Title: THERMAL INJECTION AND PROPORTIONING HEAD, METHOD FOR MAKING SAME AND FUNCTIONALISING OR ADDRESSING SYSTEM COMPRISING SAME

Tête d’injection et de dosage thermique, un procédé de fabrication et système de fonctionnalisation ou d’adressage la comprenant

Abstract: The invention concerns an injecting and proportioning head, with at least a thermal injection and proportioning device to supply a specific amount of liquid, comprising: a recessed planar substrate (21) forming a liquid reservoir and covered, sequentially, with a non-stressed dielectric insulating membrane (22, 23) with high thermal resistance, then an etched semiconductor layer forming a heating resistor (25); said membrane and said semiconductor layer being traversed by an orifice (24) in fluid communication with the reservoir; a photolithographic resin layer in the form of a nozzle (27) on said membrane, the channel (28) of said nozzle being located in the extension of said orifice and the volume of said channel enabling to control the specific amount of liquid to be supplied. The invention also concerns a method for making said head. The method further comprises a functionalising or addressing system in particular for chemical and biological microreactors comprising such a head.

Abrégé : Tête d’injection et de dosage, avec au moins un dispositif d’injection et de dosage thermique pour fournir une quantité déterminée de liquide, comprenant : un substrat plan évidé (21) formant réservoir de liquide et recouvert, dans l’ordre, d’une membrane isolante diélectrique (22, 23) non contrainte de résistance thermique élevée, puis d’une couche semi-conductrice gravée formant résistance chauffante (25) ; ladite membrane et ladite couche semi-conductrice étant traversées par un orifice (24) en communication fluidique avec ledit réservoir de liquide ; une couche de résine photolithographiée.

États désignés (régional) : brevet ARIP (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), brevet eurasiens (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Publiée :

— avec rapport de recherche internationale
— avant l'expiration du délai prévu pour la modification des revendications, sera publiée si des modifications sont reçues

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux “Notes explicatives relatives aux codes et abréviations” figurant au début de chaque numéro ordinaire de la Gazette du PCT.

en forme de buse (27) sur ladite membrane, le canal (28) de ladite buse se situant dans le prolongement dudit orifice et le volume dudit canal permettant de contrôler la quantité déterminée de liquide à fournir. Procédé de fabrication de cette tête. Système de fonciomnalisation ou d’adressage notamment de microréacteurs chimiques ou biochimiques comprenant cette tête.
Description

L'invention concerne une tête d'injection et de dosage thermique, plus précisément une tête d'injection et de dosage thermique comprenant au moins un dispositif d'injection et de dosage thermique à buse pour fournir, délivrer une quantité déterminée de liquide.

L'invention concerne, en outre, un procédé de fabrication d'une telle tête.

L'invention a trait enfin à un système de fonctionnalisation ou d'adressage comprenant une telle tête, en particulier, pour des microréacteurs biologiques ou chimiques.

L'invention se situe, de manière générale, dans le domaine des dispositifs permettant de déposer sur un substrat ou d'apporter, d'injecter, dans des microréservoirs, une pluralité de microgouttes de liquide de volume déterminé.

De telles gouttes de liquide peuvent, par exemple, être des solutions d'ADN ou des réactifs d'immunologie, qui forment ainsi des rangées ou matrices miniaturisées de gouttes ou de réservoirs d'essais, qui sont utilisés, en particulier, dans les analyses médicales.

On sait, en effet, que les biopuces, par exemple, sont des dispositifs qui permettent de
réaliser un très grand nombre de bioanalyses en parallèle. Le principe est de réaliser sous une forme miniaturisée des matrices de microréservoirs d’essais.

Chaque point d’essai est spécifique et résulte du mélange ou de l’association d’éléments chimiques et biochimiques précis. Ces mélanges ou associations peuvent être réalisés par divers procédés qui peuvent être cependant classés en deux grandes catégories.

Dans la première catégorie de ces procédés, dits de fonctionnalisation des biopuces, on applique un à un les constituants et on contrôle les réactions par adressage sur les microréservoirs visés d’une action facilitant ou inhibant la réaction.

Dans la seconde catégorie de procédé de fonctionnalisation des biopuces, on apporte mécaniquement, point par point, les constituants spécifiques dans le microréservoir visé ; cette dernière catégorie se rapproche du domaine de l’invention.

Les procédés de fonctionnalisation de biopuces se divisent entre, d’une part, les procédés, dits « in situ », et, d’autre part, les procédés, dits « ex situ ».

Le principal procédé de synthèse in situ, c’est-à-dire où la synthèse, par exemple, du brin d’ADN, se fait directement sur la puce, sur support solide, est celui de AFFIMETRIX®. Ce procédé repose sur la synthèse in situ, c’est-à-dire directement sur la puce, d’oligonucléotides, par exemple de brins d’ADN, avec des méthodes empruntées à la photolithographie.
Les surfaces des unités d'hybridation (UH), modifiées par un groupe protecteur photolabile, sont éclairées à travers un masque photolithographique. Les UH ainsi exposées au rayonnement lumineux, sont sélectivement déprotégées et peuvent donc être ensuite couplées à l'acide nucléique suivant. Les cycles de déprotection et couplage sont répétés jusqu'à ce que l'ensemble des oligonucléotides désirés soit obtenu.

D'autres procédés EX SITU ont déjà été expérimentés en utilisant les capacités microélectroniques du silicium. La puce comprend plusieurs électrodes microélectroniques de platine, disposées au fond de cuvettes usinées dans du silicium et adressées individuellement. Les sondes, telles que des oligonucléotides ou des brins d'ADN sont couplées à un groupement pyrrole et sont dirigés par un champ électrique sur l'électrode activée, où s'effectue la copolymérisation en présence de pyrrole libre, on obtient ainsi un accrochage électrochimique des sondes.

A la lumière de ce qui précède, il apparaît que les procédés de synthèse in situ, tels que celui d'AFFIMETRIX®, permettent d'atteindre des densités élevées d'unités d'hybridation et utilisent des techniques parfaitement maîtrisées, compatibles avec des supports silicium. Leurs inconvénients majeurs sont leur coût élevé, qui exclut leur utilisation par de petites entités, comme les laboratoires de recherche ou d'analyses médicales et le fait que le faible rendement de la réaction de photodétection implique beaucoup de redondance dans les séquences présentes sur la puce.
La réalisation est relativement lourde à cause, notamment, des masques photolithographiques et est donc adaptée surtout à des objectifs ciblés avec des volumes d'utilisation importants.

Dans les procédés, dits « ex situ », c'est-à-dire où la synthèse du brin d'ADN se fait ex situ, chaque séquence doit être pré-synthétisée indépendamment des autres, puis reportée sur le support. La procédure est longue et exclut la réalisation d'un grand nombre de séquences différentes sur une même puce. Les puces réalisées ainsi seront donc des puces de faibles densités.

La seconde catégorie de procédés d'adressage, que l'on peut qualifier de procédés d'adressage mécanique qu'ils soient ex situ ou in situ, est représentée par de nombreux procédés, actuellement commercialisés, dans lesquels des micropipettes robotisées, assemblées en matrice et actionnées, par exemple, pneumatiquement, viennent prélever les constituants - généralement, une solution contenant des fragments d'ADN ou des oligonucléotides - et les déposent sous forme de doses précises, par exemple de microgouttes dans les tubes à essais ou sur des supports miniaturisés. On utilise, en général, des lames de verre comme support, ou des supports structurés portant des micropuits gravés dans le matériau. On peut aussi déposer successivement chacune des bases (A, G, C, T) dans l'ordre voulu sur la lame de verre.

Ces techniques classiques sont couramment utilisées en matrices de 96 points et peuvent encore
atteindre des densités plus élevées. L'objectif serait d'atteindre, avec ces procédés mécaniques, 10 000 points, et plus, car le nombre de tests à réaliser en parallèle est considérable. Le nombre de plots peut atteindre aujourd'hui 8000 sur une même plaque.

La réalisation des matrices de microréservoirs est un problème simple, aisément résolu par les technologies microélectroniques. On peut réaliser :

- des substrats simples comportant des matrices micro usinées par voie chimique ou plasma. Des densités de l'ordre de 10 000 points/cm² sont courantes, mais des densités de 100 000 points/cm² sont accessibles ;

- des substrats instrumentés par des systèmes électroniques ou électronomécaniques bien illustrés par la puce MICAM commercialisée par la société CisBio®. C'est le procédé (ex situ) illustré ci-dessus dans le premier cas.

Le problème le plus difficile est, en fait, de venir déposer les réactifs, sondes ou autres, spécifiquement dans chaque microréservoir. Plusieurs techniques sont utilisées pour le pipetage : dépôt par contact capillaire « pin and ring » ; « jet d'encre » piézoélectrique continu dévié, ou « goutte à la demande », ou encore jet d'encre thermique.

La technique des têtes d'imprimantes à jet d'encre thermique est très répandue et d'une grande fiabilité.

De manière générale, une tête d'imprimante à jet d'encre thermique, jouant, par exemple, le rôle
de microinjecteur doseur thermique, répond au principe de fonctionnement décrit ci-dessous.

Le liquide à éjecter est confiné dans un réservoir.

Une résistance chauffante permet d'élèver très localement la température dans le réservoir et de vaporiser le liquide au contact de la zone chauffante. La bulle de gaz, ainsi formée, crée une surpression qui éjecte une goutte à l'extérieur du réservoir.

La figure 1 réalise idéalement cette fonction.

Sous l'effet de la pression et des forces de capillarité, la buse (1) de rayon r (6) se remplit de liquide, en provenance d'un réservoir (4). La buse est entourée à une profondeur L (2) d'un système d'apport calorifique, par exemple une résistance chauffante (5) fonctionnant par effet Joule.

Sous l'effet de l'élévation de température au niveau (3) et de la vaporisation des espèces volatiles du liquide, la partie supérieure du liquide est éjectée en formant une goutte de dimension \(v = \pi^2 L \), où r est le rayon (6) de la buse (1) et L la hauteur de la colonne liquide correspondant à la profondeur (2).

Le fonctionnement est réalisable en continu : il permet la réalisation d'une succession de gouttes. Il fonctionne aussi au coup par coup. Le contrôle du rayon interne de la buse et de sa hauteur L permet de réaliser des gouttes de l'ordre du picolitre avec des densités d'injections de \(10^5 \) à \(10^2 / \text{cm}^2 \). La densité des trous est importante parce qu'il n'y a pas interaction thermique d'un trou à l'autre.
Il existe trois types principaux de dispositif de tête d'imprimante à jet d'encre thermique qui mettent en application le principe décrit plus haut et illustré sur la figure 1.

Le premier de ces dispositifs est le dispositif dit « EDGESHOOTER » dans lequel deux substrats, un de silicium supportant l'élément chauffant, et un de verre, sont associés par l'intermédiaire d'un film collant et structurés par photolithographie. L'éjection des gouttes se fait latéralement, sur la tranche du dispositif.

Le deuxième dispositif est le dispositif, dit « SIDESHOOTER » dont la structure comporte, de façon analogue au dispositif précédent, un substrat silicium et un film collant, mais qui sont recouverts d'une plaque métallique sur laquelle sont réalisées les buses. L'éjection des gouttes se fait en regard de l'élément chauffant.

Le troisième dispositif est le dispositif, dit « BACKSHOOTER », dans lequel la tête d'impression est faite à partir de substrats de silicium orientés <110>.

Les canaux, amenant l'encre, sont réalisés par gravure anisotropique d'un côté du substrat, alors que sur l'autre côté, sont déposés les films minces qui permettront la réalisation de la membrane supportant l'élément chauffant et de l'électronique. Les buses sont localisées au centre de la membrane et les éléments chauffants sont placés de part et d'autre de celle-ci. Les résolutions atteignent de 300 dpi (dot per inch) et 600 dpi.
Dans tous les cas, c'est-à-dire pour les trois dispositifs, la tête d'impression est constituée d'une seule ligne comprenant seulement une cinquantaine de buses de 20 µm X 30 µm environ. La vitesse des gouttes à l'éjection varie de 10 à 15 m/s.

Tous ces dispositifs de tête d'imprimante à jet d'encre thermique, en particulier dans leur application, comme tête à microinjecteur doseur thermique, ont en commun l'inconvénient majeur de présenter des pertes thermiques importantes.

De ce fait, il n'est possible de réaliser que des têtes pourvues d'une seule et unique ligne de trous et non d'une matrice. Les densités et résolutions sont donc nettement insuffisantes.

Il existe donc un besoin pour une tête d'injection et de dosage comprenant un dispositif d'injection et de dosage thermique qui ne présente pas, entre autres, cet inconvénient majeur.

Il existe, en outre, un besoin pour une tête d'injection et de dosage qui permette d'atteindre des densités et résolutions au moins équivalentes à celles obtenues dans les systèmes d'adressage ou de synthèse in situ, tels que celui d'AFFIMETRIX®, sans en présenter, de même, les inconvénients. Aucun système d'adressage mécanique ne permet, en effet, à l'heure actuelle d'obtenir ces densités et résolutions.
Le but de la présente invention est de fournir une tête d'injection et de dosage à dispositif d'injection et de dosage thermique qui réponde, entre autres, à l'ensemble des besoins indiqués ci-dessus.

Le but de la présente invention est, en outre, de fournir une tête d'injection et de dosage thermique qui ne présente pas les inconvénients, limitations, défauts et désavantages des têtes d'injection et de dosage de l'art antérieur et qui résout les problèmes posés par les têtes d'injection et de dosage de l'art antérieur.

Ce but, et d'autres encore, sont atteints, conformément à l'invention par une tête d'injection et de dosage comprenant au moins un dispositif d'injection et de dosage thermique pour fournir une quantité déterminée de liquide, ledit dispositif comprenant :

- un substrat plan évidé formant réservoir de liquide et recouvert, dans l'ordre, d'une membrane isolante diélectrique non contrainte de résistance thermique élevée, puis d'une couche semi-conductrice gravée formant résistance chauffante ;
- ladite membrane et ladite couche semi-conductrice étant traversées par un orifice en communication fluidique avec ledit réservoir de liquide ;
- une couche de résine photolithographiée en forme de buse sur ladite membrane, le canal de ladite buse se situant dans le prolongement dudit orifice et le volume dudit canal permettant de contrôler la quantité de liquide à fournir.
Selon l’invention, le chauffage est réalisé sur une membrane isolante diélectrique, de résistance thermique élevée et non contraîntee, de ce fait, les pertes thermiques sont fortement réduites et, en conséquence, il sera ainsi possible de réaliser une tête comprenant une matrice bidimensionnelle de buses ou trous et non plus seulement une simple ligne ou rangée.

En d’autres termes, la structure du dispositif selon l’invention, comprenant trois couches sur le substrat, qui n’a jamais été mentionnée dans l’art antérieur permet, de manière surprenante et optimale, que la chaleur générée ne diffuse que très peu dans la membrane dont la résistance thermique est élevée, voire très élevée. C’est là un des inconvénients majeurs des dispositifs analogues de l’art antérieur, à savoir les pertes thermiques élevées, qui est éliminé. En effet, les dispositifs d’injection-dosage d’une tête peuvent être rapprochés et présenter une densité nettement plus importante que dans l’art antérieur. Les têtes selon l’invention peuvent ainsi porter des matrices bidimensionnelles de buses ou trous d’injection-dosage à forte densité, par exemple 10^4/cm².

En outre, dans le dispositif de l’invention, le volume à délivrer, à fournir, est facilement, et avec grande précision, déterminé par le volume du canal de la buse qui est réalisé aisément en résine photolithographiée.

La tête selon l’invention permet de fournir avec une grande fiabilité des quantités parfaitement
dénies de liquide en des points parfaitement définis avec une densité, par exemple, de 10^4 à 10^5/cm2, jamais atteinte jusqu'alors avec des dispositifs mécaniques du type à micropipettes thermiques.

La quantité déterminée de liquide à fournir à délivrer par le dispositif est généralement de 1 à quelques nl jusqu'à 100 μl ; c'est la raison pour laquelle on utilise généralement le terme « micropipette ».

Le substrat est généralement en silicium monocristallin, éventuellement dopé.

Avantageusement, selon l'invention, la membrane isolante diélectrique non contrainte de résistance thermique élevée est constituée d'un empilement de deux couches dont les épaisseurs sont telles que la contrainte (thermo)mécanique de l'empilement est nulle.

La membrane pourra être ainsi constituée par l'empilement dans l'ordre d'une première couche de SiO$_2$ sur le substrat, puis d'une seconde couche de SiN$_x$ avec de préférence $x = 1.2$.

La couche semi-conductrice pourra être, par exemple, en polysilicium ou silicium polycristallin dopé. L'élément dopant pourra être avantageusement du phosphore.

Il est possible, en outre, de prévoir une couche chimiquement et thermiquement isolante entre la couche semi-conductrice gravée formant résistance chauffante et la couche de résine photolithographiée en forme de buse.
Avantageusement, la tête selon l'invention comprend plusieurs desdits dispositifs d'injection et de dosage thermique.

De préférence, cela étant rendu possible par la structure du dispositif selon l'invention, lesdits dispositifs et, par voie de conséquence, les trous ou buses sont disposés sous la forme d'une matrice bidimensionnelle.

Lorsque la tête comprend plusieurs dispositifs d'injection et de dosage thermique, ces dispositifs peuvent être par exemple au nombre de 10^2 à 10^5 pour une surface de la tête de 10 mm^2 à $1,5 \text{ cm}^2$.

Avantageusement, la tête selon l'invention est formée intégralement à partir d'un seul substrat ; d'une seule membrane isolante, couche semi-conductrice et couche de résine photolithographiée.

L'invention concerne également un procédé de fabrication d'une tête d'injection et de dosage selon la revendication 1, dans lequel on effectue les étapes successives suivantes :

- on réalise sur les deux faces d'un substrat plan une couche ou membrane isolante diélectrique non contrainte de résistance thermique élevée ;

- on dépose sur les couches isolantes diélectriques une couche semi-conductrice ;

- on réalise un motif de résine photosensible sur la couche semi-conductrice située sur la face supérieure du substrat, puis on élimine, par gravure, les zones de la couche semi-conductrice non
protégée par la résine, on obtient ainsi un motif de résistance chauffante ;
- on réalise éventuellement une couche chimiquement et thermiquement isolante sur la face supérieure du substrat ;
- on réalise un orifice dans la couche semi-conductrice, dans la couche isolante diélectrique non contrainte de résistance thermique élevée sur la face supérieure du substrat, et éventuellement dans la couche chimiquement et thermiquement isolante ;
- on dépose une couche épaisse de résine photosensible sur la face supérieure du substrat et on la photolithographie pour réaliser une buse dans le prolongement de l’orifice ;
- on réalise des ouvertures dans la couche isolante diélectrique sur la face arrière du substrat ;
- on grave les zones de la face arrière du substrat non protégées par la couche isolante diélectrique, de manière à créer un réservoir pour le liquide à éjecter et à libérer la membrane.

Le substrat pourra être en silicium monocristallin, éventuellement dopé.

Avantageusement, la membrane isolante diélectrique est réalisée en déposant successivement sur le substrat deux couches formant un empilement, les épaisseurs des deux couches étant telles que la contrainte (thermo)mécanique de l’empilement soit nulle.

La première couche peut être une couche de SiO₂ et la seconde couche une couche de SiNₓ.
La couche semi-conductrice est généralement en polysilicium ou silicium polycristallin dopé, de préférence, par du phosphore.

Les zones de la couche semi-conductrice, non protégées par la résine photosensible, sont éliminées, de préférence, par un procédé de gravure plasma.

Le motif de résistance chauffante a généralement la forme d'un carré entourant la tête d'éjection mais peut avoir toute géométrie permettant un élévation localisé mais suffisant de température.

La couche chimiquement et thermiquement isolante est généralement une couche d'oxyde de silicium, du type « spin on glass » SOG.

L'orifice ou trou dans la couche chimiquement et thermiquement isolante éventuelle, dans la couche semi-conductrice et dans la couche isolante diélectrique peut être réalisé par un procédé de gravure chimique et/ou de gravure plasma selon la couche.

Les ouvertures de la couche isolante diélectrique sur la face arrière du substrat sont réalisées, de préférence, par photolithographie.

Les zones non protégées de la face arrière du substrat sont généralement gravées par un procédé chimique, mais peuvent être gravées par plasma.

L'invention concerne enfin un système de fonctionnalisation ou d'adressage, notamment de microréacteurs chimiques ou biochimiques comprenant la tête d'injection et de dosage, décrite plus haut.
Dans de tels systèmes, le liquide dosé, injecté, est, par exemple, une solution de réactifs tels que les phosphoramidites, etc...

Un tel système selon l'invention surmonte les difficultés mentionnées plus haut pour de tels systèmes qu'ils soient du type « in situ » ou « ex situ ».

En particulier, les systèmes selon l'invention dans lesquels les têtes comprennent des matrices de dispositif d'injection et donc de buses présentent les avantages suivants :
- possibilité de fonctionnaliser en parallèle un grand nombre d'unités d'hybridation de petites dimensions (< 100 µm x 100 µm) ;
- utilisation de la voie chimique et donc amélioration des rendements de synthèse ;
- flexibilité du dispositif qui permet de réaliser les séquences désirées à la demande, sans problème de seuil de rentabilité ;
- faible coût.

A l'heure actuelle, l'utilisation des biopuces se limite à quelques grosses entreprises. Le système selon l'invention permet d'ouvrir cette utilisation à tous les clients potentiels.

Les têtes et systèmes selon l'invention peuvent, outre la génomique ou les biopuces, trouver ainsi leur application dans la chimie combinatoire ou la formulation pharmaceutique.

L'invention va maintenant être décrite, de manière détaillée, dans la description, qui va suivre,
donnée à titre illustratif et non limitatif, faite en référence aux dessins joints, dans lesquels :

- la figure 1 est une vue en coupe schématique d’un dispositif théorique idéal de microinjecteur doseur thermique ;

- la figure 2 est une vue en coupe schématique d’un microinjecteur doseur thermique selon l’invention ; et

- les figures 3 à 12 sont des vues en coupe schématique qui illustrent les différentes étapes du procédé selon l’invention.

La structure du microinjecteur doseur thermique de la figure 2 comprend, tout d’abord, un support (11) de silicium monocristallin, de préférence, il s’agit de silicium monocristallin dopé par un élément, tel que la gravure chimique du silicium, en particulier, dans les solutions basiques, soit possible.
L’élément dopant pourra donc être choisi, par exemple, parmi le bore et le phosphore.

Sur le support se trouve une membrane constituée d’une première couche isolante de SiO₂ (22) et d’une seconde couche de SiNₓ (23) avec x = 1,2. Les épaisseurs relatives de chacune de ces couches isolantes sont contrôlées de façon à ce qu’il n’y ait peu, de préférence pas, de contrainte mécanique résiduelle avec le support de silicium monocristallin.

En outre, l’épaisseur de la couche de SiNₓ est, de préférence, telle que la contrainte mécanique résiduelle résultant de l’empilement de ces deux couches soit théoriquement nulle.
L'épaisseur de la couche de SiO₂ est généralement de 0,8 à 1,6 μm, tandis que l'épaisseur de la couche de SiNx est généralement de 0,2 à 0,9 μm.

Dans cette membrane est pratiqué un trou (24) de petites dimensions. Ce trou est généralement circulaire, avec un diamètre, par exemple, de 5 à 50 microns.

La membrane supporte une résistance chauffante intégrée (25), réalisée généralement en silicium polycristallin fortement dopé, de façon à atteindre une résistivité électrique aussi faible que possible.

L'élément dopant de ce silicium polycristallin sera choisi, par exemple, parmi le phosphore, le bore, à une teneur de 10¹⁹ à 10²⁰ at/cm³.

Une telle résistance chauffante peut chauffer localement jusqu'à des températures élevées pouvant atteindre plusieurs centaines de degrés, par exemple de 40 à 500°C.

La résistance chauffante est isolée thermiquement et chimiquement, de préférence, par une couche d'oxyde de silicium (26), par exemple, une couche d'oxyde de silicium, du type « spin on glass » (déposé par rotation).

Une buse est rapportée sur la couche d'oxyde de silicium isolante, cette buse (27) est généralement réalisée, du fait du procédé de fabrication utilisé, en une résine photosensible, telle que la résine SV8 (CIPEC®).
Le canal (28) la buse (27) prolonge le trou réalisé dans la membrane et la couche isolante, par exemple, d’oxyde de silicium.

Le procédé de fabrication, selon l’invention, comporte les étapes suivantes, qui sont illustrées sur les figures 3 à 12 :

1. Le substrat ou support de buse (21) est une plaquette de silicium polie double face, qui a, par exemple, une épaisseur de 350 à 500 μm et dont les dimensions sont de 10 à 15 cm. Les dimensions de la plaquette permettent de réaliser de 50 à 1000 microinjecteurs doseurs thermiques. Comme on l’a déjà indiqué plus haut, il s'agit d’un support en silicium monocristallin, de préférence dopé par un élément, tel que la gravure chimique du silicium dopé, en particulier, dans des solutions basiques de type KOH ou TMAH soit possible. L’élément dopant pourra donc être choisi parmi le bore, ou le phosphore à une teneur, par exemple, de \(10^{16}\) à \(10^{18}\) at/cm³.

2. On réalise, sur les deux faces de la plaquette, une couche d’oxyde de silicium (22) d’une épaisseur, par exemple, de 0,8 à 1,6 μm (figure 3).

La couche d’oxyde (22) est obtenue par oxydation directe au silicium généralement à une température de 1150°C.

3. Une couche de SiNₓ (23) est ensuite déposée sur les deux faces de la plaquette (figure 4). Dans la formule SiNₓ, x représente un nombre réel \(x = 1,2\). L’épaisseur de cette couche est telle que la contrainte mécanique résiduelle résultant de l’empilement de la couche de SiO₂ et de la couche de
SiN_x soit théoriquement nulle. Ainsi, l'épaisseur de la couche de SiN_x est elle généralement de 0,2 à 0,9 µm.
Le dépôt est généralement réalisé par une technique de dépôt en phase vapeur.
Les couches de SiO₂ et SiN_x, présentes sur la face arrière de la plaquette de silicium, serviront en fin de procédé de fabrication de couches de masquage, lors de la gravure chimique pour la libération de la membrane.

4. Une couche de polysilicium ou silicium polycristallin (25) est ensuite déposée de même sur les deux faces de la plaquette (figure 5). L'épaisseur de cette couche est généralement de 0,5 à 1,5 µm. Le dépôt est généralement réalisé par une technique de dépôt en phase vapeur.
Cette couche (25) est ensuite dopée, par exemple, par diffusion du phosphore de façon à atteindre une résistivité électrique aussi faible que possible. La teneur en dopant, tel que le phosphore, de la couche de polysilicium (25) sera donc généralement de 10^{19} à 10^{20} at/cm³. L'opération de dopage par diffusion est généralement réalisée dans les conditions suivantes : $T = 950^\circ$C pendant 25 mn.

5. La couche de polysilicium déposée lors de l'étape 4 est recouverte d'une résine photosensible (29) selon un motif carré et sur une épaisseur, par exemple, de 1 à 3 µm. Cette résine photosensible est choisie, par exemple, parmi les résines CLARIANT.
Le dépôt de la résine photosensible (29) se fait généralement par une technique de dépôt par centrifugation.
La résine photosensible (29) est gravée sélectivement par une technique de photolithographie. Les zones de polysilicium, non protégées par la résine, sont éliminées par gravure plasma.

Le motif ainsi formé permet de réaliser une résistance chauffante sensiblement en forme d’anneau (figures 6 et 7).

6. La résistance de polysilicium est recouverte, par exemple, d’une couche d’oxyde de silicium, du type « spin on glass » (26) d’une épaisseur généralement de 100 à 200 nm, afin d’être protégée électriquement et chimiquement du milieu extérieur (figure 8).

7. Un trou (24), qui constituera l’orifice d’éjection, est réalisé au centre de la résistance chauffante par gravure chimique, par exemple, dans une solution de HF de l’oxyde de silicium (« spin on glass »), puis gravure plasma du SiNₓ et à nouveau gravure chimique par HF de la couche d’oxyde de silicium (figure 9).

Ce trou (24) a généralement une forme circulaire avec un diamètre de 5 à 50 µm.

8. Une couche épaissie de résine photosensible (27) est basée sur la couche d’oxyde de silicium « spin on glass » (26). Par couche épaissie, on entend généralement une épaisseur de 1 µm à 100 µm.

La résine photosensible est généralement de la résine SV8 de CITEC® et la technique de dépôt est un dépôt par centrifugation.

Suite au dépôt, la couche de résine est photolithographiée, afin de réaliser les canaux (28)
des buses entourant le trou ou orifice d’injection (figure 10).

9. Des ouvertures (31) sont réalisées dans les couches de SiO$_2$ et SiN$_x$, présentes sur la face arrière, par un procédé de photolithographie, déjà présenté plus haut (figure 11).

10. La gravure chimique, par exemple, dans une solution de KOH ou TMAH des zones non protégées par la double couche SiO$_2$/SiN$_x$ permet, d’une part, de creuser dans le substrat de silicium le réservoir (32), qui retiendra le liquide à injecter et, d’autre part, de libérer la membrane supportant le dispositif chauffant et la buse d’éjection (figure 12).
REVENDICATIONS

1. Tête d’injection et de dosage comprenant au moins un dispositif d’injection et de dosage thermique pour fournir une quantité déterminée de liquide, ledit dispositif comprenant :
 - un substrat plan évidé (21) formant réservoir de liquide et recouvert, dans l’ordre, d’une membrane isolante diélectrique (22, 23) non contrainte de résistance thermique élevée, puis d’une couche semi-conductrice gravée formant résistance chauffante (25) ;
 - ladite membrane et ladite couche semi-conductrice étant traversées par un orifice (24) en communication fluidique avec ledit réservoir de liquide ;
 - une couche de résine photolithographiée en forme de buse (27) sur ladite membrane, le canal (28) de ladite buse se situant dans le prolongement dudit orifice et le volume dudit canal permettant de contrôler la quantité déterminée de liquide à fournir.

2. Tête d’injection et de dosage selon la revendication 1, dans laquelle la quantité déterminée de liquide est de 1 nl à 100 µl.

3. Tête selon l’une quelconque des revendications 1 et 2, dans laquelle le substrat est en silicium monocristallin, éventuellement dopé.

4. Tête selon l’une quelconque des revendications 1 et 2, dans laquelle la membrane isolante diélectrique non contrainte de résistance thermique élevée est constituée d’un empilement de deux
couches dont les épaisseurs sont telles que la contrainte (thermo)mécanique de l’empilement est nulle.

5. Tête selon la revendication 4, dans laquelle la membrane est constituée par l’empilement dans l’ordre d’une première couche de SiO₂ sur le substrat, puis d’une seconde couche de SiNx avec de préférence x = 1,2.

6. Tête selon l’une quelconque des revendications 1 à 5, dans laquelle la couche semi-conductrice est en polysilicium ou silicium polycristallin dopé.

7. Tête selon la revendication 6, dans laquelle le polysilicium ou silicium polycristallin est dopé par du phosphore.

8. Tête selon l’une quelconque des revendications 1 à 7, dans laquelle une couche chimiquement et thermiquement isolante est, en outre, prévue entre la couche semi-conductrice gravée et la couche de résine photolithographiée en forme de buse.

9. Tête selon l’une quelconque des revendications 1 à 8, comprenant plusieurs des dispositifs d’injection et de dosage thermique.

10. Tête selon la revendication 9, dans lequel lesdits dispositifs sont disposés sous la forme d’une matrice bidimensionnelle.

12. Tête selon l’une quelconque des revendications 9 à 11, dans laquelle la tête est formée intégralement à partir d’un seul substrat ; d’une seule
membrane isolante, couche semi-conductrice, couche chimiquement et thermiquement isolante éventuelle, et couche de résine photolithographiée.

13. Procédé de fabrication d’une tête d’injection et de dosage selon la revendication 1, dans lequel on effectue les étapes successives suivantes :
 - on réalise sur les deux faces d’un substrat plan une couche ou membrane isolante diélectrique non contrainte de résistance thermique élevée ;
 - on dépose sur les couches isolantes diélectriques une couche semi-conductrice ;
 - on réalise un motif de résine photosensible sur la couche semi-conductrice située sur la face supérieure du substrat, puis on élimine, par gravure, les zones de la couche semi-conductrice non protégée par la résine, on obtient ainsi un motif de résistance chauffante ;
 - on réalise éventuellement une couche chimiquement et thermiquement isolante sur la face supérieure du substrat ;
 - on réalise un orifice dans la couche semi-conductrice, dans la couche isolante diélectrique non contrainte de résistance thermique élevée sur la face supérieure du substrat, et éventuellement dans la couche chimiquement et thermiquement isolante ;
 - on dépose une couche épaisse de résine photosensible sur la face supérieure du substrat et on la photolithographie pour réaliser une buse dans le prolongement de l’orifice ;
- on réalise des ouvertures dans la couche isolante diélectrique sur la face arrière du substrat ;
- on grave les zones de la face arrière du substrat non protégées par la couche isolante diélectrique, de manière à créer un réservoir pour le liquide à éjecter et à libérer la membrane.

14. Procédé selon la revendication 13, dans lequel le substrat est en silicium monocristallin, éventuellement dopé.

15. Procédé selon la revendication 13, dans lequel la membrane isolante diélectrique est réalisée en déposant successivement sur le substrat deux couches formant un empilement, les épaisseurs des deux couches étant telles que la contrainte (thermo)mécanique de l'empilement soit nulle.

16. Procédé selon la revendication 15, dans lequel la première couche de l'empilement est une couche de SiO₂ et la seconde couche est une couche de SiNx.

17. Procédé selon la revendication 13, dans lequel la couche semi-conductrice est en polysilicium ou silicium polycristallin dopé.

18. Procédé selon la revendication 13, dans lequel les zones de la couche semi-conductrice, non protégées par la résine photosensible, sont éliminées, par un procédé de gravure plasma.

19. Procédé selon la revendication 13, dans lequel l'orifice dans la couche chimiquement et thermiquement isolante éventuelle, dans la couche semi-conductrice et dans la couche isolante
diélectrique, est réalisé par un procédé de gravure chimique et/ou de gravure plasma selon la couche.

20. Procédé selon la revendication 13, dans lequel les ouvertures de la couche isolante diélectrique sur la face arrière du substrat sont réalisées par photolithographie.

21. Procédé selon la revendication 13, dans lequel les zones non protégées de la face arrière du substrat sont gravées par un procédé chimique.

22. Système de fonctionnalisation ou d'adressage, notamment de microréacteurs chimiques ou biochimiques, comprenant la tête d'injection et de dosage selon l'une quelconque des revendications 1 à 12.

23. Utilisation de la tête selon l'une quelconque des revendications 1 à 12 ou du système selon la revendication 22, dans les techniques mettant en œuvre des biopuces, la génomique, la chimie combinatoire, ou la formulation pharmaceutique.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 B01J19/00 B41J2/14 B41J2/16 B01L3/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELD SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC 7 B01J B41J BO1L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 4 894 664 A (ALFRED I. TSUNG PAN) 16 January 1990 (1990-01-16) abstract column 2, line 46 -column 5, line 33 figures 3-12</td>
<td>1-21</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 764 533 A (LEXMARK INTERNATIONAL, INC.) 26 March 1997 (1997-03-26) column 6, line 50 -column 8, line 49 column 9, line 30 -line 43 column 9, line 53 -column 12, line 32 figures 1A-16, 4A-5E</td>
<td>1-21</td>
</tr>
<tr>
<td>A</td>
<td>US 6 039 438 A (TIM BEERLING) 21 March 2000 (2000-03-21) column 4, line 42 -column 5, line 59 figure 3</td>
<td>1-21</td>
</tr>
</tbody>
</table>

Further categories of cited documents:
- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier document published on or after the international filing date
- **L** document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search 10 December 2001

Date of mailing of the international search report 20/12/2001

Name and mailing address of the ISA
European Patent Office, P.B. 5816 Patentlaan 2 NL-2280 HJ Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo hl, Fax (+31-70) 340-3018

Authorized officer
Stevnsborg, N

Form PCT/ISA/21 (second sheet) (July 1993)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 5 831 070 A (R. FABIAN PEASE ET AL.) 3 November 1998 (1998-11-03) abstract column 14, line 5 - line 32 figure 10</td>
<td>22,23</td>
</tr>
<tr>
<td>A</td>
<td>US 5 980 719 A (SATYAM C. CHERUKURI ET AL.) 9 November 1999 (1999-11-09) abstract column 4, line 48 - column 5, line 54 column 7, line 29 - column 9, line 46 column 9, line 53 - column 10, line 11 column 10, line 36 - line 67 figures 3-5</td>
<td>1-23</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 3771269 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0244214 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8230192 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 62259864 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69614209 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0764533 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 9123468 A</td>
</tr>
<tr>
<td>US 6039438 A</td>
<td>21-03-2000</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69612772 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69612772 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0728520 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6239273 B1</td>
</tr>
<tr>
<td>US 5980719 A</td>
<td>09-11-1999</td>
<td>AU 7295698 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7379898 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9851501 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9851502 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6106685 A</td>
</tr>
</tbody>
</table>
RAPPORT DE RECHERCHE INTERNATIONALE

A. CLASSEMENT DE L'OBJET DE LA DEMANDE

CIB 7 B01J19/00 B41J2/14 B41J2/16 B01L3/02

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivit des symboles de classement)

CIB 7 BO1J B41J BO1L

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents</th>
<th>n° des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 4 894 664 A (ALFRED I. TSUNG PAN) 16 janvier 1990 (1990-01-16) abrégé colonne 2, ligne 46 - colonne 5, ligne 33 figures 3-12</td>
<td>1-21</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 764 533 A (LEXMARK INTERNATIONAL, INC.) 26 mars 1997 (1997-03-26) colonne 6, ligne 50 - colonne 8, ligne 49 colonne 9, ligne 30 - colonne 49 ligne 49 colonne 9, ligne 53 - colonne 12, ligne 32 figures 1A-16, 4A-5E</td>
<td>1-21</td>
</tr>
</tbody>
</table>

X Voir la suite du cadre C pour la fin de la liste des documents

X Les documents de familles de brevets sont indiqués en annexe

Catégories spéciales de documents cités:

- **A** document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- **E** document antérieur, mais publié à la date de dépôt international ou après cette date
- **L** document pouvant aider à comprendre la revendication de priorité ou créé pour déterminer la date de publication d'une autre citation ou pour une raison spécifique (cas où il est indiqué)
- **C** document ne se référant à une divulgation orale, à un usage, à une expérimentation ou bien autres moyens
- **P** document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée
- **T** document extérieur publié après la date de dépôt international ou la date de priorité et n'appartenant pas à l'état de la technique pertinent, référé ci-dessus pour comprendre la technique ou la théorie sous laquelle l'invention a été conçue
- **X** document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément
- **Y** document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier
- **A** document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée: 10 décembre 2001

Date d'expédition du présent rapport de recherche internationale: 20/12/2001

Nom et adresse postale de l'administration chargée de la recherche internationale:
Office Européen des Brevets, P.15, 5418 Patentiers 2 NL - 2200 AV Rijswijk
Tel. (+31-70) 340-3940, Tél. 31 651 400 00, Fax: (+31-70) 340-3940

Fonctionnaire autorisé: Stevnsborg, N
<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec le cas échéant, l'indication des passages pertinents</th>
<th>No. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>abrégé</td>
<td></td>
</tr>
<tr>
<td></td>
<td>colonne 14, ligne 5 - ligne 32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figure 10</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>US 5 980 719 A (SATYAM C. CHERUKURI ET AL.) 9 novembre 1999 (1999-11-09)</td>
<td>1-23</td>
</tr>
<tr>
<td></td>
<td>abrégé</td>
<td></td>
</tr>
<tr>
<td></td>
<td>colonne 4, ligne 48 - colonne 5, ligne 54</td>
<td></td>
</tr>
<tr>
<td></td>
<td>colonne 7, ligne 29 - colonne 9, ligne 46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>colonne 9, ligne 53 - colonne 10, ligne 11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>colonne 10, ligne 36 - ligne 67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>figures 3-5</td>
<td></td>
</tr>
<tr>
<td>Document brevet cité au rapport de recherche</td>
<td>Date de publication</td>
<td>Membre(s) de la famille de brevet(s)</td>
</tr>
<tr>
<td>--</td>
<td>--------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>DE 3771269 D1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 0244214 A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 0367303 A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2716418 B2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 8230192 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2635043 B2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 62259864 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE 69614209 D1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 0764533 A2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 9123468 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 6039438 A</td>
<td>21-03-2000</td>
<td>AUCUN</td>
</tr>
<tr>
<td>DE 69612772 D1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE 69612772 T2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 0728520 A1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 6239273 B1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 5980719 A</td>
<td>09-11-1999</td>
<td>AU 7295698 A</td>
</tr>
<tr>
<td>AU 7379989 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 6106685 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU 7379989 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WP 9851501 A1</td>
<td>19-11-1998</td>
<td></td>
</tr>
<tr>
<td>WP 9851502 A1</td>
<td>19-11-1998</td>
<td></td>
</tr>
<tr>
<td>US 6106685 A</td>
<td>22-08-2000</td>
<td></td>
</tr>
</tbody>
</table>