(11) Patento numeris: 5133
(51) Int. Cl.: C07K 16/00
(21) Paraiškos numeris: 2002 114
(22) Paraiškos padavimo data: 2002 11 13
(41) Paraiškos paskelbimo data: 2003 12 29
(45) Patento paskelbimo data: 2004 05 25
(62) Paraiškos, iš kurios dokumentas išskirtas, numeris: —
(86) Tarptautinės paraiškos numeris: PCT/US01/17139
(86) Tarptautinės paraiškos padavimo data: 2001 05 23
(85) Nacionalinio PCT lygio procedūros pradžios data: 2002 11 13
(30) Prioritetas: 09/579927, 2000 05 26, US
60/214065, 2000 06 26, US
(72) Išradėjas:
Robert J. PEACH, US
Joseph R. NAEMURA, US
Peter S. LINSLEY, US
Jurgen BAJORATH, US
(73) Patentinės patikėtininkas:
BRISTOL-MYERS SQUIBB COMPANY, P. O. Box 400, Lawrenceville-Princeton Road, Princeton, New Jersey 08543, US
(74) Patentinis patikėtinis:
Rita LAURINAVIČIŪTĖ, UAB „Metida”, Gedimino pr. 45-6, LT-2600 Vilnius, LT
(54) Pavadinimas:
Tirpios CTLA4 mutanto molekulės ir jų panaudojimas
(57) Referatas:
Šiame išradime yra pateikiamos tirpios CTLA4 mutantinės molekulės, kurios su didesne surišimo geba jungiasi su CD80 ir/arba CD86 antigenu nei laukinio tipo CTLA4 arba nemutantinis CTLA4lg. Tirpios CTLA4 molekulės turi pirmąją aminorūgščių seką, apimančią CTLA4 ekstralųstelę dalį, kurioje tam tikros aminorūgščių liekanos S25-R33 srityje ir M97-G107 srityje yra mutuotos. Šio išradimo mutantinėse molekulėse taip pat gali būti antroji aminorūgščių seka, kuri padidina mutantinės molekulės tirpumą.
IŠRADIMO SRITIS

Šis išradimas yra susijęs su tirpių CTLA4 molekulių, kurios yra mutuotos iš laukinio tipo CTLA4 taip, kad išlaikytų sugebėjimą surišti CD80 ir/arba CD86, sritimi.

IŠRADIMO KILMĖ


Peach et al., (J. Exp. Med. (1994) 180:2049-2058) identifikavo sritis CTLA4 ekstraląstelinėje srityje, kurios yra svarbios stipriam suriūtimui su CD80. Konkrečiau, buvo identifikuota, kad heksapeptidinis gabalas (MYPPPY) komplementarumą apsprendžiančioje srityje 3 (panašioje į CDR3 sritį) yra pilnai išsilaikęs visuose CD28 ir CTLA4 šeimos nariuose. Alanino skanavimo mutagenezę per MYPPPY gabalą CTLA4 molekulėje ir pasirinktose CD28lg liekanose sumažino arba panaikino susirūpinimą su CD80.
Taip pat buvo sukonstruotos chimerinės molekulės, tarpusavyje sukeičiant CTLA4 ir CD28 homologines sritis. HS4, HS4-A ir HS4-B molekulės buvo sukonstruotos implantuojant CTLA4 molekulės panašias į CDR-3 sritis, į kurias taip pat įjėjo karboksji-galo dalis, išplėsta taip, kad įeitų nekonservatyvios aminorūgščių liekanos CD28lg. Šie homologiniai mutantai rodė didesnį polinkį susirūsti su CD80, nei CD28lg.

Kitoje chimerinių homologinių mutantų grupėje CTLA4 molekulės panaši į CDR1 sritis, kuri nėra išlaikyta CD28 ir manoma, kad erdviškai ji yra greta panašios į CDR3 sritį, buvo implantuota į HS4 ir HS4-A. Šios chimerinės homologinių mutantų molekulės (pavadintos HS7 ir HS8) parodė dar didesnį polinkį susirūsti su CD80, nei CD28lg.

Taip pat buvo sukurto homologinės mutantinės molekulės, implantuojant į HS7 ir HS8 CTLA4 molekulės panašią į CDR1 sritį, bet šis derinys toliau nebegerino polinkio susirūsti su CD80. Taigi, buvo nustatyta, kad CTLA4 ir CD28 MYPPPY gabalas yra ypatingai svarbus susirūsimui su CD80, bet kai kurios nekonservatyvių aminorūgščių liekanos CTLA4 molekulės panašiose į CDR1 ir CDR3 srityse taip pat yra atsakingos už padidintą CTLA4 susirūšimą su CD80.

Buvo parodyta, kad CTLA4lg efektyviai blokuoja su CD80 susijusią T ląstelės kostimuliaciją, bet nėra efektyvi blokuojant su CD86 susijusių atsakus. Buvo sukonstruotos tirpios CTLA4 mutantinės molekulės, ypatingai tokios, kurios turėdė didesnį polinkį į CD86, nei laukinio tipo CTLA4, galinčios geriau blokuoti antigenui specifinių aktyvuotų ląstelių atsiradimą nei CTLA4lg.

Vis tik išlieka pagerintų CTLA4 molekulių, nei iki šiol žinomos tirpios CTLA4 formos, poreikis, kad būtų galima pateikti geresnes farmacines kompozicijas imunininiam slopinimui ir vėžio gydymui.
IŠRADIMO SANTRAUKA

Tokių būdų šiame išradime yra pateikiamos tirprios CTLA4 mutantinės molekulės, kurios suriša CD80 ir/arba CD86. Mutantinės šio išradimo molekulės apima tokias molekules, kurios gali atpažinti ir surišti arba CD86, arba CD86, arba abi šias molekules. Kai kuriuose įgyvendinimo variantuose mutantinės molekulės suriša CD80 ir/arba CD86 su didesne surišimo geba nei CTLA4Ig.

Vienas CTLA4 mutantinės molekulės pavyzdys yra čia aprašyta L104EA29Ylg (fig.7). Kitas CTLA4 mutantinės molekulės pavyzdys yra čia aprašyta L104E1g (fig.8). L104EA29Ylg ir L104E1g geriau suriša CD80 ir CD86 nei CTLA4Ig.

TRUMPAS FIGŪRŲ APRAŠYMAS

Fig.1 rodo L104EA29Ylg, L104E1g ir laukinio tipo CTLA4Ig pusiausvyrinę surišimo su CD86Ig analizę.

Fig.2A ir 2B ilustruoja FACS testų duomenis, rodančius L104EA29Ylg, L104E1g ir CTLA4Ig susirinius su žmogaus CD80- arba CD86-transfekuotomis CHO ląstelėmis, kaip aprašyta 2 pavyzdyje toliau.

Fig.3A ir 3B vaizduoja CD80-teigiamų ir CD86-teigiamų CHO ląstelių proliferaciją, kaip aprašyta 2 pavyzdyje toliau.

Fig.4A ir 4B rodo, kad L104EA29Ylg efektyviai inhibuoja pirminių ir antrinių alostimuliuotų T ląstelių proliferaciją nei CTLA4Ig, kaip aprašyta 2 pavyzdyje toliau.

Fig.5A-C ilustruoja, kad L104EA29Ylg efektyviau inhibuoja alostimuliuotų žmogaus T ląstelių IL-2 (Fig.5A), IL-4 (Fig.5B) ir γ-interferono (Fig.5C) citokinų produkciją, nei CTLA4Ig, kaip aprašyta 2 pavyzdyje toliau.

Fig.6 rodo, kad L104EA29Ylg efektyviai inhibuoja beždžionių fitohemaglutinino (PHA) stimuliuotų T ląstelių proliferaciją nei CTLA4Ig, kaip aprašyta 2 pavyzdyje toliau.
Fig.7 vaizduoja CTLA4 mutantinės molekulės (L104EA29lg) nukleotidų ir aminoruščių seką, apimančią signalinį peptidą; mutuotą CTLA4 ekstraslastelinę sritį, pradedant nuo metionino +1 padėtyje ir baigiant asparto rūgštimi +124 padėtyje arba pradedant nuo alanino -1 padėtyje ir baigiant asparto rūgštimi +124 padėtyje, ir Ig srūtį, kaip aprašyta 1 pavyzdypje toliau.

Fig.8 vaizduoja CTLA4 mutantinės molekulės (L104Elg) nukleotidų ir aminoruščių seką, apimančią signalinį peptidą; mutuotą CTLA4 ekstraslastelinę sritį, pradedant nuo metionino +1 padėtyje ir baigiant asparto rūgštimi +124 padėtyje arba pradedant nuo alanino -1 padėtyje ir baigiant asparto rūgštimi +124 padėtyje, ir Ig srūtį, kaip aprašyta 1 pavyzdypje toliau.

Fig.9 vaizduoja CTLA4lg, nukleotidų ir aminoruščių seką, turinčią signalinį peptidą, laukinio tipo CTLA4 ekstraslastelinės srities aminoruščių seką, pradedant nuo metionino +1 padėtyje iki asparto rūgštis +124 padėtyje arba pradedant nuo alanino -1 padėtyje iki asparto rūgštis +124 padėtyje, ir Ig srūtį.

Fig.10A-C yra SDS gelio (Fig.10A) CTLA4lg (1 juostelė), L104Elg (2 juostelė) ir L104EA29Ylg (3A juostelė); bei CTLA4lg (Fig.10B) ir L104EA29Ylg (Fig.10C) molekulinių sietų chromatogramos.

Fig.11A ir 11B iliustruoja CTLA4 ekstraslastelinio Ig V-tipo klosčių juostinę diagramą, gautą iš tarpalo struktūros, nustatyto BMR spektroskopijos metodu. Fig.11B rodo S25-R33 srities ir MYPPPY srities padidintą vaizdą, nurodant surišimo gebą padidinančių mutacijų (L104 ir A29) padėtį ir šoninės grandinės orientaciją.

Fig.12 pavaizduota vektoriaus pilNT-LEA29Y, turinčio L104EA29Ylg intarpą, scheminė diagrama.

SMULKUS IŠRADIMO APRAŠYMAS

APIBREŽIMAI

Šioje paraškoje naudojami žodžiai arba frazės turi toliau nurodytas reikšmes.

Čia naudojamas "laukinio tipo CTLA4" turi gamtinę aminoruščių seką, pilno ilgio CTLA4 (JAV patentai Nr.Nr. 5434131, 5844095, 5851795) arba
ekstraląstelinę jos dalį, kuri rišasi su CD80 ir/arba CD86, ir/arba trukdo CD80 ir/arba CD86 susirįšti su jų ligandais. Konkrečiuose įgyvendinimo variantuose laukinio tipo CTLA4 ekstraląstelinė dalis prasideda nuo metionino +1 padėtyje ir baigiasi asparto rūgštimi +124 padėtyje arba laukinio tipo CTLA4 ekstraląstelinė dalis prasideda nuo alanino -1 padėtyje ir baigiasi asparto rūgštimi +124 padėtyje. Laukinio tipo CTLA4 yra laštėlės paviršiaus baltymas, turintis N-galinę ekstraląstelinę dalį, transmembraninę dalį ir C-galinę citoplazminę dalį. Ekstraląstelinė dalis rišasi su tiksliniais antigenais, tokiais kaip CD80 ir CD86. Laštėlėje gamtinis laukinio tipo CTLA4 baltymas yra transluiuojamas kaip nesubrendęs polipeptidas, į kurį įeina signalinis peptidas N-baigmės gale. Šis nesubrendęs polipeptidas patiria potransliacinių būdų, kurį sudaro signalinio peptido atskelimas ir pašalinimas, pasigaminant atskelto CTLA4 produktų, turinčiam naujai atsiradusį N-baigmęs galą, kuris skiriasi nuo N-baigmės galų nesubrendusioje formos. Specialistas turėtų suprasti, kad gali vykti ir papildomas potransliacinių būdų, kuris pašalina vieną arba daugiau aminorūgščių iš atskelto CTLA4 produkto naujai susidariusio N-baigmęs galo. Į subrendusią CTLA4 molekulės formą įeina ekstraląstelinė CTLA4 dalis arba bet koks jos gabalas, kuris rišasi su CD80 ir/arba CD86.

"CTLA4lg" yra tirpus sulietas baltymas, turintis laukinio tipo CTLA4 ekstraląstelinę dalį arba jos gabalą, kurie rišasi su CD80 ir/arba CD86, prijungtą prie Ig uodegos. Ypatingas įgyvendinimo variantas turi laukinio tipo CTLA4 ekstraląstelinę dalį, prasidedančią nuo metionino +1 padėtyje ir besibaigiančią asparto rūgštimi +124 padėtyje arba prasidedančią nuo alanino -1 padėtyje ir besibaigiančią asparto rūgštimi +124 padėtyje; jungiančią aminorūgšties liekaną glutaminą +125 padėtyje; ir imunoglobulino dalį, apimančią nuo glutamo rūgšties +126 padėtyje iki lizino +357 padėtyje (Fig.9).

Čia naudojamas terminas “sulietas baltymas” yra apibūdina kaip viena arba daugiau aminorūgščių sekų, sujungtų kartu, naudojant specialistams gerai žinomus metodus, kaip aprašyta JAV patentuose Nr.5434131 arba 5637481. Tokiu būdu sujungtos aminorūgščių sekos sudaro sulietą baltymą.

Čia naudojamas terminas “CTLA4 mutatinė molekulė” reiškia molekulę, kuria gali būti pilno ilgio CTLA4 arba jos dalys (dariniai arba
fragmentai), kurie turi mutaciją arba daug mutacijų CTLA4 (geriausia CTLA4 ekstraląstelinėje dalyje), ir ji yra panaši į laukinio tipo CTLA4 molekulę, bet jau nebeidentiška jai. CTLA4 mutatinės molekulės riša arba CD80, arba CD86, arba abi šias molekules. Į mutatinės CTLA4 molekules gali įeiti biologiskai arba chemiškai aktyvi ne-CTLA4 molekulę, arba jos gali būti prijungtos prie tokios molekulės. Mutatinės molekulės gali būti tirprios (t.y. cirkuliuojančios) arba prijungtos prie paviršiaus. CTLA4 mutatinės molekulės gali būti pagaminamos sintezės arba rekombinantiniu būdu.

Čia naudojamas terminas "mutacija" reiškia nukleotidų arba aminorūgščių pakeitimą laukinio tipo polipeptido sekoje. Šiuo atveju tai yra pakeitimas laukinio tipo CTLA4 ekstraląstelinėje dalyje. Šis pakeitimas gali būti aminorūgštis pakeitimas, kuris apima pakeitimus, delecijas, pridėjimus arba nukirpimus. Mutatinė molekulė gali turėti vieną arba daugiau mutacijų. Mutacijos nukleotidų sekoje gali duoti arba gali ir neduoti mutacijų aminorūgščių sekoje, kas yra suprantama specialistams. Šiuo atžvilgiu, tam tikri nukleotidiniai kodonai koduoja tą pačią aminorūgštį. Pavyzdžiais yra nukleotidiniai kodonai CGU, CGG, CGC ir CGA, koduojantys aminorūgštį argininą (R), arba kodonai GAU ir GAC, koduojantys asparto rūgštį (D). Taigi baltymą gali koduoti viena arba daugiau nukleorūgščių molekulių, kurios skiriasi savo konkrečiomis nukleotidų sekomis, bet koduoja baltymo molekules, turinčias vienodas sekas. Aminorūgštis koduojančios sekos yra tokios:

<table>
<thead>
<tr>
<th>Aminorūgštis</th>
<th>Simbolis</th>
<th>Vienraidis kodas</th>
<th>Kodonas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaninas</td>
<td>Ala</td>
<td>A</td>
<td>GCU, GCC, GCA, GCG</td>
</tr>
<tr>
<td>Cisteinas</td>
<td>Cys</td>
<td>C</td>
<td>UGU, UGC</td>
</tr>
<tr>
<td>Asparto rūgštis</td>
<td>Asp</td>
<td>D</td>
<td>GAU, GAC</td>
</tr>
<tr>
<td>Glutamo rūgštis</td>
<td>Glu</td>
<td>E</td>
<td>GAA, GAG</td>
</tr>
<tr>
<td>Fenilalaninas</td>
<td>Phe</td>
<td>F</td>
<td>UUU, UUC</td>
</tr>
<tr>
<td>Glicinas</td>
<td>Gly</td>
<td>G</td>
<td>GGU, GGC, GGA, GGG</td>
</tr>
<tr>
<td>Histidinas</td>
<td>His</td>
<td>H</td>
<td>CAU, CAC</td>
</tr>
<tr>
<td>Izoleucinas</td>
<td>Ile</td>
<td>I</td>
<td>AUU, AUC, AUA</td>
</tr>
<tr>
<td>Lizininas</td>
<td>Lys</td>
<td>K</td>
<td>AAA, Aag</td>
</tr>
<tr>
<td>Leucinas</td>
<td>Leu</td>
<td>L</td>
<td>UUA, UUG, CUU, CUC, CUA, CUG</td>
</tr>
<tr>
<td>Metioninas</td>
<td>Met</td>
<td>M</td>
<td>AUG</td>
</tr>
<tr>
<td>Asparaginas</td>
<td>Asn</td>
<td>N</td>
<td>AAU, AAC</td>
</tr>
<tr>
<td>Prolinas</td>
<td>Pro</td>
<td>P</td>
<td>CCC, CCC, CCA, CCG</td>
</tr>
<tr>
<td>Glutaminas</td>
<td>Gln</td>
<td>Q</td>
<td>CAA, CAG</td>
</tr>
</tbody>
</table>
Čia naudojamas terminas "ekstraląstelinė CTLA4 dalis" reiškia CTLA4 dalį, kuri atpažįsta ir suriša CD80 ir/arba CD86. Pavyzdžiui, ekstraląstelinė CTLA4 dalis apima nuo metionino +1 padėtyje iki asparto rūgšties +124 padėtyje (fig.9). Kitu atveju, ekstraląstelinė CTLA4 dalis apima nuo alanino -1 padėtyje iki asparto rūgšties +124 padėtyje (fig.9). Ekstraląstelinė dalis apima CTLA4 fragmentus arba darinius, kurie suriša CD80 ir/arba CD86.

Čia naudojami terminai "ne-CTLA4 baltymo seka" arba "ne-CTLA4 molekulė" yra apibūdinamas kaip bet kokia molekulė, kuri nesuriša CD80 ir/arba CD86 ir netrukdo CTLA4 susiristi su jos taikiniu. Pavyzdžiais yra, bet jais neapsiribojami, imunoglobulino (Ig) pastovioji sritis arba jos dalis. Geriau, kad Ig patovioji sritis būtų žmogaus arba beždžionės Ig pastovioji sritis, pvz. žmogaus C(gama)1, įskaitant šarnyrą, CH2 ir CH3 sritis. Ig pastovioji sritis gali būti mutuota norint sumažinti jos efektorines funkcijas (JAV patentai Nr.Nr. 5637481 ir 6132992).

Čia naudojamas "CTLA4 mutatinės molekulės fragmentas" yra CTLA4 mutatinės molekulės dalis, geriau ekstraląstelinė CTLA4 dalis arba jos gabalas, kurie atpažįsta ir jungiasi su jos taikiniu, pvz. CD80 ir/arba CD86.

Čia naudojamas "CTLA4 mutatinės molekulės darinys" yra molekulė, kuri turi bent 70 % sekos panašumą su CTLA4 ekstraląstelinė dalimi ir veikia panašiai į ją, t.y. ji atpažįsta ir rišasi su CD80 ir/arba CD86.

Čia naudojama "CTLA4 molekulės dalis" apima CTLA4 molekulės fragmentus ir darinius, kurie rišasi su CD80 ir/arba CD86.

Norint, kad čia aprašytas išradimas būtų geriau suprantamas, toliau duodamas toks aprašymas:

IŠRADIMO KOMPOZICIJOS

Šiame išradime yra pateikiamos tirpios CTLA4 mutatinės molekulės, kurios atpažįsta ir rišasi su CD80 ir/arba CD86. Kai kuriuose išgyveninimo
variantuose tirpus CTLA4 mutantai turi didesnį polinkį susiristi su CD80 ir/arba CD86, nei CTLA4lg.

CTLA4 mutantinių molekulių pavyzdžiais yra L104EA29Ylg (fig.7). L104EA29Ylg aminorūgščių seka gali prasidėti nuo alanino -1 aminorūgščių padėtyje ir baigtis lizinu +357 aminorūgščių padėtyje. Kiti atveju, L104EA29Ylg aminorūgščių seka gali prasidėti nuo metionino +1 aminorūgščių padėtyje ir baigtis lizinu +357 aminorūgščių padėtyje. L104EA29Ylg'o CTLA4 dalis apima nuo metionino +1 aminorūgščių padėtyje iki asparto rūgšties +124 aminorūgščių padėtyje. L104EA29Ylg turi jungiančią aminorūgščių liekaną glutaminą +125 padėtyje ir imunoglobulinio dalių apimančią nuo glutamo rūgštės +126 padėtyje. L104EA29Ylg gali maždaug du kartus didesne geba nei laukinio tipo CTLA4lg (toliau vadinamas CTLA4lg) su CD80 ir maždaug 4 kartus didesne geba su CD86. Šis stipresnis surišimas duoda tai, kad L104EA29Ylg daug efektyviau blokuoja imuninius atsakus nei CTLA4lg.

CTLA4 mutantinė molekulės turi bent jau ekstraląstelinę CTLA4 dalį arba jos gabalus, kurie rįša nuo CD80 ir/arba CD86. CTLA4 mutantinės molekulės ekstraląstelinė dalis turi aminorūgščių seką, prasidedančią nuo metionino +1 padėtyje ir besitęsiančią iki asparto rūgštės +124 padėtyje (fig.7 arba 8). Kiti atveju, CTLA4 mutantinės molekulės ekstraląstelinė dalis gali turėti aminorūgščių seką, prasidedančią nuo alanino -1 padėtyje ir besitęsiančią iki asparto rūgštės +124 padėtyje (fig.7 ir 8).

Viename įgyvendinimo variante tirpi CTLA4 mutantinė molekulė yra sulietas baltymas, apimantis CTLA4 ekstraląstelinę dalį, turinčią vieną arba daugiau mutacijų aminorūgščių sekoje, prasidedančioje nuo serino +25 padėtyje ir besibaigiančioje arginino +33 padėtyje (S25-R33). Pavyzdžiui, laukinio tipo CTLA4 +29 padėtyje esantis alaninas gali būti pakeistas leucinu (kodonai: UUA, UUG, CUU, CUC, CUA, CUG), fenilalaninu (kodonai: UUU,UUC), triptofanu (kodonas: UGG) arba treoninu (kodonai: ACU, ACC, ACA, ACG). Specialiai nesunkiai supras, kad uracilas (U) RNR nukleotidų sekoje atitinka timiną (T) DNR nukleotidų sekoje.

Kitame įgyvendinimo variante tirpi CTLA4 mutantinė molekulė yra sulietas baltymas, apimantis CTLA4 ekstraląstelinę dalį, turinčią vieną arba daugiau mutacijų aminorūgščių sekoje arba netoli jos, prasidedančioje nuo
metionino +97 padėtysje ir besibaigiančioje glicinu +107 padėtysje (M97-G107). Pavyzdžiui, laukinio tipo CTLA4 +104 padėtysje esantis leucinas gali būti pakeistas glutamo rūgštimi (kodonai: GAA, GAG). Ši pakeitimą turinti CTLA4 mutatinė molekulė čia vadinama L104Elg (fig.8).


Išradime taip pat yra pateikiami tirpi CTLA4 mutatinė molekulė, turinti CTLA4 mutanto ekstraląstelės dalį, parodytą fig.7 arba 8, arba jos dalį(-is) ir liekaną, kuri keičia CTLA4 mutatinės molekulės tirpumą, afiniškumą ir/arba valentingumą.

Pagal šio išradimo praktiką, ši liekana gali būti imunoglobulino pastovioji srūtis arba jos dalis. Naudojimui in vivo pageidautina, kad imunoglobulino pastovioji srūtis nesukeltų žalingo imuninio atsako subjekte. Pavyzdžiui, klinikiniam naudojimui būtų pageidautina, kad mutatinės molekūlės turėtų žmogaus arba beždžionės imunoglobulino pastoviosias srūtis. Vienas tinkamos imunoglobulino srūties pavyzdys yra žmogaus C(gama)1, apimantis šarnyra, CH2 ir CH3 srūtis. Yra galimi ir kiti izotipai. Be to, yra galimos kitos imunoglobulino pastoviosios srūties (geriau kitos silpnai imunogenišes arba neimunogenišes imunoglobulino pastoviosios srūties).


Šiame išradime taip pat yra patelkiami tirpūs mutantiniai CTLA4Ig sulieti baltymai, pageidautina stipriaus reaguojaunys su CD80 ir/arba CD86 antigenais, nei laukinio tipo CTLA4. Vienas pavyzdys yra L104EA29YIg, parodytas fig.7.


Kitame įgyvendinimo variante tirpi CTLA4 mutatinė molekulė turi imunoglobulino dalį (pvz. šarnyrą, CH2 ir CH3 dalis), kur bet kuri arba visos cisteino liekanos imunoglobulino dalies šarnyre yra pakeistos serinu, pavyzdžiui cisteinai +130, +136 arba +139 padėtyse (fig. 7 arba 8). Šioje mutatinėje molekulėje prolinas +148 padėtyje taip pat gali būti pakeistas serinu, kaip parodyta fig.7 arba 8.


Mutatinė molekulė gali turėti onkostatino M signalinį peptidą, prijungtą prie CTLA4 ekstraląstelinės dalies N-baigmės galо, ir žmogaus imunoglobulino molekulė (pvz. šarnyrą, CH2 ir CH3), prijungtą prie CTLA4 ekstraląstelinės dalies C-baigmės galо. Į šią molekulę įjina onkostatino M signalinis peptidas, apimantis aminorūgštį seką nuo metionino -26 padėtyje iki alanino -1 padėtyje, CTLA4 dalį, apimantią aminorūgštį seką nuo metionino +1 padėtyje iki asparto rūgšties +124 padėtyje, jungiančią aminorūgštities liekaną glutaminą +125 padėtyje, ir imunoglobulino dalį, apimantią aminorūgštį seką nuo +126 padėtyje esančios glutamo rūgštities iki +357 padėtyje esančio lizino.
Šio išradimo tirpios CTLA4 mutantinės molekulės gali būti gautos molekuliniai arba cheminės sintezės metoduais. Molekuliniai metodai gali apimti tokias stadijas: nukleotūrūgštis molekulės, kuri ekspresuoja ir koduoja tirpią CTLA4 mutantinę molekulę, įvedimą į tinkamo šeimininko ląstelę; taip transformuotos šeimininko ląstelės auginimą sąlygose, kurios leidžia šeimininko ląstelėi ekspresuoti mutantines molekules; ir ekspresuotų mutantinių molekulių išskyrimą. Mutantinės molekulės signalinio peptido dalis suteikia galimybę šeimininko ląstelėi ekspresuoti baltymo moleküles ant ląstelės paviršiaus ir jas sekretuoti. Translīuotos mutantinės molekulės gali patirti potransliacinę modifikaciją, kurioje yra atskeliamas signalinis peptidas ir gaunamas subrendės baltymas, turintis CTLA4 ir imunoglobulino dalis. Gali būti skaldoma po -1 padėtyje esančio alanino, gaunant subrendusią mutantinę molekulę, kaip pirmąją aminorūgštį turinčią metioniną +1 padėtyje (fig.7 arba 8). Kitu atveju, gali būti skaldoma po -2 padėtyje esančio metionino, gaunant subrendusią mutantinę molekulę, kaip pirmąją aminorūgštį turinčią alaniną -1 padėtyje.

Tinkamiausias įgyvendinimo variantas yra tirpi CTLA4 mutantinę molekulę, turinti žmogaus CTLA4 ekstraląstelinę dalį, sujungtą su visa arba dalimi žmogaus imunoglobulino molekulės (pvz. šarnyru, CH2 ir CH3). Ši tinkamiausia molekulė apima tirpios molekulės CTLA4 dalį, apimančią aminorūgštį seką nuo metionino +1 padėtyje iki asparto rūgštis +124 padėtyje, jungiančią aminorūgštįs liekaną glutaminą +125 padėtyje ir imunoglobulino dalį, apimančią nuo glutamo rūgštis +126 padėtyje iki lizin +357 padėtyje. Dalis, turinti CTLA4 ekstraląstelinę dalį, yra mutuota taip, kad +29 padėtyje esantis alaninas yra pakeistas tirozinu, o +104 padėtyje esantis leucinas yra pakeistas glutamo rūgštimi. Gali būti mutuota mutantinės molekulės imunoglobulino dalis taip, kad +130, +136 ir +139 padėtyse esantys cistemainai yra pakeisti serinu, o +148 padėtyje esantis prolinas yra pakeistas serinu. Ši mutantinė molekulė čia yra pavadinta L104EA29Ylg (fig.7).

Kitas L104EA29Ylg įgyvendinimo variantas yra mutantinė molekulė, turinti aminorūgštį seką nuo alanino -1 padėtyje iki asparto rūgštis +124 padėtyje, jungiančią aminorūgštįs liekaną glutaminą +125 padėtyje ir imunoglobulino dalį, apimančią nuo glutamo rūgštis +126 padėtyje (pvz., nuo
+126 iki lizino +357 padėtyje). Dalis, turinti CTLA4 ekstraląstelėnį dalį, yra 
matuota taip, kad +29 padėtyje esantis alaninas yra pakeistas tirozinu, o +104 
padėtyje esantis leucinas yra pakeistas glutamo rūgštimi. Mutantinės 
molekūlės imunoglobulino dalis yra mutuota taip, kad +130, +136 ir +139 
padėtyse esantys cisteinai yra pakeisti serinu, o +148 padėtyje esantis 
prolinas yra pakeistas serinu. Ši mutantinė molekūlė čia yra pavadin
ta L104EA29Ylg (fig.7). Atskėlus signalinę seką, L104EA29Ylg gali prasidėti 
arba metioninu +1 padėtyje, arba alaninu -1 padėtyje.

Kita šio išradimo mutantinė molekūlė yra tirpi CTLA4 mutantinė 
molekūlė, turinti žmogaus CTLA4 ekstraląstelėnį dalį, sujungtą su žmogaus 
imunoglobulino molekule (pvz. šarnyrų, CH2 ir CH3). Ši molekule apima 
dalį CTLA4 aminorūgščių sekos, pradedant nuo metionino +1 padėtyje iki aspar
to rūgšties +124 padėtyje, jungiančiosios aminorūgščių liekaną glutaminą +125 
padėtyje ir imunoglobulino dalį, apimančią aminorūgščių seką nuo glutamo 
rūgšties +126 padėtyje iki lizino +357 padėtyje. Dalis, turinti CTLA4 
ekstraląstelėnį dalį, yra mutuota taip, kad +104 padėtyje esantis leucinas yra 
pakeistas glutamo rūgštimi. Mutantinės molekūlės šarnyro dalis yra mutuota 
taip, kad +130, +136 ir +139 padėtyse esantys cisteinai yra pakeisti serinu, o 
+148 padėtyje esantis prolinas yra pakeistas serinu. Ši mutantinė molekūlė 
čia yra pavadin ta L104Elg (fig.8).

Kitu atveju, L104Elg įgyvendinimo variantas yra tirpi CTLA4 mutantinė 
molekūlė, turinti žmogaus CTLA4 ekstraląstelėnį dalį, sujungtą su žmogaus 
imunoglobulino molekule (pvz. šarnyrų, CH2 ir CH3). Tinkamiausia molekūlė 
apima CTLA4 dalį apimančią aminorūgščių seką, prasidedančią nuo alanino 
-1 padėtyje iki asparto rūgšties +124 padėtyje, jungiančią aminorūgščių 
liekaną glutaminą +125 padėtyje ir imunoglobulino dalį, apimančią nuo 
glutamo rūgšties +126 padėtyje iki lizino +357 padėtyje. Dalis, turinti CTLA4 
ekstraląstelėnį dalį, yra mutuota taip, kad +104 padėtyje esantis leucinas yra 
pakeistas glutamo rūgštimi. Mutantinės molekūlės šarnyro dalis yra mutuota 
taip, kad +130, +136 ir +139 padėtyse esantys cisteinai yra pakeisti serinu, o 
+148 padėtyje esantis prolinas yra pakeistas serinu. Ši mutantinė molekūlė 
čia yra pavadin ta L104Elg (fig.8).

Be to, šiame išradime yra pateikiami tirpi CTLA4 mutantinė molekūlė, 
turinti: (a) membraninio gliukoproteino, pvz., CD28, CD86, CD80, CG40 ir
gp39, kuris blokuoja T ląstelių proliferaciją, aminorūgščių seka, sustatą su antraja aminorūgščių seka; (b) antrąją aminorūgščių seką, kuri yra mutantinės CTLA4 ekstraląstelinės dalies fragmentas, blokuojantis T ląstelių proliferaciją, tokią kaip, pavyzdžiui, aminorūgščies molekulę nuo metonio +1 padėtyje iki asporto rūgštės +124 padėtyje (fig.7 arba 8); ir (c) trečiąją aminorūgščių seką, kuri veikia kaip identifikacinis tag arba didina molekulės tirpumą. Pavyzdžiui, trečioji aminorūgščių seka gali susidėti iš neimunogeninio imunoglobulino molekulės šarnyro, CH2 ir CH3 sričių aminorūgščių sekos. Tinkamų imunoglobulino molekulių pavyzdžiais yra, bet jais neapsiribojama, žmogaus arba beždžionės imunoglobulinas, pvz. C(gama)1. Taip pat yra galimi ir kiti izotipai.

Šiame išradime taip pat yra pateikiamos nukleorūgščių molekulės, turinčios nukleotidų sekas, koduojančias aminorūgščių sekas, atitinkančias tirpias šios išradimo mutantines molekules. Vienoje įgyvendinimo variante nukleorūgšties molekulė yra DNR (pvz. kDNR) arba jos hibrīdas. Kitu atveju, nukleorūgšties molekulė yra RNR arba jos hibrīdai.

Be to, šiame išradime yra pateikiamas vektorius, kuriam yra šio išradimo nukleotidų sekos. Taip pat yra pateikama šeimininko vektoriaus sistema. Ši šeimininko vektorių sistema apima šio išradimo vektorių tinkamojo šeimininko ląstelėje. Tinkamų šeimininko ląstelių pavyzdžiais yra, bet jais neapsiribojama, prokariotinės ir eukariotinės ląstelės.

įskaitant, bet neapsiribojant, vaistinius toksinus, fermentus, antikūnus arba konjugatus.

Pageidautina, kad į farmacines kompozicijas taip pat įeitų tinkami nešikliai ir adjuvantai, kurie yra bet kokia medžiaga, kuri sumaišyta su šio išradimo molekule (pvz. tirpia CTLA4 mutantine molekule, tokia kaip L104EA29Y arba L140E) išlaiko šios molekulės aktyvumą ir neveikia subjekto imuninės sistemos. Tinkamų nešiklių ir adjuvantų pavyzdžiais yra, bet jais neapsiribojama, žmogaus serumo albuminas, jonitai, aliuminio oksidas, lecitinas, bufferinės medžiagos, tokios kaip fosfatai, glicinas, sorbo rūgštis, kalio sorbatas ir druskos arba elektrolitai, tokie kaip protamino sulfatas. Kitais pavyzdžiais yra bet kuris iš standartinių farmacinių nešiklių, kaip antai fosfatinio buferio ir druskos tirpalai, vanduo, emulsijos, tokios kaip alyvos vandenye emulsija, ir įvairaus tipo drėkinimo agentai. Kitais nešikliais taip pat gali būti sterilūs tirpalai, tabletės, įskaitant padengtas tabletes, ir kapsulės. Paprastai tokie nešikliai turi pagalbinių medžiagų, kaip antai krakmolo, pieno cukraus, tam tikros rūšies molio, želatinos, stearino rūgšties arba jos druskų, magnio arba kalcio stearato, talko, augaliniių riebalų arba aliejų, sakų, glikolių, arba kitų žinomų pagalbinių medžiagų. Tokiuose nešikliuose taip pat gali būti skonų ir spalvų duodenčių priėdų arba kitų ingredientų. Tokius nešiklius turinčios kompozicijos yra sukompouojuamos gerai žinomais įprastais būdais. Tokios kompozicijos taip pat gali būti sukompouojuamos su įvairiomis lipidų kompozicijomis, tokiomis kaip, pavyzdžiui, liposomas, bei įvairiomis polimerinėmis kompozicijomis, tokiomis kaip polimeriniai mikronutuliukai.

Šio išradimo farmacines kompozicijos gali būti įvedamos naudojant įprastus vartojimo būdus, įskaitant, bet neapsiribojant, intraveninį (i.v.) vartojimą, intraperitoninį (i.p.) vartojimą, intraraumeninį (i.m.) vartojimą, poardinį vartojimą, peroralinį vartojimą, vartojimą žvakucių pavidalu arba vietinio kontakto būdu, arba subjektiui implantuojant įeto išskyrimo įtaisą, tokį kaip miniosmozinis siurblys.

Šio išradimo farmacines kompozicijos gali būti įvairiausių dozotų formų, kurios apima, bet neapsiriboja, skysitus tirpalus arba suspensijas, tabletės, pilules, mittelius, žvakutes, polimerines mikrokapsules arba mikropūsleles, liposomas ir tirpalus injekcijoms arba infuzijai, pavidalu. Tinkamiausios formos priklauso nuo vartojimo būdo ir terapinio pritaikymo.
Efektyviausias vartojimo būdas ir dozių režimas priklauso nuo ligos sunkumo ir eigos, paciento sveikatos ir atsako į gydymą ir nuo gydančiojo gydytojo sprendimo. Taigi, kompozicijų dozės turi būti nutrituotos konkrečiam pacientui.

Subjektui gali būti skiriama toks tirpys CTLA4 mutantinės molekulės kiekis ir tokių laikų (pvz. tam tikrą laiko tarpą arba keletą kartų), kad jo pakaktų blokuoti subjekto endogeninių B7 (pvz. CD80 ir/arba CD86) molekulų susirūšimą su jų atitinkamais ligandais. Endogeninio B7/ligando blokavimas tuo pačiu inhibuoja B7-teigiamų lašteliių (pvz., CD80- ir/arba CD86-teigiamų lašelių) sąveiką su CD28- ir/arba CTLA4-teigiamomis laštelėmis. Terapinio agento dozės priklauso nuo daugelio faktorių, įskaitant, bet neapsiribojant, paveikto audinio tipą, gydomos autoimuninės ligos tipą, ligos sunkumo laipsnį, subjekto sveikatą ir subjekto atsaką į gydymą šiais agentais. Tokiu būdu agentų dozės gali kisti priklausomai nuo subjekto ir vartojimo būdo. Tirpys CTLA4 mutantinės molekulės gali būti skiriomas kiekiais nuo 0,1 iki 20,0 mg/kg paciento masės/per dieną, geriau nuo 0,5 iki 10,0 mg/kg/per dieną. Šio išradimo farmacinės kompozicijos gali būti vartojamos įvairių laikų. Viename įgyvendinimo variante šio išradimo farmacinės kompozicijos gali būti vartojamos vieną arba daugiau valandų. Be to, vartojimas gali būti pakartotas priklausomai nuo ligos sunkumo bei kitų faktorių, kas yra suprantama specialistams.

Šiame išradime taip pat yra pateikiami būdai gauti baltymui, apimantys šio išradimo vektoriaus sistemos auginimą, kad šeimininke būtų gaminamas baltymas, ir taip pagaminto baltymo išgavimą.

Be to, šiame išradime yra pateikiami funkciniai CTLA4- ir CD28-teigiamų T lašelių sąveikų su CD80- ir/arba CD86-teigiamomis laštelėmis reguliavimo būdai. Šie būdai apima CD80- ir/arba CD86-teigiamų lašelių sąlytį su šio išradimo tirpia CTLA4 mutantine molekule, kad susidarytų mutantinės CTLA4/CD80 ir/arba mutantinės CTLA4/CD86 kompleksai, kurie trukdo endogeninio CTLA4 antigeno reakciją su CD80 ir/arba CD86, ir/arba kompleksai, trukdantys endogeninio CD28 antigeno reakciją su CD80 ir/arba CD86. Viename šio išradimo įgyvendinimo variante tirp CTLA4 mutatinė molekulė yra sulietas baltymas, kuriame yra bent jau mutantinės CTLA4 ekstralastelinė dalis. Kitame įgyvendinimo variante tirp CTLA4 mutatinė
molekulė turi: pirmąją aminorūgščių seką, į kurią įeina CTLA4 ekstraląstelinė dalis, susidedanti iš aminorūgščių sekos nuo metionino +1 padėtyje iki asparto rūgšties +124 padėtyje su viena mutacija; ir antrąją aminorūgščių seką, į kurią įeina žmogaus imunoglobulino gama 1 molekulės šarnyras, CH2 ir CH3 sritys (fig.7 arba 8).

Pagal šio išradimo praktiką CD80- arba CD86-teigiamos įstelės yra leidžiamos į kontaktą su šio išradimo tirpių CTLA4 mutantinių molekulių fragmentais arba dariniais. Kitu atveju, tirpi CTLA4 mutantinė molekulė yra CD28lg/CTLA4lg sulietas baltymas, turintis pirmąją aminorūgščių seką, atitinkančią dėl CD28 receptoriaus ekstraląstelinės dalies, sulietą su antraja aminorūgščių seka, atitinkančią dėl CTLA4 mutantinio receptoriaus ekstraląstelinės dalies, ir trečiąją aminorūgščių seką, atitinkančią žmogaus imunoglobulino C-gama-1 šarnyra, CH2 ir CH3 sritis.

Tikimasi, kad tirpių CTLA4 mutantinės molekulės turės inhibicines savybes in vivo. Sažygomis, kuriose T įstelės/APC įstelės sąveikos, pavyzdžiu iš T įstelės/B įstelės sąveikos, atsiranda dėl T įstelio ir APC įstelių kontaktu, įvystytų CTLA4 mutantinių molekulių susirūšimas, reaguojant su CD80- ir/arba CD-86 teigiamomis įstelėmis, gali trukdyti, t.y. inhibuoti T įstelės/APC įstelės sąveiką ir duoti imuninių atsakų reguliavimą.

Šiame išradime pateikiami imuninių atsakų negatyviosios moduliacijos būdai. Imuninio atsako negatyvioji moduliacija tirpiomis CTLA4 mutantinėmis molekulėmis gali vykti inhibuojant arba blokuojant jau besivystantį imuninį atsaką arba gali apimti apsisaugojimą nuo imuninio atsako sukėlimo. Tirpių šio išradimo CTLA4 molekulės gali inhibuoti aktyvuotų T įstelio funkcijas, tokias kaip limfocitų proliferacija ir citokinų sekrecija, sloopinant T įstelį atsakus arba sukeliant specifinį toleravimą T įstelėse, arba abu šiuos procesus.

Toliau šiame išradime yra pateikiami imuninės sistemos ligų gydymo būdai ir tolerancijos sukėlimas. Konkrečiuose įgyvendinimo variantuose imuninės sistemos ligose tarpininkauja CD28- ir/arba CTLA4-teigiamų įstelio sąveikos su CD80-/CD86-teigiamomis įstelėmis. Kitame įgyvendinimo variante yra inhibuojamos T įstelio sąveikos. Imuninės sistemos ligos apima, bet jomis neapsiribojama, autoimunines ligas, imunoproliferacines ligas ir su implantu susijusias ligas. Šie būdai apima šio išradimo tirpių CTLA4
mutantinės molekulės skyrimą subjektui, kad būtų reguliuojama T įstačių sąveika su CD80- ir/arba CD86-teigiamomis įstačėmis. Kita atveju, gali būti skiriamas CTLA4 mutantinis hibridas, turintis membraninių glikiproteinų, prijungtą prie CTLA4 mutantinės molekulės. Su implantu susijusių ligų pavyzdžiais yra implantas-prieš-šeimininką liga (GVHD) (pvz. liga, kuri gali atsirasti dėl kaulų čiušų transplantacijos arba sukelia toleranciją), imuniniai sutrikimai, susiję su implanto atmetimu, chroniški atmetimai ir audinių arba įstačių alo- arba ksenoimplantai, įskaitant kietus organus, odą, saleles, raumenis, hepatocitus, neuronus. Imunoproliferacinių ligų pavyzdžiais yra, bet jais neapsiribojama, psoriazė, T įstačių limfoma, T įstačių úmi limfoblastinė leukemija, sėklinė angiocentrinė T įstačių limfoma, gerybinis limfocitinės angitas; ir autoimuninės ligos, tokios kaip vilkligė (pvz. raudonoji vilkligė, inkstų vilkligė), Hashimoto tiroiditas, pirminė miškėdama, Graves'o liga, piktybinė mažkraujystė, autoimuninis atrofinis gastritas, Adisono liga, diabetas (pvz. nuo insulinio priklausantis cukrinis diabetas, I tipo cukrinis diabetas), geros ganyklos sindromas, sunkioji miastenija, pūslinė, Krono liga, simpatinė oftalmija, autoimuninis uveitas, išsėtinė sklerozė, autoimuninė hemolitinė anemija, idipatinė trombocitopenija, pirminė tulžies cirozė, chroninis hepatitas, opinis kolitas, Sjogren'o sindromas, reumatinės ligos (pvz., reumatinės artritas), polimiozitas, skleroderma ir mišri jungiamoji audinio liga.

Šiame išradime taip pat yra pateikiamas subjekto kieto organo ir/arba audinio transplanto atmetimo inhibavimo būdas, kur subjektas yra transplantuoto audinio recipiantas. Paprastai audinių transplantavimo atveju persodinto gyvo audinio atmetimas prasideda atpažįstant svetimas T įstačiais, po to eina imuninis atsakas, kuris suvaidina persodintą audinį. Šio išradimo tirprios CTLA4 mutantinės molekulės, inhibuojamos T limfocitų proliferaciją ir/arba citokinų sekreciją, gali sumažinti audinio destrukciją, ir atsiradęs antigenių specifinių T įstačių nejautrumas gali duoti ilgalaiką implanto toleranciją ir nebereikėti bendrojo imunoslopinimo. Be to, tirprios šio išradimo CTLA4 mutantinės molekulės gali būti vartojamos su kitaip vaistais, įskaitant, bet neapsiribojant, kortikosteroidus, cikloporiną, rapamiciną, mikofenosilatą mofetilą, azatiopriną, takrolizmą, baziliksimabą ir/arba kitus biopreparatus.
Šiame išradime taip pat yra pateikiami subjekto šeimininkas-priėš-implantą ligos inhibavimo būdai. Šie būdai apima šio išradimo tirpios CTLA4 mutantinės molekulės, vienos arba kartu su kitais papildomais ligandais, reaguojančiais su IL-2, IL-4 arba γ-interferonu, skyrimą subjektui. Pavyzdžiui, šio išradimo tirpi CTLA4 mutantinė molekulė gali būti skirianta kaulų čiulpų recipientui donorinių T ląstelių aloreaktingumui inhibuoti. Kitu atveju, donorinės T ląstelės persodinamuojuose kaulų čiulpuose gali būti tolerizuojamos recipiento aloantigenų atžvilgiu ex vivo prieš transplantaciją.

T ląstelių atsakų inhibavimas CTLA4 mutantinėmis molekulėmis taip pat gali būti naudingas gydant autoimuninius sutrikimus. Daugelis autoimuninių sutrikimų atsiranda dėl netinkamo aktyvavimo T ląstelių, kurios yra reaktungs antigenų atžvilgiu ir kurios skatina citokinų ir autoantikūnų gaminimą, kurie dalyvauja ligos patologijoje. Tirpios CTLA4 mutantinės molekulės įvedimas subjektui, turinčiam imuninį sutrikimą arba imliam imuniniam sutrikimui, gali apsaugoti nuo autoreaktingų T ląstelių aktyvacijos ir gali sumažinti arba pašalinti ligos simptomus. Šis būdas taip pat gali apimti skyrimą šio išradimo tirpios CTLA4 mutantinės molekulės, vienos arba kartu su kitais papildomais ligandais, reaguojančiais su IL-2, IL-4 arba γ-interferonu.

mikofenoliatių mofetilą ir/arba kitus biopreparatus. Be to, gydant išsėtinę sklerozę tirpios CTLA4 mutantinės molekulės gali būti vartojamos kartu su vaistais, įskaitant, bet neapsiribojant, kortikosteroidus, interferoną beta-1a, interferoną beta-1b, glatiramero acetatą, mitoksantrono hidrochloridą ir/arba kitus biopreparatus.

Tirpios CTLA4 mutantinės molekulės (geriausia L104EA29Ylg) taip pat gali būti naudojamos imuniniam atsakui reguliuoti derinýje su vienu arba daugiau toliau duodamų agentų: tirpių gp39 (taip pat žinomu kaip CD40 ligandas (CD40L), CD154, T-BAM, TRAP), tirpių CD29, tirpių CD40, tirpių CD80, tirpių CD86, tirpių CD28, tirpių Thy-1, tirpių CD3, tirpių TCR, tirpių VLA-4, tirpių VCAM-1, tirpių LECAM-1, tirpių ELAM-1, tirpių CD44, antikūnais reaguojančiais su gp39, antikūnais reaguojančiais su CD40, antikūnais reaguojančiais su B7, antikūnais reaguojančiais su CD28, antikūnais reaguojančiais su LFA-1, antikūnais reaguojančiais su LFA-2, antikūnais reaguojančiais su IL-2, antikūnais reaguojančiais su IL-12, antikūnais reaguojančiais su IFN-gama, antikūnais reaguojančiais su CD-2, antikūnais reaguojančiais su CD48, antikūnais reaguojančiais su bet kuriuo ICAM (pvz. ICAM-2), antikūnais reaguojančiais su CTLA4, antikūnais reaguojančiais su Thy-1, antikūnais reaguojančiais su CD56, antikūnais reaguojančiais su CD3, antikūnais reaguojančiais su CD29, antikūnais reaguojančiais su TCR, antikūnais reaguojančiais su VLA-4, antikūnais reaguojančiais su VCAM-1, antikūnais reaguojančiais su LECAM-1, antikūnais reaguojančiais su ELAM-1, antikūnais reaguojančiais su CD44. Tam tikruose įgyvendinimo variantuose tinkamesni yra monokloniniai antikūnai. Kituose įgyvendinimo variantuose yra pageidautini antikūnų fragmentai. Specialistai nesunkiai supras, kad derinyje gali būti šio išradimo tirpių CTLA4 mutantinės molekulės su vienu kitu imunodepresantu, tirpių CTLA4 mutantinės molekulės su dvium kitais imunodepresantais, tirpių CTLA4 mutantinės molekulės su trim kitais imunodepresantais ir t.t. Optimalūs deriniai ir dozės gali būti nustatomos ir optimizuojamos naudojant specialistams žinomus būdus.

Kai kurie konkretūs deriniai yra tokie: L104EA29Ylg ir CD80 mAb; L104EA29Ylg ir CD86 mAb; L104EA29Ylg, CD80 mAb ir CD86 mAb; L104EA29Ylg ir gp39 mAb; L104EA29Ylg ir CD40 mAb; L104EA29Ylg ir
CD28 mAb; L104EA29Ylg, CD80 ir CD86 mAb ir gp39 mAb; L104EA29Ylg CD80 ir CD86 mAb ir CD40 mAb; ir L104EA29Ylg, anti-LFA-1 mAb ir anti-gp mAb. Specifinis gp39 mAb pavyzdys yra MR1. Specialistai nesunkiai įvertins ir supras kitus derinius.

Tirpiai šio išradimo mutantinės molekulės, pavyzdžiui L104EA29Ylg, gali būti vartojamos kaip vienintelis veiklusis ingredientas arba kartu su kitais vaistais imunomoduliacimo režimuose arba su kitais priešuždegiminiais agentais, pvz. gydymui arba apsisaugojimui nuo alo- arba ksenoimplanto ūmaus arba chroniško atmetimo, arba uždegiminių arba autoimininių sutrikimų, arba tolerancijai indukuoti. Pavyzdžiui, jos gali būti naudojamos derinėje su kalcineurino inhibitoriumi, pvz. ciklosporinu A arba FK506; imunodepresiniu mAbrolidu, pvz. rapamicinu arba jo dariniais; pvz. 40-O-(2-hidroksi)etil-rapamicinu, limfocitų nukreipiančią agentu, pvz. FTY720 arba jo analogu; kortikosteroidais; ciklofosfamidu; azatioprenu; metotreksatu; leflunomidu arba jo analogu; mizorininu; mikofenolio rūgštimi; mikofenoliatu mofetilu; 15-deoksispergualinu arba jo analogu; imunodepresiniais monokloniniais antikūnais, pvz. monokloniniais antikūnais leukocitų receptoriams, pvz., MHC, CD2, CD3, CD4, CD11a/CD18, CD7, CD25, CD27, B7, CD40, CD45, CD58, CD137, ICOS, CD150 (SLAM), OX40, 4-1BB arba jų ligandais; arba kitais imunomoduliaciniais junginiais, pvz. CTLA4/CD28-Ig arba kitais adhezinių molekulių inhibitoriais, pvz. mAb arba mažos molekulinės masės inhibitoriais, įskaitant LFA-1 antagonistus, selektinio antagonistus ir VLA-4 antagonistus. Šis junginys yra ypatingai tinkamas derinių su junginiu, kuris konkuruoja su CD40 ir jo ligandu, pvz. antikūnai prieš CD40 arba antikūnai prieš CD40-L, pvz. aukščiau minėtose indikacijose, pvz. tolerancijai sukelti.

Kur tirpiai šio išradimo CTLA4 mutantinės molekulės yra skiriamos derinėje su kita imunodepresine/imunomoduliacine arba priešuždegimine terapija, pvz. taip, kaip aprašyta aukščiau, kartu skiriamo imunodepresanto/imunomoduliatoriaus arba priešuždegiminio junginio dozės, žinoma, keisis priklausomai nuo naudojamo kovaisto tipo, pvz. ar jis yra steroidas, ar ciklosporinas, nuo konkretaus vartojamo vaisto, nuo gydomos būklės ir t.t.
Pagal aukščiau duotą aprašymą, šiame išradime yra pateikiami dar ir kitu aspektu aukščiau aprašytų būdų, apimantys terapiškai efektyvaus kiekio šio išradimo tirpių CTLA4 mutantinių molekulių, L104EA29Ylg (laisvos formos arba farmaciškai priimtinos druskos formos) ir antrosios vaistinės medžiagos, kur ši antroji vaistinė medžiaga yra imunodepresantas, imunomodulatorius arba priešuždegimasis vaistas, bendrą vartojimą, pvz. kartu arba pakaitomis, kaip nurodyta aukščiau. Taip pat yra pateikiami terapiniai deriniai, pvz. rinkiniai, pvz. naudojimui bet kuriam įvairioms aukščiausios aprašytų būdų, į kurį įtrauka L104EA29Ylg (laisvos formos arba farmaciškai priimtinos druskos formos), skirtas naudoti kartu arba pakaitomis, su bent viena farmacine kompozicija, turinčia imunodepresanto, imunomodulatoriaus arba priešuždegimino vaisto. Rinkinyje gali būti nurodymai apie jo vartojimą.

ŠIO IŠRADIMO MOLEKULIŲ PAGAMINIMO BŪDAI

CTLA4 mutantinės molekūlės gali būti ekspresuojamos prokariotinėse laštelėse. Dažnai pasitaiko prokariotus atstovauja įvairūs bakterijų kamienai. Bakterijos gali būti gram-teigiamos arba gram-neigiamos. Paprastai tinkamiausios yra gram-neigiamos bakterijos, tokios kaip *E. coli*. Taip pat gali būti naudojami ir kitų mikrobų kamienai.


Iš tokių ekspresijos vektorių taip pat įeis replikacijos pradžios ir atrankos žymės, tokios kaip beta-laktamazės arba neomicino fosfotransferazės genai, suitekiantys atsparumą antibiotikams, taip kad
vektoriałai gali dvigubēti bakterijose, ir šias plazmides turinčios įstelės gali būti atrinktos auginant su antibiotikais, tokiais kaip ampicilinas arba kanamcinas.


CTLA4 mutantines molekules koduojančios nukleorūgščių sekos taip pat gali būti įterptos į vektorių, skirtą svetimoms sekoms ekspresuoti eukariotiniame šeimininke. Šio vektoriaus reguliaciniai elementai gali kisti priklausomai nuo konkretaus eukariotinio šeimininko.

promotoriai, tokie kaip promotoriai išvesti iš poliomos, adenoviruso 2 ir jaučio
papilomos viruso. Taip pat gali būti naudojamas indukuojamas promotoriaus,

Vektoriai CTLA4 mutantinių molekulių ekspresijai eukariotuose taip pat
gali turėti sekas, vadinamas stiprinimo sritimis. Jos yra svarbios genų
ekspresijos optimizavimui ir yra randamos arba prieš promotoriaus srūtį, arba
po jos.

Ekspresijos vektorių eukariotinių šeimininkų laštelėms pavyzdžiui yra,
bet jais neapsiribojama, vektoriai žinduolių šeimininkų laštelėms (pvz., BVP-1,
pHyg, pRSV, pSV2, pTK2 (Maniatis); pIRES (Clontech); pRc/CMV2,
pRc/RSV, pSFV1 (Life Technologies); pVPakc vektoriai, pCMV vektoriai,
pSG5 vektoriai (Stratagene), retrovirusiniai vektoriai (pvz. pFB vektoriai
(Stratagene)), pCDNA-3 (Invitrogen) arba jų modifikuotos formos,
adenovirusiniai vektoriai; susiję su adenovirusu vektoriai, bakuloviruso
vektoriai, mielių vektoriai (pvz. pESC vektoriai (Stratagene)).

CTLA4 mutantines molekules koduojančios nukleorūgščių sekos gali
integruotis į eukariotinio šeimininko laštelės genomą ir dvigubėti kaip
šeimininko genomo kopijos. Kitu atveju, CTLA4 mutantines molekules nešantys
vektorai gali turėti replikacijos pradžias, duodančias ekstrachromosominių
kopijų susidarymo galimybę.

Nukleorūgščių sekų ekspresijai Saccharomyces cerevisiae gali būti
naudojama replikacijos pradžia iš endogeninės mielių plazmidės (2μ ratas)
iš mielių genomo, galinčios skatinti autonominę replikaciją (žr. pavyzdžiui,

I transkripcijos kontrolės sekas mielių vektoriams įejina glikolizinių
fermentų sintezės promotoriai (Hess et al., (1968) J. Adv. Enzyme Res. 7:149;
promotoriais yra CMV promotorius, patelktas CDM8 vektoriuje (Toyama and
Okayama, (1990) FEBS 268:217-221); 3-fosfogliceratkinazės promotorius
promotoriai.
Kitais promotoriais yra indukojami promotoriai, nes jie gali būti reguliuojami aplinkos stimulų arba įstaigų auginimo terpės. Tokie indukojami promotoriai apima promotorius iš genų šilumos šoko baltymams, alkoholiederogenazioze 2, izocitochromų c, rūgštinei fosfatazei, fermentams, susijusiems su azoto katabolizmu, ir fermentams, atsakingiems už maltozės ir galaktozės utilizavimą.

Koduojančios sekos 3'-gale gali būti prijungtos reguliacinės sekos. Tokios sekos gali veikti stabilizuodamos informaciją RNR. Šios baigmės sekos yra randamos 3' netransliuvojamoje srityje po koduojančių sekių keiliuse išvestuose iš mielių ir žinduolių genuose.

Vektorių augalams ir augalų ląstelėms pavyzdziai yra, bet jais neapsiribojama, Agrobacterium Tₐ plazmidės, žiedadinių kopūstų mozaikos virusas (CaMV) ir pomidorų auksinės mozaikos virusas (TGMV).

Bendruosius žinduolių ląstelių šeimininko sistemos transformavimo aspektus aprašė Axel (JAV patentas Nr. 4399216, publikuotas 1983 m. rugpjūčio 16 d.). Žinduolių ląstelės gali būti transformuotos būdais, išskaitant (bet neapsiribojant) transfekciją esant kalcio fosfato, mikroinjekcijomis, elektroporaciją arba transdukcija virusiniai vektoriais.

Svetimos DNR įvedimo į augalų ląstelių ir mielių genomus būdai yra:
(1) mechaniniai būdai, tokių kaip DNR mikroinjekcijos į atskiras ląsteles arba protoplastus, maišant ląsteles su stiklo granulėmis, esant DNR, arba įsaunant DNR padengtus volframo arba aukso rutuliuksus į ląsteles arba protoplastus;
(2) įvedant DNR, kai ląstelių membranos padaromos laidžiomis makromolekulėms, veikiant polietilenglikoliu arba didelės įtampos elektriniais impulsais (elektroporacija), arba (3) panaudojant liposomas (turinčias DNR), kurios susilieja su ląstelių membranomis.

Išradime toliau yra pateikiamos tirplos CTLA4 mutantinės molekulės, produkuotos kaip aprašyta aukščiau.

MUTAGENEZĖ CTLA4lg KODONŲ PAGRINDU

Viename įgyvendinimo variante keletui mutacijų, kurios pagerinančiu polinį susirūsti su CD86, CTLA4 ekstraląstelinėje dalyje identifikuoti buvo panaudota vietai specifinė mutagenezė ir nauja skrynino metodika. Šiame variante mutacijos buvo vykdomos CTLA4 ekstraląstelinės dalies srities liekanose nuo serino 25 iki arginino 33, C' grandinėje (alaninas 49 ir treoninas 51), F grandinėje (lizinės 93, glutamo rūgštis 95 ir leucinas 96) ir srityje nuo metionino 97 iki tirozino 102, tirozino 103 iki glicino 107 ir G grandinėje glutamino 111, tirozino 113 ir izoleucino 115 padėtyse. Šios vietos buvo pasirinktos remiantis chimerinių CD28/CTLA4 sulietų baltymų tyrimais (Peach et al., J. Exp. Med., 1994, 180:2049-2058) ir modeliu, numatančiu, kuri iš aminorūgščių liekanų šoninių grandinių bus išlindusi į tirpiklį, ir kad tam tikrose padėtyse tarp CD28 ir CTLA4 nėra aminorūgščių liekanos identiškumo arba homologijos. Be to, bet kuri liekana, kuri erdviskai yra labai arti (5-20 angstromų) prie identifikuotų liekanų, yra laikoma šio išradimo dalimi.

Tirpių CTLA4 mutantinių molekulėių, turinčių pakeistus afiniškumus CD80 ir/arba CD86, sintezėi ir skryniningui buvo pritaikyta dvistadijinė strategija. Eksperimentai pirmiausia pareikalavo sukurti mutacijų biblioteką prie specifinio CTLA4 ekstraląstelinės dalies kodono ir po to atlikti jų skryniną BIAcore analizės būdu, identifikuojant mutantus su pakeistu reaktungumu CD80 arba CD86 atžvilgiu. Biacore testo sistema (Pharmacia, Piscataway, N.J.) naudoja paviršiaus plazmonų rezonanso detektoriaus sistemą, kurioje iš esmės dalyvauja kovalentinis CD80lg, arba CD86lg susirūšimas su dekstranu padengta plokštele, kuri yra įtaisyta detektoriuje. Tada testuojama molekulė gali būti įleidžiama į kamerą, kurioje yra detektoriaus plokštelė, ir gali būti įvertinamas komplementaraus susirūšančio baltymo kiekis pagal molekulės masės pokytį, kuris atsiranda dėl fizikinės asociacijos su dekstranu padengta sensoriaus plokštės puse; šį molekulės masės pokytį gali išmatuoti detektoriaus sistema.
IŠRADIMO PRIVALUMAI

Kadangi CTLA4 susirisiimui su CD80 ir CD86 yra būdingi dideli "i" greičiai ir dideli dissociacijos ("iš") greičiai ir kadangi CTLA4lg-CD86 kompleksai disocijuoja maždaug 5-8 greičiau nei CTLA4lg-CD80 kompleksai, tikėtina, kad sulėtinus CTLA4lg atskilimą nuo CD80 ir/arba CD86, bus gaunamos molekulės, turinčios stipresnes imunodepresantines savybes. Taigi manoma, kad tirpios CTLA4 mutantės molekulės, turinčios didesnę surišimo su CD80- arba CD86-teigiamomis laštelėmis gebą, lyginant su laukinio tipo CTLA4 arba nemutuotomis VTLA4lg formomis, efektyviau blokuos antigenų specifinių aktyvuotų lastelių atsiradimą, nei laukinio tipo CTLA4 arba nemutuotos VTLA4lg formos.

Be to, CTLA4lg produkcijos kainos yra labai didelės. Didelės gebos mutantės CTLA4lg molekulės, turinčios labai stiprias imunodepresantines savybes, gali būti naudojamos klinikosje daug mažesnėmis dozėmis nei nemutuotas CTLA4lg, pasiekiant panašų imunodepresijos lygį. Taigi, tirpios CTLA4 mutantės molekulės, pvz. L104EA29Ylg, gali būti labai efektyviai kainos požiūriu.

Toliau duoti pavyzdžiai yra pateikiami šiam išradimui pailiustruoti ir padėti specialistams pagaminti ir panaudoti šias molekules. Nelaikoma, kad šie pavyzdžiai koki nuo būdu riboja išradimo sferą.

PAVYZDŽIAI

1 PAVYZDYS

Šiame pavyzdje yra pateikiamas būdų, naudotų šio išradimo tirpms CTLA4 mutantines molekules kodojančių nukleotidų sekomis generuoti, aprašymas. Buvo generuotas vienos vietos mutantas L104Elg ir ištirta susirisiimo su CD80 ir/arba CD86 kinetika. L104Elg nukleotidų seka buvo panaudota kaip matrica generuoti dvigubos vietos mutanto CTLA4 seką, L104EA29Ylg, ir buvo ištirta susirisiimo su CD80 ir/arba CD86 kinetika.
Mutagenezė CTLA4lg kodono pagrindu

Buvo ištobulinta mutagenezės ir skryninio strategija mutantinėms CTLA4lg molekulėms, kurios turi lėtesnius disociacijos iš CD80 ir/arba CD86 molekulių komplekso greičius ("iš" greičius), identifikuoti. Vienos vietos mutantinės nukleotidų sekos buvo generuotos matrica naudojant CTLA4lg (JAV patentai Nr.Nr. 5844095, 5851795 ir 5885796; ATCC depozito Nr. 68629). Mutageniniai nukleotidiniai PGS pradmenys buvo suplanuoti specifinio kDNK kodono atsitiktinei mutagenezei, leidžiant būti bet kokiai bazei kodono 1 ir 2 padėtyse, bet tik guaninui arba timinui 3 padėtyje (XXG/T, taip pat žinomas kaip NNG/T). Šiuo būdu specifinę aminorūgštį koduojantį kodonas gali būti atsitiktinai mutuotas, kad galėtų koduoti bet kurią iš 20 aminorūgščių. PGS produktai, koduojantys mutacijas prie CTLA4lg'o -M97-G107 (žr. fig.7 arba 8) buvo skaldomi SacI/XbaI ir įklonojoti į panašiai sukarpytą CTLA4lg πLN ekspresijos vektorių. Šis būdas buvo panaudotas vienos vietos CTLA4 mutantinei molekulei L104E1g gaminti (fig. 8).

Mutagenezei prie CTLA4lg S25-R33, panaudojant į PGS pradmenį nukreiptą mutagenezę, pirmiausia į šią kilpą 5' buvo įvesta tyli Nhel kirpimo vieta. PGS produktai buvo skaldomi Nhel/XbaI ir įklonojoti į panašiai sukarpytus CTLA4lg arba L104E1g ekspresijos vektorius. Šis būdas buvo panaudotas dvigubos vietos CTLA4 mutantinei molekulei L104EA29Y1g (fig.7) gaminti. Konkrečiau, nuklereiščiujs molekulė, koduojanti vienos vietos CTLA4 mutantinę molekulę, L104E1g, buvo panaudota kaip matrica dvigubos vietos CTLA4 mutantieji molekulei, L104EA29Y1g, gauti. pilLN vektorius, turintis L104EA29Y1g, parodytas fig.12.

2 PAVYZDYS

Toliau duodamas skryninio metodų, naudojamų identifikavimui vienos vietos ir dvigubos vietos mutantinių CTLA4 polipeptidų, ekspresuotų iš 1 pavyzdiję aprašytų konstrukcų, kurie turi didesnę surišimo su CD80 ir CD86 antigenais gebą nei nemutuotos CTLA4lg molekulės, aprašymas.
Dabartiniai in vitro ir in vivo tyrimai rodo, kad pats CTLA4Ig negali pilnai blokuoti antigenų specifinių aktyvuočių įstulčių atsiradimo. CTLA4Ig ir bet kurio iš CD80 arba CD86 specifinių monokloninių antikūnų in vitro tyrimai, matuoja į įstulčių proliferacijos inhibavimą rodo, kad anti-CD80 monokloninis antikūnas nedidina CTLA4Ig inhibavimo. Tačiau anti-CD86 monokloninis antikūnas didina inhibavimą, kas rodo, kad CTLA4Ig nėra veiksmingas blokuojant CD86 sąveikas. Šie duomenys patvirtina ankstesnius Linsley et al. (Immunity, (1994) 1:793-801) duomenis, rodančius, kad CD80 tarpininkaujamiems įstulčių atsakams inhibuoja reikia maždaug 100 kartų mažesnių CTLA4Ig koncentracijų, nei CD86 tarpininkaujamiems atsakams. Remiantis šiais duomenimis buvo daroma prielaida, kad tirpios CTLA4 mutantinės molekulės, turinčios didesnį polinkį į CD86 nei laukinio tipo CTLA4, turėtų geriau blokuoti antigenų specifinių aktyvuočių įstulčių atsiradimą, nei CTLA4Ig.


Skryningo metodas

COS ląstelės, augintos 24 duobučių auginimo plokštelėse, buvo viena po kitos transfekuotos DNR, koduojančia mutantinį CTLA4lg. Po trijų dienų buvo surinkta sekretuotą tarpų mutantinį CTLA4lg turinti auginimo terpė.

Kondicionuota COS ląstelių auginimo terpė buvo leidžiama per BIACore biosensoriaus plokštèles, padengtas CD86lg arba CD80lg (kaip aprašyta Green et al., 1996, J. Biol. Chem. 271:26762-26771) ir buvo identifikuotos mutantinės molekulės, kurių "iš" greičiai buvo mažesni nei laukinio tipo CTLA4lg. Buvo sekvenuotos kDNR, atitinkančios atrinktus terpės mėginius, ir buvo pagaminta DNR, kad būtų galima atlikti didesnio masto COS ląstelių pereinamąją transfekciją, iš kurių po baltymo A išskyrimo iš auginimo terpės buvo pagamintas mutantinis CTLA4lg baltymas.

BIACore analizės sąlygos ir pusiausvyrinio surišimo duomenų analizė buvo atlikta pagal Green et al., 1996, J. Biol. Chem. 271:26762-26771 duotą aprašymą ir taip, kaip čia aprašyta.

BIACore duomenų analizė

Prieš analizę sensogramų bazinės linijos buvo normalizuotos iki nulinio atsako vienetų (RU). Mėginiai buvo perleidžiami per kontrolines derivatizuotas pratekamas celes, nustatant fonines atsako vienetų (RU) reikšmes, atsiradusias dėl tūrių lūžio rodiklių skirtumų tarp tirpalmų. Pusiausvyrinės disociacijos konstantos (K_d) buvo išskaičiuotos iš R_eq priklausomybės nuo C grafikų, kur R_eq yra pusiausvyrinis atsakas minus kontrolinės derivatizuotos plokštėlės atsakas, o C yra analitės molinė koncentracija. Surišimo kreivės buvo analizuotos naudojant komercinę netiesinės kreivės aproksimacijos programą (Prism, GraphPAD Software).

Pirmiausia eksperimentiniai duomenys buvo derinami su vieno ligando surišimo su vienu receptoriumi modeliu (1 vietas modelis, t.y. paprasta Langmiuro sistema, A+B ↔AB), o pusiausvyrinės asociacijos konstantos (K_d=[A][B][AB]) buvo apskaičiuoti iš lygties R=R_max*C/(K_d+C). Po to
duomenys buvo derinami su paprasčiausių dviejų vietų ligando surišimo modeliui (t.y. su receptoriumi, turinčiu dvi nesąveikojancias nepriklauzomas surišimo vietas, aprašant lygtimi \( R = R_{\text{max1}} \cdot C \cdot (K_{d1}+C) + R_{\text{max2}} \cdot (K_{d2}+C) \)).

Šių dviejų modelių aproksimacijos tinkamumas buvo analizuojamas vizualiai, lyginant su eksperimentiniais duomenimis ir statistiškai pagal kvadratų sumos F testą. Kaip geriausias atitikimas buvo paširinktas paprasčiausias vienos vietos modelis, jeigu dviejų vietų modelis nebuvo žymiai geresnis (p<0,1).

Asociacijos ir disociacijos analizės buvo vykdomos naudojant BIA įvertinimo 2.1 programą (Pharmacia). Asociacijos greičio konstantos \( k_i \) buvo apskaičiuotos dviem būdais, priimant ir homogenines vienos vietos sąveikas, ir lygintišas dviejų vietų sąveikas. Vienos vietos sąveikų atveju \( k_i \) reikšmės buvo apskaičiuotos pagal lygtį \( R_t=R_{eq1}(1-\exp^{-k_{st}(t-t_0)}) \), kur \( R_t \) yra atsakas duotu laiku t, \( R_{eq} \) yra pusiausvyrinis atsakas, \( t_0 \) yra injekcijos pradžios laikas, o \( k_s=dR/dT=k_i \cdot C_{k,i} \) ir kur C yra analitės koncentracija, apskaičiuota išreiškiant monomerinėmis surišimo vietomis. Dviejų vietų sąveikų atveju \( k_i \) reikšmės buvo apskaičiuotos pagal lygtį \( R_t=R_{eq1}(1-\exp^{-k_{st1}(t-t_0)}) + R_{eq2}(1-\exp^{-k_{st2}(t-t_0)}) \).

Kiekvienam modeliui \( k_i \) reikšmės buvo nustatytos iš apskaičiuto \( k_s \) priklausomybės nuo C polinkio (iki maždaug 70 % maksimalios asociacijos).

Disociacijos duomenys buvo analizuojami pagal vieną vietos (\( AB=A+B \) arba dviejų vietų (\( ABj=Ai+Bj \)) modelius, o greičio konstantos (\( k_{ij} \)) buvo apskaičiuotos iš geriausios aproksimacijos kreivių. Buvo naudotas vienos vietos surišimo modelis, išskyryus tuos atvejus, kai liekamosios vertės buvo didesnės nei mašininis fonas (pagal mašiną 2-10 RU); tokiu atveju buvo naudojamas dviejų vietų modelis. Naudojant priklausomybę \( t_{1/2}=0,693/k_{ij} \), buvo apskaičiuoti receptoriaus surišimo puslaikiai.

Srauto citometrija

Pelės mAb L307.4 (anti-CD80) buvo gauti iš Becton Dickinson (San Jose, California), o IT2.2 (anti-B7-0 [dar žinomas kaip CD86]) iš Pharmingen (San Diego, Kalifornija). Imuniniam nudažymui CD80-teigiamos ir/arba CD86-teigiamos CHO įastelės buvo išimtos iš jų auginimo indų inkubuojant
fosfatiniame ir druskos buferyje (PBS), turinčiame 10 mM EDTA. CHO ląstelės (1-10 x 10⁵) buvo pirmiausia inkubuojamos su mAb arba imunoglobulininiais sulietais batymais DMEM, turinčioje 10 % fetalinio veršiuko serumo (FBS), po to plaunamos ir inkubuojamos su konjuguotu su fluoresceino izotiocianatu ožkos anti-pelės arba anti-žmogaus imunoglobulino antrosios stadijos reagentais (Tago, Burlingame, Kalifornija). Ląstelės paskutinį kartą perplaunamos ir analizuojamos FACScan (Becton Dickinson).

SDS-PAGE ir molekulinį sietų chromatografija

SDS-PAGE buvo vykdomas per Tris/glicino 4-20 % akrilamidinius gelius (Novex, San Diego, CA). Analitiniai geliai buvo dažomi Coomassie Blue ir skaitmeninio skanavimo būdu buvo gaunami šlapių gelų atvaizdai. CTLA4Lg (25 μg) ir L104EA29Ylg (25 μg) buvo analizuojami molekulinį sietų chromatografijos metodu, naudojant TSK-GEL G300 SWxl kolonėlę (7,8 x 300 mm, Tosohaas, Montgomeryville, PA), pusiausvyrintą fosfatiniame druskos buferyje, turinčiame 0,02 % NaN₃, naudojant 1,0 ml/min. srauto greitį.

CTLA4X₁₂₀₈ ir L104EA29YX₁₂₀₈


Didelės surišimo gebos mutantų identifikavimas ir biocheminis charakterizavimas


S25, T30, K93, L96, Y103 ir G105 vietų mutagenezė leido identifikuoti kai kuriuos mutantinius baltymus, kurie turi mažesnius CD86lg komplekso "iš" greičius. Tačiau šiais atvejais mažesnis "iš" greitis buvo kompensuojamas mažesnio "i" greičio, ir gauti mutantiniai baltymai, kurių bendra susirūpinimo su CD86lg geba buvo maždaug panaši į laukinio tipo CTLA4ig gebą. Be to, K93 mutagenezė davė agregaciją, kuri gali būti atsakinga už pastebėtus kinetikos pokyčius.

Atsitiktinė L104 mutagenezė, po kuriuos buvo vykdoma COS įastelių transfekcija ir auginimo terpės mėginių skryningas SPR metodu pagal imobilizuotą CD86lg, davė šešis terpės mėginius, kuriuose buvo mutantiniai baltymai su maždaug 2 kartus mažesniais "iš" greičiais nei laukinio tipo
CTLA4Ig. Kai buvo sekvenutos atitinkamos šių mutantų kDNR, buvo rasta, kad kiekvieną iš jų koduoja leucino mutaciją į glutamo rūgštį (L104E). Taigi, leucino 104 pakeitimas asparto rūgštimi, matyt, neveikia susiūrimo su CD86Ig.

Tada buvo pakartota mutagenezė kiekvienoje II lentelėje išvardintoje vietoje, šį kartą PGS matrica naudojant L104E vietoj laukinio tipo CTLA4Ig, kaip aprašyta aukščiau. SPR analizė, vėl gi naudojant imobilizuotą CD86Ig, leido identifikuoti šešis auginimo terpės mėginius iš alanino 29 mutagenezės, turinčius baltymų, kurių "iš" greičiai yra 4 kartus mažesni nei laukinio tipo CTLA4Ig. Du lėčiausiai turėjo tirozino pakeitimą (L104EA29Y), du – leucino (L104EA29L), vienas – triptofano (L104EA29W) ir vienas – treonino (L104EA29T). Taigi, nebuvo nustatyta mažo "iš" greičio mutantų, kai tik vienas alaninas 29 buvo atsitiktinai mutuotas laukinio tipo CTLA4Ig.

Išgryninto L104E ir L104EA29YIg molekulinė masė ir agregacijos būsena buvo nustatyta SDS-PAGE ir molekulinį sietų chromatografijos metodais. L104EA29YIg (1 μg; 3 juostelė) ir L104EIg (1 μg; 2 juostelė) aiškiai turi tą patį elektroforetinį judrumą kaip ir CTLA4Ig (1 μg; 1 juostelė) redukuojančiomis (~50 kDA; +βME; plius 2-merkaptoetanolis) ir neredukuojančiomis (~100 kDA; -βME) sąlygomis (Fig.10A). Molekulinį sietų chromatografija parodė, kad L104EA29YIg (Fig.10C) aiškiai turi tą patį judrumą, kaip ir dimerinis CTLA4Ig (Fig.10B). Didžiausios smailės reiškia baltymo dimerą, o greičiau eliuojama mažesnė smailė fig.10B reiškia didesnės molekulinės masės agregatus. Maždaug 5,0 % CTLA4Ig yra didesnės molekulinės masės agregatų pavidalu, bet nėra L104EA29YIg arba L104EIg agregacijos požymų. Taigi stipresnis stebimas L104EIg ir L104EA29YIg susirūpinimas su CD86Ig negali būti priskiriamas mutagenezės sukeltai agregacijai.

Pusiausvyros ir surišimo kinetikos analizė

Pusiausvyros ir surišimo kinetikos analizė buvo atlikta naudojant išgrynintus A baltymą CTLA4Ig, L104EIg ir L104EA29YIg paviršiaus plazmonų rezonanso (SPR) metodu. Rezultatai parodyti I lentelėje. Stebimos
pusiausvyrinės disociacijos konstantos \( K_d \) (l lentelė) buvo apskaičiuotos iš surišimo kreivių, gautų koncentracijų \( 5,0-200 \text{ nM} \) ribose. L104EA29Y Ig su CD86 Ig rūšiški stipriaus viso L104E Ig arba CTLA4 Ig. Mažesnė L104EA29Y Ig \( K_d \) (3,21 nM) nei L104E Ig (6,06 nM) arba CTLA4 Ig (13,9 nM) rodo didesnę L104EA29Y Ig susirišimo su CD86 Ig gebą. Mažesnė L104EA29Y Ig \( K_d \) (3,66 nM) nei L104E Ig (4,47 nM) arba CTLA4 Ig (6,51 nM) rodo didesnę L104EA29Y Ig susirišimo su CD80 Ig gebą.

Surišimo kinetikos analizė parodė, kad palyginus įvairius CTLA4 Ig, L104E Ig ir L104EA29Y Ig susiraišė su CD80 "į" greičiai yra panašūs į susiraišę su CD86 Ig "į" greičius (l lentelė). Lyginant su CTLA4 Ig, L104EA29Y Ig turi maždaug 2 kartus mažesnį CD80 Ig kompleksko "į" greitį ir maždaug 4 kartus mažesnį CD86 Ig kompleksko "į" greitį. L104E turi tarpinius "į" greičius tarp L104EA29Y Ig ir CTLA4 Ig. Kadangi šių mutacijų įvedimas neįrėmiai veikia "į" greičius, stebima didesnę L104EA29Y Ig susirišimo su CD80 Ig ir CD86 Ig geba tikriausiai yra dėl "į" greičių sumažėjimo.


L104EA29YYX_{C120S} rūši i su CD80 Ig ir CD86 Ig maždaug 2 kartus stipriau nei CTLA4X_{C120S}. Šis padidintas afiniškumas yra dėl maždaug 3 kartus mažesnio atskilimo nuo abiejų ligandų greičio. Taigi, stipresnis L104EA29YX susiraišimas su ligandu tikriausiai yra dėl gebą sustiprinančių.
strukturinių pokyčių, kurie buvo įvesti į monomerinę grandinę, o ne dėl molekulės dimerizacijos pokyčių.

Surišimo geba didinančių mutacijų padėties ir struktūrinė analizė


Didelės surišimo gebos mutantų susijungimas su CD80 arba CD86 ekspresuojančiomis CHO laštélémis

CTLA4Ig ir mutantinių molekulių susirūšimo su stabiliai transfikuotos CD80+ ir CD86+ CHO laštélémis FACS analizė (fig.2) buvo atlikta čia aprašytu būdu. CD80-teigiamos ir CD86-teigiamos CHO laštélé buvo inkubuojamos imant didėjančias CTLA4Ig, L104EA29YIg arba L104Elg koncentracijas, o po to perplaunamos. Surištas imunoglobulininis sulietas
baltymas buvo nustatytas naudojant konjuguotą su fluoresceinu ožkos anti-žmogaus imunoglobuliną.

Kaip parodyta fig.2, CD80-teigiamos arba CD-86-teigiamos CHO ląstelės (1,5 x 10^5) buvo inkubuojamos su nurodytą koncentracijų CTLA4Ig (juodi kvadratai), L104EA29YIg (apskritimai) arba L104Elg (trikampiai) tirpalais, perplaunama ir inkubuojama su konjuguotu su fluoresceinu ožkos anti-žmogaus imunoglobulininio antikūnu. FACScan’u buvo analizuotas 5000 gyvybingų ląstelių susirišimas (vienas nustatymas) ir iš histogramų duomenų, naudojant PC-LYSYS, nustatytas fluorescencijos intensyvumo vidurkis (MFI). Duomenys buvo pakoreguoti dėl foninės fluorescencijos, išnaturuojant ląstelės, inkubuotas tik su antrosios stadijos reagentu (MFI = 7). Kontrolinis L6 mAb (80 μg/ml) dave MFI < 30. Šie rezultatai būdingi 4 nepriklauzomiems matavimams.

L104EA29YIg, L104Elg ir CTLA4Ig susirišimo su žmogaus CD80-transfekuoatomis CHO ląstelėmis yra maždaug vienodi (fig.2A). L104EA29YIg ir L104Elg rūšiški stipriausiau su CHO ląstelėmis, stabiliai infekuotomis žmogaus CD86, nei CTLA4Ig (fig.2B).

Funkciniai testai:

Žmogaus CD4-teigiamos T ląstelės buvo išskirtos imunomagnetinės neigiamosios selekcijos metodu (Linsley et al., (1992) J. Exp. Med. 176:1595-1604). Išskirtos CD4-teigiamos T ląstelės buvo stimuliuojamos forbalmiirstato acetatu (PMA) plus CD80-teigiamomis arba CD86-teigiamomis CHO ląstelėmis esant titruojančioms inhibitoriaus koncentracijoms. CD4-teigiamos T ląstelės (8-10 x 10^4/duobutei) buvo auginamos esant 1 nM PMA, pridėjus arba nepridėjus apspinduliuotų CHO ląstelių stimulatorių. Proliferacijos atsakai buvo matuojami pridedant 1 μCi/duobutei [3H]timidino, likus 7 val. iki 72 val. trukmės auginimo pabaigos. Buvo vykdomas PMA plus CD80-teigiamų CHO arba CD86-teigiamų CHO stimuliuotų T ląstelių inhibavimas L104EA29YIg ir CTLA4Ig. Rezultatai parodyti fig.3. L104YIg inhibuoja CD80-teigiamų PMA paveiktuų CHO ląstelių proliferaciją labiau nei CTLA4Ig (fig.3A). L104EA29YIg taip pat efektyviau nei CTLA4Ig inhibuoja CD86-teigiamų PMA
paveiktu CHO ląstelių proliferaciją (fig.3B). Todėl L104EA29Ylg yra veiksmingesnis ir CD80- ir CD86-tarpininku jamos T ląstelių kostimuliacijos inhibitorius.

Fig.4 parodytas aukščiau pagamintų alostimuliuotų žmogaus T ląstelių ir toliau alostimuliuotų žmogaus B limfoblastoidinių ląstelių linijos (LCL), vadinamos PM, kuri ekspresuoja CD80 ir CD86 (T ląstelių 3,0x10⁴/duobutei, o PM 8,0x10³/duobutei), inhibavimas L104EA29Ylg ir CTLA4lg. Pirminė alostimuliacija vyko 6 dienas, po to ląstelės buvo apspinduliutos ³H-timidinu 7 dienas ir nustatyta radioaktyvios žymės įsiterpimas.

Antrinė alostimuliacija buvo vykdoma tokiu būdu. Septintą pirminės alostimuliacijos dieną ląstelės buvo surinktos, užpiltos ant limfocitinės atskyrimo terpės (LSM) (ICN, Aurora, OH) ir paliktos 24 valandoms. Tada T ląstelės buvo restimuliuotos (antrinė stimuliacija) esant titruojantiems kiekiams CTLA4lg arba L104EA29Ylg, pridedant PM tuo pačiu santykiu kaip ir prieš tai. Stimuliacimas vyko 3 dienas, po to ląstelės buvo apspinduliutos radioaktyvia žyme ir surinktos taip pat, kaip ir prieš tai. L104EA29Ylg poveikis į pirminės alostimuliacijos T ląstelės yra parodytas fig.4A. L104EA29Ylg poveikis į antrinės alostimuliacijos T ląstelės yra parodytas fig.4B. L104EA29Ylg inhibuoja ir pirminį, ir antrinį T ląstelių proliferacinius atsakus geriau nei CTLA4lg.

Norint išmatuoti citokinų produkцию (fig.5), buvo paruošti antrinės alostimuliacijos dublikatai. Po 3 dienų auginimo, terpė buvo tirta naudojant ELISA rinkinius (Biosource, Camarillo, CA) pagal gamintojo rekomenduojamas sąlygas. Rasta, kad L104EA29Ylg veiksmingiau nei CTLA4lg blokuoja T ląstelių IL-2, IL-4 ir γ-IFN citokinų produkciaį po antrinio alogeninio stimulo (fig. 5A-C).

L104EA29Ylg ir CTLA4lg poveikiai į beždžionių mišrų limfocitinę atsaką (MLR) parodyti fig.6. Periferinio kraujo monobranduolinės ląstelės (PBMC; 3,5x10⁴ ląstelių/duobutei iš kiekvienos beždžionės) iš 2 beždžionių buvo išgrynintos panaudojant limfocitų atskyrimo terpę (LSM) ir sumaišytos su 2 μg/ml fitohemaglutinino (PHA). Ląstelės buvo stimuliuojamos 3 dienais, po to apspinduliutos 16 valandų ir surinktos. L104EA29Ylg inhibavo beždžionės T ląstelių proliferaciją geriau nei CTLA4lg.
I lentelė:

Šioje lentelėje yra duodamos pusiausvyros ir stebimos kinetinės konstantos (reikšmės yra vidurkis ± standartinis nukrypimas iš trijų skirtingų eksperimentų):

<table>
<thead>
<tr>
<th>Imobilizuotas baltymas</th>
<th>Analitė</th>
<th>$k_i \times 10^5$ ($M^{-1}S^{-1}$)</th>
<th>$k_i$ ($M^{-1}S^{-1}$)</th>
<th>$K_d$ (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD80lg</td>
<td>CTLA4lg</td>
<td>3,44±0,29</td>
<td>2,21±0,18</td>
<td>6,51±1,08</td>
</tr>
<tr>
<td>CD80lg</td>
<td>L104Elg</td>
<td>3,02±0,05</td>
<td>1,35±0,08</td>
<td>4,47±0,36</td>
</tr>
<tr>
<td>CD80lg</td>
<td>L104EA29Ylg</td>
<td>2,96±0,20</td>
<td>1,08±0,05</td>
<td>3,66±0,41</td>
</tr>
<tr>
<td>CD80lg</td>
<td>CTLA4X&lt;sub&gt;C120S&lt;/sub&gt;</td>
<td>12,0±1,0</td>
<td>230±10</td>
<td>195±125</td>
</tr>
<tr>
<td>CD80lg</td>
<td>L104EA29YX&lt;sub&gt;C120S&lt;/sub&gt;</td>
<td>8,3±0,26</td>
<td>75±5</td>
<td>85,0±2,5</td>
</tr>
<tr>
<td>CD86lg</td>
<td>CTLA4lg</td>
<td>5,95±0,57</td>
<td>8,16±0,52</td>
<td>13,9±2,27</td>
</tr>
<tr>
<td>CD86lg</td>
<td>L104Elg</td>
<td>7,03±0,22</td>
<td>4,26±0,11</td>
<td>6,06±0,05</td>
</tr>
<tr>
<td>CD86lg</td>
<td>L104EA29Ylg</td>
<td>6,42±0,40</td>
<td>2,06±0,03</td>
<td>3,21±0,23</td>
</tr>
<tr>
<td>CD86lg</td>
<td>CTLA4X&lt;sub&gt;C120S&lt;/sub&gt;</td>
<td>16,5±0,5</td>
<td>84±55</td>
<td>511±17</td>
</tr>
<tr>
<td>CD86lg</td>
<td>L104EA29YX&lt;sub&gt;C120S&lt;/sub&gt;</td>
<td>11,4±1,6</td>
<td>300±10</td>
<td>267±29</td>
</tr>
</tbody>
</table>
Il lentelė:

CD86lg surišimo efektas panaudojant CTLA4lg mutagenezę
išvardintose vietose buvo nustatytas aukščiau aprašytu SPR metodu. Žymus
poveikis pažymėtas "+" ženklu.

<table>
<thead>
<tr>
<th>Mutagenezės vieta</th>
<th>Mutagenezės efektai</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nėra stebimo poveikio</td>
</tr>
<tr>
<td>S25</td>
<td>+</td>
</tr>
<tr>
<td>P26</td>
<td>+</td>
</tr>
<tr>
<td>G27</td>
<td>+</td>
</tr>
<tr>
<td>K28</td>
<td>+</td>
</tr>
<tr>
<td>A29</td>
<td>+</td>
</tr>
<tr>
<td>T30</td>
<td>+</td>
</tr>
<tr>
<td>E31</td>
<td>+</td>
</tr>
<tr>
<td>R33</td>
<td>+</td>
</tr>
<tr>
<td>K93</td>
<td>+</td>
</tr>
<tr>
<td>L96</td>
<td>+</td>
</tr>
<tr>
<td>M97</td>
<td>+</td>
</tr>
<tr>
<td>Y98</td>
<td>+</td>
</tr>
<tr>
<td>P99</td>
<td>+</td>
</tr>
<tr>
<td>P100</td>
<td>+</td>
</tr>
<tr>
<td>P101</td>
<td>+</td>
</tr>
<tr>
<td>Y102</td>
<td>+</td>
</tr>
<tr>
<td>Y103</td>
<td>+</td>
</tr>
<tr>
<td>L104</td>
<td>+</td>
</tr>
<tr>
<td>G105</td>
<td>+</td>
</tr>
<tr>
<td>I106</td>
<td>+</td>
</tr>
<tr>
<td>G107</td>
<td>+</td>
</tr>
<tr>
<td>Q111</td>
<td>+</td>
</tr>
<tr>
<td>Y113</td>
<td>+</td>
</tr>
<tr>
<td>Y115</td>
<td>+</td>
</tr>
</tbody>
</table>

Specialistai, kurie turės ką nors bendro su šiuo išradimu, supras, kad
šis išradimas gali būti įgyvendintas kitoje, negu čia konkretėjai aprašyta,
formoje, nenukrystant nuo išradimo prasmės ir esminių charakteristikų.
Todėl konkretūs aukščiau aprašyti įgyvendinimo variantai turi būti laikomi
iliustraciniais, o ne apribojančiais. Šio išradimo apimtis yra nusakyta toliau
duodama apibrėžtima, ir nėra apribota šiame aprašyme duotais pavyzdžiais.
Išradimo apibrėžtis

1. CTLA4 mutantinė molekulė, kuri riša CD80 ir/arba CD86, turinti CTLA4 ekstraląstelinę dalį, kurios ekstraląstelinėje dalyje (a) +29 padėties alaninas yra pakeistas aminorūgštini, pasirinkta iš grupės, susidedančios iš tirozino, leucino, triptofano ir treonino, ir (b) +104 padėties leucinas yra pakeistas glutamo rūgštimi.

2. CTLA4 mutantinė molekulė pagal 1 punktą, besiskirianti tuo, kad turi dar ir aminorūgščių seką, kuri pakeičia tirpios CTLA4 mutacinės molekulės tirpumą, afiniškumą arba valentingumą.

3. CTLA4 mutantinė molekulė pagal 2 punktą, besiskirianti tuo, kad aminorūgščių sekoje yra žmogaus imunoglobulinio pastovioji sritis.

4. CTLA4 mutantinė molekulė pagal 2 punktą, besiskirianti tuo, kad turi dar ir aminorūgščių seką, leidžiančią sekreuti tirpią CTLA4 mutantinę molekulę.

5. CTLA4 mutantinė molekulė pagal 4 punktą, besiskirianti tuo, kad aminorūgščių sekoje yra onkostatino M signalinis peptidas.

6. CTLA4 mutantinė molekulė pagal 1 punktą, besiskirianti tuo, kad turi metioniną +1 padėtyje ir asparto rūgštį +124 padėtyje, kaip parodyta fig.7.

7. CTLA4 mutantinė molekulė pagal 1 punktą, besiskirianti tuo, kad turi alaniną -1 padėtyje ir asparto rūgštį +124 padėtyje, kaip parodyta fig.7.

8. CTLA4 mutantinė molekulė pagal 3 punktą, besiskirianti tuo, kad žmogaus imunoglobulinio pastovioji sritis yra mutuota taip, kad +130 padėties cisteinas yra pakeistas serinu, +136 padėties cisteinas yra pakeistas serinu, +139 padėties cisteinas yra pakeistas serinu ir +148 padėties prolinas yra pakeistas serinu, kaip parodyta fig.7.

9. Tirpi CTLA mutantinė molekulė, kuri su didesne surišimo geba nei CTLA4 rišasi su CD80 ir/arba CD86, turinti ekstraląstelinę CTLA4 dalį, kurios ekstraląstelinėje dalyje +29 padėties alaninas yra pakeistas tirozinu, o +124 padėties leucinas yra pakeistas glutamo rūgštimi, kaip parodyta fig.7.
10. CTLA4 mutantinė molekūlė pagal 9 punktą, besiskirianti tuo, kad turi dar ir aminorūgščių seką, kuri pakeičia tirpios CTLA4 mutantinės molekulės tirpumą, afiniškumą arba valentingumą.

11. CTLA4 mutantinė molekūlė pagal 10 punktą, besiskirianti tuo, kad aminorūgščių sekoje yra žmogaus imunoglobulinio pastovioji sritis.

12. CTLA4 mutantinė molekūlė pagal 10 punktą, besiskirianti tuo, kad turi dar ir aminorūgščių seką, leidžiančią sekretuoti tirpią CTLA4 mutantinę molekulę.

13. CTLA4 mutantinė molekūlė pagal 12 punktą, besiskirianti tuo, kad aminorūgščių sekoje yra onkostatino M signalinis peptidas.

14. CTLA4 mutantinė molekūlė pagal 9 punktą, besiskirianti tuo, kad turi metioniną +1 padėtyje ir asparto rūgščių +124 padėtyje, kaip parodyta fig.7.

15. CTLA4 mutantinė molekūlė pagal 9 punktą, besiskirianti tuo, kad turi alaniną -1 padėtyje ir asparto rūgščių +124 padėtyje, kaip parodyta fig.7.

16. CTLA4 mutantinė molekūlė pagal 11 punktą, besiskirianti tuo, kad žmogaus imunoglobulinio pastovioji sritis yra mutuota taip, kad +130 padėties cisteinas yra pakeistas serinu, +136 padėties cisteinas yra pakeistas serinu, +139 padėties cisteinas yra pakeistas serinu ir +148 padėties prolinas yra pakeistas serinu, kaip parodyta fig.7.

17. Tirpi CTLA mutantinė molekūlė, kuri su didesne surišimo geba nei CTLA4 rišasi su CD80 ir/arba CD86, turinti ekstraląstelinę CTLA4 dalį, kurios ekstraląstelinėje dalyje +104 padėties leucinas yra pakeistas glutamo rūgštimi, kaip parodyta fig.8.

18. Nukleorūgščies molekūlė, turinti nukleotidų seką, kuri koduoja tirpiai CTLA4 mutantinei molekulei pagal 1 punktą būdingą aminorūgščių seką.


20. Nukleorūgščies molekūlė pagal 18 punktą, besiskirianti tuo, kad turi nukleotidų seką, kuri prasideda nuo adenino +1 nukleotidų padėtyje ir baigiasi adeninu +1071 padėtyje, kaip parodyta fig. 7 arba 8.
21. Nukleorūgšties molekulė pagal 19 punktą, besiskirianti tuo, kad turi nukleotidų seką, kuri prasideda nuo adenino +1 nukleotidų padėtyje ir baigiasi adeninu +1071 padėtyje, kaip parodyta fig. 7 arba 8.

22. Nukleorūgšties molekulė pagal 18 punktą, besiskirianti tuo, kad turi nukleotidų seką, kuri prasideda nuo guanino -3 padėtyje ir baigiasi adeninu +1071 padėtyje, kaip parodyta fig. 7 arba 8.

23. Nukleorūgšties molekulė pagal 19 punktą, besiskirianti tuo, kad turi nukleotidų seką, kuri prasideda nuo guanino -3 padėtyje ir baigiasi adeninu +1071 padėtyje, kaip parodyta fig. 7 arba 8.

24. Vektorius, turintis nukleotidų seką pagal bet kuri iš 18-23 punktų.


26. Šeimininko vektoriaus sistema, turinti vektorių pagal 24 arba 25 punktą tinkamoje šeimininko laštelėje.

27. Šeimininko vektoriaus sistema pagal 26 punktą, besiskirianti tuo, kad tinkama šeimininko laštelė yra bakterinė laštelė arba eukariotinė laštelė.

28. Šeimininko laštelė, turinti vektorių pagal 24 arba 25 punktą.

29. Šeimininko laštelė pagal 28 punktą, besiskirianti tuo, kad yra eukariotinė laštelė.

30. Šeimininko laštelė pagal 29 punktą, besiskirianti tuo, kad eukariotinė laštelė yra COS laštelė.

31. Šeimininko laštelė pagal 29 punktą, besiskirianti tuo, kad eukariotinė laštelė yra kiniškojo žiurkėno kiaušidės (CHO) laštelė.

32. Šeimininko laštelė pagal 31 punktą, besiskirianti tuo, kad CHO laštelė yra pasirinkta iš grupės, susidedančios iš DG44, CHO-K1, CHO-K1 Tet-On laštelės linijos, CHO pažymėtos ECACC 85050302, CHO 13 klono, CHO B klono, CHO-K1/SF ir RR-CHOK1.

33. Tirpęs CTLA4 mutantinio baltymo gavimo būdas, apimantis šeimininko vektoriaus sistemos pagal 26 punktą auginimą, kad šeimininko laštelėje būtų gaminamas CTLA4 mutatinis baltymas, ir tokiu būdu pagaminto baltymo išgavimą.
34. L104EA29Ylg gavimo būdas, apimantis šeimininko ląstelės pagal 28 punktą auginimą, kad šeimininko ląstelėje būtų gaminamas L104EA29Ylg, ir tokiu būdu pagaminto baltymo išgavimą.

35. Tirpus CTLA4 mutinantinis baltymas, gautas būdu pagal 33 punktą.

36. L104EA29Ylg, gautas būdu pagal 34 punktą.


39. Būdas pagal 37 punktą, besiskiriantis tuo, kad tirp CT LA4 mutatinė molekulė apima CTLA4 ekstraląstelinę dalį, kur ekstraląstelinėje dalyje +104 padėties leucinas yra pakeistas glutamо rūgštimi, kaip parodyta fig.8.

40. Būdas pagal 37 punktą, besiskiriantis tuo, kad CD80- ir/arba CD86-teigiama ląstelė yra suleidžiama į sąlytį su tirpia CTLA4 mutatinės molekulės fragmentu arba dariniu.

41. Būdas pagal 38 punktą, besiskiriantis tuo, kad CD80- ir/arba CD86-teigiama ląstelė yra suleidžiama į sąlytį su tirpia CTLA4 mutatinės molekulės fragmentu arba dariniu.

42. Būdas pagal 37 punktą, besiskiriantis tuo, kad CD80- ir/arba CD86-teigiama ląstelė yra antigeną pateikianti ląstelė.

43. Būdas pagal 38 punktą, besiskiriantis tuo, kad CD80- ir/arba CD86-teigiama ląstelė yra antigeną pateikianti ląstelė.

44. Būdas pagal 37 punktą, besiskiriantis tuo, kad inhibuoja CTLA4-teigiamų ląstelių sąveiką su CD80- ir CD86-teigiamomis ląstelėmis.
45. Būdas pagal 38 punktą, besiskiriantis tuo, kad inhibuoja CTLA4-teigiamų lažteliių sąveiką su CD80- ir CD86-teigiamomis lažtelėmis.

46. Tirpi CTLA4 mutantinė molekulę pagal 1 punktą, skirta panaudoti imuninės sistemos ligų, kuriose tarpininkauja T lažteliių sąveikos su CD80 ir/arba CD86 teigiamomis lažtelėmis, gydymui, skiriant subjektui tirpią CTLA4 mutatinę molekulę reguliuoti T lažteliių sąveikas su CD80 ir/arba CD/86 teigiamomis lažtelėmis.

47. Tirpi CTLA4 mutantinė molekulę pagal 9 punktą, skirta panaudoti imuninės sistemos ligų, kuriose tarpininkauja T lažteliių sąveikos su CD80 ir/arba CD86 teigiamomis lažtelėmis, gydymui, skiriant subjektui tirpią CTLA4 mutatinę molekulę reguliuoti T lažteliių sąveikas su CD80 ir/arba CD86 teigiamomis lažtelėmis.

48. Tirpi CTLA4 mutantinė molekulę pagal 46 punktą, besiskirianti tuo, kad apima CTLA4 ekstraląstelėnį dalį, kur ekstraląstelėnėje dalyje +104 padėties leucinas yra pakeistas glutamo rūgštimi, kaip parodyta fig. 8.

49. Tirpi CTLA4 mutantinė molekulę pagal 46 punktą, besiskirianti tuo, kad joje yra inhibuojamos minėtos T lažteliių sąveikos.

50. Tirpi CTLA4 mutantinė molekulę pagal 47 punktą, besiskirianti tuo, kad joje yra inhibuojamos minėtos T lažteliių sąveikos.

51. Tirpi CTLA4 mutantinė molekulę pagal 1 punktą, skirta panaudoti subjekto implantas-prieš-šeimininką ligos inhibavimui, skiriant minėtą molekulę ir reaguojantį su IL-4 ligandą šiam objektui.

52. Tirpi CTLA4 mutantinė molekulę pagal 9 punktą, skirta panaudoti subjekto implantas-prieš-šeimininką ligos inhibavimui, skiriant minėtą molekulę ir reaguojantį su IL-4 ligandą šiam objektui.

53. Tirpi CTLA4 mutantinė molekulę pagal 51 punktą, besiskirianti tuo, kad apima CTLA4 ekstraląstelėnį dalį, kur ekstraląstelėnėje dalyje +104 padėties leucinas yra pakeistas glutamo rūgštimi, kaip parodyta fig. 8.

54. Tirpi CTLA4 mutantinė molekulę, kurią koduoja nukleorūgšties molekulę, pažymėta ATCC No. PTA-2104.

55. DNR seka, koduojanti L104EA29Ylg ir turinti ATCC No. PTA-2104.

56. Tirpi CTLA4 mutantinė molekulę, turinti fig.7 parodytą aminorūgščių seką.
57. Nukleorūgšties molekulė, koduojanti tirpią CTLA4 mutantinę molekulą pagal 56 punktą.

58. Tirpi CTLA4 mutantinė molekulė, kuri turi didesnė susirūšimo su CD86 gebą nei laukinio tipo CTLA4.

59. Tirpi CTLA4 mutantinė molekulė, kuri turi mažesnį jos sudaryto komplekso su CD80 ir/arba CD86 disociacijos greitį nei laukinio tipo CTLA4.

60. Tirpi CTLA4 mutantinė molekulė, kuri turi mažesnius jos asociacijos su CD80 ir/arba CD86 ir šio komplekso disociacijos greičius nei laukinio tipo CTLA4.

61. Tirpios CTLA4 mutantinės molekulės, kurią koduoja ATCC No. PTA-2104 pažymėta nukleorūgšties molekulė, dalis, apimanti CTLA4 mutanto ekstraląstelinę dalį.

62. Tirpios CTLA4 mutantinės molekulės dalis pagal 61 punktą, turinti dar ir Ig uodegą.

63. Nukleorūgšties molekulės, koduojančios tirpią CTLA4 mutantinę molekulę ir turinčios ATCC No. PTA-2104, dalis, koduojanti mutantinės CTLA4 molekulės ekstraląstelinę dalį.

64. Nukleorūgšties molekulės dalis pagal 63 punktą, turinti dar ir nukleorūgšties molekulę, kuri koduoja Ig uodegą.

65. Farmacinė kompozicija imuninės sistemos ligos gydymui, besiskirianti tuo, kad turi farmaciškai priimtino nešiklio ir tirpios CTLA4 mutantinės molekulės pagal 1 punktą.

66. Farmacinė kompozicija imuninės sistemos ligos gydymui, besiskirianti tuo, kad turi farmaciškai priimtino nešiklio ir tirpios CTLA4 mutantinės molekulės pagal 9 punktą.
Pusiausvyrinis susirėmimas su CD88lg

![Graph showing response over time with different labels: L104EA29Ylg, L104Elg, CTLA4lg.](image)

**Fig. 1**
Žmogaus CD80 CHO įstelės

FIG. 2A

Sulietas baltymas (μg/ml)

Fluoressčjų intensyvumo vidurkis

L104EA29Y Ig
L104E Ig
CTLA4 Ig

Žmogaus CD80 CHO įstelės

FIG. 2B

Sulietas baltymas (μg/ml)

Fluoressčjų intensyvumo vidurkis

L104EA29Y Ig
L104E Ig
CTLA4 Ig
FIG. 3A

CD80 CHO + PMA kostimuliavimas

3-H-timidino įsūpimas (imp./min.)

Sulietas baltymas (μg/ml)

- O L104EA29YIg
- ■ CTLA4Ig
- △ Control

FIG. 3B

CD80 CHO + PMA kostimuliavimas

3-H-timidino įsūpimas (imp./min.)

Sulietas baltymas (μg/ml)

- O L104EA29YIg
- ■ CTLA4Ig
- △ Control
PHA indukotų beždžionės T ląstelių proliferacijos inhibavimas

3\(^{-}\text{H}\)-limidino įtęrimas (imp./min.)

---

L104EA29 Ig

CTLA4 Ig

Control

Sulietas baltymas (μg/ml)

FIG. 6
FIG. 10A

+βME
M 1 2 3

-βME
1 2 3 M

$M_r \times 10^{-3}$
- 200
- 118
- 107
- 68
- 43
- 37
- 27
- 20

FIG. 10B

$A_{280}$

0 5 10 15
Laikas (min.)

FIG. 10C

$A_{280}$

0 5 10 15
Laikas (min.)
FIG. 12