w0 2007/128005 A2 |10 0 00000 0 O O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
8 November 2007 (08.11.2007)

fﬂﬁ A0 0 00O O

(10) International Publication Number

WO 2007/128005 A2

(51) International Patent Classification: Not classified

(21) International Application Number:
PCT/US2007/068139

3 May 2007 (03.05.2007)
English
English

(22) International Filing Date:
(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
60/797,127 3 May 2006 (03.05.2006) US

(71) Applicant (for all designated States except US): DATA
ROBOTICS INCORPORATED [US/US]; 1881 Land-
ings Drive, Mountain View, CA 94043 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): TERRY, Julian,
M. [GB/US]J; 1639 Bonita Avenue, Mountain View, CA
94040 (US). CLARKSON, Neil, A. [GB/GB]; 2 The
Wintermeres, 13 Stuart Road, Newbury, Berks RG14 6QX
(GB). BARRALL, Geoftrey, S. [GB/US]; 5642 Steven’s
Creek Blvd., Apt. 607, Cupertino, CA 95014 (US).

(74) Agents: SUNSTEIN, Bruce, D. et al.; Bromberg & Sun-
stein, LLP, 125 Summer Street, Boston, MA 02110 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES,
FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L, IN,
IS, JIP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR,
LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX,
MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO,
RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: FILESYSTEM-AWARE BLOCK STORAGE SYSTEM, APPARATUS, AND METHOD

(57) Abstract: A filesystem-aware storage system
locates and analyzes host filesystem data structures

2710
in order to determine storage usage of the host
2712 filesystem. To this end, the storage system might
Host OS -] A locate an operating system partition, parse the
i operating system partion to locate its data structures,
271t : and parse the operating system data structures to
Host filesystem [~ =77 i locate the host filesystem data structures. The storage
ll : system manages data storage based on the storage
| | 2720 usage of the host file system. The storage system
T T can use the storage usage information to identify
971 : : 072 storage areas that are no longer being used by the
T T host filesystem and reclaim those areas for additional
J,272'3 2725 l fiata 'storage capacity. Also, the storage sy'stem can
identify the types of data stored by the host filesystem
_ Host and manage data storage based on the data types,
i flle;yitem K- — H%S;tgs such as selecting a storage layout and/or an encoding
ata
Structures Structures scheme for the data based on the data type.
Filesystem L _ | _———/—— _
Aware T
Storage | 2728
Controller
- == Storage
Controller
Data
User Data Structures
2724
2700

WO 2007/128005 A2 |} 0A 000 0T 00000 O 0 O

Published: For two-letter codes and other abbreviations, refer to the "Guid-
— without international search report and to be republished ance Notes on Codes and Abbreviations” appearing at the begin-
upon receipt of that report ning of each regular issue of the PCT Gagzette.

WO 2007/128005 PCT/US2007/068139

10

15

20

25

FILESYSTEM-AWARE BLOCK STORAGE
SYSTEM, APPARATUS, AND METHOD

Priority

This PCT application claims priority from United States Provisional Patent
Application No. 60/797,127 entitled Filesystem-Aware Block Storage System,
Apparatus, and Method filed on May 3, 2006 in the names of Julian M. Terry, Neil A.
Clarkson, and Geoffrey S. Barrall.

This application is also related to United States Patent Application No.
11/267,938 entitled Dynamically Expandable and Contractible Fault-Tolerant
Storage System Permitting Variously Sized Storage Devices and Method filed on
November 4, 2005 in the name of Geoffrey S. Barrall, which claims priority from United
States Provisional Patent Application No. 60/625,495 filed on November 5, 2004 and
from United States Provisional Patent Application No. 60/718,768 filed on September 20,
2005.

All of the above patent applications are hereby incorporated herein by reference in

their entireties.

Technical Field and Background Art

The present invention relates to digital data storage systems and methods, and
more particularly to those providing fault-tolerant storage.

It is known in the prior art to provide redundant disk storage in a pattern
according to any one of various RAID (Redundant Array of Independent Disks)
protocols. Typically disk arrays using a RAID pattern are complex structures that require
management by experienced information technologists. Moreover in many array designs
using a RAID pattem, if the disk drives in the array are of non-uniform capacities, the
design may be unable to use any capacity on the drive that exceeds the capacity of the
smallest drive in the array.

One problem with a standard RAID system is that it is possible for disc-surface
corruption to occur on an infrequently used area of the disk array. In the event that

another drive fails, it is not always possible to determine that corruption has occurred. In

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

such a case, the corrupted data may be propagated and preserved when the RAID array
rebuilds the failed drive.

In many storage systems, a spare storage device will be maintained in a ready
state so that it can be used in the event another storage device fails. Such a spare storage
device is often referred to as a “hot spare.” The hot spare is not used to store data during
normal operation of the storage system. When an active storage device fails, the failed
storage device is logically replaced by the hot spare, and data is moved or otherwise
recreated onto the hot spare. When the failed storage device is repaired or replaced, the
data is typically moved or otherwise recreated onto the (re-)activated storage device, and
the hot spare is brought offline so that it is ready to be used in the event of another
failure. Maintenance of a hot spare disk is generally complex, and so is generally
handled by a skilled administrator. A hot spare disk also represents an added expense.

Generally speaking, when the host filesystem writes a block of data to the storage
system, the storage system allocates a storage block for the data and updates its data
structures to indicate that the storage block is in use. From that point on, the storage
system considers the storage block to be in use, even if the host filesystem subsequently
ceases to use its block.

The host filesystem generally uses a bitmap to track its used disk blocks. Shortly
after volume creation, the bitmap will generally indicate that most blocks are free,
typically by having all bits clear. As the filesystem is used, the host filesystem will
allocate blocks solely through use of its free block bitmap.

‘When the host filesystem releases some blocks back to its free pool, it simply
clears the corresponding bits in its free block bitmap. On the storage system, this is
manifested as a write to a cluster that happens to contain part of the host’s free block
bitmap, and possibly a write to a journal file; almost certainly no input/output (I/O) to the
actual cluster being freed itself. If the host filesystem were running in an enhanced
security mode, there might be I/O to the freed block due to overwriting of the current on-
disk data by the host so as to reduce the chance of the stale cluster contents being
readable by an attacker, but there is no way to identify such writes as being part of a
deletion process. Thus, the storage device has no way to distinguish a block that the host

filesystem has in use from one that it previously used and has subsequently marked free.

WO 2007/128005 PCT/US2007/068139

This inability of the storage system to identify freed blocks can lead to a number
of negative consequences. For example, the storage system could significantly over-

report the amount of storage being used and could prematurely run out of storage space.

Summary of the Invention

5 In accordance with one aspect of the invention there is provided a method of
storing data in by a block-level storage system that stores data under control of a host
filesystem. The method involves locating host filesystem data structures stored for the
host filesystem in the block-level storage system; analyzing the host filesystem data
structures to identify a data type associated with the data to be stored; and storing the data

10 using a storage scheme selected based on the data type, whereby data having different
data types can be stored using different storage schemes selected based on the data types.

In accordance with another aspect of the invention there is provided a block-level
storage system that stores data under control of a host filesystem. The system comprises
a block-level storage in which host filesystem data structures are stored for the host

15 filesystem and a storage controller operably coupled to the block-level storage for
locating the host filesystem data structures stored in the block-level storage, analyzing the
host filesystem data structures to identify a data type associated with the data to be stored,
and storing the data using a storage scheme selected based on the data type, whereby data
having different data types can be stored using different storage schemes selected based

20 on the data types.

In various alternative embodiments, the data may be stored using a storage layout
and/or an encoding scheme selected based on the data type. For example, frequently
accessed data may be stored so as to provide enhanced accessibility (e.g., in an
uncompressed form and in sequential storage), while infrequently access data may be

25 stored so as to provide enhanced storage efficiency (e.g., using data compression and/or
non-sequential storage). Additionally or alternatively, the data may compressed and/or
encrypted depending on the data type.

In various alternative embodiments, the host filesystem data structures may be
located by maintaining a partition table; parsing the partition table to locate an operating

30 system partition; parsing the operating system partition to identify the operating system

WO 2007/128005 PCT/US2007/068139

and locate operating system data structures; and parsing the operating system data

structures to identify the host filesystem and locate the host filesystem data structures.

The operating system data structures may include a superblock, in which case parsing the

operating system data structures may include parsing the superblock. The host filesystem
5 data structures may be parsed by making a working copy of a host filesystem data

structure and parsing the working copy.

Brief Description of the Drawings

The foregoing features of the invention will be more readily understood by
reference to the following detailed description, taken with reference to the accompanying

10 drawings, in which:

Fig. 1 is an illustration of an embodiment of the invention in which an object is
parsed into a series of chunks for storage.

Fig. 2 illustrates in the same embodiment how a pattern for fault-tolerant storage
for a chunk may be dynamically changed as a result of the addition of more storage.

15 Fig. 3 illustrates in a further embodiment of the invention the storage of chunks in
differing fault-tolerant patterns on a storage system constructed using different sized
storage devices.

Fig. 4 illustrates another embodiment of the invention in which indicator states
are used to warn of inefficient storage use and low levels of fault tolerance.

20 Fig. 5 is a block diagram of functional modules used in the storage, retrieval and
re-layout of data in accordance with an embodiment of the invention.

Fig. 6 shows an example in which mirroring is used in an array containing more
than two drives.
Fig. 7 shows some exemplary zones using different layout schemes to store their

25 data.

Fig. 8 shows a lookup table for implementing sparse volumes.
Fig. 9 shows status indicators for an exemplary array having available storage
space and operating in a fault-tolerant manner, in accordance with an exemplary

embodiment of the present invention.

WO 2007/128005 PCT/US2007/068139

10

15

20

25

Fig. 10 shows status indicators for an exemplary array that does not have enough
space to maintain redundant data storage and more space must be added, in accordance
with an exemplary embodiment of the present invention.

Fig. 11 shows status indicators for an exemplary array that would be unable to
maintain redundant data in the event of a failure, in accordance with an exemplary
embodiment of the present invention.

Fig. 12 shows status indicators for an exemplary array in which a storage device
has failed, in accordance with an exemplary embodiment of the present invention. Slots
B, C, and D are populated with storage devices.

Fig. 13 shows a module hierarchy representing the different sofiware layers of an
exemplary embodiment and how they relate to one another.

Fig. 14 shows how a cluster access table is used to access a data clusters in a
Zone, in accordance with an exemplary embodiment of the present invention.

FIG. 15 shows a journal table update in accordance with an exemplary
embodiment of the present invention.

Fig. 16 shows drive layout in accordance with an exemplary embodiment of the
invention.

Fig. 17 demonstrates the layout of Zone 0 and how other zones are referenced, in
accordance with an exemplary embodiment of the invention.

Fig. 18 demonstrates read error handling in accordance with an exemplary
embodiment of the invention.

Fig. 19 demonstrates write error handling in accordance with an exemplary
embodiment of the invention.

Fig. 20 is a logic flow diagram demonstrating backup of a bad Region by the
Error Manager in accordance with an exemplary embodiment of the invention.

Fig. 21 is a schematic block diagram showing the relevant components of a
storage array in accordance with an exemplary embodiment of the present invention.

Fig. 22 is a logic flow diagram showing exemplary logic for managing a virtual

hot spare in accordance with an exemplary embodiment of the present invention.

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

Fig. 23 is a logic flow diagram showing exemplary logic for determining a re-
layout scenario for each possible disk failure, as in block 2102 of Fig. 22, in accordance
with an exemplary embodiment of the present invention.

Fig. 24 is a logic flow diagram showing exemplary logic for invoking the virtual
hot spare functionality in accordance with an exemplary embodiment of the present
invention.

Fig. 25 is a logic flow diagram showing exemplary logic for automatically
reconfiguring the one or more remaining drives to restore fault tolerance for the data, as
in block 2306 of Fig. 24, in accordance with an exemplary embodiment of the present
invention.

Fig. 26 is a logic flow diagram showing exemplary logic for upgrading a storage
device, in accordance with an exemplary embodiment of the present invention.

FIG. 27 is a conceptual block diagram of a computer system in accordance with
an exemplary embodiment of the present invention.

FIG. 28 is high-level logic flow diagram for the filesystem-aware storage
controller, in accordance with an exemplary embodiment of the present invention.

FIG. 29 is a logic flow diagram for locating the host filesystem data structures, in
accordance with an exemplary embodiment of the present invention.

FIG. 30 is a logic flow diagram for reclaiming unused storage space, in
accordance with an exemplary embodiment of the present invention.

FIG. 31 is a logic flow diagram for managing storage of the user data based on the
data types, in accordance with an exemplary embodiment of the present invention.

FIG. 32 is a schematic block diagram showing the relevant components of a
scavenger, in accordance with an exemplary embodiment of the present invention.

FIG. 33 is pseudo code for locating the host filesystem bitmaps, in accordance
with an exemplary embodiment of the present invention.

FIG. 34 is high-level pseudo code for the BBUM, in accordance with an
exemplary embodiment of the present invention.

FIG. 35 is high-level pseudo code for synchronous processing of an LBA 0 update
creating a new partition, in accordance with an exemplary embodiment of the present

invention.

WO 2007/128005 PCT/US2007/068139

10

15

20

25

FIG. 36 is high-level pseudo code for synchronous processing of an LBA 0 update
(re)formatting a partition, in accordance with an exemplary embodiment of the present
invention.

FIG. 37 is high-level pseudo code for synchronous processing of an LBA 0 update
deleting a partition, in accordance with an exemplary embodiment of the present
invention.

FIG. 38 is high-level pseudo code for the asynchronous task, in accordance with

an exemplary embodiment of the present invention.

Detailed Description of Specific Embodiments

Definitions. As used in this description and the accompanying claims, the
following terms shall have the meanings indicated, unless the context otherwise requires:

A “chunk” of an object is an abstract slice of an object, made independently of
any physical storage being used, and is typically a fixed number of contiguous bytes of
the object.

A fault-tolerant “pattern” for data storage is the particular which by data is
distributed redundantly over one or more storage devices, and may be, among other
things, mirroring (e.g., in a manner analogous to RAID1), striping (e.g., in a manner
analogous to RAIDS), RAID6, dual parity, diagonal Parity, Low Density Parity Check
codes, turbo codes, or other redundancy scheme or combination of redundancy schemes.

A hash number for a given chunk is “unique” when the given chunk produces a
hash number that generally will differ from the hash number for any other chunk, except
when the other chunk has data content identical to the given chunk. That is, two chunks
will generally have different hash numbers whenever their content is non-identical. As
described in further detail below, the term “unique” is used in this context to cover a hash
number that is generated from a hash function occasionally producing a common hash
number for chunks that are non-identical because hash functions are not generally perfect
at producing different numbers for different chunks.

A “Region” is a set of contiguous physical blocks on a storage medium (e.g., hard

drive).

WO 2007/128005 PCT/US2007/068139

A “Zone” is composed of two or more Regions. The Regions that make up a
Zone are generally not required to be contiguous. In an exemplary embodiment as
described below, a Zone stores the equivalent of 1 GB of data or control information.

A “Cluster” is the unit size within Zones and represents a unit of compression

5 (discussed below). In an exemplary embodiment as described below, a Cluster is 4KB
(i.e., eight 512-byte sectors) and essentially equates to a Chunk.

A “Redundant set” is a set of sectors/clusters that provides redundancy for a set of
data.

“Backing up a Region” involves copying the contents of one Region to another

10 Region.

A “first pair” and a “second pair” of storage devices may include a common
storage device.

A “first plurality” and a “second plurality” of storage devices may include one or
more common storage devices.

15 A “first arrangement” and a “second arrangement” or “different arrangement” of
storage devices may include one or more common storage devices.

In embodiments of the present invention, a filesystem-aware storage system
analyzes host filesystem data structures in order to determine storage usage of the host
filesystem. For example, the block storage device may parse the host filesystem data

20 structures to determine such things as used blocks, unused blocks, and data types. The
block storage device manages the physical storage based on the storage usage of the host
filesystem.

Such a filesystem-aware block storage device can make intelligent decisions
regarding the physical storage of data. For example, the filesystem-aware block storage

25 device can identify blocks that have been released by the host filesystem and reuse the
released blocks in order to effectively extend the data storage capacity of the system.
Such reuse of released blocks, which may be referred to hereinafter as “scavenging” or
“oarbage collection,” may be particularly useful in implementing virtual storage, where
the host filesystem is configured with more storage than the actual physical storage

30 capacity. The filesystem-aware block storage device can also identify the data types of

objects stored by the filesystem and store the objects using different storage schemes

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

based on the data types (e.g., frequently accessed data can be stored uncompressed and in
sequential blocks, while infrequently accessed data can be stored compressed and/or in
non-sequential blocks; different encoding schemes such as data compression and
encryption can be applied to different objects based on the data types).

The filesystem-aware block storage device will generally support a predetermined
set of filesystems for which it “understands” the inner workings sufficiently to locate and
utilize the underlying data structures (e.g., free block bitmaps). In order to determine the
filesystem type (e.g., NTFS, FAT, ReiserFS, ext3), the filesystem-aware block storage
device typically parses a partition table to locate the operating system (OS) partition and
then parses the OS partition to locate the host filesystem’s superblock and thereby
identify the filesystem type. Once the filesystem type is known, the filesystem-aware
block storage device can parse the superblock to find the free block bitmaps for the host
filesystem, and can then parse the free block bitmaps to identify used and unused blocks.

In order to detect changes to the data structures (e.g., free block bitmaps) over
time, the filesystem-aware block storage device may periodically make a copy of the data
structure (e.g., in a private, non-redundant zone) and later compare the currently active
version of the data structure with the earlier-made copy to detect changes. For example,
any bitmap entries transitioning from allocated to free can be identified, allowing the
garbage collection operation to be accurately directed to clusters that are good candidates
for reclamation. As each bitmap cluster is processed, the historical copy can be replaced
with the current copy to maintain a rolling history of bitmap operations. Over time the
copy of the free block bitmap may become a patchwork of temporally disjoint clusters,
but since the current copy is used to locate free entries, this should not cause any
problems.

Exemplary embodiments are described hereinafter with reference to a storage
array system.

Fig. 1 is an illustration of an embodiment of the invention in which an object, in
this example, a file, is parsed into a series of chunks for storage. Initially the file 11 is
passed into the storage sofiware where it is designated as an object 12 and allocated a
unique object identification number, in this case, #007. A new entry 131 is made into the

object table 13 to represent the allocation for this new object. The object is now parsed

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

into “chunks” of data 121, 122, and 123, which are fixed-length segments of the object.
Each chunk is passed through a hashing algorithm, which returns a unique hash number
for the chunk. This algorithm can later be applied to a retrieved chunk and the result
compared with the original hash to ensure the retried chunk is the same as that stored.
The hash numbers for each chunk are stored in the object table 13 in the entry row for the
object 132 so that later the complete object can be retrieved by collection of the chunks.

Also in Fig. 1, the chunk hashes are now compared with existing entries in the
chunk table 14. Any hash that matches an existing entry 141 is already stored and so no
action is taken (i.e., the data is not stored again, leading to automatic compression of the
objects). A new hash (one which has no corresponding entry in the chunk table 14) is
entered into the chunk table 141. The data in the chunk is then stored on the available
storage devices 151, 152, and 153 in the most efficient manner for fault-tolerant storage.
This approach may lead to the chunk data’s being stored, for example, in a mirrored
fashion on a storage system comprised of one or two devices or parity striped on a system
with more than two storage devices. This data will be stored on the storage devices at
physical locations 1511, 1521, and 1531, and these locations and the number of locations
will be stored in the chunk table columns 143 and 142 so that all physical parts of a
chunk may later be located and retrieved.

Fig. 2 illustrates in the same embodiment how a pattern for fault-tolerant storage
for a chunk may be dynamically changed as a result of the addition of more storage. In
particular, Fig. 2 shows how a chunk physically stored on the storage devices may be laid
out in a new pattern once additional storage is added to the overall system. In Fig. 2(a),
the storage system comprises two storage devices 221 and 222 and the chunk data is
physically mirrored onto the two storage devices at locations 2211 and 2221 to provide
fault tolerance. In Figure 2(b) a third storage device 223 is added, and it become possible
to store the chunk in a parity striped manner, a pattern which is more storage efficient
than the mirrored pattern. The chunk is laid out in this new pattern in three physical
locations 2311, 2321, and 2331, taking a much lower proportion of the available storage.
The chunk table 21 is updated to show the new layout is in three locations 212 and also
the new chunk physical locations 2311, 2321, and 2331 are recorded 213.

10

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

Fig. 3 shows a mature storage system, in accordance with an embodiment of the
present invention, which has been functioning for some time. This illustrates how chunks
may be physically stored over time on storage devices with varying storage capacities.
The figure shows a storage system comprised of a 40GB storage device 31, an 80GB
storage device 32 and a 120GB storage device 33. Initially chunks are stored in a fault
tolerant stripe pattern 34 until the 40GB storage device 31 became full. Then, due to lack
of storage space, new data is stored in a mirrored pattern 36 on the available space on the
80GB 32 and the 120GB 33 storage devices. Once the 80GB storage device 32 is full,
then new data is laid out in a single disk fault tolerant pattern 37. Even though the storage
devices comprise a single pool for storing data, the data itself, as stored in the chunks, has
been stored in a variety of distinct patterns.

Fig. 4 illustrates another embodiment of the invention in which indicator states
are used to warn of inefficient storage use and low levels of fault tolerance. In Fig. 4(a),
all three storage devices 41, 42, and 45 have free space and the indicator light 44 is green
to show data is being stored in an efficient and fault-tolerant manner. In Fig. 4 (b) the
40GB storage device 41 has become full, and thus new data can be stored only on the two
storage devices 42 and 43 with remaining free space in a mirrored pattern 46. In order to
show the data is still fully redundant but not efficiently stored, the indicator light 44 has
turned amber. In Fig. 4 (¢), only the 120GB storage device 43 has free space remaining
and so all new data can be stored only in a mirrored pattern on this one device 43.
Because the fault-tolerance is less robust and the system is critically short of space, the
indicator light 44 turns red to indicate the addition of more storage is necessary.

In one alternative embodiment, an indicator is provided for each drive/slot in the
array, for example, in the form of a three-color light (e.g., green, yellow, red). In one
particular embodiment, the lights are used to light the whole front of a disk carrier with a
glowing effect. The lights are controlled to indicate not only the overall status of the
system, but also which drive/slot requires attention (if any). Each three-color light can be
placed in at least four states, specifically off, green, yellow, red. The light for a particular
slot may be placed in the off state if the slot is empty and the system is operating with
sufficient storage and redundancy so that no drive need be installed in the slot. The light

for a particular slot may be placed in the green state if the corresponding drive is

11

WO 2007/128005

10

15

20

25

30

sufficient and need not be replaced. The light for a particular slot may be placed in the
yellow state if system operation is degraded such that replacement of the corresponding
drive with a larger drive is recommended. The light for a particular slot may be placed in
the red state if the corresponding drive must be installed or replaced. Additional states
could be indicated as needed or desired, for example, by flashing the light between on
and off states or flashing the light between two different colors (e.g., flash between red
and green after a drive has been replaced and re-layout of data is in progress). Additional
details of an exemplary embodiment are described below.

Of course, other indication techniques can be used to indicate both system status
and drive/slot status. For example, a single LCD display could be used to indicate system
status and, if needed, a slot number that requires attention. Also, other types of indicators
(e.g., a single status indicator for the system (e.g., green/yellow/red) along with either a
slot indicator or a light for each slot) could be used.

Fig. 5 is a block diagram of functional modules used in the storage, retrieval and
re-layout of data in accordance with an embodiment of the invention, such as discussed
above in connections with Figs. 1-3. The entry and exit point for communication are the
object interface 511 for passing objects to the system for storage or retrieving objects, the
block interface 512, which makes the storage system appear to be one large storage
device, and the CIFS interface 513, which makes the storage system appear to be a
Windows file system. When these interfaces require the storage of data, the data is passed
to the Chunk Parser 52, which performs the break up of the data into chunks and creates
an initial entry into the object table 5§12 (as discussed above in connection with Fig. 1).
These chunks are then passed to the hash code generator 53, which creates the associated
hash codes for each chunk and enters these into the object table so the chunks associated
with each object are listed 512 (as discussed above in connection with in Fig. 1). The
chunk hash numbers are compared with the entries in the chunk table $31. Where a match
is found, the new chunk is discarded, as it will be identical to a chunk already stored in
the storage system. If the chunk is new, a new entry for it is made in the chunk table 531,
and the hashed chunk is passed to the physical storage manager 54. The physical storage
manager stores the chunk in the most efficient pattern possible on the available storage

devices 571, 572, and 573 and makes a corresponding entry in the chunk table 531 to

12

PCT/US2007/068139

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

show where the physical storage of the chunk has occurred so that the contents of the
chunk can be retrieved later 512 (as discussed above in connection with Fig. 1).

The retrieval of data in Fig. 5 by the object 511, block 512 or CIFS 513 interface
is performed by a request to the retrieval manager 56, which consults the object table 521
to determine which chunks comprise the object and then requests these chunks from the
physical storage manager 54. The physical storage manager 54 consults the chunk table
531 to determine where the requested chunks are stored and then retrieves them and
passes the completed data (object) back to the retrieval manager 56, which returns the
data to the requesting interface. Also included in Fig. 5 is the fault tolerant manager
(FTL) 55, which constantly scans the chunk table to determine if chunks are stored in the
most efficient manner possible. (This may change as storage devices 571, §72, and 573
are added and removed.) If a chunk is not stored in the most efficient manner possible,
then the FTL will request the physical storage manager 54 to create a new layout pattern
for the chunk and update the chunk table 531. This way all data continues to remain
stored in the most efficient manner possible for the number of storage devices comprising
the array (as discussed above in connection with Figs. 2 and 3).

The following provides additional details of an exemplary embodiment of the

present invention.

Data Layout Scheme - Zones

Among other things, a Zone has the effect of hiding redundancy and disk re-
layout from the actual data being stored on the disk. Zones allow additional layout
methods to be added and changed without affecting the user of the zone.

The storage array lays out data on the disk in virtual sections called Zones. A
Zone stores a given and fixed amount of data (for example 1 G Bytes). A zone may
reside on a single disk or span across one or more drives. The physical layout of a Zone
provides redundancy in the form specified for that zone.

Fig. 6 shows an example in which mirroring is used in an array containing more
than two drives. Fig. 7 shows some example zones using different layout schemes to
store their data. The diagram assumes a zone stores 1GB of data. Note the following

points:

13

WO 2007/128005 PCT/US2007/068139

10

15

20

25

i) A zone that spans multiple drives does not necessarily use the same offset into
the drive across the set.

ii) A single drive mirror requires 2G of storage to store 1G of data

iii) A dual drive mirror requires 2G of storage to store 1G of data.

iv) A 3 drive stripe requires 1.5G of storage to store 1G of data.

v) A 4 drive stripe requires 1.33G of storage to store 1G of data.

vi) Zone A, zone B etc. are arbitrary zone names. In a real implementation each
zone would be identified by a unique number.

vii) Although implied by the diagram, zones are not necessarily contiguous on a
disk (see regions later).

viii) There is no technical reason why mirroring is restricted to 2 drives. For
example, in a 3 drive system 1 copy of the data could be stored on 1 drive and
half of the mirrored data could be stored on each of the other two drives.
Likewise, data could be mirrored across three drives, with halfthe data on

each of two drives and half of the mirror on the other two drives.

Data Layout Scheme - Regions

Each disk is split into a set of equal-sized Regions. The size of a Region is much
smaller than a Zone and a Zone is constructed from one or more regions from one or
more disks. For efficient use of disk space, the size of a Region is typically a common
factor of the different Zone sizes and the different number of disks supported by the
array. In an exemplary embodiment, Regions are 1/12 the data size of a Zone. The
following table lists the number of Regions/Zone and the number of Regions/disk for

various layouts, in accordance with an exemplary embodiment of the invention.

Layout Method | Number of regions/zone | Number of regions/disk
1 drive mirror 24 24

2 drive mirror 24 12

3 drive stripe 18 6

4 drive stripe 16 4

14

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

Individual Regions can be marked as used, free or bad. When a Zone is created, a
set of free Regions from the appropriate disks are selected and logged in a table. These
Regions can be in any arbitrary order and need not be contiguous on the disk. When data
is written to or read from a Zone, the access is redirected to the appropriate Region.
Among other things, this allows data re-layout to occur in a flexible and efficient manner.
Over time, the different sized Zones will likely cause fragmentation to occur, leaving
many disk areas too small to hold a complete Zone. By using the appropriate Region
size, all gaps left by fragmentation will be at least one Region in size, allowing easy reuse

of these small gaps with out having to de-fragment the whole disk.

Data Layout Scheme - Re-Layout

In order to facilitate implementation, a fixed sequence of expansion and
contraction may be enforced. For example, if two drives are suddenly added, the
expansion of a zone may go through an intermediate expansion as though one drive was
added before a second expansion is performed to incorporate the second drive.
Alternatively, expansion and contraction involving multiple drives may be handled
atomically, without an intermediate step.

Before any re-layout occurs, the required space must be available. This should be
calculated before starting the re-layout to ensure that unnecessary re-layout does not

occur.

Data Layout Scheme - Drive Expansion
The following describes the general process of expanding from single drive

mirroring to dual drive mirroring in accordance with an exemplary embodiment of the

invention:
i) Assuming single drive mirror has data ‘A’ and mirror ‘B’
ii) Allocate 12 regions on drive to expand zone on to ‘C’

ii) Copy mirror ‘B’ to region set ‘C’

15

WO 2007/128005
iv)
v)
5 vi)

10

15

20

25

30

PCT/US2007/068139

Any writes made to data already copied must be mirrored to the appropriate
place in ‘C’

When copy is complete, update zone table with new layout type and replace
pointers to ‘B’ with pointers to ‘C”

Mark the regions that make-up ‘B’ as free.

The following describes the general process of expanding from dual drive

mirroring to triple drive striping with parity in accordance with an exemplary

embodiment of the invention:

1)
ii)

iii)

iv)

v)

vi)

vii)

Assume one drive has data ‘A’ and a second drive has mirror ‘B’

Allocate 6 regions on third drive for parity information ‘C’

Calculate parity information using first 6 regions of ‘A’ and the second 6
regions of ‘B’

Place parity information in ‘C’

Any writes made to data already processed must be parity’d to the
appropriate place in ‘C’

When copy is complete, update zone table with new layout type point table
to first half of ‘A’, second half of ‘B’ and ‘C’

Mark second half of ‘A’ and first half of ‘B’ as free.

The following describes the general process of expanding from triple drive striping

to quad drive striping with parity in accordance with an exemplary embodiment of the

invention:

i)

i)
iii)
iv)
v)

vi)

Assume one drive has data ‘A’ a second drive has data ‘B’ and a third has
parity ‘P’

Allocate four regions on a fourth drive for strip data ‘C’

Copy last two regions of ‘A’ to the first two regions of ‘C’

Copy first two regions of ‘B’ to last to regions of ‘C’

Allocate four regions on parity drive ‘D’

Calculate parity information using first four regions of A, C and the last

four regions of B

16

WO 2007/128005 PCT/US2007/068139

10

15

20

vii) Place parity information in ‘D’

viii) Any writes made to data already processed must be parity’d to the
appropriate place in ‘D’

ix) Update zone table with new layout type and point table to first four regions
of ‘A’, ‘C’, second four regions of ‘B’ and ‘D’

X) Mark last two regions of ‘A’ and first two regions of ‘B’ as free.

Data Layout Scheme - Drive Contraction

Drive contraction takes place when a disk is either removed or fails. Insucha
case, the array contracts the data to get all zones back into a redundant state if possible.
Drive contraction is slightly more complex than expansion as there are more choices to
make. However, transitions between layout methods happen in a similar way to
expansion, but in reverse. Keeping the amount of data to be reproduced to a minimum
allows redundancy to be achieved as quickly as possible. Drive contraction generally
precedes one zone at a time while space is available until all zones are re-layed out.

Generally speaking, only data which resides on the removed or failed disk will be rebuilt.

Choosing how to contract

The following table describes a decision tree for each zone that needs to be re-laid

out, in accordance with an exemplary embodiment of the present invention:

Zone type Condition Action

missing data

Any No Space available for zone Leave zone in degraded state until new
re-layout disk added or removed disk is

replaced.

Single drive Data inconsistent Lock down system and wait for reset

mirror or for the missing drive to be replaced

Dual Drive 1 disk left in system Convert to single drive mirror

17

WO 2007/128005 PCT/US2007/068139

Mirror Space only available on drive

that contains remaining data

2 or 3 disks left in system with | Reconstruct mirror on another drive

space is available

3 Drive 2 disks left in system with Convert to 2 drive mirroring

Striping space available
3 disks left in system with Reconstruct missing stripe segment on
space available the third drive

4 Drive 3 disks left in system with Convert to 3 drive striping

Striping space available

The following describes the general process of contracting from dual drive

mirroring to single drive mirroring in accordance with an exemplary embodiment of the

invention:
5 i) Assuming single drive mirror has data ‘A’ and missing mirror ‘B’ or visa
versa
ii) Allocate 12 regions on the drive that contains ‘A’ as ‘C’

iii) Copy data ‘A’ to region set ‘C’

iv) Any writes made to data already copied must be mirrored to the appropriate
10 place in ‘C’

v) When copy is complete, update zone table with new layout type and replace

pointers to ‘B’ with pointers to ‘C”

The following describes the general process of contracting from triple drive stripe
15 to dual drive mirror (missing parity) in accordance with an exemplary embodiment of the
invention:
i) Assuming that stripe consists of data blocks ‘A’, ‘B’ and ‘C’ on different
drives. Parity ‘C’ is missing.
ii) Define ‘A’ as containing the first half of the zone and ‘B’ as the second half of
20 the zone.

iii) Allocate 6 regions ‘D’ on the ‘A’ drive and 6 regions ‘E’ on the ‘B’ drive

18

WO 2007/128005 PCT/US2007/068139

iv) Copy ‘A’ to ‘E’.
v) Copy ‘B’ to ‘D’
vi) Any writes made to data already copied must be mirrored to the appropriate
place in ‘D’ and ‘E’
5 vii) When copy is complete, update zone table with new layout type and set
pointers to ‘A’/’D’ and ‘E’/’B’

The following describes the general process of contracting from triple drive stripe
to dual drive mirror (missing data) in accordance with an exemplary embodiment of the
10 invention:
i) Assuming that stripe consists of data blocks ‘A’, ‘B’ and ‘C’ on different
drives. Data ‘C’ is missing.
ii) Define ‘A’ as containing the first half of the zone and ‘C’ as the second half of
the zone.
15 iii) Allocate 6 regions ‘D’ on the ‘A’ drive and 12 regions ‘E’ on the ‘B’ drive
iv) Copy ‘A’ to the first half of ‘E’
v) Reconstruct missing data from ‘A’ and ‘B’. Write data to ‘D’
vi) Copy ‘D’ to second half of ‘E’.
vii) Any writes made to data already copied must be mirrored to the appropriate
20 place in ‘D’ and ‘E’
viii) When copy is complete, update zone table with new layout type and set
pointers to ‘A’/’D’ and ‘E’

ix) Mark ‘B’ regions as free.

25 The following describes the general process of contracting from quad drive stripe
to triple drive stripe (missing parity) in accordance with an exemplary embodiment of the
invention:

i) Assuming that stripe consists of data blocks ‘A’, ‘B’, ‘C’ and ‘D’ on different
drives. Parity ‘D’ is missing.

30 ii) Define ‘A’ as containing the first third, ‘B’ as the second third and ‘C’ as the

third third of the zone

19

WO 2007/128005

10

15

20

25

it)
iv)
v)

vi)
vii)

vii)

ix)

PCT/US2007/068139

Allocate 2 regions ‘G’ on the ‘A’ drive, 2 regions ‘E’ on the ‘C’ drive and 6
regions ‘F’ on the ‘B’ drive.

Copy first half of ‘B’ to ‘G’

Copy second half of ‘B’ to ‘E’

Construct parity from ‘A’/’G’ and ‘E’/’C’ and write to ‘F’

Any writes made to data already copied must be mirrored to the appropriate
place in ‘G’, ‘E’ and ‘F’

‘When copy is complete, update zone table with new layout type and set
pointers to ‘A’/’G’, ‘E’/’C’ and ‘F’

Mark ‘B’ regions as free.

The following describes the general process of contracting from quad drive stripe

to triple drive stripe (first 1/3 missing) in accordance with an exemplary embodiment of

the invention:

)
i)
it)
iv)
v)
vi)
vii)
viit)

ix)

Assuming that stripe consists of data blocks ‘A’, ‘B’, ‘C’ and ‘D’ on different
drives. Data ‘A’ is missing.

Define ‘A’ as containing the 1 third, ‘B’ as the 2™ third and ‘C’ as the 3¢
third of the zone and ‘D’ as the parity.

Allocate 4 regions ‘E’ on the ‘B’ drive, 2 regions ‘F’ on the ‘C’ drive and 6
regions ‘G’ on the ‘D’ drive.

Copy second half of ‘B’ to ‘F’

Construct missing data from ‘B’, ‘C” and ‘D’ and write to ‘E’

Construct new parity from ‘E’/1* half B’ and ‘F’/°C’ and write to ‘G’

Any writes made to data already copied must be mirrored to the appropriate
place in ‘B’, ‘E’, ‘F” and ‘G’

When copy is complete, update zone table with new layout type and set
pointers to “E’/1%" half B’ and ‘F’/’C" and ‘G’

Mark 2™ half ‘B> and ‘D’ regions as free.

20

WO 2007/128005

10

15

20

25

30

PCT/US2007/068139

The following describes the general process of contracting from quad drive stripe

to triple drive stripe (second 1/3 missing) in accordance with an exemplary embodiment

of the invention:

D)

ii)

i)

iv)

V)

vi)

vii)

vii)

ix)

Assuming that stripe consists of data blocks ‘A’, ‘B’, ‘C’ and ‘D’ on different
drives. Data ‘B’ is missing.

Define ‘A’ as containing the 1% third, ‘B’ as the 2™ third and “C’ as the 3™
third of the zone and ‘D’ as the parity.

Allocate 2 regions ‘E’ on the ‘A’ drive, 2 regions ‘F’ on the ‘C’ drive and 6
regions ‘G’ on the ‘D’ drive.

Construct missing data from 1% half ‘A’, 1% half ‘C’ and 1* half ‘D’ and write
to ‘E’

Construct missing data from 2™ half *A’, 2™ half ‘C’ and 2™ half ‘D’ and
write to ‘F’

Construct new parity from ‘A’/’E’ and ‘F’/’C’ and write to ‘G’

Any writes made to data already copied must be mirrored to the appropriate
place in ‘E’, ‘F’ and ‘G’

When copy is complete, update zone table with new layout type and set
pointers to ‘E’, ‘F’ and ‘G’

Mark ‘D’ regions as free.

The following describes the general process of contracting from quad drive stripe

to triple drive stripe (third 1/3 missing) in accordance with an exemplary embodiment of

the invention:

D)

ii)

i)

iv)

V)

Assuming that stripe consists of data blocks ‘A’, ‘B’, ‘C’ and ‘D’ on different
drives. Data ‘C’ is missing.

Define ‘A’ as containing the 1% third, ‘B’ as the 2™ third and “C’ as the 3™
third of the zone and ‘D’ as the parity.

Allocate 2 regions ‘E’ on the ‘A’ drive, 4 regions ‘F’ on the ‘B’ drive and 6
regions ‘G’ on the ‘D’ drive.

Copy lst half ‘B’ to ‘E’

Construct missing data from ‘A’, ‘B’ and ‘D’ and write to ‘F’

21

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

vi) Construct new parity from ‘A’/’E’ and 2 half ‘B’/’F’ and write to ‘G’

vii) Any writes made to data already copied must be mirrored to the appropriate
place in ‘E’, ‘F’ and ‘G’

viii) When copy is complete, update zone table with new layout type and set
pointers to ‘A’/’E’ and 2" half ‘B’/’F’ and ‘G’

ix) Mark 1* half ‘B’ and ‘D’ regions as free.

For example, with reference again to Fig. 3, dual drive mirror (Zone B) could be
reconstructed on Drive 2 if either Drive 0 or Drive 1 is lost, provided there is sufficient
space available on Drive 2. Similarly, three drive stripe (Zone C) could be reconstructed
utilizing Drive 3 if any of Drives 0-2 are lost, provided there is sufficient space available

on Drive 3.

Data Layout Scheme - Zone Reconstruction

Zone reconstruction occurs when a drive has been removed and there is enough
space on the remaining drives for ideal zone re-layout or the drive has been replaced with
a new drive of larger size.

The following describes the general process of dual drive mirror reconstruction in
accordance with an exemplary embodiment of the invention:

i) Assuming single drive mirror has data ‘A’ and missing mirror ‘B’

ii) Allocate 12 regions ‘C’ on a drive other than that containing ‘A’

iii) Copy data ‘A’ to ‘C’

iv) Any writes made to data already copied must be mirrored to the appropriate
place in ‘C’

v) ‘When copy is complete, update zone table pointers to ‘B’ with pointers to ‘C”

The following describes the general process of three drive stripe reconstruction in

accordance with an exemplary embodiment of the invention:

22

WO 2007/128005 PCT/US2007/068139

i) Assume one drive has data ‘A’, a second drive has data ‘B’ and a third has
parity ‘P’. ‘B’ is missing. Note it doesn’t matter which piece is missing, the
required action is the same in all cases.

ii) Allocate 6 regions ‘D’ on a drive other than that containing A’ and ‘P’

5 iii) Construct missing data from ‘A’ and ‘P’. Write data to ‘D’

iv) Any writes made to data already processed must be parity’d to the

appropriate place in ‘D’

v) Update zone table by replacing pointers to ‘B’ with pointers to ‘D’

10 In this exemplary embodiment, four -drive-reconstruction can only occur if the
removed drive is replaced by another drive. The reconstruction consists of allocating six
regions on the new drive and reconstructing the missing data from the other three region

sets.

15 Data Layout Scheme - The temporarily missing drive problem

When a drive is removed and there is no room for re-layout, the array will
continue to operate in degraded mode until either the old drive is plugged back in or the
drive is replaced with a new one. Ifa new one is plugged in, then the drive set should be

20 rebuilt. Inthis case, data will be re-laid out. If the old disk is placed back into the array,
it will no longer be part of the current disk set and will be regarded as a new disk.
However, if a new disk is not placed in the array and the old one is put back in, the old
one will still be recognized as being a member of the disk set, albeit an out of date
member. In this case, any zones that have already been re-laid out will keep their new

25 configuration and the regions on the old disk will be freed. Any zone that has not been
re-laid out will still be pointing at the appropriate regions of the old disk. However, as
some writes may have been performed to the degraded zones, these zones need to be
refreshed. Rather than logging every write that has occurred, degraded regions that have
been modified may be marked. In this way, when the disk is replaced, only the regions

30 that have been modified need to be refreshed.

23

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

Furthermore, zones that have been written to may be placed further up the priority
list for re-layout. This should reduce the number of regions that need to be refreshed
should the disk be replaced. A timeout may also be used, after which point the disk, even
if replaced, will be wiped. However, this timeout could be quite large, possibly hours

rather than minutes.

Data Layout Scheme - Data Integrity

As discussed above, one problem with a standard RAID system is that it is
possible for disc-surface corruption to occur on an infrequently used area of the disk
array. Inthe event that another drive fails, it is not always possible to determine that
corruption has occurred. In such a case, the corrupted data may be propagated and
preserved when the RAID array rebuilds the failed drive.

The hash mechanism discussed above provides an additional mechanism for data
corruption detection over that which is available under RAID. As is mentioned
elsewhere, when a chunk is stored, a hash value is computed for the chunk and stored.
Any time the chunk is read, a hash value for the retrieved chunk can be computed and
compared with the stored hash value. Ifthe hash values do not match (indicating a
corrupted chunk), then chunk data can be recovered from redundant data.

In order to minimize the time window in which data corruption on the disk can
occur, a regular scan of the disks will be performed to find and correct corrupted data as
soon as possible. It will also, optionally, allow a check to be performed on reads from the

array.

Data Layout Scheme - Volume

In a sparse volume, regardless of the amount of storage space available on discs in
the array, the array always claims to be a fixed size — for example, M Terabytes. Assume
that the array contains S bytes of actual storage space, where S <= M, and that data can
be requested to be stored at locations 1.1, 1.2, 1.3, etc. within the M Terabyte space. If the

requested location Ln > S, then the data for Ln must be stored at a location Pn < S. This

24

WO 2007/128005

10

15

PCT/US2007/068139

is managed by including a lookup table to index Pn based on Ln, as shown in Fig. 8. The

feature is allows the array to work with operating systems that do not support volume

expansion, such as Windows, Linux, and Apple operating systems. In addition, the array

can provide multiple Sparse Volumes which all share the same physical storage. Each

sparse volume will have a dedicated lookup table, but will share the same physical space

for data storage.

Drive slot indicators

As discussed above, the storage array consists of one or more drive slots. Each

drive slot can either be empty or contain a hard disk drive. Each drive slot has a

dedicated indicator capable of indicating four states: Off, OK, Degraded and Fail.

The states are interpreted generally as follows:

Indicator

State

Meaning for Array User

Off

Drive slot is empty and is available

for an additional drive to be inserted.

OK

Drive in slot is functioning correctly.

Degraded

Action by user recommend: if slot is
empty, add a drive to this slot; if slot
contains a drive, replace drive with

another, higher-capacity drive.

Fail

Action by user required ASAP: if slot
is empty, add a drive to this slot; if
slot contains a drive, replace drive

with another, higher-capacity drive.

In this exemplary embodiment, red/amber/green light emitting diodes (LEDs) are

used as the indicators. The LEDs are interpreted generally as follows:

25

WO 2007/128005 PCT/US2007/068139

LED Indicator Example circumstances under which | Figures

state State state may occur

Off Off Slot is empty. Array has available 9,10,12
space.

Green OK Drive is functioning correctly, array 9,10,11,12

data is redundant and array has

available disk space.

Amber Degraded Array is approaching a Fail condition; 11
Not enough space to maintain redundant

data in the event of a disc failure.

Red Fail Disk in this slot has failed and must be 10,12
replaced; the array does not have

enough space to maintain redundant
data storage and more space must be

added.

Fig. 9 shows an exemplary array having available storage space and operating in a
5 fault-tolerant manner, in accordance with an exemplary embodiment of the present
invention. Slots B, C, and D are populated with storage devices, and there is sufficient
storage space available to store additional data redundantly. The indicators for slots B, C,
and D are green (indicating that these storage devices are operating correctly, the array
data is redundant, and the array has available disk space), and the indicator for slot A is
10 off (indicating that no storage device needs to be populated in slot A).

Fig. 10 shows an exemplary array that does not have enough space to maintain
redundant data storage and more space must be added, in accordance with an exemplary
embodiment of the present invention. Slots B, C, and D are populated with storage
devices. The storage devices in slots C and D are full. The indicators for slots B, C, and

15 D are green (indicating that these storage devices are operating correctly), and the

26

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

indicator for slot A is red (indicating that the array does not have enough space to
maintain redundant data storage and a storage device should be populated in slot A).

Fig. 11 shows an exemplary array that would be unable to maintain redundant
data in the event of a failure, in accordance with an exemplary embodiment of the present
invention. Slots A, B, C, and D are populated with storage devices. The storage devices
in slots C and D are full. The indicators for slots A, B, and C are green (indicating that
they are operating correctly), and the indicator for slot D is amber (indicating that the
storage device in slot D should be replaced with a storage device having greater storage
capacity).

Fig. 12 shows an exemplary array in which a storage device has failed, in
accordance with an exemplary embodiment of the present invention. Slots B, C, and D
are populated with storage devices. The storage device in slot C has failed. The
indicators for slots B and D are green (indicating that they are operating correctly), the
indicator for slot C is red (indicating that the storage device in slot C should be replaced),
and the indicator for slot A is off (indicating that no storage device needs to be populated
in slot A).

The following is a description of the software design for an exemplary
embodiment of the present invention. The software design is based on six software
layers, which span the logical architecture from physically accessing the disks to
communicating with the host computing system.

In this exemplary embodiment, a file system resides on a host server, such as a
Windows, Linux, or Apple server, and accesses the storage array as a USB or iSCSI
device. Physical disk requests arriving over the host interface are processed by the Host
Request Manager (HRM). A Host I/O interface coordinates the presentation of a host
USB or iSCSI interface to the host, and interfaces with the HRM. The HRM coordinates
data read/write requests from the host [/O interface, dispatches read and write requests,
and co-ordinates the retiring of these requests back to the host as they are completed.

An overarching aim of the storage array is to ensure that once data is accepted by
the system, it is stored in a reliable fashion, making use of the maximum amount of

redundancy the system currently stores. As the array changes physical configuration,

27

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

data is re-organized so as to maintain (and possibly maximize) redundancy. In addition,
simple hash based compression is used to reduce the amount of storage used.

The most basic layer consists of disk drivers to store data on different disks.
Disks may be attached via various interfaces, such as ATA tunneled over a USB
interface.

Sectors on the disks are organized into regions, zones, and clusters, each of which
has a different logical role.

Regions represent a set of contiguous physical blocks on a disk. On a four drive
system, each region is 1/12 GB in size, and represents minimal unit of redundancy. Ifa
sector in a region is found to be physically damaged, the whole region will be abandoned.

Zones represent units of redundancy. A zone will consist of a number of regions,
possibly on different disks to provide the appropriate amount of redundancy. Zones will
provide 1GB of data capacity, but may require more regions in order to provide the
redundancy. 1GB with no redundancy require one set of 12 regions (1GB); a 1GB
mirrored zone will require 2 sets of 1 GB regions (24 regions); a 1GB 3-disk stripped
zone will require 3 sets of 0.5GB regions (18 regions). Different zones will have different
redundancy characteristics.

Clusters represent the basic unit of compression, and are the unit size within
zones. They are currently 4KB: 8 x 512 byte sectors in size. Many clusters on a disk will
likely contain the same data. A cluster access table (CAT) is used to track the usage of
clusters via a hashing function. The CAT translates between logical host address and the
location of the appropriate cluster in the zone.

When writing to disk, a hash function is used to see if the data is already present
on the disk. Ifso, the appropriate entry in the CAT table is set to point to the existing
cluster.

The CAT table resides in its own zone. Ifit exceeds the size of the zone, an
additional zone will be used, and a table will be used to map logical address to the zone
for that part of the CAT. Alternatively, zones are pre-allocated to contain the CAT table.

In order to reduce host write latency and to ensure data reliability, a journal
manager will record all write requests (either to disk, or to NVRAM). Ifthe system is

rebooted, journal entries will be committed on reboot.

28

WO 2007/128005 PCT/US2007/068139

10

15

20

Disks may come and go, or regions may be retired if they are found to have
corruption. In either of these situations, a layout manager will be able to re-organize
regions within a zone in order to change its redundancy type, or change the regional
composition of a zone (should a region be corrupted).

As the storage array provides a virtual disk array, backed by changing levels of
physical disk space, and because it presents a block level interface, it is not obvious when
clusters are no longer in use by the file system. As aresult, the cluster space used will
continue to expand. A garbage collector (either located on the host or in firmware) will
analyze the file system to determine which clusters have been freed, and remove them
from the hash table.

The following table shows the six software layers in accordance with this

exemplary embodiment of the invention:

Layer 5 : Garbage collector, Host Interface (USB/iSCSI)

Layer 4 : Host request manager

Layer 3: CAT, HASH, Journal manager

Layer 2 : Zones manager. Allocates/frees chunks of sectors called Zones. Knows about

SDM, DDM, SD3 etc in order to deal with errors and error recovery. Layout Manager

Layer 1 : Read/write physical clusters/sectors. Allocates Regions per disk

Layer 0: Disk access drivers

Fig. 13 shows a module hierarchy representing the different software layers and
how they relate to one another. Software layering is preferably rigid in order to present
clear APIs and delineation.

The Garbage Collector frees up clusters which are no longer used by the host file
system. For example, when a file is deleted, the clusters that were used to contain the file
are preferably freed.

The Journal Manager provides a form of journaling of writes so that pending
writes are not lost in the case of a power failure or other error condition.

The Layout Manager provides run-time re-layout of the Zones vis-a-vis their

Regions. This may occur as a result of disk insertion/removal or failure.

29

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

The Cluster Manager allocates clusters within the set of data Zones. The Disk
Utilization Daemon checks for free disk space on a periodic basis.

The Lock Table deals with read after write collision issues.

The Host Request Manager deals with the read/write requests from the Host and
Garbage Collector. Writes are passed to the Journal Manager, whereas Reads are
processed via the Cluster Access Table (CAT) Management layer.

As discussed above, in typical file systems, some amount of the data will
generally be repetitive in nature. In order to reduce disk space utilization, multiple copies
of this data are not written out to the disks. Instead, one instance is written, and all other
instances of the same data are referenced to this one instance.

In this exemplary embodiment, the system operates on a cluster of data at any
time (e.g., 8 physical sectors), and this is the unit that is hashed. The SHAL1 algorithm is
used to generate a 160-bit hash. This has a number of benefits, including good
uniqueness, and being supported on-chip in a number of processors. All 160-bits will be
stored in the hash record, but only the least significant 16-bits will be used as an index
into a hash table. Other instances matching the lowest 16-bits will be chained via a
linked-list.

In this exemplary embodiment, only one read/write operation may occur at a time.
For performance purposes, hash analysis is not permitted to happen when writing a
cluster to disk. Instead, hash analysis will occur as a background activity by the hash
manager.

Write requests are read from the journal’s write queue, and are processed to
completion. In order to ensure data consistency, writes must be delayed if a write
operation is already active on the cluster. Operations on other clusters may proceed un-
impeded.

Unless a whole cluster is being written, the data being written will need to be
merged with the existing data stored in the cluster. Based on the logical sector address
(LSA), the CAT entry for the cluster is located. The hash key, zone and cluster offset
information is obtained from this record, which can then be used to search the hash table

to find a match. This is the cluster.

30

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

It might well be necessary to doubly hash the hash table; once via the SHA1
digest, and then by the zone/cluster offset to improve the speed of lookup of the correct
hash entry. Ifthe hash record has already been used, the reference count is decremented.
If the reference count is now zero, and there is no snapshot referenced by the hash entry,
the hash entry and cluster can be freed back to their respective free lists.

The original cluster data is now merged with the update section of the cluster, and
the data is re-hashed. A new cluster is taken off the free-list, the merged data is written to
the cluster, new entry is added to the hash table, and the entry in the CAT table is updated
to point to the new cluster.

As a result of updating the hash table, the entry is also added to an internal queue
to be processed by a background task. This task will compare the newly added cluster and
hash entry with other hash entries that match the hash table row address, and will
combine records if they are duplicates, freeing up hash entries and CAT table entries as
appropriate. This ensures that write latency is not burdened by this activity. If a failure
(e.g., a loss of power) occurs during this processing, the various tables can be deleted,
with a resulting loss of data. The tables should be managed in such a way that the final
commit is atomic or the journal entry can be re-run if it did not complete fully.

The following is pseudocode for the write logic:

While (stuffto do)

writeRecord = journalMgr.read();

Isa = writeRecord.GetLsa();

catEntry = catMgr.GetCATEntry(lsa);

if (catMgr.writeInProgress(catEntry)) delay();

originalCluster = catMgr.readCluster(catEntry);
originalHash = hashMgr.calcHash(originalCluster);

hashRecord = hashMgr.Lookup(originalHash, zone, offset);

if ((hashRecord.RefCount == 1) && (hashRecord.snapshot = 0))
hashRecord.free();

31

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

originalCluster.free();
// Note there are some optimizations here where we can reuse
// this cluster without having to free & re-allocate it.

/I otherwise, still users of this cluster, so update & leave it alone

hashRecord . RefCount--;
hashRecord.Update(hashRecord);

// Now add new record
mergedCluster = mergeCluster(originalCluster, newCluster);
newHash = hashMgr.calcHash(mergedCluster);
newCluster = clusterMgr.AllocateCluster(zone, offset);
clusterMgr.write(cluster, mergedCluster);
zoneMgr.write(cluster, mergedCluster);
hashMgr.addHash(newHash, newCluster, zone, offset)
(internal: queue new hash for background processing)
catMgr.Update(lba, zone, offset, newHash);
/' We’ve completed the journal entry successfully. Move on to the next one.
journalMgr.next();
Read requests are also processed one cluster (as opposed to “sector”) at a time.
Read requests do not go through the hash-related processing outlined above. Instead, the

host logical sector address is used to reference the CAT and obtain a Zone number and

cluster offset into the Zone. Read requests should look up the CAT table entry in the

32

WO 2007/128005 PCT/US2007/068139

10

15

20

CAT Cache, and must be delayed in the write-in-progress bit is set. Other reads/writes
may proceed un-impeded. In order to improve data integrity checking, when a cluster is
read, it will be hashed, and the hash compared with the SHA1 hash value stored in the
hash record. This will require using the hash, zone and cluster offset as a search key into
the hash table.

Clusters are allocated to use as few Zones as possible. This is because Zones
correspond directly to disk drive usage. For every Zone, there are two or more Regions
on the hard drive array. By minimizing the number of Zones, the number of physical
Regions is minimized and hence the consumption of space on the hard drive array is
reduced.

The Cluster Manager allocates cluster from the set of Data Zones. A linked list is
used to keep track of free clusters in a Zone. However, the free cluster information is
stored as a bit map (32KB per Zone) on disk. The linked list is constructed dynamically
from the bitmap. Initially, a linked list of a certain number of free clusters is created in
memory. When clusters are allocated, the list shrinks. At a predetermined low-water
mark, new linked list nodes representing free clusters are extracted from the bitmap on
disk. In this way, the bitmap does not need to be parsed in order to find a free cluster for
allocation.

In this exemplary embodiment, the hash table is a 64K table of records (indexed
by the lower 16 bits of the hash) and has the following format:

Offset | Size in bits | Name Value/Valid Range | Description
0 160 shalHash The complete SHA1 hash digest
16 refCount Number of instances of this

hash; what do we do if we get
beyond 16 bits?

18 Cluster offset Cluster offset within zone
14 Zone # Zone# containing this cluster
8 snapshot One bit per snapshot instance to

indicate that this cluster entry is

used by that snapshot. This

33

WO 2007/128005 PCT/US2007/068139

model supports 8 snapshots

(possible only 7)

A cluster of all zeros may be fairly common, so the all-zeros case may be treated

as a special case, for example, such that it can never be deleted (so wrapping the count
5 would not be a problem).

A linked list of free hash record is used when the multiple hashes have the same
least significant hash, or when two hash entries point to different data clusters. In either
case, a free hash record will be taken from the list, and linked via the pNextHash pointer.

The hash manager will tidy up entries added to the hash table, and will combine

10 identical clusters on the disk. As new hash records are added to the hash table, a message
will be posted to the hash manager. This will be done automatically by the hash manager.
As a background activity, the hash manager will process entries on its queue. It will
compare the full hash value to see if it matches any existing hash records. If it does, it
will also compare the complete cluster data. If the clusters match, the new hash record

15 can be discarded back to the free queue, the hash record count will be incremented, and
the duplicate cluster will be returned to the cluster free queune. The hash manager must
take care to propagate the snapshot bit forward when combining records.

A Cluster Access Table (CAT) contains indirect pointers. The pointers point to
data clusters (with 0 being the first data cluster) within Zones. One CAT entry references

20 asingle data cluster (tentatively 4KB in size). CATs are used (in conjunction with
hashing) in order to reduce the disk usage requirements when there is a lot of repetitive
data. A single CAT always represents a contiguous block of storage. CATs are
contained within non-data Zones. Each CAT entry is 48-bits. The following table shows

how each entry is laid out (assuming each data Zone contains 1GB of data):

25
Bits 0-17 Bits 18-31 Bits 32-47 Bits 48-63]..]
Offset of data Zone# containing data | Hash key Reserved.
cluster within Zone Candidates

include garbage

34

WO 2007/128005

10

15

20

collector write-
bit; snapshot bits;
snapshot table
hash key

It is desirable for the CAT to fit into 64 bits, but this is not a necessity. The CAT
table for a 2TB array is currently ~ 4GB in size. Each CAT entry points to a Zone which
contains the data and the number of the Zone.

Fig. 14 shows how the CAT is used to access a data clusters in a Zone.

Redundant data is referenced by more than one entry in the CAT. Two logical clusters
contain the same data, so their CAT entries are pointed to the same physical cluster.

The Hash Key entry contains the 16-bit extract of the 160-bit SHA1 hash value of
the entire cluster. This entry is used to update the hash table during a write operation.

There are enough bits in each entry in the CAT to reference 16TB of data.
However, if every data cluster is different from another (in terms of contents), then just
over 3 Zones” worth of CAT entries are required to reference 2 TB of data (each zone is
1GB in size, and hence can store 1GB/size of CAT entry entries. Assuming 6 byte CAT
entries, that is 178956970 CAT entries/zone, i.e. the table references around 682 GB/zone
if each cluster is 4K).

A Host Logical Sector Translation Table is used to translate a Host Logical Sector
Address into a Zone number. The portion of the CAT that corresponds to the Host
Logical Sector Address will reside in this zone. Note that each CAT entry represents a
cluster size of 4096 bytes. This is eight 512 byte sectors. The following shows a

representation of the host logical sector translation table:

Start Host Logical Sector Address | End Host Logical Sector Address | Zone # of CAT

0 (cluster #0) 1431655759 (cluster #178956969)

1431655760 (cluster #178956970)

Zones can be pre-allocated to hold the entire CAT. Altematively, Zones can be

allocated for the CAT as more entries to the CAT are required. Since the CAT maps the

35

PCT/US2007/068139

WO 2007/128005 PCT/US2007/068139

10

15

20

25

2TB virtual disk to the host sector address space, it is likely that a large part of the CAT
will be referenced during hard disk partitioning or formatting by the host. Because of
this, the Zones may be pre-allocated.

The CAT is a large 1GB/zone table. The working set of clusters being used will
be a sparse set from this large table. For performance reasons, active entries (probably
temporally) may be cached in processor memory rather than always reading them from
the disk. There are at least two options for populating the cache — individual entries from
the CAT, or whole clusters from the CAT.

Because the write-in-progress is combined with the CAT cache table, it is
necessary to ensure that all outstanding writes remain in the cache. Therefore, the cache
needs to be at least as large at the maximum number of outstanding write requests.

Entries in the cache will be a cluster size (ie. 4K). There is a need to know
whether there is a write-in-progress in operation on a cluster. This indication can be

stored as a flag in the cache entry for the cluster. The following table shows the format

of a CAT cache entry:
Bits 0-17 Bits 18-31 Bits 32-47 Bit 48-63
Offset of data Zone# containing data | Hash key Bit 48: Write-in-
cluster within Zone progress
Bit 49: Dirty

The write-in-progress flag in the cache entry has two implications. First, it
indicates that a write is in progress, and any reads (or additional writes) on this cluster
must be held off until the write has completed. Secondly, this entry in the cache must not
be flushed while the bit is set. This is partly to protect the state of the bit, and also to
reflect the fact that this cluster is currently in use. In addition, this means that the size of
the cache must be at least as large as the number of outstanding write operations.

One advantage of storing the write-in-progress indicator in the cache entry for the
cluster is that it reflects the fact that the operation is current, saves having another table,

and it saves an additional hashed-based lookup, or table walk to check this bit too. The

36

WO 2007/128005 PCT/US2007/068139

cache can be a write-delayed cache. It is only necessary to write a cache entry back to
disk when the write operation has completed, although it might be beneficial to have it
written back earlier. A hash function or other mechanism could be used to increase the
number of outstanding write entries that can be hashed.

5 An alternate approach is to cache whole clusters of the CAT (i.e., 4K entry of
entries). This would generally help performance if there is good spatial locality of access.
Care needs to be taken because CAT entries are 48 bits wide, so there will not be a whole

number of entries in the cache. The following table shows an example of a clustered

CAT cache entry:
10

2 words 2 words 2 words ‘ 2 words

CAT entry 1 CAT Entry 2

(partial entry of

last 2 words)

CAT Entry 3 CAT Entry 4

CAT entry 4 CAT entry 5

CAT Entry 5 CAT Entry 6

CAT Entry 682 CAT Entry 683
(partial entry of first 2
words)

Write-in-progress bit array [682 bits] : bits 0-255

Write-in-progress bit array bits 256-511

Write-in-progress bit array 512-682 + spare bits Dirty Reserved

count

The table size would be 4096 + 96 (4192 bytes). Assuming it is necessary to have

a cache size of 250 entries, the cache would occupy approximately 1MB.

37

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

It is possible to calculate whether the first and last entry is incomplete or not by
appropriate masking of the logical CAT entry address. The caching lookup routine
should do this prior to loading an entry and should load the required CAT cluster.

When the host sends a sector (or cluster) read request, it sends over the logical
sector address. The logical sector address is used as an offset into the CAT in order to
obtain the offset of the cluster in the Zone that contains the actual data that is requested
by the host. The result is a Zone number and an offset into that Zone. That information
is passed to the Layer 2 software, which then extracts the raw cluster(s) from the drive(s).

In order to deal with clusters that have never been written to by the host, all CAT
entries are initialized to point to a “Default” cluster which contain all zeros.

The journal manager is a bi-level write journaling system. An aim of the system
is to ensure that write requests can be accepted from the host and quickly indicate back to
the host that the data has been accepted while ensuring its integrity. In addition, the
system needs to ensure that there will be no corruption or loss of any block level data or
system metadata (e.g., CAT and Hash table entries) in the event of a system reset during
any disk write.

The J1 journal manager caches all write requests from the hosts to disk as quickly
as possible. Once the write has successfully completed (i.e., the data has been accepted
by the array), the host can be signaled to indicate that the operation has completed. The
journal entry allows recovery of write requests when recovering from a failure. Journal
records consist of the data to be written to disk, and the meta-data associated with the
write transaction.

In order to reduce disk read/writes, the data associated with the write will be
written to free clusters. This will automatically mirror the data. Free clusters will be taken
from the free cluster list. Once the data is written, the free cluster list must be written
back to disk.

A journal record will be written to a journal queue on a non-mirrored zone. Each
record will be a sector in size, and aligned to a sector boundary in order to reduce the risk
that a failure during a journal write would corrupt a previous journal entry. Journal
entries will contain a unique, incrementing sequence count at the end of the record so that

the end of a queue can easily be identified.

38

WO 2007/128005

10

15

20

Journal write operations will happen synchronously within a host queue
processing thread. Journal writes must be ordered as they are written to disk, so only one
thread may write to the journal as any time. The address of the journal entry in the J1
table can be used as a unique identifier so that the J1 journal entry can be correlated with
entries in the J2 journal. Once the journal entry is written, a transaction completion
notification will be posted to the host completion queue. Now the write operation can be
executed. It is important to ensure that any subsequent reads to a cluster before the
journal write has completed are delayed.

The following table shows the format of the J2 journal record:

Size in bits Name Details

32 LBA Logical Block Address

14 Zone Zone # of associated cluster

18 Offset Cluster offset of associated
cluster

16 Size Size of data

16 SequenceNumber An incrementing sequence
number so we can easily
find the end of the queue

Each journal record will be aligned to a sector boundary. A journal record might
contain an array of zone/offset/size tuples.

FIG. 15 shows a journal table update in accordance with an exemplary embodiment
of the present invention. Specifically, when a host write request is received, the journal
table is updated, one or more clusters are allocated, and data is written to the cluster(s).

Host journal requests are processed. These cause clusters to be written, and also
cause updates to meta-data structure which must be shadowed back to disk (for example,
the CAT table). It is important to ensure that these meta-data structures are correctly
written back to disk even if a system reset occurs. A low level disk I/0 write (J2) journal

will be used for this.

39

PCT/US2007/068139

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

In order to process a host interface journal entry, the appropriate manipulation of
meta-data structures should be determined. The changes should occur in memory and a
record of changes to various disk blocks be generated. This record contains the actual
changes on disk that should be made. Each data structure that is updated is registered
with the J2 journal manager. This record should be recorded to a disk based journal, and
stamped with an identifier. Where the record is connected with a J1 journal entry, the
identifiers should be linked. Once the record is stored, the changes to disk can be made
(or can be done via a background task).

The J2 journal exists logically at layer 3. It is used to journal meta-data updates that
would involve writes through the zone manager. When playback of a journal entry
occurs, it will use zone manager methods. The journal itself can be stored in a

specialized region. Given the short lifespan of journal entries, they will not be mirrored.

Not all meta-data updates need to go through the J2 journal, particularly if updates to
structures are atomic. The region manager structure may not use the J2 journal. It would
be possible to detect inconsistencies in the region manager bitmap, for example, with an
integrity checking background thread.

A simple approach for the J2 journal is to contain a single record. As soon as the
record is committed to disk, it is replayed, updating the structures on disk. It is possible
to have multiple J2 records and to have a background task committing updating records
on disks. In this case, close attention will need to be paid to the interaction between the
journal and any caching algorithms associated with the various data structures.

The initial approach will run the journal entry as soon as it has been committed to
disk. In principle there could be multiple concurrent users of the J2, but the J2 journal
may be locked to one user at a time. Even in this case, journal entries should be
committed as soon as they have been submitted.

It is important to ensure that the meta-data structures are repaired before any
higher level journal activity occurs. On system reboot, the J2 journal is analyzed, and
any records will be replayed. If a journal entry is correlated with a J1 journal entry, the

J1 entry will be marked as completed, and can be removed. Once all J2 journal entries

40

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

have been completed, the meta-data is in a reliable state and any remaining J1 journal
entries can be processed.
The J2 journal record includes the following information:
e Number of operations
e FEach operation contains:
o J1 record indicator
o Zone/Data offset to write to
o Data to write
o Size of data
o Offset into data cluster
e Journal record identifier

¢ End Marker

This scheme could operate similarly to the J1 journal scheme, for example, with a
sequence number to identify the end of a J2 journal entry and placing J2 journal entries
on sector boundaries.

If the J1 data pointer indicator is set, then this specific operation would point to a
J1 journal record. The host supplied write data would not have to be copied into our
journal entry. The operation array should be able to be defined as a fixed size as the
maximum number of operations in a journal record is expected to be well understood.

In order to permit recovery from corruption of a sector during a low level write
operation (e.g., due to a loss of power), the J2 journal could store the whole sector that
was written so that the sector could be re-written from this information if necessary.
Alternatively or additionally, a CRC calculated for each modified sector could be stored
in the J2 record and compared with a CRC computed from the sector on disk (e.g., by the
zone manager) in order to determine whether a replay of the write operation is required.

The different journals can be stored in different locations, so there will be an
interface layer provided to write journal records to backing store. The location should be
non-volatile. Two candidates are hard disk and NVRAM. Ifthe J1 journal is stored to
hard disk, it will be stored in a J1 journal non-mirrored zone. The J1 joural is a

candidate for storing in NVRAM. The J2 journal should be stored on disk, although it

41

WO 2007/128005 PCT/US2007/068139

can be stored in a specialized region (i.e., not redundant, as it has a short lifespan). An
advantage of storing the J2 journal on disk is that, if there is a system reset during an
internal data structure update, the data structures can be returned to a consistent state
(even if the unit is left un-powered for a long period of time).
5 The Zones Manager (ZM) allocates Zones that are needed by higher level

software. Requests to the ZM include:

a. Allocate Zone

b. De-allocate/Free Zone

c. Control data read/write pass through to L1 (?)

10 d. Read/Write cluster in a Zone (given the offset of the cluster and the Zone

number)

The ZM manages the redundancy mechanisms (as a function of the number of

drives and their relative sizes) and handles mirroring, striping, and other redundancy
15 schemes for data reads/writes.

When the ZM needs to allocate a Zone, it will request an allocation of 2 or more
sets of Regions. For example, a Zone may be allocated for 1GB of data. The Regions
that make up this Zone will be able to contain 1GB of data including redundancy data.
For a mirroring mechanism, the Zone will be made up of 2 sets of Regions of 1GB each.

20 Another example, a 3-disk striping mechanism utilize 3 sets of Regions of 1/2 GB each.

The ZM uses the ZR translation table (6) to find out the location (drive number
and start Region number) of each set of Regions that makes up the Zone. Assuming a
1/12GB Region size, a maximum of 24 Regions will be needed. 24 Regions make up 2x

1GB Zones. So the ZR translation table contains 24 columns that provide drive/region

25 data.
The ZM works generally as follows:
a. Inthe case of SDM (single drive mirroring), 24 columns are used. The drive
numbers are the same in all columns. Each entry corresponds to a physical
Region on a physical drive that makes up the Zone. The first 12 entries point
30 to Regions that contain one copy of the data. The last 12 entries point to the

Regions containing the second copy of the data.

42

WO 2007/128005

10

15

20

PCT/US2007/068139

b. The case of DDM (dual drive mirroring) is the same as SDM except that the

drive number on the first 12 entries is different from that in the last 12 entries.

c. Inthe case of striping, three or more columns may be used. For example, if

striping is used across three drives, six Regions may be needed from three

different drives (i.e., 18 entries are used), with the first six entries containing

the same drive number, the next six entries containing another drive number,

and the following six entries containing a third drive number; the unused

entries are zeroed.

The following table shows a representation of the zone region translation table:

Zone# | Size | Size of | Usage | Drive/ Drive/ Drive/ Drive/
of each Region | Region Region Region
Zone | Region 1)) 23) 24)

0 1GB | 1/12 SDM 0,2000 0,1000 0,10 0,2000

1 1GB | 1/12 DDM | 0,8000 0, 3000 1,2000 1,10

2 1GB | 1/12 SD3 3,4000 3, 3000 4,2000 4,1000

N Free

When a read/write request comes in, the ZM is provided with the Zone number

and an offset into that Zone. The ZM looks in the ZR translation table to figure out the

redundancy mechanism for that Zone and uses the offset to calculate which Drive/Region

contains the sector that must be read/written. The Drive/Region information is then

provided to the 1.1 layer to do the actual read/write. An additional possible entry in the

Usage column is “Free”. “Free” indicates that the Zone is defined but currently not used.

Zones.

The cluster manager allocates and de-allocates clusters within the set of data

The Layout Manager provides run-time re-layout of the Zones vis-a-vis their

Regions. This may occur as a result of disk insertion/removal or failure.

43

WO 2007/128005 PCT/US2007/068139

The Layer 1 (I.1) software knows about physical drives and physical sectors.
Among other things, the 1.1 software allocates Regions from physical drives for use by
the Zones Manager. In this exemplary embodiment, each Region has a size of 1/12GB
(i.e., 174763 sectors) for a four-drive array system. A system with a larger maximum
5 number of drives (8, 12 or 16) will have a different Region size.
In order to create a Zone containing 1GB of data with SD3 (striping over three
drives; two data plus parity), we would end up using six Regions each in three drives (6 x
1/12 = 1/2GB per drive).
The use of this Region scheme allows us to provide better utilization of disk space
10 when Zones get moved around or reconfigured e.g., from mirroring to striping. The 1.1
software keeps track of available space on the physical drives with a bitmap of Regions.
Each drive has one bitmap. Each Region is represented by two bits in the bitmap in order
to track if the Region is free, used, or bad. When the 1.2 software (ZM) needs to create a
Zone, it gets a set of Regions from the 1.1 layer. The Regions that make up a Zone are
15 not contiguous within a disk.
Requests to L1 include:

a. Data read/write (to a cluster within a group of Regions)

b. Control data read/write (tables, data structures, DIC etc)

c. Allocate physical space for a Region (actual physical sectors within 1 drive)
20 d. De-allocate Region

e. Raw read/write to physical clusters within a physical drive

f. Copy data from one Region to another

g. Mark region as bad.
25 The free region bitmap may be large, and therefore searches to find the free entry

(worst case is that no entries are free) may be slow. In order to improve performance,
part of the bitmap can be preloaded into memory, and a linked list of free regions can be
stored in memory. There is a list for each active zone. If a low water mark on the list is

reached, more free entries can be read from the disk as a background activity.

44

WO 2007/128005 PCT/US2007/068139

10

15

20

25

The Disk Manager operates at layer 0. As shown in the following table, there are
two sub-layers, specifically an abstraction layer and the device drivers that communicate

with the physical storage array.

Layer Oa : Abstraction

Layer Ob : OS interface to device drivers and device drivers

Physical Storage Array Hardware

The Device Drivers layer may also contain several layers. For example, for a
storage array using USB drives, there is an ATA or SCSI stack on top of the USB
transport layer. The abstraction layer provides basic read/write functions that are
independent of the kinds of drives used in the storage array.

One or more disk access queues may be used to queue disk access requests. Disk
access rates will be one of the key performance bottlenecks in our system. We will want
to ensure that the disk interface is kept as busy as possible at all times so as to reduce
general system latency and improve performance. Requests to the disk interface should
have an asynchronous interface, with a callback handler to complete the operation when
the disk operation has finished. Completion of one disk request will automatically
initiate the next request on the queue. There may be one queue per drive or one queue for
all drives.

Layer 1 will reference drives as logical drive numbers. Layer 0 will translate
logical drive numbers to physical drive references (e.g., /dev/sda or file device number as
a result of an open() call). For flexibility (expansion via USB), there should be a queue
for each logical drive.

The following are some exemplary object definitions and data flows:

MSG object : incoming from host
Lba
Length
LUN
Data

45

WO 2007/128005 PCT/US2007/068139

REPLY object : outgoing to host
Status
Host
5 Length
Data

Data Read
10

Data read flow:

re=lockm.islocked(MSG)
rc = catm.read(MSG, REPLY)
15 status = zonem.read(zone, offset, length, buffer)
regionm.read(logical disk, region number,region offset,length,buffer)

diskm.read(logical disk,offset,length,buffer)

20 Data Write

Data write flow:

diskutildaemon.spaceavailable()
25 journalm.write(MSG)

lockm.lock(msg)
zonem.write(journal zone, offset, length, buffer)
regionm.write - journal entry
diskm.write
30 regionm.write - end marker
diskm.write

46

WO 2007/128005

catm.write(MSG)

catm.readcluster(Iba,offset,length,buffer)

- merge
5 “if(Iba already allocated)”

catm.readhashkey(lba)

hashm.lookup(hashkey,zone,offset)

“if(refcount==1)"
hashentry.getrefcount()

10 hashm.remove(hashentry)

hasm.add(shal,zone,offset)

zonem.write(zone,offset,length, buffer)

“else”
hashentry.removeref()
15 clusterm.allocate(zone,offset)

zonem.createzone(zone)

PCT/US2007/068139

- if need to merge sector into cluster

- write data

- allocate new cluster

regionm.unusedregions(logical disk)

regionm.allocate(logical disk, number regions, region_list)

zonem.write(...)
20 hashm.add(...)
“endif”
hashdaemon.add(lba,shal)

catm.writehashkey(lba,hashkey)

25
“else”
catm.update(lba,zone,offset, hashkey)
“endif”
journalm.complete(MSG)
30 lockm.unlock(MSG)

- update r/w cursors

47

- write data

- add new entry to hash table

- add to hash daecmon Q

- copy new hash key to CAT

- update CAT with new entry

WO 2007/128005

10

15

PCT/US2007/068139

The following is a description of physical disk layout. As discussed above, each
disk is divided into Regions of fixed size. In this exemplary embodiment, each Region
has a size of 1/12GB (i.e., 174763 sectors) for a four-drive array system. A system with a
larger maximum number of drives (8, 12 or 16) will have a different Region size.
Initially, Region numbers 0 and 1 are reserved for use by the Regions Manager and are
not used for allocation. Region number 1 is a mirror of Region number 0. All internal
data used by the Regions Manager for a given hard disk is stored in Region numbers 0
and 1 of this hard disk. This information is not duplicated (or mirrored) to other drives.
If there are errors in either Region 0 or 1, other Regions can be allocated to hold the data.
The Disk Information Structure points to these Regions.

Each disk will contain a DIS that identifies the disk, the disk set to which it
belongs, and the layout information for the disk. The first sector on the hard disk is
reserved. The DIS is stored in the first non-bad cluster after the first sector. The DIS is
contained in 1KB worth of data. There are two copies of the DIS. The copies of the DIS
will be stored on the disk to which it belongs. In addition, every disk in the system will
contain a copy of all the DISs of the disks in the system. The following table shows the
DIS format:

Offset | Size Name Value/Valid Description
Range
0 32 bytes | disStartSigniture | “ DISC Identifies the cluster as
INFORMATION | being a possible disc
CLUSTER information cluster.
START ” Cluster must be CRC’d to
check that it is valid.
WORDI6 | disVersion Binary non-zero Identifies the structure
number version. This value is
only changed when a
material change is made
to the structure layout or

48

WO 2007/128005

PCT/US2007/068139

content meaning that
makes it incompatible
with previous versions of

the Firmware.

WORDI16

disClusterSize

Binary non-zero

number

The number of 512 byte
sectors that make a

cluster on this disc.

WORD?32

disCRC

CRC-32

CRC of the DIS

structure.

WORD?32

- B T
disSize™

Size of DIS cluster (in
bytes)

WORD?32

disDiskSet

The disk set this disk

belongs to

WORD?32

disDriveNumber

Oto 15

The drive number within

the disk set

WORD?32

disSystemUUID

UUID of'the box this
disk belongs to

WORD64

disDiskSize

Size of the disk in

number of sectors

WORD?32

disRegionSize

Size of Regions in

number of sectors

WORD64

disRegionsStart

Sector offset to the start

of the first Region on the
disk

WORD64

disCopyOffset

Sector offset to where the
copy of this DIS is
stored. The
disCopyOffset of each

DIS reference each other

WORD64

disDISBackup

Sector offset to the table

49

WO 2007/128005

PCT/US2007/068139

containing the copies of

the DISs of all the disks

WORD?32

disDISBackupSize

Number of DISs in the
DIS Backup section

WORD?32

disRISORegion

Region number of where
first copy of the RIS is

stored

WORD?32

disRIS0OfTfset

Number of sectors offset
within the Region to the
sector where the Regions
Information Structure is

located

WORD?32

disRIS1Region

For the copy of the RIS

WORD?32

disRIS10ffset

For the copy of the RIS

WORD?32

disZISORegion

Region number of
Region where the Zones
Information Structure is
located. This is ONLY
used if there is a ZTR on
this disk. Otherwise, it is

Z€10.

WORD?32

disZIS0Offset

Offset to the ZIS within

the region

WORD?32

disZIS1Region

Region number of
Region where a copy of
the ZIS is located. This is
ONLY used in a single
drive system. In other

cases, this entry is 0.

WORD?32

disZIS10ffset

Offset to the ZIS within

the region

WO 2007/128005

PCT/US2007/068139

Regions Manager stores its internal data in a regions information structure. The

following table shows the regions information structure format:.

Offset | Size Name Value/Valid Description
Range
0 WORD®64 | risSignature Indicates that this is a RIS
WORD32 | risSize Size of this structure (bytes)
WORD?32 | risChecksum Checksum
WORD32 | risVersion Version of this table (and
bitmap)
WORD32 | risDrive Logical Drive number
WORD®64 | risStartSector Absolute start sector (in disk)
of Regions utilization bitmap
WORD32 | risSectorOffset Sector offset of Regions
utilization bitmap within the
current Region
WORD32 | risSizeBitmap Size of bitmap (in bits?)
WORD®64 | risNumberRegions Number of regions on this
disk (also implies size of
bitmap)

5
The zones information structure provides information on where the Zones

Manager can find the Zones Table. The following shows the zones information structure
format:

10
Offset | Size Name Value/Valid | Description

Range

0 WORD®4 | zisSignature Indisates that this is a ZIS

51

WO 2007/128005 PCT/US2007/068139

8 WORD32 | zisSize Size of this structure (bytes)

12 WORD?32 | zisChecksum Checksum

16 WORD32 | zisVersion Version of this table (and
bitmap)

20 WORDI16 | zisFlags Bit 0 = 1 if this disk is used to

contain the Zones info

Bits 14-15 : redundancy type

(either SDM or DDM only)
22 WORDI16 | zisOtherDrive Logical drive number of the
drive that contains the other
copy of the Zones Table.
24 WORD?32 | zisNumberRegions Number of Regions used to

contain each copy of the Zones
Table. Equal to the number of

Zones Table Nodes.

28 WORD32 | zisStartOffset Byte offset pointing to start of

linked list of Regions that are

used to contain the Zones
Table. Each entry in the linked
list is called ‘Zones Table
Node”

WORD?32 | zisNumberofZones Number of Zones (entries in

Zones Table) in the system

WORD32 | zisZoneSize Size of zones in bytes

High level information zones contain the Zone tables and other tables used by the
high level managers. These will be protected using mirroring.

The following table shows the zones table node format:

Size Name Description

52

WO 2007/128005 PCT/US2007/068139

WORD?32 ztNextEntry Pointer to next entry
in linked list

WORD32 ztCount Count of this entry

WORD64 ztRegion Region number

The following is a description of layout of zones information. The linked list of Zones

Table Nodes is placed after the ZIS in the following manner:

Zones Information Structure

First Zones Table Node (16bytes)

Last Zones Table Node (16 bytes)

This information is stored in the Zones Table Region.

Fig. 16 shows the drive layout in accordance with an exemplary embodiment of
the invention. The first two regions are copies of one another. A third (optional) Zones
Table Region contains the Zone Tables. In a system with more than one drive, only two

10 of'the drives contain a ZTR. In a system with only one drive, two Regions are used to
hold the two (mirrored) copies of the ZTR. The DIS contains information on the location
of the RIS and the ZIS. Note that the first copy of the RIS does not have to be in Region
0 (e.g., could be located in a different Region if Region 0 contains bad sectors).

The Zones Manager needs to load the Zones Tables on system start up. To do

15 that, it extracts the Region number and offset from the DISs. This will point to the start
of the ZIS.

Certain modules (e.g., the CAT Manager) store their control structures and data
tables in Zones. All control structures for modules in Layer 3 and higher are referenced
from structures that are stored in Zone 0. This means, for example, that the actual CAT

20 (Cluster Allocation Tables) locations are referenced from the data structures stored in
Zone 0.

The following table shows the zone 0 information table format:

53

WO 2007/128005

PCT/US2007/068139

Offset | Size Name Value/Valid | Description
Range
0 WORD®4 | zitSignature Indisates that this is a ZIT

WORD32 | zitSize Size of this structure (bytes)

WORD?32 | zitChecksum Checksum of this structure

WORD?32 | zitVersion Version of this structure

WORD32 | zitCATLStartOffset Byte offset (within this
Zone) of start of CAT linked
list

WORD?32 | zitCATSize Number of nodes in CAT
linked list. Equal to number
of Zones containing the CAT

WORD64 | zitCAT Addressable The max LLBA supported by
the CAT. Effectively the size
ofthe CAT

WORD32 | zitHTStartOffset Byte (within this Zone) of
the start of the Hash Table
linked list

WORD?32 | zitHTNumberNodes Number of nodes in Hash
Table linked list

WORD64 | zitHTSize Size of Hash Table data in
bytes

The CAT linked list is a linked list of nodes describing the Zones that contain the
CAT. The following table shows the CAT Linked List node format:

Size

Name

Description

WORD?32

catliNextEntry

in linked list

Pointer to next entry

54

WO 2007/128005

WORDI16

catliCount

Count of this entry

WORDI16

catllZone

Zone number
containing this

portion of the CAT

5 format:
Size Name Description
WORD?32 htliNextEntry Pointer to next entry
in linked list
WORD16 htliCount Count of this entry
WORD16 htllZone Zone number

containing this
portion of the hash
table

10 accordance with an exemplary embodiment of the invention.

PCT/US2007/068139

The hash table linked list is a linked list of nodes that describe the Zones which
hold the Hash Table. The following table shows the Hash Table Linked List node

Fig. 17 demonstrates the layout of Zone 0 and how other zones are referenced, in

As discussed above, a Redundant set is a set of sectors/clusters that provides

redundancy for a set of data. Backing up a Region involves copying the contents of a

Region to another Region.

In the case of a data read error, the lower level software (Disk Manager or Device

15 Driver) retries the read request two additional times after an initial failed attempt. The

failure status is passed back up to the Zones Manager. The Zones Manager then attempts

to reconstruct the data that is requested (by the read) from the redundant clusters in the

disk array. The redundant data can be either a mirrored cluster (for SDM, DDM) or a set

of clusters including parity (for a striped implementation). The reconstructed data is then

55

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

passed up back to the host. If'the ZM is unable to reconstruct the data, then a read error
is passed up back to the host. The Zones Manager sends an Error Notification Packet to
the Error Manager. Fig. 18 demonstrates read error handling in accordance with an
exemplary embodiment of the invention.

In the case of a data write error, the lower level software (Disk Manager or
Device Driver) retries the write request two additional times after an initial failed attempt.
The failure status is passed back up to the Zones Manager. The Zones Manager sends an
Error Notification Packet to the Error Manager.

When a data write is performed at this level, the redundancy information is also
written to disk. As a result, as long as only one cluster has a write error, a subsequent
read will be able to reconstruct the data. Ifthere are multiple disk errors and redundancy
information cannot be read or written, then there are at least two possible approaches:

a. Return a write error status to the host. Back up all the Regions associated with

the redundant set to newly allocated Regions that do not contain bad sectors.

b. Hold off the write. Back up all the Regions associated with the redundant set

to newly allocated Regions that do not contain bad sectors. Subsequently, do
the write on the appropriate cluster in the newly allocated Regions (along with
all redundancy parts e.g., parity etc.). A separate write queue would be used

to contain the writes that have been held off.

Approach (a) is problematic because a write status would likely have already been
sent to the host as a result of a successful write of the Journal, so the host may not know
that there has been an error. An alternative is to report a failure with a read, but allow a
write. A bit in the CAT could be used to track that the particular LBA should return a
bad read.

Fig. 19 demonstrates write error handling in accordance with an exemplary
embodiment of the invention.

The Error Manager (EM) checks the cluster to see if it is really bad. If so, the
entire region is considered bad. The contents of the Region are copied over to a newly
allocated Region on the same disk. The current Region is then marked BAD. While

copying over the Region, the Error Manager will reconstruct data where necessary when

56

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

it encounters bad sectors. Fig. 20 is a logic flow diagram demonstrating backup of a bad
Region by the Error Manager in accordance with an exemplary embodiment of the
invention.

If there is a data read error and the Error Manager is unable to reconstruct the data
for a given cluster (e.g., as a result of read errors across the redundant set) then zeros will
be used in place of the data that cannot be reconstructed. In this case, other Regions
(from the same Redundant Set) that contain bad sectors will also have to be backed up.
Again, zeros will be used in place of the data that cannot be reconstructed.

Once a copy of the redundant set is made, the EM disables access to the clusters
corresponding to this part of the Zone. It then updates the Zones Table to point to the
newly allocated Regions. Subsequently, accesses to the clusters are re-enabled.

This exemplary embodiment is designed to support eight snapshots (which allows
use of one byte to indicate whether hash/cluster entries are used by a particular snapshot

instance). There are two tables involved with snapshots:

1. A per-snapshot CAT table will need to exist to capture the relationship between
logical sector addresses and the cluster on the disk that contains the data for that
LSA. Ultimately the per-snapshot CAT must be a copy of the CAT at the moment
the snapshot was taken.

2. The system hash table, which maps between hash values and a data cluster. The
hash function returns the same results regardless of which snapshot instance is
being used, and as a result is common across all snapshots. As a result, this table
must understand whether a unique cluster is being used by any snapshots. A hash
cluster entry can not be freed, or replaced with new data unless there are no

snapshots using the hash entry.

There will always be a snapshot that is current and being added to. When a hash entry
is created or updated, we will need to apply the current snapshot number to that hash
entry. When a snapshot is made, the current snapshot number will be incremented.

Clusters/hash entries that are not longer required by any snapshots are freed by

walking through the hash table and find any hash entries with the retiring snapshot bit set

57

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

and clearing that bit. If the snapshot byte is now zero, the hash entry can be removed
from the table and the cluster can be freed.

To prevent collisions with any new entries being added to the hash tree (because
the new snapshot number is the same as the retiring snapshot number), only allow 7
snapshots may be permitted to be taken, with the final (eighth) snapshot the one that is
being retired. The hash table can be walked as a background activity.

In order to create a snapshot, a second CAT zone could be written whenever the
main CAT is being updated. These updates could be queued and the shadow CAT could
be updated as another task. In order to snapshot, the shadow CAT becomes the snapshot
CAT.

Once the snapshot is done, a background process can be kicked off to copy this
snapshot table to a new zone become the new snapshot CAT. A queue could be used so
that the shadow CAT queue is not processed until the copy of the CAT had completed. If
a failure were to occur before updating the shadow CAT (in which case entries in the
queue may be lost), re-shadow from the primary CAT table could be performed before
the array is brought online.

Alternatively, when a snapshot is required, a collection of “deltas” plus the initial
CAT copy could make up the snapshot. A background task could then reconstitute a full
snapshot CAT from this info. This would require little or no downtime to do the
snapshot. In the meantime, another set of deltas could be collected for the following

snapshot.

FILESYSTEM-AWARE STORAGE SYSTEM

As discussed above, embodiments of the present invention analyze host
filesystem data structures (i.e., metadata) in order to determine storage usage of the host
filesystem and manage physical storage based on the storage usage of the host filesystem.
For the sake of convenience, this functionality may be referred to hereinafter as a
“scavenger.” A similar function, which may be referred to hereinafter as a “monitor,”
could be included to monitor storage usage but not necessarily manage the physical

storage. Both scavengers and monitors are discussed below.

58

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

FIG. 27 is a conceptual block diagram of a computer system 2700 in accordance
with an exemplary embodiment of the present invention. The computer system 2700
includes, among other things, a host computer 2710 and a storage system 2720. The host
computer 2710 includes, among other things, a host operating system (OS) 2712 and a
host filesystem 271 1. The storage system 2720 includes, among other things, a
filesystem-aware storage controller 2721 and storage 2722 (e.g., an array including one
or more populated disk drives). Storage 2722 is used to store, among other things,
storage controller data structures 2726, host OS data structures 2725, host filesystem data
structures 2723, and user data 2724. The filesystem-aware storage controller 2721 stores
various types of information in the storage controller data structures 2726 (represented by
a dashed line between the filesystem-aware storage controller 2721 and the storage
controller data structures 2726), such as a partition table including a reference to an OS
partition (represented by a dashed line between the storage controller data structures 2726
and the host OS data structures 2725). The host OS 2712 stores various types of
information in the host OS data structures 2725 (represented by a dashed line between the
host OS 2712 and the host OS data structures 2725), typically including
pointers/references to the host filesystem data structures 2723 (represented by a dashed
line between the host OS data structures 2725 and the host filesystem data structures
2723). The host filesystem 2711 stores information in the host filesystem data structures
2723 (referred to as metadata, and represented by a dashed line between the host
filesystem 2711 and the host filesystem data structures 2723) relating to the user data
2724. The filesystem-aware storage controller 2721 handles storage requests from the
host filesystem 2711 (represented by a solid line between the host filesystem 2711 and
the filesystem-aware storage controller 2721), utilizes the host OS data structures 2725
and host filesystem data structures 2723 to determine storage usage of the host filesystem
2711 (represented by a dashed line between the filesystem-aware storage controller 2721
and the host OS data structures 2725 and a dashed line between the filesystem-aware
storage controller 2721 and the host filesystem data structures 2723), and manages
storage of the user data 2724 based on the storage usage of the host filesystem 2711

(represented by a dashed line between the filesystem-aware storage controller 2721 and

59

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

the user data 2724). Specifically, the filesystem-aware storage controller 2721 may
implement a scavenger and/or a monitor, as discussed below.

The filesystem-aware storage controller 2721 generally needs to have a sufficient
understanding of the inner workings of the host filesystem(s) in order to locate and
analyze the host filesystem data structures. Of course, different filesystems have
different data structures and operate in different ways, and these differences can affect
design/implementation choices. Generally speaking, the filesystem-aware storage
controller 2721 locates host filesystem data structures 2723 in storage 2722 and analyzes
the host filesystem data structures 2723 to determine storage usage of the host filesystem
2711. The filesystem-aware storage controller 2721 can then manage the user data
storage 2724 based on such storage usage.

FIG. 28 is high-level logic flow diagram for the filesystem-aware storage
controller 2721, in accordance with an exemplary embodiment of the present invention.
In block 2802, the filesystem-aware storage controller 2721 locates host filesystem data
structures 2723 in storage 2722. In block 2804, the filesystem-aware storage controller
2721 analyzes the host filesystem data structures to determine host filesystem storage
usage. In block 2806, the filesystem-aware storage controller 2721 manages user data
storage based on the host filesystem storage usage.

FIG. 29 is a logic flow diagram for locating the host filesystem data structures
2723, in accordance with an exemplary embodiment of the present invention. In block
2902, the filesystem-aware storage controller 2721 locates its partition table in the
storage controller data structures 2726. In block 2904, the filesystem-aware storage
controller 2721 parses the partition table to locate the OS partition containing the host OS
data structures 2725. In block 2906, the filesystem-aware storage controller 2721 parses
the OS partition to identify the host OS 2712 and locate the host OS data structures 2725.
In block 2908, the filesystem-aware storage controller 2721 parses the host OS data
structures 2725 to identify the host filesystem 2711 and locate the host filesystem data
structures 2723.

Once the filesystem-aware storage controller 2721 locates the host filesystem data
structures 2723, it analyzes the data structures to determine storage usage of the host

filesystem 2711. For example, the filesystem-aware storage controller 2721 may use the

60

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

host filesystem data structures 2723 for such things as identifying storage blocks no
longer being used by the host filesystem 2711 and identifying the types of data stored by
the host filesystem 2711. The filesystem-aware storage controller 2721 could then
dynamically reclaim storage space no longer being used by the host filesystem 2711
and/or manage storage of the user data 2724 based on data types (e.g., store frequently
accessed data uncompressed and in sequential blocks to facilitate access, store
infrequently accessed data compressed and/or in non-sequential blocks, and apply
different encodingschemes based on data types, to name but a few).

FIG. 30 is a logic flow diagram for reclaiming unused storage space, in
accordance with an exemplary embodiment of the present invention. In block 3002, the
filesystem-aware storage controller 2721 identifies blocks that are marked as being
unused by the host filesystem 2711. In block 3004, the filesystem-aware storage
controller 2721 identifies any blocks that are marked as unused by the host filesystem
2711 but are marked as used by the filesystem-aware storage controller 2721. In block
3006, the filesystem-aware storage controller 2721 reclaims any blocks that are marked
as used by the filesystem-aware storage controller 2721 but are no longer being used by
the host filesystem 2711 and makes the reclaimed storage space available for additional
storage.

FIG. 31 is a logic flow diagram for managing storage of the user data 2724 based
on the data types, in accordance with an exemplary embodiment of the present invention.
Inblock 3102, the filesystem-aware storage controller 2721 identifies the data type
associated with particular user data 2724. In block 3104, the filesystem-aware storage
controller 2721 optionally stores the particular user data 2724 using a storage layout
selected based on the data type. In block 3106, the filesystem-aware storage controller
2721 optionally encodes the particular user data 2724 using an encoding scheme (e.g.,
data compression and/or encryption) selected based on the data type. In this way, the
filesystem-aware storage controller 2721 can store different types of data using different
layouts and/or encoding schemes that are tailored to the data type.

One example of a scavenger is the so-called “garbage collector.” As discussed
above, the garbage collector may be used to free up clusters which are no longer used by

the host file system (e.g., when a file is deleted). Generally speaking, garbage collection

61

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

works by finding free blocks, computing their host LSAs, and locating their CAT entries
based on the L.SAs. If there is no CAT entry for a particular LSA, then the cluster is
already free. If, however, the CAT entry is located, the reference count is decremented,
and the cluster is freed if the count hits zero.

One concern is that it may be difficult for the garbage collector to distinguish a
block that the host filesystem has in use from one that it has previously used and at some
point marked free. When the host filesystem writes a block, the storage system allocates
a cluster for the data as well as a CAT entry to describe it. From that point on, the cluster
will generally appear to be in use, even if the host filesystem subsequently ceases to use
its block (i.e., the cluster will still be in use with a valid CAT entry).

For example, certain host filesystems use a bitmap to track its used disk blocks.
Initially, the bitmap will indicate all blocks are free, for example, by having all bits clear.
As the filesystem is used, the host filesystem will allocate blocks through use of its free
block bitmap. The storage system will associate physical storage with these filesystem
allocations by allocating clusters and CAT entries as outlined earlier. When the host
filesystem releases some blocks back to its free pool, it simply needs to clear the
corresponding bits in its free block bitmap. On the storage system, this will generally be
manifested as a write to a cluster that happens to contain part of the host’s free block
bitmap, likely with no I/O to the actual cluster being freed itself (although there might be
I/O to the freed cluster, for example, if the host filesystem were running in some
enhanced security mode, in which case it would likely write zeros or a crypto strong hash
of random data to the cluster in order to reduce the chance that stale cluster contents can
be read by an attacker). Furthermore, there is no guarantee that the host filesystem will
reuse blocks that it has previously freed when satisfying new allocation requests. Thus, if
the host filesystem continues to allocate what from the storage system’s point of view are
new, i.e. previously unused, blocks then the storage system will quickly run out of free
clusters, subject to whatever space can be reclaimed via compression. For example,
assuming a filesystem block is 4k, if the host allocates filesystem blocks 100 through
500, subsequently frees blocks 300 through 500, and then allocates blocks 1000 through
1100, the total filesystem usage will be 300 blocks, and yet the array will have 500

clusters in use.

62

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

In an exemplary embodiment of the present invention, the storage system may
detect the release of host filesystem disk resources by accessing the host filesystem
layout, parsing its free block bitmaps, and using that information to identify clusters that
are no longer being used by the filesystem. In order for the storage system to be able to
identify unused clusters in this way, the storage system must be able to locate and
understand the free block bitmaps of the filesystem. Thus, the storage system will
generally support a predetermined set of filesystems for which it “understands” the inner
working sufficiently to locate and utilize the free block bitmaps. For unsupported
filesystems, the storage system would likely be unable to perform garbage collection and
should therefore only advertise the real physical size of the array in order to avoid being
overcommitted.

In order to determine the filesystem type (e.g., NTFS, FAT, ReiserFS, ext3), the
filesystem’s superblock (or an equivalent structure) needs to be located. To find the
superblock, the partition table will be parsed in an attempt to locate the OS partition.
Assuming the OS partition is located, the OS partition will be parsed in an attempt to
locate the superblock and thereby identify the filesystem type. Once the filesystem type
is known, the layout can be parsed to find the free block bitmaps.

In order to facilitate searching for free blocks, historical data of the host
filesystem bitmap can be kept, for example, by making a copy of the free block bitmap
that can be stored in a private, non-redundant zone and performing searches using the
copy. Given the size of the bitmap, information may be kept for a relatively small
number of clusters at a time rather than for the whole bitmap. When a garbage collection
is performed, the current free block bitmap can be compared, cluster-by-cluster, with the
historical copy. Any bitmap entries transitioning from allocated to free can be identified,
allowing the scavenging operation to be accurately directed to clusters that are good
candidates for reclamation. As each bitmap cluster is processed, the historical copy can
be replaced with the current copy to maintain a rolling history of bitmap operations.
Over time the copy of the free block bitmap will become a patchwork of temporally
disjoint clusters, but since the current copy will always be used to locate free entries, this

does not cause any problems.

63

WO 2007/128005 PCT/US2007/068139

Under certain conditions, there could be a race condition regarding the free block
bitmap, for example, if the host filesystem allocates disk blocks using its free block
bitmap, then writes its data blocks, then flushes the modified bitmap back to disk. In
such a case, the garbage collector might free a cluster even though the filesystem is using

5 the cluster. This could lead to filesystem corruption. The storage system should be
implemented to avoid or handle such a condition.

Because garbage collection can be a fairly expensive operation, and since even
lightweight scavenging will consume back-end I/O bandwidth, garbage collection should
not be overused. The garbage collector should be able to run in several modes ranging

10 from a light background lazy scavenge to an aggressive heavyweight or even high
priority scavenge. For example, the garbage collector could be run lightly when 30% of
space is used or once per week at a minimum, run slightly more heavily when 50% of
space is used, and run at a full high-priority scavenge when 90% or more of disk space is
used. The aggressiveness of the garbage collector could be controlled by limiting it to a

15 target number of clusters to reclaim and perhaps a maximum permissible I/O count for
each collection run. For example, the garbage collector could be configured to reclaim 1
GB using no more than 10,000 I/Os. Failure to achieve the reclaim request could be used
as feedback to the collector to operate more aggressively next time it is run. There may
also be a “reclaim everything” mode that gives the garbage collector permission to parse

20 the entire host filesystem free block bitmap and reclaim all blocks that it possibly can.
This might be done as a last ditch attempt to reclaim clusters when the array is (almost)
completely full. The garbage collector may be run periodically to apply its rules and may
or may not decide to perform a scavenge operation. The scavenge operation should also
be able to be explicitly requested from another module, for example the region manager

25 when it is struggling to find clusters to build a region.

The garbage collection function can be tied into the status indicator mechanism.
For example, at some point, the storage system might be in a “red” condition, although an
ongoing garbage collection operation might free up enough space to erase the “red”
condition. Additional indicator states could be employed to show related status

30 information (e.g., the red indicator light might be made to blink to indicate that a garbage

collection operation is ongoing).

64

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

FIG. 21 is a schematic block diagram showing the relevant components of a
storage array in accordance with an exemplary embodiment of the present invention.
Among other things, the storage array includes a chassis 2502 over which a storage
manager 2504 communicates with a plurality of storage devices 2508,-2508x, which are
coupled to the chassis respectively through a plurality of slots 2506,-2506n. Each slot
2506,-2506y5 may be associated with one or more indicators 2507;-2507y. Among other
things, the storage manager 2504 typically includes various hardware and sofiware
components for implementing the functionality described above. Hardware components
typically include a memory for storing such things as program code, data structures, and
data as well as a microprocessor system for executing the program code.

One concern for implementing the filesystem-aware storage controller 2721 is
that many host filesystems do not update the data structures (i.e., metadata) in real time.
For example, journaling filesystems do not normally guarantee to preserve all of the user
data for transactions that have already happened or guarantee to recover all of the
metadata for such transactions, but generally only guarantee the ability to recover to a
consistent state. For performance and efficiency, journaling filesystems often deploy
some degree of asynchronicity between user data writes and metadata writes. In
particular, it is common for the metadata writes to disk to be performed lazily such that
there is a delay between a user data update and a corresponding metadata update. Journal
writes may also be performed lazily in some filesystems (such as NTFS according to Ed
4 of Microsoft Windows Internals). Furthermore, lazy metadata writes may be performed
by play-out of the journal in a transaction-by-transaction manner, and that has
considerable potential to push the metadata temporarily into states that are inconsistent
with the user data already on-disk. An example of this would be a bitmap update
showing a de-allocation after the host had re-allocated the cluster and sent user data
corresponding to that reallocated cluster. Thus, the storage system generally needs to
cope with metadata updates that do not reliably indicate the present state of the user data.
In the previous example, that would generally mean that the storage system could not
interpret the de-allocation to mean that the cluster was reclaimable and the user data

discardable.

65

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

If metadata and journal updates are entirely asynchronous to the user data updates
to which they correspond, such that they can happen at any time, the storage system may
need to have a relatively detailed understanding of the inner workings of the filesystem,
and therefore may need to store extensive state information in order to make appropriate
decisions. Specific embodiments of the present invention described below, however, are
designed to operate under the assumption that metadata updates will occur within a
relatively deterministic window of time after the user data writes to which they pertain
(e.g., within one minute). It is understood that such embodiments are essentially trade-
offs between complexity and functionality in that they generally are not required to have
a detailed understanding of inner workings of the filesystem and storage of extensive
state information, although special considerations may need to be made for handling host
filesystems that do not adhere to such a window during operation (VXFS may be one
example) or boundary conditions that result in a long delay between user data updates
and corresponding metadata updates (e.g., a loss of function from the host, which is
generally beyond the control of the storage system and might lead to data loss anyway, or
a loss of connectivity, which the storage system could detect and thereby suppress any
behavior that assumes timely host activity).

In one exemplary embodiment, the scavenger could operate in a purely
asynchronous manner. In this embodiment, the scavenger may be a purely asynchronous
task that periodically scans the bitmap, either in whole or part, and compares the bitmap
with information contained in the CAT to determine whether any of the storage array
clusters can be reclaimed. Before checking a bitmap, the system may also check those
blocks that contain the location of the bitmap in order to determine whether the bitmap
has moved.

One advantage of a purely asynchronous scavenger is that there is essentially no
direct impact on processor overhead within the main data path, although it may involve
substantial asynchronous disk I/O (e.g., for a 2TB volume logically divided into 4k
clusters and having a 64MB bitmap, reading the whole bitmap would involve reading
64+MB of disk data every time the scavenger runs) and therefore may impact overall
system performance depending on how often the scavenger runs. Therefore, the

scavenger frequency may be varied depending on the amount of available storage space

66

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

and/or system load. For example, when available storage space is plentiful or system
load is high, the scavenger function could be run less frequently. Decreasing scavenger
frequency will generally decrease the rate at which storage space is reclaimed, which is
generally acceptable when storage space is plentiful. On the other hand, when available
storage space is scarce and system load is low, the scavenger function could be run more
frequently in order to increase the rate at which storage space is reclaimed (at the expense
of added processing overhead).

In another exemplary embodiment, the scavenger could operate in a partly
synchronous, partly asynchronous manner. In this embodiment, the scavenger could
monitor changes to the bitmap as they occur, for example, by adding some additional
checks to the main write handling path. The scavenger could construct a table at boot
time that includes the LBA range(s) of interest (hereinafter referred to as the Bitmap
Locator Table or BLT). For an uninitialized disk or an initialized but unpartioned disk,
the BLT would generally include only LBA 0. For a fully initialized and formatted disk,
the BLT would generally include LBA 0, the LBA(s) of every partition boot sector, the
LBA(s) containing the bitmap metadata, and the LBA range(s) containing the bitmap data
itself.

The main write handling path (e.g., HRT) typically calls the scavenger with
details of the write being handled, in which case the call would generally internally cross-
reference the LBA(s) of the write request with the BLT with a view to identifying those
writes which overlap with the LBA range(s) of interest. The scavenger would then need
to parse those writes, which could be mostly done with an asynchronous task (in which
case key details would generally need to be stored for the asynchronous task, as discussed
below), but with critical writes parsed inline (e.g., if an update is potentially indicative of
a relocated bitmap, that write could be parsed inline so that the BLT may be updated
before any further writes are cross-referenced). As discussed above with reference to a
purely asynchronous scavenger, the frequency of the asynchronous task could be varied
depending on the amount of available storage space and/or system load.

Storage for the asynchronous task could be in the form of a queue. A simple
queue, however, would allow queuing of multiple requests for the same block, which

could occur because the semantics of a write cache makes it likely that a number of

67

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

requests would point to the same data block in the cache (i.e., the most recent data) and is
inefficient because there is generally no reason to hold multiple requests representing the
same LBA. This could be alleviated by checking through the queue and removing earlier
requests for the same block. Furthermore, assuming the frequency of the asynchronous
task is varied depending on the amount of available storage space and/or system load,
then the queue should be provisioned with the expectation that it will reach its maximum
size during periods of intense activity (which might be sustained for days) in which the
asynchronous task is suppressed. Assuming the system is disallowing multiple entries
for the same L.LBA, the maximum theoretical size of the queue is a product of the size of
the LBA and the number of LB As within the bitmap, which could result in very large
queue size (e.g., a 2TB volume has a 64MB bitmap (i.e., 128K blocks) and therefore
might require a queue size on the order of 128K* 4 = 512K; a 16TB volume might
require a queue size on the order of 4MB.

Alternate storage for the asynchronous task could be in the form of a bitmap of
the bitmap (referred to hereinafter as the “Bitmap Block Updates Bitmap” or “BBUB”),
with each bit representing one block of the real bitmap. The BBUB inherently avoids
multiple requests for the same block, since the same bit is set for each of such requests,
so the multiple requests only show up once in the BBUB. Furthermore, the size of the
BBUB is essentially fixed, without regard to the frequency of the asynchronous task, and
generally occupies less space than a queue (e.g., the BBUB would occupy 16KB of
memory for a 2TB volume, or 128KB for a 16TB volume). In the event that the real
bitmap moves, the storage system can easily adjust the mapping of the bits in the BBUB,
but will generally need to take care not to map pending requests to the new location
before the host has copied the data across (in fact, it may be possible to zero out the
bitmap on the assumption that the host filesystem will rewrite every LBA anyway). The
BBUB may be placed in non-volatile memory (NVRAM) to prevent loss of the current
BBUB or may be placed in volatile memory, with the understanding that the current
BBUB could be lost and a complete scan of the bitmap would need to be run sometime
after reboot to recover the lost information. Since a bitmap does not inherently provide
the asynchronous task with a ready measure of the number of requests, the storage system

could maintain statistics about the number of bits set in the bitmap so that the

68

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

asynchronous task does not have to scan through the entire bitmap just to determine that
nothing has been updated. For example, the storage system might maintain a count of
how many bits are set in the bitmap and may adjust the frequency of the asynchronous
task based on the count (e.g., do not run the asynchronous task unless and until the count
reaches a predetermined threshold, which may be user-configurable). Such a strategy
may be refined further, for example, by maintaining a separate count of set bits for each
of a number of map sections (e.g., 1K chunks) and also keeping track of which map
section has the highest count, so that the asynchronous task can parse just the map
section(s) that are likely to return the greatest reward.

Parsing the updates generally involves different logic for different LBAs. For
example, a change to LBA 0 generally means that the partition table has been added, or
that a partition has been added to the table, or that a partition has been deleted. An
update to the partition boot sector might mean that the bitmap metadata has been
relocated. An update to the bitmap metadata might mean that the bitmap has been
moved, or that it has been extended. An update to the bitmap itself might indicate
allocation or de-allocation of clusters. Ifthe updates are parsed asynchronously, then the
system generally cannot readily compare the old data with the new because, by the time
the asynchronous task runs, the new data may have overwritten the old. To avoid this
problem, the system might keep a separate copy of the old data for comparison or might
iterate through the map and compare the unset bits with the CAT (which might require
slightly more processor overhead but less disk [/O). Simply comparing the bitmap with
the CAT would generally require additional logic and state imformation, since the bitmap
state may not be synchronized with the user data, as discussed above. Furthermore,
keeping a copy of the bitmap data would allow the storage system to compare new data
with old and thereby determine exactly what changed, but the storage system generally
cannot rely on state transitions as an accurate view of current user data state any more
than it can rely on the state itself, as discussed above.

In yet another exemplary embodiment, the scavenger could operate in a purely
synchronous manner. In this embodiment, the scavenger would process writes as they
occur. One advantage of a purely synchronous embodiment is that it avoids the

complexities associated with operation of an asynchronous task and its associated

69

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

storage, although it interjects overhead on the processor during the critical time of
handling a write from the host, and additional logic and state information might be
required to compensate for asynchronous metadata updates.

One concern with reclaiming clusters in the context of asynchronous bitmap
updates is that the scavenger might free clusters inappropriately, based on bitmap values
that do not accurately reflect the state of the user data. To safeguard against such
problems, the storage system may keep some history of cluster accesses it performs (e.g.,
whether or not it has recently accessed the user data in a cluster) and only reclaim a
cluster if the cluster has been quiescent over some previous time interval to ensure that no
metadata updates are pending for that cluster. For example, the storage system might
require a cluster to be quiescent for at least one minute before performing any
reclamation of the cluster (generally speaking, increasing the quiescent time reduces the
risk of inappropriate reclamation but increases latency in reacting to data deletion, so
there is a trade-off here). The storage system could track only cluster writes, although the
storage system could additionally track cluster reads for thoroughness in assessing cluster
activity, albeit at the expense of additional disk I/O). The quiescent time could be a fixed
value or could be different for different filesystems.

Cluster accesses could be tracked, for example, by writing a scavenger cycle
number to the CAT as an indicator of access time relative to the scavenger runs.

Cluster accesses could alternatively be tracked by writing bits to the filesystem’s
bitmap prior to writing the data. Any such modification of the filesystem’s metadata
would have to be coordinated carefully, though, in order to avoid any adverse interactions
with filesystem operation.

Cluster access could alternatively be tracked using a bit for each cluster, block, or
chunk (of whatever size). The bit would generally be set when that entity is accessed and
might be reset when the scavenger completes its next run or when the scavenger next
tries to reclaim the cluster. The scavenger generally would only reclaim the cluster if this
bit was already reset when trying to perform the reclamation, which would itself be
driven by the corresponding bit in the real host filesystem bitmap being clear. These bits
could be kept together as a simple bitmap or could be added to the CAT as a distributed
bitmap (requiring an additional one bit per CAT record). The simple bitmap approach

70

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

may require an additional read-modify-write on most data write operations, potentially
causing a decrease in performance of the main data path unless the bitmap is cached in
memory (the bitmap could be cached in volatile memory, which could be problematic if
the bitmap is lost due to an unexpected outage, or in non-volatile memory, which might
necessitate a smaller bitmap due to memory constraints and therefore less granularity).
The CAT approach would generally benefit from the J2 and its free NVRAM caching.

Cluster accesses could alternatively be tracked by maintaining timestamps of
when bitmap updates are received and when cluster modifications are performed. Then,
if a cluster modification has a later timestamp than the bitmap update, the system
generally would not free the cluster. One advantage of this approach over the bit
approach is that the scavenger can determine how long ago the last access occurred and,
if long enough, reclaim the cluster immediately. A timestamp may also be added to the
CAT record. Alternatively, as the field only really needs to indicate age relative to
scavenger operation, a global identifier may be assigned to each scavenger run. The
system may then use a similar field within the CAT to show the value of the global
identifier. The global identifier may identify which scavenger run had most recently
completed, or was next due, or when the cluster was last accessed. This information
could then be used by the scavenger as a measure of age. To save on space consumption
in the CAT record, the identifier could just be a one byte counter. Any incorrect age
determinations due to the counter wrapping will be old clusters looking much younger
than they are. These clusters will be reclaimed on the next run. The field may be stored in
NVRAM to prevent the field from being reset to zero on every reboot, which could cause
some cluster accesses to age prematurely.

Thus, for example, every scavenger run may be associated with a one-byte
identifier value, which could be implemented as a global counter in NVRAM that
increments each time the scavenger wakes such that the identifier for a scavenger run will
be the post-increment value of the counter. The CAT manager could use the the current
value of the global counter whenever it services an update to a cluster and could store a
copy of that value in the corresponding CAT record. Such an implementation would

require modification of the CAT manager logic.

71

WO 2007/128005 PCT/US2007/068139

Cluster access could alternatively be tracked by keeping a short history of cluster
updates in a wrapping list. The scavenger could then search the list to verify that any
cluster it was about to free had not recently been accessed by the host. The size of the list
would generally be implementation-specific. However long it was, the storage system

5 would generally have to ensure that it could run the asynchronous task before the list
could get full, and that would compromise the ability to postpone the task until a quiet
period.

In a storage system supporting scavenging, it might be desirable to identify and
track premature reclamations, particularly reads that fail because of premature

10 reclamation (i.e., an attempt to read from a cluster that has been freed by the scavenger),
but also writes to unallocated clusters (which will generally just result in allocation and
should therefore be harmless). In some situations, it may be possible to identify errors
based on the filesystem bitmap (e.g., cross reference to the bitmap from the user data
write and check that the appropriate bit is set), but only if bitmap updates are guaranteed

15 to be completed ahead of the user data, which is not always the case. Alternatively, when
parsing the bitmap, the scavenger might check whether the allocated bits actually
correspond to allocated clusters; allocate clusters, or at least CAT records, where they do
not; set a bit in each such CAT record indicating that the allocation was forced from the
scavenger; a bit that would be reset by a data write to the cluster; and check the bit again

20 on the next scavenger run and scream if its still set. Additional self-diagnostics could be
included, such as a count of the number of times that cluster reclamation was aborted due
to this preventative measure, to give us a measure of which filesystems do this and how
much.

It should be noted that the three types of scavengers described above are

25 exemplary only and do not limit the present invention to any particular design or
implementation. Each scavenger type has certain relative advantages and disadvantages
that may make it particularly suitable or unsuitable for a particular implementation.
Furthermore, it should be noted that particular implementations could support more than
one of the scavenger types and dynamically switch between them as needed, for example,

30 based on such things as the host filesystem, the amount of available storage space, and
the system load. A partly synchronous, partly asynchronous scavenger, using a BBUB to

72

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

store information for the asynchronous task, and using byte-size scavenger run counter
(as a timestamp of sorts) within the CAT to track cluster accesses, is contemplated for a
particular implementation.

A separate monitor in addition to, or in lieu of, a scavenger could be used to keep
track of how many clusters are being used by the host filesystem (for example, a
scavenger might be omitted if the host filesystem is known to reliably reuse de-allocated
blocks in preference to using new blocks so that reclamation is not needed and
monitoring would be sufficient; a monitor might be omitted as duplicative in systems that
implement a scavenger). Generally speaking, the monitor only needs to determine how
many bits are set in the bitmap and does not need to know precisely which bits are set and
which bits are clear. Furthermore, the monitor may not need a precise bit count, but may
only need to determine whether the number of set bits is more or less than certain
threshold values or whether the number is more or less than a previous value for the same
region. Therefore, the monitor may not need to parse the whole bitmap. As for the
scavenger embodiments described above, the monitor function could be implemented in
whole or in part using an asynchronous task, which could periodically compare the new
data with the CAT or maintain a copy of the bitmap and compare the current bitmap (new
data) with the copy (old data) before overwriting the copy with the new data.

For the sake of convenience, various design and operation considerations are
discussed below with reference to scavengers, predominantly in the context of NTFS. It
should be appreciated, however, that many of the design and operational considerations
apply equally to monitors.

FIG. 32 is a schematic block diagram showing the relevant components of a
scavenger 3210, in accordance with an exemplary embodiment of the present invention.
Among other things, the scavenger 3210 includes a Bitmap Block Updates Monitor
(BBUM) 3211, a collection of Bitmap Locator Tables (BLTs) 3212 including a BLT for
each LUN, a collection of BBUBs 3213 including one BBUB for each partition, an
asynchronous task 3214, and De-allocated Space Tables (DSTs) 3215. Each of these
components are discussed in greater detail below. Also as discussed in greater detail
below, the BBUM 3211 is informed of write operations through calls received from the
HRM 3220.

73

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

The scavenger 3210 includes a BLT 3212 for each LUN. Each BLT 3212
contains a series of records that include a partition identifier, an LBA range, an indication
of the role of the LBA range, and a flag indicating whether or not that LBA range should
be parsed synchronously or asynchronously. Each BLT has an entry for LBA 0, which is
partition independent. The BLTs are generally required to provide rapid LBA-based
lookup for incoming writes on that LUN (without checking which partition they belong
to first) and to provide relatively rapid partition based lookup for LBA 0 writes (which
could be achieved, for example, using a sorted vector for storage and, for the lookup, a
lower bound binary search of the start LBA plus a check whether the previous element
has a lastL.BA higher than the LBA being looked up). The BLTs will generally need to
be programmed prior to any host writes passing through, for example, during the
LoadDiskPack call. A BLT gets programmed with I.LBA 0, as this is the location of the
partition table, and therefore the creation of a partition involves a write to this LBA.

LBA 0 will be flagged, within this table, as a location whose updates require immediate
parsing.

The scavenger 3210 includes a BBUB 3213 for each partition supported by the
storage system. Each BBUB 3213 is sized appropriately for the size of the filesystem
bitmap to which it pertains. Each BBUB 3213 is associated with a counter reflecting how
may bits are set in the bitmap. The BBUBs 3213 also some mapping information
showing how each bitmap pertains to its corresponding filesystem bitmap.

The scavenger 3210 includes a DST 3215 for each LUN. Each DST 3215
includes one LBA range per record. Each LBA range present in the table is part of a
deleted or truncated partition that needs to be reclaimed from the CAT. The BBUM 3211
may update the DSTs 3215, for example, when it identifies an unused storage area for
reclamation during synchronous processing (in which case the BBUM 3211 adds an LBA
range to the DSTs 3215). Similarly, the asynchronous task 3214 may update the DSTs
3215, for example, when it identifies an unused storage area for reclamation during
asynchronous processing (in which case it adds an LBA range to the DSTs 3215). The
asynchronous task 3214 uses the DSTs 3215 to reclaim unused storage space
asynchronously. The DSTs 3215 may be stored persistently in a way that is resilient to

unclean shutdown, or else additional logic may be provided to recover from any loss of

74

WO 2007/128005

10

15

20

25

30

the DSTs 3215, e.g., by performing a full scan after boot to find allocated clusters that do
not belong to any volume.

Storage of the BBUBs 3213 and DSTs 3215 is an implementation-specific
decision. In an exemplary embodiment, the BBUBs 3213 are too large to be stored in
NVRAM and therefore may be stored in volatile memory or on disk, while the DSTs
3215 may be stored in non-volatile memory, volatile memory, or on disk. Ifthe DSTs
3215 and BBUBs 3213 are completely volatile, then the scavenger 3210 generally must
be capable of recovering from a loss of the DSTs 3215 and BBUBs 3213 (e.g., due to an
unexpected shutdown). Recovery might be accomplished, for example, by scanning
through the entire CAT and comparing it with current partition and cluster bitmap
information to see whether each cluster is mapped to a known partition and whether it is
allocated in the cluster bitmap of the corresponding filesystem. Another possibilityis to
store the DSTs 3215 in NVRAM and leave the BBUBs 3213 in volatile memory so that
state information for disk space outside of volumes would be preserved across reboots
(potentially preventing the need to query the CATM about clusters outside of partitions),
although the current state of the cluster bitmaps would be lost, necessitating a full scan of
every cluster bitmap. Such bitmap scans could be reduced or eliminated, for example, by
storing all the required state information on disk and merely reloading it on boot.
Because the scavenger 3210 cannot expect notification of shutdown, the records would
need to be kept closely synchronized with real time state, either by updating them
synchronously or by writing them back within just a few milliseconds or seconds. It
seems reasonable to assume that intentional shutdowns will be preceded by a few seconds
of mactivity from the host, even if the host isn’t actually shutdown, so updating within a
few seconds is probably adequate for most circs; shutdowns that occurred mid-I/O would
likely still require a full scan, though. If the records are updated synchronously (i.e.,
before writing the bitmap update to disk), then the system might be able to completely
eliminate the loss of state and the corresponding need for a full scan on boot (although at
the expense of requiring more disk [/O during steady state operation to buy better
efficiency on boot). Another option is to write the BBUBs 3213 and DSTs 3215 to disk

during the system shutdown procedure so that the information would be available on

75

PCT/US2007/068139

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

reboot (except in the event of an unexpected failure/shutdown, in which case a full scan
of the clusters may be needed on reboot).

Generally speaking, the scavenger 3210 does not have much to do until a disk
pack is loaded, although, in an exemplary embodiment, it is contemplated that the
scavenger 3210 will be initialized by the system manager after initializing the modules
that the scavenger depends upon, such as CAT Manager or the Cache Manager (for
reading from the DiskPack) and the NVRAM Manager (for incrementing a counter).
Alternatively, the scavenger could be initialized lazily, e.g., after a DiskPack is loaded.
Since the scavenger could begin reading from the DiskPack almost immediately, the
scavenger should not be instructed to load the DiskPack (i.e., LoadDiskPack) until the
other components are ready and have loaded the same DiskPack themselves.

During initialization of the scavenger 3210 (or at some other appropriate time),
the BBUM 3211 looks for the NTFS Partition Table at LBA 0. The NTFS Partition
Table is a 64-byte data structure located in the same LBA as the Master Boot Record,
namely LBA 0, and contains information about NTFS primary partitions. Each Partition
Table entry is 16 bytes long, making a maximum of four entries available. Each entry
starts at a predetermined offset from the beginning of the sector and a predetermined
structure. The partition record includes a system identifier that enables the storage system
to determine whether the partition type is NTFS or not. It has been found that the
Partition Table position and layout is generally somewhat independent of the operating
system that writes it, with the same partition table structure serving a range of filesystem
formats, not just NTFS, and not just Microsoft formats (HFS+ and other filesystems may
use a different structure to locate its partition).

Assuming the NTFS Partition Table is found at LBA 0, the BBUM 3211 reads the
the Partition Table from LBA 0, and then, for each NTFS partition identified in the
Partition Table, reads the boot sector of the partition (the first sector of the partition), and
in particular the extended BIOS partition block, which is a structure proprietary to NTFS
partitions that will provide the location of the Master File Table (MFT). The BBUM
3211 then reads the resident $bitmap record of the MFT to get the file attributes, in
particular the location(s) and length(s) of the actual bitmap data. The BBUM 3211 also
programs the BL.Ts 3212 with the boot sector LBA of each partition, the LBA(s) of the

76

WO 2007/128005 PCT/US2007/068139

bitmap record(s), and the LBAs of the actual bitmaps. Boot sector LBAs and bitmap
record LBAs will also be flagged as locations whose updates always require immediate
parsing. The actual bitmap generally does not need immediate parsing and will be flagged
accordingly. If no partition table is found at LBA 0, then no additional locations are

5 added to the BLTs 3212.

FIG. 33 is pseudo code for locating the host filesystem bitmaps, in accordance
with an exemplary embodiment of the present invention. The filesystem-aware storage
controller 2721 first looks for the partition table at LBA 0. Assuming the partition table
is found, then the filesystem-aware storage controller 2721 reads the partition table to

10 identify partitions. Then, for each partition, the filesystem-aware storage controller 2721
reads the boot sector of the partition to find the MFT and reads the resident $bitmap
record of the MFT to get file attributes, such as the location(s) and length(s) of the actual
bitmaps. The filesystem-aware storage controller 2721 programs the BL.Ts with the boot
sector LBA of each partition, the LBA(s) of the bitmap record(s), and the LBA(s) of the

15 actual bitmap(s), and flags the boot sector LBA(s) and the bitmap record LBA(s) to
require immediate parsing and flags the actual bitmap(s) to not require immediate
parsing. Ifthe filesystem-aware storage controller 2721 is unable to find the partition
table at LBA 0, then the filesystem-aware storage controller 2721 ends without adding
additional locations to the BLTs.

20 During steady-state operation, all writes will be cross-referenced against the BLTs
3212 through a call to the BBUM 3211 from the HRM 3220. Any write found to be
addressed to LBA 0 will be parsed immediately (synchronously), as per the flag
instructing that action. Subsequent action depends on the nature of the update.

If a partition is being added, and the partition is of a recognized type, the first

25 LBA of'the new partition will be added to the BL.T 3212 and flagged as a location whose
updates always require immediate parsing. The DST 3215 will be purged of any LBA
ranges that fall within the new partition, in anticipation of there soon being a bitmap with
a series of updates that will drive cluster reclamation. One concern is that, if the partition
were ever to be written out ahead of the partition table update, then this information is

30 potentially being written to blocks in the DST 3215, and could be reclaimed incorrectly
by the scavenger thread. This could be alleviated, for example, by checking every write

77

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

received for coincidence with the ranges in the DST 3215 and removing any written-to
block from the DST 3215.

If the partition is being updated to change the partition identifier from the
Windows default to NTFS, then the BBUM 3211 will immediately re-examine the LUN
at the location of the partition boot sector, as the identifier change tends to occur after the
partition boot sector has been written. This is really just part of partition addition.

If an existing partition is being deleted, the BLT will be flushed of records
pertaining to the deleted partition, the BBUB 3213 for that partition will be deleted, and
the LBA range will be added to the DST 3215 for asynchronous reclamation of clusters.

If an existing partition is being relocated, the existing boot sector record in the
BLT 3212 will be updated with the new boot sector LBA to monitor. There is potential
for the LUN to be immediately re-examined at the new location in case it has already
been written, but this is not generally done.

If an existing partition is being truncated, the excised LBA range will be added to
the DST 3215. There is potential for the LUN to be immediately re-examined at the
location of the partition boot sector in case the new boot sector has already been written,
but this is not generally done.

If an existing partition is being enlarged, the DST 3215 will be purged of any
LBA ranges that fall within the new partition. There is potential for the LUN to be
immediately re-examined at the location of the partition boot sector in case the new boot
sector has already been written, but this is not generally done.

Any write found to be addressed to the first LBA of a partition will be parsed
immediately (synchronously), as per the flag instructing that action. The starting LBA of
the bitmap record will be determined and added to the BLT 3212, and flagged as a
location whose updates always require immediate parsing.

FIG. 34 is high-level pseudo code for the BBUM 3211, in accordance with an
exemplary embodiment of the present invention. When the BBUM 3211 receives a client
request, it gets the LUN from the ClientRequest and finds the right BLT based on the
LUN. The BBUM 3211 gets the LBA from the ClientRequest, looks for this LBA in the
BLT, and checks the “immediate action” field to see if immediate action is required for

this LBA. If immediate action is required, then the BBUM 3211 processes the client

78

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

request synchronously. If, however, immediate action is not required, then the BBUM
3211 sets the BBUB bit corresponding to the LBA for asynchronous processing.

FIG. 35 is high-level pseudo code for synchronous processing of an LBA 0 update
creating a new partition, in accordance with an exemplary embodiment of the present
invention. Specifically, if immediate action is required and the block is the partition
table, then the BBUM 3211 compares partitions in new data with partitions in BLT. Ifa
new partition is being added, then the BBUM 3211 gets the start and end of partition
from the new data, checks the DSTs 3215 for any overlapping LBA ranges and remove
them, adds the start of partition to the BLT, and flags the entry for immediate action.

FIG. 36 is high-level pseudo code for synchronous processing of an LBA 0 update
(re)formatting a partition, in accordance with an exemplary embodiment of the present
invention. Specifically, if immediate action is required and the block is a partition boot
sector, then the BBUM 3211 gets the start of the MFT from the new data and calculates
the location of the bitmap record. Ifthere is already an identical bitmap record entry in
the BLT for this partition then nothing is required. If, however, the bitmap record is at a
different location from the BLT version, then the BBUM 3211 updates the BLT and
reads the new location from the disk. If that location does not look like a bitmap record
(i.e., it does not have a $bitmap string), then nothing is required. If, however, the
location does look like a bitmap record, then the BBUM 3211 gets the new bitmap
location(s) and compares them with the BLT. Ifthe new bitmap location(s) are identical,
then nothing is required. Ifthe new bitmaps are at a different location, then the BBUM
3211 sets all BBUB bits, updates the BBUB mappings, and moves the LBA ranges in the
BLT. Ifthe new bitmap is smaller than the existing bitmap, then the BBUM 3211
contracts the BBUB, adds the unmapped LBA range into the DST, and contracts the LBA
range in the BLT. Ifthe new bitmap is bigger than the existing bitmap, then the BBUM
3211 sets all the additional BBUB bits, enlarges the BBUB, and enlarges the LBA range
in the BLT.

FIG. 37 is high-level pseudo code for synchronous processing of an LBA 0 update
deleting a partition, in accordance with an exemplary embodiment of the present
invention. Specifically, if immediate action is required and the block is a partition table,

then the BBUM 3211 compares partitions in new data with partitions in BLT. Ifa

79

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

partition is being deleted, then the BBUM 3211 deletes the BBUB, deletes the boot sector
from the BLT, deletes the Bitmap record from the BLT, deletes the Bitmap ranges from
the BLT, and adds the partition range to the DST.

FIG. 38 is high-level pseudo code for the asynchronous task 3214, in accordance
with an exemplary embodiment of the present invention. The asynchronous task 3214
parses the BBUB and then, for each bit set in the BBUB, the asynchronous task 3214
checks whether the corresponding cluster is marked unused by the host filesystem. Ifthe
cluster is marked unused by the host filesystem, then the asynchronous task 3214 checks
whether the cluster is marked used by the storage controller. Ifthe cluster is marked used
by the storage controller, then the asynchronous task 3214 adds the LBA range to the
DST. The asynchronous task 3214 also reclaims the storage space for each LBA range in
the DST.

Afier receiving a boot sector update, it is generally not sufficient to wait for the
write of the bitmap record (it is generally not know what order an NTFS format occurs in,
and it could change in a minor patch anyway), since the bitmap record may already have
been written to disk. If the bitmap record is written before the extended BPB, the BBUM
3211 will not catch it because the location is not present in the BLT 3212; an exception to
this is when the location of the bitmap record has not changed. The exception
notwithstanding, the BBUM 3211 generally has to immediately read the bitmap record
location from the disk at this point to see if the bitmap record is present, and it generally
needs to be able to distinguish random noise from an initialized bitmap record (checking
for the $bitmap Unicode string is a possibility). If it has not been written, it can wait for
the write. Ifit is already on disk, it generally must be parsed immediately. Parsing
generally requires that the record be decoded for the location(s) of the bitmap, and those
locations are added to the BLT 3212 and flagged as not requiring immediate parsing.
Parsing generally also requires that, if the size of the bitmap has changed, a new BBUB
3213 be instantiated, based on the new size and location(s) of bitmap; otherwise it is
generally sufficient to update the existing BBUB 3213 with the new location. It also
seems appropriate to set all the bits, as it is generally not know whether the host writes
out the new bitmap before or after writing the bitmap record (the likelihood is after, but if

that happens, the bits will just be harmlessly set a second time within a few seconds as

80

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

the bitmap writes come in). A danger is if the writes happen before, in which case the
writes will have been missed due to being in a different location; setting all the bits
ensures that the bitmap gets parsed.

In the case of a boot sector update (e.g., due to reformat of the partition), the
bitmap would likely be the same size and occupy the same place, so there generally
would be no change to the BLT 3212 or BBUB 3213. The new bitmap would presumably
be rewritten with most blocks being all zero, so the asynchronous task 3214 should be
able to get on with processing them in order to reclaim the unallocated clusters from the
CAT. The volume serial number of the boot sector could be checked to determine
whether the update was the result of a reformat.

The bitmap record could also be updated at any time, for reasons independent of
the boot sector. The scavenger 3210 may have to be able to cope with the bitmap moving
or changing size on the fly; it is not clear whether the bitmap could ever change in size
without creating a different sized partition, but future versions of NTFS may support this
for whatever reason. In this situation, the new location(s) of the bitmap generally must
be programmed into the BLT 3212, with the old entries removed and the new ones added.
The BBUB 3213 has to be enlarged or contracted accordingly. Any LBA ranges freed up
by a contraction can be added to the DST 3215, although strictly they still map to the
partition.

Another concem is that, if the time of last update field of the bitmap record is
frequently modified to reflect ongoing modification of the bitmap, the result could be a
substantial amount of inline parsing.

All subsequent writes to the bitmap itself are pushed to the asynchronous task
3214 via the BBUBs 3213.

The basic strategy here is that all allocated clusters will be represented either in a
BBUB 3213 or the DST 3215, and either way, unallocated ones will be reclaimed. An
alternative solution would be to have a volume identifier for each volume, known to both
the BBUM 3211 and the CAT such that each write would have to be mapped to a volume
by the BBUM 3211 and tagged with that identifier before going to the CAT Manager,
where the volume identifier would be stored in the CAT record. A new volume would

typically get a different identifier from the old volume it was overwriting, so the

81

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

asynchronous task 3214 could reclaim records with the old volume identifier without
danger of reclaiming clusters that have been overwritten with data from the new volume.
Obviously this would consume space in the CAT record. It is also dependent on the order
of writes in a reformat. Since the system generally cannot know about a new volume
until the new volume serial number is seen in the boot partition, any other writes to the
volume that precede this will be tagged with the old volume identifier.

The majority of the work will be done by the dedicated scavenger task 3214 that
nominally wakes up once a minute, collects some work from the BBUB 3213, and
executes it by paging-in bitmap blocks through the cache and comparing the bits with the
CAT. In an exemplary embodiment, the BBUB 3213 will be logically segmented (1k
segment sizes), with a counter for each segment showing the number of updates for that
segment, and a global counter that reflects the highest value held by any counter; these
counters will be incremented by the work producer (the BBUM 3211) and decremented
by the work consumer (the scavenger task 3214). The scavenger task 3214, on waking,
will check the global counter and decide whether the value therein is high enough to
justify paging-in the bitmap. If it is, then the task 3214 will determine which segment that
value corresponds to (e.g., by iterating through the counter array) and then begin iterating
through the bits of the appropriate BBUB segment. When it finds a set bit, it will page-in
that block of the bitmap and compare it with the CAT.

As discussed above, operation of the scavenger task 3214 could be dynamically
adjusted, for example, by changing the frequency with which it runs or the thresholds at
which it decides to do some work. In an exemplary embodiment of the present invention,
however, such dynamic adjustment is generally not done because the architecture is
somewhat coupled to the frequency with which the scavenger runs. Specifically, because
the proposed architecture has been designed with the assumption that the host filesystem
2711 will update its metadata within a maximum time window (e.g., one minute), the
proposed architecture could not realistically run the scavenger task 3214 more frequently
than that maximum time window. The proposed architecture could make the runs less
frequently without actually breaking that rule, but it could then make cluster reclamation
less efficient by making some cluster updates look more recent than they actually are

(e.g., if the age computations are designed with the assumption that the runs occur every

82

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

minute but they actually occur, say, every three minutes, then the age calculations could
be off by a factor of three). Furthermore, task priority is generally fixed at compile time
and therefore is generally not changed during system operation.

It should be noted that, in an exemplary embodiment of the present invention, the
storage system implements clusters of size 4K. Thus, if the filesystem is formatted with a
cluster size other than 4K, a bit in the filesystem bitmap would not correlate neatly with a
cluster in the storage system. For example, if the filesystem cluster size is less than 4K,
then multiple bits of the bitmap will generally have to be clear to bother cross-referencing
with the CAT. If, however, the filesystem cluster size is greater than 4K, then one clear
bit of the bitmap will generally require multiple lookups into the CAT, one for each 4K.

Another concem is how to handle situations in which the scavenger encounters a
cluster that is too young to reclaim. In such situations, the scavenger could leave the bit
set in the BBUB, thereby requiring one or more subsequent scans to parse through the
whole 512 bits again (e.g., the next scan might go through the 512 bits only to find that
the cluster is still too young to reclaim). Alternatively, the scavenger could clear the bit
and add the cluster to a list of young blocks / bitoffsets that need rechecking. From an
implementation standpoint, the latter approach would only be practical if the list could be
kept fairly small.

From an implementation standpoint, the scavenger and BBUB will both read from
disk through the CAT Manager. Cluster reclamation will be performed through a special
API provided by the CAT Manager.

VIRTUAL HOT SPARE

As discussed above, in many storage systems, a hot spare storage device will be
maintained in a ready state so that it can be brought online quickly in the event another
storage device fails. In certain embodiments of the present invention, rather than
maintaining a physically separate hot spare, a virtual hot spare is created from unused

storage capacity across a plurality of storage devices. Unlike a physical hot spare, this

83

WO 2007/128005 PCT/US2007/068139

unused storage capacity is available if and when a storage device fails for storage of data
recovered from the remaining storage device(s).
The virtual hot spare feature requires that enough space be available on the array
to ensure that data can be re-laid out redundantly in the event of a disk failure. Thus, on
5 anongoing basis, the storage system typically determines the amount of unused storage
capacity that would be required for implementation of a virtual hot spare (e.g., based on
the number of storage devices, the capacities of the various storage devices, the amount
of data stored, and the manner in which the data is stored) and generates a signal if
additional storage capacity is needed for a virtual hot spare (e.g., using green/yellow/red
10 lights to indicate status and slot, substantially as described above). As zones are
allocated, a record is kept of how many regions are required to re-layout that zone on a

per disk basis. The following table demonstrates a virtual hot spare with four drives

used:
Regions required if disk fails
Stored
Zone | Type Comments Disk Disk | Disk
On Disks Disk 1
0 2 3
Dual Drive | 0,1 Reconstruct on disk
2 12 12 0 0
Mirror 2or3if0or1 fails
Dual Drive | 0,3 Reconstruct on disk
3 12 0 0 12
Mirror lor2ifl or2 fails
Triple Drive | 1,2, 3 Reconstruct on disk
5) . . 0 6 6 6
Stripe 0if 1,2, or 3 fails
0,1,2,3 Convert to triple
Four Drive . . 2,2,
10 . drive strip across 2,2,2 12,2,212,2,2
Stripe 2
other three disks
15
The following table demonstrates a virtual hot spare with three drives used:
Stored Regions required if
Zone | Type Comments
On Disks disk fails

84

WO 2007/128005 PCT/US2007/068139

Disk Disk
Disk 1
0
Dual Drive | 0,1 Reconstruct on disk
2 . 12 12 0
Mirror 3
Dual Drive | 0,3 Reconstruct on disk
3 . 12 0 12
Mirror 1
Triple Drive | 1,2, 3 Convert to dual
5) . . 6,6 6,6 6,6
Stripe drive mirror

In this exemplary embodiment, virtual hot spare is not available on an array with
only 1 or 2 drives. Based on the information for each zone and the number of disks in the
array, the array determines a re-layout scenario for each possible disk failure and ensure

5 that enough space is available on each drive for each scenario. The information
generated can be fed back into the re-layout engine and the zone manager so that the data
can be correctly balanced between the data storage and the hot spare feature. Note that
the hot spare feature requires enough spare working space regions on top of those
calculated from the zone layout data so that re-layout can occur.

10 Fig. 22 is a logic flow diagram showing exemplary logic for managing a virtual
hot spare in accordance with an exemplary embodiment of the present invention. In
block 2102, the logic determines a re-layout scenario for each possible disk failure. In
block 2104, the logic determines the amount of space needed on each drive for re-layout
of data redundantly in a worst case scenario. In block 2106, the logic determines the

15 amount of spare working space regions needed for re-layout of data redundantly in a
worst case scenario. In block 2108, the logic determines the total amount of space
needed on each drive in order to permit re-layout of data redundantly in a worst case
scenario (essentially the sum of the amount of space needed for re-layout and the amount
of spare working space regions needed). In block 2110, the logic determines whether the

20 storage system contains an adequate amount of available storage. If there is an adequate
amount of available storage (YES in block 2112), then the logic iteration terminates in
block 2199. If, however, there is an inadequate amount of available storage (NO in block

2112), then the logic determines which drive/slot requires upgrade, in block 2114. Then,

85

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

in block 2116, the logic signals that additional storage space is needed and indicates
which drive/slot requires upgrade. The logic iteration terminates in block 2199.

Fig. 23 is a logic flow diagram showing exemplary logic for determining a re-
layout scenario for each possible disk failure, as in block 2102 of Fig. 22, in accordance
with an exemplary embodiment of the present invention. In block 2202, the logic
allocates a zone. Then, in block 2204, the logic determines how many regions are
required to re-layout that zone on a per-disk basis. The logic iteration terminates in block
2299.

Fig. 24 is a logic flow diagram showing exemplary logic for invoking the virtual
hot spare functionality in accordance with an exemplary embodiment of the present
invention. In block 2302, the logic maintains a sufficient amount of available storage to
permit re-layout of data redundantly in the event of a worst case scenario. Upon
determining loss of a drive (e.g., removal or failure), in block 2304, the logic
automatically reconfigures the one or more remaining drives to restore fault tolerance for
the data, in block 2306. The logic iteration terminates in block 2399.

Fig. 25 is a logic flow diagram showing exemplary logic for automatically
reconfiguring the one or more remaining drives to restore fault tolerance for the data, as
in block 2306 of Fig. 24, in accordance with an exemplary embodiment of the present
invention. In block 2402, the logic may convert a first striped pattermn across four or more
storage devices to a second striped pattern across three or more remaining storage
devices. In block 2404, the logic may convert a striped pattern across three storage
devices to a mirrored pattern across two remaining storage devices. Of course, the logic
may convert patterns in other ways in order to re-layout the data redundantly following
loss of a drive. The logic iteration terminates in block 2499.

With reference again to FIG. 21, the storage manager 2504 typically includes
appropriate components and logic for implementing the virtual hot spare functionality as

described above.

DYNAMIC UPGRADE

86

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

The logic described above for handling dynamic expansion and contraction of
storage can be extended to provide a dynamically upgradeable storage system in which
storage devices can be replaced with a larger storage devices as needed, and existing data
is automatically reconfigured across the storage devices in such a way that redundancy is
maintained or enhanced and the additional storage space provided by the larger storage
devices will be included in the pool of available storage space across the plurality of
storage devices. Thus, when a smaller storage device is replaced by a larger storage
device, the additional storage space can be used to improve redundancy for already stored
data as well as to store additional data. Whenever more storage space is needed, an
appropriate signal is provided to the user (e.g., using green/yellow/red lights substantially
as described above), and the user can simply remove a storage device and replace it with
a larger storage device.

Fig. 26 is a logic flow diagram showing exemplary logic for upgrading a storage
device, in accordance with an exemplary embodiment of the present invention. In block
2602, the logic stores data on a first storage device in a manner that the data stored
thereon appears redundantly on other storage devices. In block 2604, the logic detects
replacement of the first storage device with a replacement device having greater storage
capacity than the first storage device. In block 2606, the logic automatically reproduces
the data that was stored on the first device onto the replacement device using the data
stored redundantly on other devices. In block 2608, the logic makes the additional
storage space on the replacement device available for storing new data redundantly. In
block 2610, the logic may store new data redundantly within the additional storage space
on the replacement device if no other device has a sufficient amount of available storage
capacity to provide redundancy for the new data. In block 2612, the logic may store new
data redundantly across multiple storage devices if at least one other device has a
sufficient amount of available storage capacity to provide redundancy for the new data.

With reference again to FIG. 21, the storage manager 2504 typically includes
appropriate components and logic for implementing the dynamic upgrade functionality as

described above.

MISCELLANEOUS

87

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

Embodiments of the present invention may be employed to provide storage
capacity to a host computer, e.g., using a peripheral connect protocol in the manner
described in my United States Provisional Patent Application No. 60/625,495, which was
filed on November 5, 2004 in the name of Geoffrey S. Barrall, and is hereby incorporated
herein by reference in its entirety.

It should be noted that a hash algorithm may not produce hash values that are
strictly unique. Thus, is it conceivable for the hash algorithm to generate the same hash
value for two chunks of data having non-identical content. The hash function (which
generally incorporates the hash algorithm) typically includes a mechanism for confirming
uniqueness. For example, in an exemplary embodiment of the invention as described
above, if the hash value for one chunk is different than the hash value of another chunk,
then the content of those chunks are considered to be non-identical. If, however, the hash
value for one chunk is the same as the hash value of another chunk, then the hash
function might compare the contents of the two chunks or utilize some other mechanism
(e.g., a different hash function) to determine whether the contents are identical or non-
identical.

It should be noted that the logic flow diagrams are used herein to demonstrate
various aspects of the invention, and should not be construed to limit the present
invention to any particular logic flow or logic implementation. The described logic may
be partitioned into different logic blocks (e.g., programs, modules, functions, or
subroutines) without changing the overall results or otherwise departing from the true
scope of the invention. Often times, logic elements may be added, modified, omitted,
performed in a different order, or implemented using different logic constructs (e.g., logic
gates, looping primitives, conditional logic, and other logic constructs) without changing
the overall results or otherwise departing from the true scope of the invention.

The present invention may be embodied in many different forms, including, but in
no way limited to, computer program logic for use with a processor (e.g., a
microprocessor, microcontroller, digital signal processor, or general purpose computer),
programmable logic for use with a programmable logic device (e.g., a Field

Programmable Gate Array (FPGA) or other PLD), discrete components, integrated

88

WO 2007/128005 PCT/US2007/068139

10

15

20

25

30

circuitry (e.g., an Application Specific Integrated Circuit (ASIC)), or any other means
including any combination thereof.

Computer program logic implementing all or part of the functionality previously
described herein may be embodied in various forms, including, but in no way limited to,
a source code form, a computer executable form, and various intermediate forms (e.g.,
forms generated by an assembler, compiler, linker, or locator). Source code may include
a series of computer program instructions implemented in any of various programming
languages (e.g., an object code, an assembly language, or a high-level language such as
Fortran, C, C++, JAVA, or HTML) for use with various operating systems or operating
environments. The source code may define and use various data structures and
communication messages. The source code may be in a computer executable form (e.g.,
via an interpreter), or the source code may be converted (e.g., via a translator, assembler,
or compiler) into a computer executable form.

The computer program may be fixed in any form (e.g., source code form,
computer executable form, or an intermediate form) either permanently or transitorily in
a tangible storage medium, such as a semiconductor memory device (e.g., a RAM, ROM,
PROM, EEPROM, or Flash-Programmable RAM), a magnetic memory device (e.g., a
diskette or fixed disk), an optical memory device (e.g., a CD-ROM), a PC card (e.g.,
PCMCIA card), or other memory device. The computer program may be fixed in any
form in a signal that is transmittable to a computer using any of various communication
technologies, including, but in no way limited to, analog technologies, digital
technologies, optical technologies, wireless technologies (e.g., Bluetooth), networking
technologies, and internetworking technologies. The computer program may be
distributed in any form as a removable storage medium with accompanying printed or
electronic documentation (e.g., shrink wrapped software), preloaded with a computer
system (e.g., on system ROM or fixed disk), or distributed from a server or electronic
bulletin board over the communication system (e.g., the Internet or World Wide Web).

Hardware logic (including programmable logic for use with a programmable logic
device) implementing all or part of the functionality previously described herein may be
designed using traditional manual methods, or may be designed, captured, simulated, or

documented electronically using various tools, such as Computer Aided Design (CAD), a

89

WO 2007/128005 PCT/US2007/068139

10

15

20

25

hardware description language (e.g., VHDL or AHDL), or a PLD programming language
(e.g., PALASM, ABEL, or CUPL).

Programmable logic may be fixed either permanently or transitorily in a tangible
storage medium, such as a semiconductor memory device (e.g., a RAM, ROM, PROM,
EEPROM, or Flash-Programmable RAM), a magnetic memory device (e.g., a diskette or
fixed disk), an optical memory device (e.g., a CD-ROM), or other memory device. The
programmable logic may be fixed in a signal that is transmittable to a computer using any
of various communication technologies, including, but in no way limited to, analog
technologies, digital technologies, optical technologies, wireless technologies (e.g.,
Bluetooth), networking technologies, and internetworking technologies. The
programmable logic may be distributed as a removable storage medium with
accompanying printed or electronic documentation (e.g., shrink wrapped software),
preloaded with a computer system (e.g., on system ROM or fixed disk), or distributed
from a server or electronic bulletin board over the communication system (e.g., the
Internet or World Wide Web).

This application is related to the following United States Patent Applications,
which are hereby incorporated herein by reference in their entireties:

Attorney Docket No. 2950/104 entitled Dynamically Upgradeable Fault-
Tolerant Storage System Permitting Variously Sized Storage Devices and Method,;

Attorney Docket No. 2950/105 entitled Dynamically Expandable and
Contractible Fault-Tolerant Storage System With Virtual Hot Spare; and

Attorney Docket No. 2950/107 entitled Storage System Condition Indicator
and Method.

The present invention may be embodied in other specific forms without departing
from the true scope of the invention. The described embodiments are to be considered in

all respects only as illustrative and not restrictive.

90

WO 2007/128005 PCT/US2007/068139

What is claimed is:

L. A method of storing data in by a block-level storage system that stores data under
control of a host filesystem, the method comprising:

locating host filesystem data structures stored for the host filesystem in the block-
level storage system;

analyzing the host filesystem data structures to identify a data type associated
with the data to be stored; and

storing the data using a storage scheme selected based on the data type, whereby
data having different data types can be stored using different storage schemes selected

based on the data types.

2. A method according to claim 1, wherein storing the data using a storage scheme
selected based on the data type comprises:

storing the data using a storage layout selected based on the data type.

3. A method according to claim 2, wherein storing the data using a storage layout
selected based on the data type comprises:

storing frequently accessed data so as to provide enhanced accessibility.

4, A method according to claim 3, wherein storing frequently accessed data so as to
provide enhanced accessibility comprises:

storing the frequently accessed data uncompressed and in sequential storage.
5. A method according to claim 2, wherein storing the data using a storage layout
selected based on the data type comprises:

storing infrequently accessed data so as to provide enhanced storage efficiency.

6. A method according to claim 5, wherein storing infrequently accessed data so as

to provide enhanced storage efficiency comprises:

91

WO 2007/128005 PCT/US2007/068139

storing the infrequently accessed data using at least one of data compression and

non-sequential storage.

7. A method according to claim 1, wherein storing the data using a storage scheme
selected based on the data type comprises:

storing the data using an encoding scheme selected based on the data type.

8. A method according to claim 7, wherein the encoding scheme comprises at least
one of:
data compression; and

encryption.

9. A method according to claim 1, wherein locating host filesystem data structures in
storage comprises:

maintaining a partition table;

parsing the partition table to locate an operating system partition;

parsing the operating system partition to identify the operating system and locate
operating system data structures; and

parsing the operating system data structures to identify the host filesystem and

locate the host filesystem data structures.

10. A method according to claim 9, wherein the operating system data structures
include a superblock, and wherein parsing the operating system data structures includes

parsing the superblock.

11. A method according to claim 9, wherein parsing the host filesystem data
structures comprises:
making a working copy of a host filesystem data structure; and

parsing the working copy.

92

WO 2007/128005 PCT/US2007/068139

12. A block-level storage system that stores data under control of a host filesystem,
the system comprising:

a block-level storage in which host filesystem data structures are stored for the
host filesystem;

a storage controller operably coupled to the block-level storage for locating the
host filesystem data structures stored in the block-level storage, analyzing the host
filesystem data structures to identify a data type associated with the data to be stored, and
storing the data using a storage scheme selected based on the data type, whereby data
having different data types can be stored using different storage schemes selected based

on the data types.

13. A system according to claim 12, wherein the storage controller is operably

coupled to store the data using a storage layout selected based on the data type.

14. A system according to claim 13, wherein the storage controller is operably

coupled to store frequently accessed data so as to provide enhanced accessibility.

15. A system according to claim 14, wherein the storage controller is operably

coupled to store frequently accessed data uncompressed and in sequential storage.

16. A system according to claim 13, wherein the storage controller is operably

coupled to store infrequently accessed data so as to provide enhanced storage efficiency.
17. A system according to claim 16, wherein the storage controller is operably
coupled to store infrequently accessed data using at least one of data compression and

non-sequential storage.

18. A system according to claim 12, wherein the storage controller is operably

coupled to store the data using an encoding scheme selected based on the data type.

93

WO 2007/128005 PCT/US2007/068139

19. A system according to claim 18, wherein the encoding scheme comprises at least
one of:
data compression; and

encryption.

20. A system according to claim 12, wherein the storage controller is operably
coupled to maintain a partition table, parse the partition table to locate an operating
system partition, parse the operating system partition to identify the operating system and
locate operating system data structures, parse the operating system data structures to
identify the host filesystem and locate the host filesystem data structures, and parse the

host filesystem data structures to identify the data type.

21. A system according to claim 20, wherein the operating system data structures
include a superblock, and wherein the storage controller is operably coupled to parse the

superblock.

22. A system according to claim 20, wherein the storage controller is operably

coupled to make a working copy of a host filesystem data structure and parse the working

copy.

94

PCT/US2007/068139

WO 2007/128005

~— F18VLANNHD

14

‘\\\I|l\\

i PSS,

["OIA

~—318v1 103rg0

A

\l\

00SL '€ ‘00% :C ‘LS 'L € LYEL# LYEL# " SLLYH 'SYLGH LOO#
SNOILYO01 LVINHO4| MNNHD SMNNHD | # 1D3rg0
o) A _J _J
evl vl Iyl ¢ 20150 zel LEl
LESL
mm\ﬂ LYEL#
AUNYD [~
\Il/w = wx v ro0# » JuswinooQ
Lest - 109(q0 pPIoMm
Nl SLIVH | o
o junyd
(4190 Zammmma N
~—— 1zt mﬁmu\ ", 0
L @d1AeQ ~unyd
—~
LSE P

N—
WOISAHd -—

SIUNNHO -.— 123rgo

- Hid

1/33
SUBSTITUTE SHEET (RULE 26)

WO 2007/128005 PCT/US2007/068139

BEFORE - CHUNK IS MIRRORED

F211 r212 r213 - 221
CHUNK |FORMAT| LOCATIONS a
#1347 2 1: 57.72: 400 K ,
51 Device 1
N C Y o
— = 14 5
CHUNK TABLE —
Device 2
AFTER - CHUNK IS STRIPED
21 212 213 - 231
CHUNK |FORMAT| LOCATIONS L
#1347 3 1: 42.2: 506, 3: 312 \ .
21 \ Device 1
_ | B _jsz
- 14
CHUNK TABLE —
Device 2
233
|/

Device 3

2/33
SUBSTITUTE SHEET (RULE 26)

WO 2007/128005

PCT/US2007/068139

P 7

7 \

33

40GB
% | [36 kd)
. 37
80 GB

120 GB

CHUNKS #1, #2, #3 STORED USING PATTERN 3 (STRIPING USING 3 DEVICES)
CHUNKS #10, #11, #12 STORED USING PATTERN 2 (MIRRORED USING 2 DEVICES)

CHUNKS #20, #21 STORED USING PATTERN 1 (MIRRORED USING 1 DEVICE)

FIG. 3

3/33
SUBSTITUTE SHEET (RULE 26)

WO 2007/128005 PCT/US2007/068139

44
N4

T~ GREEN
a3 7D

40 GB REDUNDANCY ACROSS
ALL DEVICES

80 GB

FIG. 44 ~——

45 44
AN | / A/
™ ~ —/(l)\— AMBER
41 42 43
REDUNDANCY FOR
40 GB /] ~ NEW OBJECT ON TWO
46 - 46 DEVICES ONLY
80 GB _
| _
FIG. 4B —
45 45 44

. ——\CID/—~ s
RED
I / L\% / l AN

42
REDUNDANCY FOR
40 GB / NEW OBJECTS ON
46 7 46 / / SINGLE DEVICE ONLY
=
80 GB
47

4/33
SUBSTITUTE SHEET (RULE 26)

PCT/US2007/068139

WO 2007/128005

€LS
¢LS

§ DIA

mm:/

HIOVNVYIN
1INVH3T0L
11nvd

S30IA3a
IOVHOLS

:mk

HIOVNVIN
JOVHOLS
TvOISAHd

¢m.k

HIOVNVYIA
IVAIIHLIY
99 _/
rl/
— 378vl T
103rdo0
r iZs
HOLVHINTIO d384dvd
3000 HSVH ANNHD
£S _/ ZS .k

JOV4H3LNI
S410

mwm.\

JOV443UNI
A0014

N..muw

JOV4HILNI
193rao

:mk

5/33
SUBSTITUTE SHEET (RULE 26)

WO 2007/128005 PCT/US2007/068139

Mirrored

Drive 0 Block - A

Drive 1 |

\\\\§>\\}\}§ Drive 2
\\

N\

g/////////////////

2.

Mirrored
Block - B FIG 6
Zone A
Single
Drive : Zone D
. Zone B N 4 Drive
Mirror (2G 2 Drive .
(2G))/ Mirror (1G) stripe (1/3G)
2 Drive 3 Drive
Mirror (1G) 7 Drive stripe (1/2G)
3 Drive stripe (1/3G)
stripe (1/2G)
4 Drive 3 Drive 4 Drive
stripe (1/3G) stripe (1/2G) stripe (1/3G)
Drive0 40neC prive 1 Drive 2 Drive 3

6/33
SUBSTITUTE SHEET (RULE 26)

WO 2007/128005 PCT/US2007/068139

M is fixed
regardless
of drives in
the array. Ln Lookup Table
S varies
s i depending
on drives in
o~ the array.
\ Pn
0 ~~~__ | Lookup .
Virtual Sparse Array -Physical
Volume Space Volume Space

SLOTA SLOT B

a) All Drives OK with Array space available.

FIG. 9

7/33
SUBSTITUTE SHEET (RULE 26)

WO 2007/128005 PCT/US2007/068139

b) Slot C & Slot D full - data not redundant: Add drive to empty
Slot A

FIG. 10

iee=

SLOT A SLOTB SLOTC SLOTD

c) Array cannot maintain redundant data in the event of a power failure:
Replace drive in Slot D

FIG. 11

8/33
SUBSTITUTE SHEET (RULE 26)

WO 2007/128005

PCT/US2007/068139

SLOTA

————

|

SLOTB

.l
7

|0

SLOTC

SLOTD

d) Drive in Slot C has failed

FIG. 12

9/33

SUBSTITUTE SHEET (RULE 26)

WO 2007/128005 PCT/US2007/068139

Device Drivers

A
Peripheral Garbage
USBI/iSCSt Collector

Host Request

Manager
Writes { Reads
Layer 3a
Hash
Journal
Manager L
Layer 3b Cluster
‘ — CAT Lock Table Manager
Virtualization

Journal data j‘(;///

Disk Layer 2
utilization Zones S Layout Cache
daemon Manager Manager Manager

— =

Layer 1 Error and Disk
Regions Event
Manager Manager

2

Layer Oa
Disk Manager

Abstraction

2
Layer Ob FIG. 13

Device Drivers

10/33
SUBSTITUTE SHEET (RULE 26)

WO 2007/128005 PCT/US2007/068139

-7 -
//’CAT //,——-“/ _______ » Virtual Zone
P, P - - . —
/ -7 -
/ 4 ~
V4 7~
/ / Ve
/ 7
/ / / Cluster containin
[e 9
A Cluster offset - ¥ Data
| / / -
(N Pid
A Cluster offset
b ,
b | /
[/
[SAY //
\ —
\\ \ I Cluster containing
\ / Data
\
\ Cluster offset
\
\
\
\
P Virtual Zone
- // - -
//
Ve
7
s
Vd
/
/
/
/
/ Cluster containin
/ g
/ " Data
/ Cluster offset
!
|
I

FIG. 14

11/33
SUBSTITUTE SHEET (RULE 26)

WO 2007/128005

PCT/US2007/068139

Zone

Cluster{s) N D1i-§k

Host Write
Request

Allocate and write data to cluster(s)

Update

Journal

Table
Journal Table

1A |, S8 | zone | Offset | Size
Number

:(> To Disk

FIG. 15

12/33

SUBSTITUTE SHEET (RULE 26)

WO 2007/128005 PCT/US2007/068139

|
[
i
x |
s— FIG. 16
o
&) | e
{ ZIN
i ZTN
{ ZTN
| zis
|
\J
!
|
|
[
~ |
c |
8
o
@ |
T | RIS
I
|
|
|
|
|
|
(=3
< |
S
| RIS
o
|
Copies of DISs
of other disks
<: DIS Copy 1
DIS Copy O

13/33
SUBSTITUTE SHEET (RULE 26)

WO 2007/128005

PCT/US2007/068139

Zone containing
part of CAT

Zone containing
part of CAT

CAT Linked List
Node 3

CAT Linked List
Node 2

Zone containing
part of CAT

CAT Linked List
Node 1

Zone Q

CAT Linked List
Node 0

P = ——

Zone containing
part of CAT

Zone containing
part of
Hash Table

Zone containing
part of
Hash Table

- - ,
HASH Table Linkedk———""_
List Node 0 >
HASH Table Linkedl< ~— - ————— -
List Node 0 >
HASH Table Linked 2 _ _
List Node 0 T~
=i

Zone containing
part of
Hash Table

Zone O Info Table

FIG. 17

14/33

SUBSTITUTE SHEET (RULE 26)

/

WO 2007/128005

M

RM

DM

DD

Read Request
Read Fail

N U

Reconstructed data>

Data
Reconstructor

Read Redundant Data

NS

G

Redundant Data Read

FIG. 18

15/33

SUBSTITUTE SHEET (RULE 26)

Error Q

PCT/US2007/068139

Error
Manager

WO 2007/128005

]

Error
Manager

M
RM
7
Ak
o w
c| |
DM 2|2
=
DD

FIG. 19

16/33
SUBSTITUTE SHEET (RULE 26)

PCT/US2007/068139

WO 2007/128005 PCT/US2007/068139

Allocated
New Region

Copy Copy next sector

old Region
to New

Copy next sector

Reconstruct
Data

Yes

Update ZT
to point
to new Region

Create sector
of Os

0

out if we need
to duplicate other
Regions in the

Mark other
Regions for
duplication

FIG. 20

17/33
SUBSTITUTE SHEET (RULE 26)

PCT/US2007/068139

WO 2007/128005

I¢ 'ODIA

a SISSYHD
2062
\
N9ogz ‘9052
N . e 4 HIDVYNVIN
NS 1S 3IOVHOLS
NI Ll
4
Nioge _/ b1052 _/ v0S2 _J
Na . . . La
Ng05z — 806z —

18/33
SUBSTITUTE SHEET (RULE 26)

WO 2007/128005 PCT/US2007/068139

2102
Determine a re-layout scenario for each possible disk failure
& - 2104

Determine the amount of space needed on each drive
for re-layout of data redundantly in a worst case scenario

' — 2106

Determine the amount of spare working space regions needed
for re-tayout of data redundantly in a worst case scenario

¢ 2108

Determine the total amount of space needed on each drive in order
to permit re-layout of data redundantly in a worst case scenario

Determine whether the storage system contains
an adequate amount of available storage
2112
YES
Adequate?
2114

Determine which drive/slot requires upgrade
Signal additional storage space needed and

indicate which drive/slot requires upgrade

2198

(oo)

FIG. 22

19/33
SUBSTITUTE SHEET (RULE 26)

PCT/US2007/068139

WO 2007/128005

(YAJIL |

(a3)

6642 — a

e OIAd

(an3)

6662 —

£C OIH

(on3)

662c — 4

saoinep abelo)s Buiuiewal omy
ssoJoe wisjed paloliw e o}
saoinap abelols aaly} ssoloe
wianed padins e LeAuo)

aoues8|o} }jne} 210isvl 0}
saaup Buluiewal aiow o auo
ay) ainbyuooal Ajjeonewoiny

siseq ¥sip-1ad e uo auoz
12y InoAe|-a1 0} palinbal ale
suoibal Auew moy aululeiad

vove — a

v0gz — a

saolaap abelols Buluewst
8I0W 10 831y} Ssooe ulened
paduls puooss e 0} $8J1A8p

abeiois alow 1o Inoy ssoloe
utened paduls 1slly B UBAUOD

00£z — a
BALP € JO SSO)| 10818(]
v0ez —’ »

auoZ & 8)edo|lV

zove —

90t

OLIBUBDS ISED 1SIOM
B JO 1U2AD 8Y) Ul
Apuepunpal ejep Jo 1noAel-al
nuuad oy abeiois sjgejieae Jo
JUNOWR JUSIDIYNS B LIBJUIBIA

z0ez —

202z —’ _
2012

20/33
SUBSTITUTE SHEET (RULE 26)

WO 2007/128005 PCT/US2007/068139

2602

Store data on a first storage device in a manner
that the data stored thereon appears reduntantly
on at least one other storage device

¢ - 2604

Detect replacement of the first storage device
with a replacement device having greater storage capacity
than the first storage device '

pa 2606

Automatically reproduce the data that was stored
on the first device onto the replacement device
using the data stored redundantly on other devices

l /"’ 2608-

Make the additional storage space on the replacement device
available for storing new data redundantly

& 2610

Store new data redundantly within the
additional storage space on the replacement device
if no other device has a sufficient amount of available
storage capacity to provide redundancy for the new data

¢ | 2612

Store new data redundantly across multiple storage devices
if at least one other device has a sufficient amount of available
storage capacity to provide redundancy for the new data

FIG. 26

21/33
SUBSTITUTE SHEET (RULE 26)

WO 2007/128005 PCT/US2007/068139

2710
2712
Host OS - Ji———— ——————— .
|
2711 I
2 |
Host filesystem [~ 7 7} 7] |
| |
| |
| | 2720
! T
I |
J 2721 : : 2722
| |
g 2723 2725
Host
. { filesystem | 4 HostOS
Data Data
Structures Structures
Filesystem k. _J_——-————_ —
Aware ':‘
Storage o 2726
Controller
== 1 Storage
Controller
Data
y User Data Structures
2724
2700

Fig 27

22/33
SUBSTITUTE SHEET (RULE 26)

WO 2007/128005

Locate host filesystem data
structures in storage

A 4

Analyze host filesystem data
structures to determine host
filesystem storage usage

Manage user data storage based on |

the host filesystem storage usage

Fig 28

23/33
SUBSTITUTE SHEET (RULE 26)

PCT/US2007/068139

2802

2804

2806

WO 2007/128005 PCT/US2007/068139

Locate partition table in the storage 2902
controller data structures 2723

Parse partition table to locate OS
partition containing the host OS data 2904
structures 2725

. 4

Parse the OS partition to identify the
host OS 2712 and locate the host OS 2906
data structures 2725

N 2

Parse the host OS data structures 2725
to identify the host filesystem 2711
and locate the host filesystem data 2908

structures 2723

Fig 29

24/33
SUBSTITUTE SHEET (RULE 26)

WO 2007/128005

Identify blocks marked as being unused
by the host filesystem 2711

h 4

Identify any blocks that are marked as
unused by the host filesystem 2711
but are marked as used by the
filesystem-aware storage controller 2721

N

Reclaim any blocks that are marked as

used by the filesystem-aware storage

controller 2721 but are no longer being
used by the host filesystem 2711

Fig. 30

25/33

3002

3004

3006

SUBSTITUTE SHEET (RULE 26)

PCT/US2007/068139

WO 2007/128005 PCT/US2007/068139

Identify the data type associated with 3102
' particular user data 2724

A 4

Optionally store the particular user data 2724
using a storage layout selected based on the 3104
data type
h 4
3106

Optionally encode the particular user
data 2724 using an encoding scheme
selected based on the data type

Fig 31

26/33
SUBSTITUTE SHEET (RULE 26)

WO 2007/128005 PCT/US2007/068139

3220
HRT
3210
3211 3213
BBUM X BBUBs
3212
3214
BLTs Asychronous
Task
3215
DSTs
Fig. 32

27/33
SUBSTITUTE SHEET (RULE 26)

WO 2007/128005 PCT/US2007/068139

Look for partition table at LBA 0
If (partition table found)
Read the partition table to identify partitions
For each partition
Read the boot sector of the partition to find the MFT
Read the resident $bitmap record of the MFT to get file attributes
Program the BLTs with the boot sector LBA of each partition
Program the BLTs with the LBA(s) of the bitmap record(s)
Program the BLTs with the LBA(s) of the actual bitmap(s)
Flag boot sector LBA(s) to require immediate parsing
Flag bitmap record LBA(s) to require immediate parsing
Flag actual bitmap(s) to not require immediate parsing
Endfor
Else
End without adding additional locations to the BLTs
Endif

FIG. 33

28/33
SUBSTITUTE SHEET (RULE 26)

WO 2007/128005 PCT/US2007/068139

Receive ClientRequest
Get the LUN from the CIientRequest
Find the right BLT based on the LUN
Get the LBA from the ClientRequest
Look for this LBA in the BLT
Check “immediate action” field
If (immediate action is required)
Process ClientRequest synchronously
Else
Set BBUB bit corresponding to the LBA for asynchronous processing
Endif

FIG. 34

29/33
SUBSTITUTE SHEET (RULE 26)

WO 2007/128005 PCT/US2007/068139

If (block is partition table)
Compare partitions in new data with partitions in BLT
If(new partition being added)
Get start and end of partition from new data
Check DST for any overlapping LBA ranges
Remove overlapping LBA ranges
Add start of partition to BLT

Flag for immediate action

FIG. 35

30/33
SUBSTITUTE SHEET (RULE 26)

WO 2007/128005

If (block is partition boot sector)
Get start of MFT from new data
Calculate location of bitmap record
If(identical bitmap record entry already in BLT for this partition)
Nothing required
Endif
If(bitmap record is different location from BLT version)
Update the BLT
Read the new location from the disk
If(that looks like a bitmap record ie. Has $bitmap string)
Get the new bitmap location(s)
Compare with BLT
If(identical)
Nothing required
If(different location)
Set all BBUB bits
Update BBUB mappings
Move the LBA ranges in BLT
[f(smaller)
Contract the BBUB
Add the unmapped LBA range into the DST
Contract the LBA range in the BLT
If(bigger)
Set all the additional BBUB bits
Enlarge the BBUB
Enlarge the LBA range in the BLT
Else
Nothing required
Endif
Endif

Endif FIG. 36

31/33
SUBSTITUTE SHEET (RULE 26)

PCT/US2007/068139

WO 2007/128005 PCT/US2007/068139

If (block is partition table)
Compare partitions in new data with partitions in BLT
If(partition being deleted)
Delete BBUB
Delete boot sector from BLT
Delete Bitmap record from BLT
Delete Bitmap ranges from BLT
Add partition range to DST
Endif
Endif

FIG. 37

32/33
SUBSTITUTE SHEET (RULE 26)

WO 2007/128005 PCT/US2007/068139

Parse the BBUB
For each bit set in BBUB
Check whether the corresponding cluster is marked unused by the host filesystem
If (cluster is marked unused by the host filesystem)
Check whether the cluster is marked used by the storage controller
If (cluster is marked used by the storage controller)
Add LBA range to DST
Endif
Endif
Endfor
For each LBA range in the DST
Reclaim the storage space
Endfor

FIG. 38

33/33
SUBSTITUTE SHEET (RULE 26)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - description
	Page 85 - description
	Page 86 - description
	Page 87 - description
	Page 88 - description
	Page 89 - description
	Page 90 - description
	Page 91 - description
	Page 92 - description
	Page 93 - claims
	Page 94 - claims
	Page 95 - claims
	Page 96 - claims
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - drawings
	Page 119 - drawings
	Page 120 - drawings
	Page 121 - drawings
	Page 122 - drawings
	Page 123 - drawings
	Page 124 - drawings
	Page 125 - drawings
	Page 126 - drawings
	Page 127 - drawings
	Page 128 - drawings
	Page 129 - drawings

