 20 this
cost is not prohibitive. Therefore, for systems with 16 or less nodes, we propose-tbc;ﬁnd the
optimal set via an exhaustive search method. For systems with more than 20, nodes a
heuristic algorithm that will approximate the optimal solution is preferred.

An assumption that we make is that when a node that aborts broadcasts a
RECONF msg to all other members of the current cluster. We also assume that a node that
wants to join the cluster does so in its begin state and its sequence number is reset to 0. We
also assume that only messages with higher or equal sequence numbers to a node's own
sequence number are processed and a state that is at most one behind in ordinal value.
However, there is a significant exception. If the message comes from a node with the
joiner' flag set, it will be processed even if the state is stale (more than one behind). These
are the nodes that are trying to join the cluster and we must accept their initial messages.
All these assumptions are enforced by our implementation of the membership algorithm

according to the present invention.

4.3 Changes in the Membership
There are a number of ways in which a node can get into a reconfiguration which
may result in a change in the membership according to the algorithm presented in the next

subsection. The following is a list of them:

1. Joins: This is when nodes either form a new cluster or join an already existing one.

(a) First Join: This is done only for the first node of a cluster and is
implemented via a new command, pdbadmin startcluster, which signals to
the CMM running at that node that it should not expect to hear from other
members of the cluster, as there are not any. This command can only be
issued once in the beginning of the life of a cluster, where the life of a
cluster is defined as the time that spans from the moment that the
pdbadmin startcluster is issued to the time where the cluster returns to

having no members. If additional pdbadmin startcluster commands are

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 PCT/US98/22161 _
12

issued they may cause, at worst the system to compromise data integrity if
the node is isolated or, in more realistic cases, generate errors and abort the

node for which this command was mistakenly issued.

(b) Joins Following the First Join: These joins are done via the comm’or;
pdbadmin startnode command and result in one node, or a set of nodes, to
join the cluster. The nodes that are trying to join the cluster will
communicate with the nodes that are already members of the cluster and try

to see if they can join by going through the membership algorithm.

2. Leaves: This is when nodes that were members of the cluster leave the cluster either
voluntarily or involuntarily.

(a) Voluntarily Leaves: The operator issues a pdbadmin stopnode command to a
node, or a set of nodes. This will cause the affected nodes to go through the
stop sequence which would result in the node sending a message to all other
nodes in the cluster informing of them that it is leaving the cluster. This
information can be used, and is used, by the membership algorithm to
optimize certain aspects of the membership.

(b)Involuntarily Leaves: There are two distinct cases for involuntarily leaves:

i The node can complete its abort or stop sequences and can
"clean-up" after itself. More importantly, as far as CMM is
concerned, the node can send a message, the same one as the
voluntarily leaves, that would inform other members of the
cluster that this node will not be part of the cluster. The same
optimizations that can be performed for the voluntarily leaving
of a node can actually be implemented here. A node may leave
the cluster due to a request from an application program with
the appropriate privileges.

ii. The node does not complete its abort sequence and panics the system.
This is the most difficult of all failures to deal with and is usually
detected by the absence of a heart-beat message from the failed node.
This failure is un-distinguishable from a network failure in an

asynchronous distributed system.

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 13 PCT/US98/22161

4.4 The Algorithm

"+ The membership algorithm is described in this subsection. It relies on the
assumptions and definitions described above. The user interface used in this algorithm is
described later to make the flow of the algorithm "clean". Before we proceed to the
description of the algorithm, we state the following rules that are enforced by our

implementation of the membership algorithm;

. Each node, whether already part of the cluster or trying to join the cluster gets one
and only one vote.

. Each node, 7 will update its connectivity state matrix, C;, as soon as it hears from a
node. The matrix C, is node i's understanding of the overall connectivity of the
system. If node i does not hear from a node j within the specified time, or is
informed that node j is down or unreachable, it will mark the e; element of C; as
zero. Furthermore, it will mark all the elements of the jth row as NULL, which
implies that node i does not have any information about the connectivity of node j.
For other rows of the matrix, node i will update them by replacing the kth row of its
connectivity matrix with the connectivity vector V that it receives from node &.

. Each node i will initially include its ith row of C; in its RECONF_msg as the

N ProP N Prop
proposed membership set, / , that it is voting for. Note that the set ~ /

MmProp
proposed by node i is different from the vector V.~ / is a proposed set that

states a node's vote for other nodes in a binary form, whereas V; is a state vector

pProp
which deals with the connectivity of the nodes in the system. Note that ~ /

will have different elements, each element being a node id and a binary vote value,
than V, when nodes cannot agree on a stable membership and a subset of V; needs
to be proposed as the new membership set.

. Each node i keeps the total number of the nodes that are in its current view of the
cluster membership, whether agreed or proposed, in a local variable N;. Note that

N is subject to the following rules during the execution of the membership

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 PCT/US98/22161
14

algorithm:

v Prop
(a)N; is initialized to the cardinality of .~/

(b) N;is incremented for each node that is trying to join the cluster. (One
increment per node as enforced via the nodeid check which is erﬁbedded in
the message, done by the receiver thread.)

(c)N; is decremented for each node that aborts, as defined in part 2(b)i of Section

4.3, or voluntarily leaves. (Done by the receiver thread.)

(d) The quorum at the end of the membership algorithm is decided on this

notion of N,.
. At the termination of the membership algorithm the nodes that form the cluster
agreed
agree on the new set of member nodes, ! . This set will be used in the

next run through the membership algorithm, and at that time, all nodes that were

agreed
part of the previous configuration are assumed to have a consistent ! set.
. Each node, #, prior to entering the membership algorithm will have a sequence

number, seq_num, that is the same for all nodes in the current cluster. In addition
each node will have its connectivity state matrix, C,. Note that C;isanx n matrix,
where 7 is the maximum number of nodes as defined by the current cluster
configuration file, i.e. the current cdb file.

. Each node that is a joiner will have a variable, joining_node, set to TRUE. Once a

agreed
node has become a member of / , it is no longer a joiner, and

joining_node is set to FALSE.

. A node that is executing the first join will have a variable, start_cluster, set to
TRUE. Nodes that are trying to join the cluster will have their start_cluster
variable initialized to FALSE.

All nodes of the cluster get their information about the various timeout values from

the configuration file. Notations 77, T, ... is used to denote possibly different timeout

values. All these values need to be consistent among all nodes and are set to reasonable

values which incorporate communication and queuing delays.

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 15 PCT/US98/22161 _

The algorithm can be described by the following for each node, i:

membership_algorithm() {

’ seq_num =seq_num + 1;

/* Broadcast a RECONF msg to all nodes proposing the set */
prop ¢ init
A based on the initial connectivity matrix = /. */
pPop
/* If a node is joining, its 1 will contain only NULL elements. */
agreed
/* If the proposal does not include all of ! and i is not a joiner, */
/* then all joiners are removed from the proposal. */
mProp
/ = membership_proposal();

Retry:
While (!stable_proposal() && time <Typ) {
/* Node i updates C,, N, and broadcast a RECONF _msg */
/* to all nodes in its V; as soon as 7 gets and */

/* processes a new valid message. If message is from a node */

/* that has not changed state and that i already has heard */
/* from, i will not update C; and N; */
mProp
! = membership_proposal();
}
/* Nodes were unable to agree on a membership set. Therefore, i */
M Prop
/* needs to modifyits / to reflect that an agreement may not be */
/* possible to reach. A new optimal subset will be proposed and */
/* broadcasted. */

propose_new membership();
While (!stable_proposal()) {
/* Node i will update C; and N, for any valid message and*/
/* will broadcast its RECONF _msg. If a valid message */

SUBSTITUTE SHEET (RULE 26)

WO 99/21098
16

/* indicates that some node has changed state, the variable */
/* node_state_changed is set to TRUE. */
if (node_state changed)

E goto Retry;

/* If this is not the first join, we can check for quorum. */

if (Istart_cluster) {

/* A joiner may not join a partially connected or nonexistent */
Magfeed
/* i cluster. */
Magfeed pProp
if (joining_node AND (! ¢ OR
pagreed

V(je I), (ST;=DOWN))
abort_node();

/* Check to see if the proposed set has enough votes. Let v */
/* represent the number of votes that the current proposal has. */
if(v<| (N;+1)2))

abort_node();
else if (vx 2 =N) {
/* This is a possible split brain situation. */
if (N; = 2 && share_quorum_dev()) {
if (freserve_quorum())

abort_node();

}

else

wait_for user_input();

SUBSTITUTE SHEET (RULE 26)

PCT/US98/22161

WO 99/21098 17 PCT/US98/22161

/* A new membership has been agreed to. */

Mag_reed pProp
i =

joining_node = FALSE;

/* Node i will broadcast another RECONF_msg which will */
/* serve as a death message for all nodes that might have */
/* been stuck in a previous step of the membership */
/* algorithm. */

/* A variety of conditions must pass before i's proposal is considered

/* stable and an agreement has been reached. */

boolean stable proposal() {

pProp
/* Not all sequence numbers of nodesin ! agree

M Prop
if(V@Ge |), seq num # seq~num)

return FALSE
/* Any state in C, is NULL */
if(V(seCy, s #NULL)
return FALSE
pmProp

A is not still valid */

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 PCT/US98/22161 _

18

v Prop
if(v(Ge 1) St#DOWN)

return FALSE

/* All other nodes have not caught up to the local state yet

yProp
if(vGe 1) ST, #ST)

return FALSE

/* The proposals do not match

MProp p.Prop MP’{'OP
#

if(vgGe !),)
return FALSE
return TRUE

propose_new_membership() {

M Prop
vector proposal to test= |

agreed
if (proposal_to_test > / AND

fully connected(proposa_to~test)) {
/* exclude joiners */

find_optimal_proposal(proposal to_test)

else

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 19 PCT/US98/22161 _

if (joining_node) {
abort~node();
else

E /* exclude joiners from proposal */

find_optimal_proposal(proposal_to_test & 135

find_optimal proposal(test_proposal) {
while (!fully_connected(test_proposal))
test_proposal = get_next_proposal(test_proposal)
}

4
v<
if (2)

abort_node()

get_next_roposal(orignal) {
/* This routine follows rules 3 & 4 in Section 4.2 to select */

/* cluster proposals in order of decreasing optimality, based on the */

/* original set (original) from which we are selecting. */
/* We exhaustively cycle through all combinations of nodes in */
/* decreasing order of number of nodes. The combinations are */
/* ordered with lower node ids having precedence over higher */
/* node ids. */

Note that in the above algorithm we assume that there is a way to send messages to

all nodes that are part of the cluster. If a node is down or unreachable, this is assumed to

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 PCT/US98/22161 _
20

i

have been dealt with in previous reconfigurations and reflected in the matrix ”;t . Note
that the concept of a valid message was discussed above. Furthermore, the new optimal
subset in the above algorithm is selected according to the rules and definitions described
above. Also note that the entire algorithm is being executed within the begin step of the
reconfiguration which is a timed event with its own timeout value.

In the above algorithm, the function membership_proposal() returns a membership
proposal based on C; including all nodes that are not in the DOWN state. It also excludes

agreed
all joiners from the proposal if the proposal does not include all of ! . An

important function is the stable_proposal() function. This function decides if the proposed

MPIoP
set ! is agreed upon by all the members of that set. In order to count the number of

. MmPOP
votes, node i needs to compare the proposed set from other nodes, i.e. J with its

pProp
own ! ,j #1. Note that the function share_quorum_dev() is implemented by using

the CCD dynamic file and informs the membership algorithm of the cases, such as a two
node cluster, in which two nodes do share a quorum device. The binary function
reserve_quorum() returns false if and only if the device is already reserved by another
node. The function wait_for_user_input() is discussed in greater detail below.

The function propose_new_membership() will get called to find an optimal subset

mPIop . . iy . .
of |/ , according to optimality conditions described above. It exhaustively tests the

MmProp
subset combinations of ~ / until the first fully-connected set is found. The

fully_connected(prop) function returns true if the candidate proposal prop is contained in

M Prop
all the proposals of the members of prop. Note thatif ~ / is already fully-connected,
\Prop
the proposal will not change. Also note that =~/ is not fully-connected, no joiners will

be in the proposal. Finally, the find_optimal_proposal() and get_next_proposal()

functions implement the exhaustive search.

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 21 PCT/US98/22161

4.5 User Interfaces

Above, we deferred the discussion of how we will break the tie with the user input -
if there is a potential split-brain situation. In this subsection we specify how this is to be
implemented. _

The situations in which a set of nodes, X, and a different set of nodes, ¥ both have
exactly N/2 votes, where N is the number of nodes in the previous cluster, is the case for
which we will need operators assistant. Note that if the cardinality of both X and ¥ is one
and they do share a quorum device, then we do not need to solicit input from the operator.
In both situations the node will be waiting for the user input by executing the
wait_for_user_input() call in the membership algorithm. The call to
wait_for_user_input() will cause the creation of a print thread that would continuously
print a message informing the operator that he needs to break the potential tie. The
message would identify, for the appropriate nodes, the sets X or ¥ that must be shut down
or informed to stay up. The operator will break the tie by issuing the command pdbadmin
stopnode to one set of nodes while issuing the new command pdbadmin continue to the
other set. The set that receives the stop command will abort, while the other set will stop
printing the messages and continue its reconfiguration. Alternatively, the operator can issue
a clustm reconfigure command, which is a valid option if there was a communication
break down and the operator has fixed it. Issuing a clustm reconfigure command will
cause a new reconfiguration to take place. If the operator issues any other command,
besides pdbadmin stopnode, clustm reconfigure or pdbadmin continue at this time, the
command reader thread, will not signal the transitions thread that is waiting for one of
those commands and will simply ignore the command. The print thread, meanwhile, will be
printing these messages continuously once every few seconds, to inform the operator that
some immediate action is required.

The function wait_for_user_input(), which is executed by the transitions thread, is

implemented as follows:

wait_for user_input()

{

/* create the print thread and make it print */

/* an informative message every few seconds. */

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 ’ PCT/US98/22161

cond_wait(&state _change cv, &autm_lock),
check stop abort();

/* remove the print thread. */

The above sequence of actions will cause the transitions thread to sleep on the

condition variable state_change cv which is flagged under the following conditions:

. User issues a continue command.

. User issues a stopnode command.

. User issues an abort command.

. User forces reconfiguration.

. Node receives a message that indicates that a remote node in its current

membership set has gone down.
. Node has not received a message from a remote node in its current membership set

for node down_timeout.

All of these actions are suitable for flagging the transitions thread and allow the user
to issue the right set of commands to ensure that only one primary group remains in

operation in the cluster.

S Failure Fencing and Resource Migration

Another component of the system that requires modification due to the new
architecture is the failure fencing mechanism that is employed in some distributed computer
systems. In this section, we discuss a solution to the general problem of resource migration
and the specific problem of failure fencing. The solution provided is generic in the sense
that it handles the various array topologies-cascaded, n + 1, cross-connected, and others-as
well as different software configurations-CVM with Netdisk, stand alone VxVM, or others.
It also handles the 2-node cross connected array configuration without treating it as a
special case.

The assumptions and the general solution are discussed next. This is followed by a

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 93 PCT/US98/22161

short note on how this also solves the resource migration problem - the migration of highly
available disk groups, HA/NFS file systems, logical IP addresses on the public networks.
etc. '

5.1 Assumptions

In the case of a shared disk configuration with CVM and Netdisk, it is assumed that
the master and its backup node for all NetDisk devices have direct physical access to the
underlying physical device.

In the case of a shared nothing configuration with VxVM, it is assumed that each
node that has primary ownership of a set of disk groups has direct physical access to the
devices belonging to those disk groups. In more concrete terms, if Node N has primary
ownership of a set of disk-groups G, all disks belonging to the disk groups in G can be
found in the set of storage devices denoted by D that are connected to N.

We also assume that information about the primary and backup ownership of a
NetDisk device or other resources is maintained in the Cluster Configuration Database,
CCD, and is available to all nodes in a consistent manner. We enforce this assumption by
using the dynamic portion of the CCD. In particular, it is important that the CCD can be
queried to obtain this information when the steps for failure fencing and resource migration
gets executed during the reconfiguration process as outlined in the next subsection. These
steps are executed only after cluster membership has been determined and quorum has been

obtained.

5.2 Failure Fencing

In some distributed computer systems, every node has a backup node. A node
(primary) and its backup node share a set of common devices they are connected to. This
is denoted by B(N;) = N; In the case of a CVM plus Netdisk configuration, the backup
node becomes the master of the set of NetDisk devices owned by a failed node. In the case
of VxVM configuration, the backup node becomes the primary owner of the set of disk
group resources owned by a failed node.

Let N; denote a node of a cluster and D; denote a set of storage devices (composed
of one or more SSA and/or Multipacks). Assuming that there are four nodes in the cluster,

Nj to Ny, we will have the following relations for a cascaded configuration: B(Nj) = Ny,

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 24 PCT/US98/22161

B(N3) = Nj, B(N3) = Nj, B(Ny = N3. For the n + 1 configuration the relation is given by:
B(N}) = Ny, B(Ny) = N4, B(N3) = N4 Note that in this case node N4 does not have a
backup node. And, finally for the cross connecfed case, the backup and primary relation is
givén by: BIN}) = N3, B(Ny) = Ny, B(N3) = Ny, B(N4) = N3. Note that the two-node

cross connected case simply reduces to the case of: B(Nj) = N, B(Ny) = N}.

5.3 Generic Solution
Assume node 7 has failed and all the other nodes undergo a reconfiguration as a
result of this failure. Each surviving node j will execute the following simple step after
membership and quorum has been determined:
if (B(N;) = N;) /* i.e. my nodeid */ {
if (N; masters NetDisk devices) /* for CVM & NetDisk */ {
take over these devices and issue reservations
on the corresponding physical devices;
}
if (N; has primarv ownership of disk groups) /* for VxXVM */ {
take ownership of these disk groups;
issue reservations on the corresponding physical devices of the

disk group:

if (B(Ny) = N,) N)) /* i.e. the failed node is my backup */ {
/* 1 need to protect all my shared devices */
For all NetDisk devices for which N; is the master
issue reservations on corresponding physical devices;
For all disk groups for which N; is the primary owner

issue reservations on the corresponding physical devices;

Note that "takeover these devices" implies that whatever interface NetDisk provides

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 PCT/US98/22161
25 -

to takeover ownership of NetDisk devices will be used to accomplish this.

Without going into the syntactic details of how exactly a node determines what
NetDisk devices are mastered by a failed node, it is sufficient to state that CCD maintains
this information in its database and can be queried to obtain this information and also
whether the currently reconfiguring node is the backup of the failed node.

In some distributed computer systems, information about the primary ownership of

a disk group is maintained in the cdb file in the following format:

cluster.node.().cdg: dgl dg2
cluster.nodc.1.cdg: dg3 dg4.

It should be a simple matter to find an equivalent representation for this information
to be placed in the CCD and made available to all nodes in exactly the same manner as the
NetDisk device configuration. The extra representation to be added for each node is of

course the backup node in the same manner as NetDisk devices. For example:

cdg: dgl, dg2: 0.1.

The primary owner of cluster disk-groups dgl and dg2 is node 0 and its backup
node 1s node 1.

1t is also possible to either query CCD or the volume manager to find out the set of
physical devices associated with a particular NetDisk virtual device or a particular disk
group, respectively.

Finally, these are the steps executed when a failed node i is ready to join the cluster.
Each of the other nodes j # i execute this sequence in some as yet undetermined step & of

the reconfiguration process:

IEBN) =N,
Release reservations on NetDisk devices for which

N;j is master

Use NetDisk interface to switch NetDisk devices mastered
on Node N; from N; to N;.

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 PCT/US98/22161
26 -

Release reservations on disks in disk groups for which
N; 1s primary owner.

Deport the disk groups owned by N;. -

IfBﬂVj) = N; /* node that is joining is mv backup */
Release reservations on all NetDisk devices mastered
on Nj
Release reservations on all devices in disk groups whose
primary owner is ;.

Fi

The following sequence is executed by the joining Node Nj, in step £ + 1 of the

reconfiguration process:

Master NetDisk devices mastered on Node N;.

Import disk groups for which N; is primary owner.

For a node j # , it may not be possible to figure out from the membership whether ;
i1s joining the cluster or just undergoing a reconfiguration and was already part of the
cluster. This does not matter as it is a simple matter to figure out whether node N, owns
resources whose primary owners are part of the cluster membership and have it undertake
the appropriate actions. If the algorithms are implemented correctly, at no point in time
should node N; own resources belonging to node N; if N; was already part of the cluster.
This is a safe assumption required for correctness and integrity. This algorithm is slightly
expensive in terms of reconfiguration times, but in no way it constitutes a bottleneck.

We can utilize the approach of this section to solve the general resource migration
problem in certain distributed computer systems. Resources that need to be highly
available, are migrated over to a surviving node from a failed one. Examples of such
resources are disk groups in a shared nothing database environment, disk groups for HA-

NES file-systems and, logical IP addresses. Arbitrary resources can be designated in the

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 97 PCT/US98/22161

CCD with a master and a backup node. For example, the logical IP addresses can be
migrated from failed nodes to surviving ones. Note that for a switch-over to take place, the
backup node would have to release the resources of the joining node one step before the

joining node takes over its resources.

5.4 A Restriction on Disk Groups

For some distributed computer systems, it is not possible to have arbitrary
connections to the arrays from the nodes of the cluster. This is because, a disk group that is
scattered across several arrays cannot be migrated to different nodes of the cluster, but
needs to be migrated in its entirety to a single node. To illustrate, consider a configuration

in which there are four nodes, Ny, ..., Ny, and four array devices. Dy, ..., D4 Assume that
node Nj has a physical connection to array D;. In addition, N is physically connected to D
and D3 and N3 is physically connected to D5 and D, Finally, assume that N; and N4 have

no further connections.

Let's say the node N has a disk group G whose devices are scattered on disks in
arrays D and D3. If N) now fails, G cannot be imported in its entirety on either N; or N3
since all of its disks won't be visible on either N; or N3. Such configurations are not

supported in some distributed computer systems. If a node owns a disk group and if the
node fails, it should be possible for the disk group in its entirety to be taken over by one of
the surviving nodes. This does not constrain the array topology, but places restraints on

how data is scattered across the arrays.

5.5 A Migration Strategy with Minimal Effort

One of the more time consuming activities in a system is laying out of the data. We
propose to minimize this for the those who wish to upgrade their existing two node clusters
to three nodes, or those with a three node cluster that wish to update their clusters to four
nodes. We are not going to do this dynamically. The cluster will be shut down and
restarted. The only criteria is to allow access to the mirror and the primary copy of the data
from the same node without having to relay all the volumes and/or disk groups. This may

require addition of adaptor cards.

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 28 PCT/US98/22161

The above description is illustrative only and is not limiting. The present invention
is therefore defined solely and completely by the appended claims together with their full

scope of equivalents.

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 9 PCT/US98/22161
2

* %k % %k K Kk k %k ok ok k k k k %k k ok k k k k Kk k ¥ ¥

What is claimed is:

7

1. A method for determining membership of nodes in a distributed computer
system, the method comprising;

(a) determining connection data representing interconnectivity of the
nodes of the distributed computer system;

(b) applying optimization criteria to the connection data to form a
proposed membership list of a proposed new cluster;

©) broadcasting the proposed membership list to the connected nodes;

(d) receiving other proposed membership lists from the connected

nodes; and

(e) selecting an elected proposed membership list from the other

proposed membership lists.

2. The method of Claim 1 wherein (a) determining connection data comprises:
determining with which connected ones of other nodes of the distributed
computer system a selected node is in communication;
broadcasting to the other nodes data specifying the connected nodes;
receiving node connection data from the connected nodes; and
combining the node connection data from the connected nodes and the data

specifying the connected nodes to form the connection data.

3. The method of Claim 1 wherein (e) selecting an elected proposed

membership list comprises:

ensuring that the proposed membership list and all other proposed

membership lists agree.
4. The method of Claim 3 wherein (e) selecting an elected proposed

membership list further comprises:

detecting disagreement between the proposed membership list and all other

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 30 PCT/US98/22161 _

proposed membership lists; and

in response to such disagreement, repeating (a) through (d).

s, The method of Claim 1 wherein (e) selecting an elected proposed
membership list comprises:

determining that the elected proposed membership list represents nodes

which collectively form a quorum.

6. The method of Claim 5 wherein determining that the elected proposed
membership list represents nodes which collectively form a quorum comprises:
estimating a number of nodes of the distributed computer system are

operational.

7. The method of Claim 6 wherein estimating a number of nodes of the
distributed computer system are operational comprises:
determining a number of nodes represented in the first-mentioned proposed
membership list;
adding a number of joining nodes; and

subtracting a number of voluntarily leaving nodes.

8. A computer readable medium useful in association with a computer which
includes a processor and a memory, the computer readable medium including computer
instructions which are configured to cause the computer to determine membership of nodes
in a distributed computer system by:

(a) determining connection data representing interconnectivity of the
nodes of the distributed computer system;

(b) applying optimization criteria to the connection data to form a
proposed membership list of a proposed new cluster;

(c) broadcasting the proposed membership list to the connected nodes;

(d) receiving other proposed membership lists from the connected

nodes; and

(e) selecting an elected proposed membership list from the other

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 PCT/US98/22161
31

proposed membership lists.

9. The computer readable medium of Claim 8 wherein (a) determining
connection data comprises: -
determining with which connected ones of other nodes of the distributed
computer system a selected node is in communication;
broadcasting to the other nodes data specifying the connected nodes;
receiving node connection data from the connected nodes; and
combining the node connection data from the connected nodes and the data

specifying the connected nodes to form the connection data.

10. The computer readable medium of Claim 8 wherein (¢) selecting an elected
proposed membership list comprises:
ensuring that the proposed membership list and all other proposed

membership lists agree.

11. The computer readable medium of Claim 10 wherein (e) selecting an elected
proposed membership list further comprises:
detecting disagreement between the proposed membership list and all other
proposed membership lists; and

in response to such disagreement, repeating (a) through (d).

12. The computer readable medium of Claim 8 wherein (e) selecting an elected
proposed membership list comprises:
determining that the elected proposed membership list represents nodes

which collectively form a quorum.

13. The computer readable medium of Claim 12 wherein determining that the
elected proposed membership list represents nodes which collectively form a quorum
comprises:

estimating a number of nodes of the distributed computer system are

operational.

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 1 PCT/US98/22161 _

14. The computer readable medium of Claim 13 wherein estimating a number of
nodes of the distributed computer system are operational comprises: “
determining a number of nodes represented in the first-mentioned proposed
" membership list;
adding a number of joining nodes; and

subtracting a number of voluntarily leaving nodes.

15. A computer system comprising:
a processor;
a memory operatively coupled to the processor; and
a failure detection module (i) which executes in the processor from the
memory and (ii) which, when executed by the processor, causes the computer to
determine membership of nodes in a distributed computer system by:
(a) determining connection data representing interconnectivity of
the nodes of the distributed computer system;
(b) applying optimization criteria to the connection data to form
a proposed membership list of a proposed new cluster;
(c) broadcasting the proposed membership list to the connected
nodes;
(d) receiving other proposed membership lists from the
connected nodes; and
(e) selecting an elected proposed membership list from the other

proposed membership lists.

16. The computer system of Claim 15 wherein (a) determining connection data
comprises:
determining with which connected ones of other nodes of the distributed
computer system a selected node is in communication;
broadcasting to the other nodes data specifying the connected nodes;
receiving node connection data from the connected nodes; and
combining the node connection data from the connected nodes and the data

specifying the connected nodes to form the connection data.

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 33 PCT/US98/22161

17. The computer system of Claim 15 wherein (e) selecting an elected proposed
membership list comprises:
ensuring that the proposed membership list and all other proposed

membership lists agree.

18. The computer system of Claim 17 wherein (e) selecting an elected proposed
membership list further comprises:
detecting disagreement between the proposed membership list and all other
proposed membership lists; and

in response to such disagreement, repeating (a) through (d).

19. The computer system of Claim 15 wherein (e) selecting an elected proposed
membership list comprises:
determining that the elected proposed membership list represents nodes

which collectively form a quorum.

20. The computer system of Claim 19 wherein determining that the elected
proposed membership list represents nodes which collectively form a quorum comprises:
estimating a number of nodes of the distributed computer system are

operational.

21. The computer system of Claim 20 wherein estimating a number of nodes of
the distributed computer system are operational comprises:
determining a number of nodes represented in the first-mentioned proposed
membership list;
adding a number of joining nodes; and

subtracting a number of voluntarily leaving nodes.

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 - PCT/US98/22161 -

172

100A 1008

SW
101

SW
102

100C 100D

FIG. |

SUBSTITUTE SHEET (RULE 26)

WO 99/21098 PCT/US98/22161 -

2/2
¢ Communication Medium 200 >
\r\ T e— — . _ __-—-—"—'T
l I e N l
| i l l
| | | |
| | | |
I l I l
200A 200B 200C 200D
\\ \\ \\ \\
\ \ \ \
_ \ \L \
A S PR NSO PRERUNRS NP AERU
~ \ A% \
Q1 Q2 Q3 Q4

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

