
ft
REGULATION 9COMMONWEALTH OF AUSTRALIAPATENTS ACT 1952-1973APPLICATION FOR A PATENT

I/We TANDEM COMPUTERS INCORPORATED
of 19333 Vallco Parkway, Cupertino, CALIFORNIA 95014, U.S.A.• ♦ t '• «,» hereby apply for the grant of a Patent for an invention entitled:* ί ‘ ’ A METHOD AND APPARATUS FOR MODIFYING. MICRO-INSTRUCTIONS USING A MACRO-INSTRUCTION PIPELINE
which is described in the accompanying complete specification. This ♦ ,» Application is a Convention Application and is based on the Application(s)numbered: 036,726 for a Patent or similar protection made in U.S.A. on 10 ,«,·«, April 1987.

t tt

stt t
s'' My/Our address for service is:GRIFFITH HASSEL & FRAZER ,, 71 YORK STREETSYDNEY N.S.W. 2000 AUSTRALIA

DATED this 8th day of April, 1988.
TANDEM COMPUTERS INCORPORATED By his/their Paterfi?Attorneys
GRIFFITH HASSEL & FRAZER

TO·. THE COMMISSIONER OF PATENTS COMMONWEALTH OF AUSTRALIA!853A:rk
lOOOED AT SUB-OFF/CE

” 8 APR 1988

Sydney
,-ο'ϊΓΛΤίΟΝ ACCEPTED AND AMENDMENTS

allowed .,..-,, . ι a.

10577-^1

Regulation
12(2)

t ft ί · » · ft ft

ft *
4 ft

ft * « ft
ft

ft ft «

ft ft ft ftft ft ft

(a) Inert till·
of tifttttfion.

(bl Inert full
nerwUlol
cbcUr«it(i|.

(cl Inert
addmi(ftt) of
dftcLftrant(i).

PATENT DECLARATION FORM (CONVENTION)
COMMONWEALTH OF AUSTRALIA

Patents Act 1952

DECLARATION IN SUPPORT #F A CONVENTION APPLICATION
FOR Λ PATENT

To bo «Ignod by ibo oppllcontti) or In the ee«e of a body corporate to bo
ilgned by a potion author lied by tho body corporeto.

In support of the Convention application made for a patent for an invention entitled

(a) A ,{4ETOOD AND Ai;PA]^'^g,.^iJ..MQPX}^INff..^C3O-^STRUCTIONS,
.. .,.USING.A .mCRO^INSTroCTION,PIPELINE........ ..,.2.2...222,
(b) .. Ϊ"..AntKony ‘ T7"cascio
•................... <<·4<*·><<Ι'ϋ·Ι<Ο. Hlr.riKliritlKIIMIl

H/VX-X^ C/o.......Tan.dem,.Computers.,J.ns.qEP.Qjf.afc.o.d..............................

of (°) .ι.^.3,..ν.Ηΐΐςο.,Ρ3,ν.Η^γ.ί...̂ ρ.^λη.ο.7....ί:Λΐχί.ς}χ·Λλ^9.5.0.1A....

do solemnly and sincerely declare as follows:-

1.
(OR, IN THE CASE OF AN APPLICATION BY A BODY CORPORATE.)

1. I am/We-are authorised by TANDEM.,.COMPυΤΕΕ§,..ΙΝ£ΟΚΡ.ΟΚΛ^Ρ..

. the applicant for the patent to make this declaration on its behalf.

(d) Inert
country In
which basic
appilcatlon(s)
we/wara
fllftd.
(a) Inert date
of belc
appflcatjon(i).
(f) Inert full
name of basic
appHcant(s).

2. The basic application^) as defined by Section 141 of the Act was/were made in the following
country or countries on the following date(s) namely:—

inthe,.ynit^,,S^tes,,of .^3jgj;j,{3.aoR (°)..l.Q..„Apj;j,l...X.8.9..7.......... .
(f) Daniel E. Lenoskiby

in <d)
by (θ
in<d>
by(O

on

on

(e).

(e).

(g) Inert >uli
name(s) of
actual
inventor (s)

(hl inert
addreu(e) of
actual
Inventor(s).

3. -4-am/W^-are-the-actuaUnventor(s).of4he-invention-referred-to-in-the-basicapplication.
(OR, WHERE A PERSON OTHER THAN THE INVENTOR IS THE APPLICANT)

(g)................... Daniel...E...,, Lenoski..,.....3.

of (h).......2.5.5„j5.gu.th...Rgagatffxf£..A,ygnue.z....M.4./...MQJxntaiD...Vi,ew.r..
California 94040

is/are the actual inventor(s) of the invention and the facts upon which the applicant(s) is/are entitled to
make the application are as follows:

(Dsetouthowassignment, .dated...8.,Ap.ri,1.198.7...whereb^..th.e...a£plicant
•ppllcant(s),* *********···············..........
*ri«id«h«,.i.?....Vh.?...ass.ignee...9.^..tb.e..5.ai.d..ihy.^n.t.3,Oh...fxom,..the...said...

inventor.
Ιλ„ tts«gn«e of
the invention
from the ectual
inventorfs}.
Attestation or
lepllietion
not required.

To:

4. The basic application(s) referred to in paragraph 2 of this Declaration was/were the first
application(s) made in a Convention country in respect of the invention the subject of the application.

Glared a. ^?£oSia of 3
Tandem Computers Incorporated

198 8

The Commissioner of Patents

_ ________________________ _______ Signature of Declarant(s)
Anthony T. Cascio, Assistant Secretary

(12) PATENT ABRIDGMENT (11) Document No. AU-B-14435/88
(19) AUSTRALIAN PATENT OFFICE (10) Acceptance No. 607753

(54) Title
A METHOD AND APPARATUS FOR MODIFYING MICRO-INSTRUCTIONS USING A
MACRO-INSTRUCTION PIPELINE

International Patent Classlficatlon(s)
(51)4 G06F 009/38

(21) \ppllcation No.: 14435/88 (22) Application Date ; 08.04.88

(30) Priority Data

(31) Number (32) Date (33) Country
036726 10.04.87 US UNITED STATES OF AMERICA

(43) Publication Date : 13.10.88

(44) Publication Date of Accepted Application : 14.03.91

(71) Applicant(s)
TANDEM COMPUTERS INCORPORATED

(72) Inventor(s)
DANIEL E. LENOSKI

• ►
(74) Attorney or Agent

GRIFFITH HACK & CO., GPO Box 4164, SYDNEY NSW 2001

(57) Claim
1. A method for executing instructions in a

controller comprising the steps of:

fetching with said controller a first
macro-instruction and a next macro-instruction;

executing with said concroller concurrently during a
single clock cycle first and second operations, said first
operation being used to carry out said first
macro-instruction and said second operation being
performed to carry out said next macro-instruction;

decoding with said controller said next
macro-instruction to determine whether less than a
predetermined number of operations are required; and

using in said controller the result of said second

operation during execution of said next macro-instruction
if said next macro-instruction has a number of operations
less than said predetermined number and otherwise
re-executing said second operation.

♦ 4

Short Title:Int. Cl:
Application Number:

Lodged:

COMMONWEALTH OF AUSTRALIA PATENTS ACT 1952 COMPLETE SPECIFICATIONFOR OFFICE USE
Form 10

This document contains the
amendments made under
Section 49 and is correct for
printing

ί . » Complete Specification-Lodged: ”· Accepted:
» * ♦ Lapsed:’ * Published:ft ft ft · ft• ft ft ft.. , Priority:ft ft · 0”·”“ί Related Art:

ft ftft ft* ·· TO BE COMPLETED BY APPLICANTft ft ft ftftft ft Name of Applicant: TANDEM COMPUTERS INCORPORATED
ft ftft ft Address of Applicant: 19333 Vallco Parkway, Cupertino, CALIFORNIA 95014, U.S.A.ft ft Actual Inventor: Daniel E. LenoskiAddress for Service: GRIFFITH HASSEL & FRAZER71 YORK STREETSYDNEY NSW 2000AUSTRALIAComplete Specification for the invention entitled:A METHOD AND APPARATUS FOR MODIFYING MICRO-INSTRUCTIONS USING A MACRO-INSTRUCTION PIPELINE

The following statement is a full description of this invention, including the best method of performing it known to me/us:- 1853A:rk

c c
lA

10577-97

' Si' f
< t 9 i

«
? m

· « ♦ ♦

» « ♦ »

«
(till*

t »

t tt
S t ·

« * A

i A AI t ftt it
ft · ♦ ·

(I * A

• * ft
Aft ft

ft ft ·

A METHOD AND APPARATUS FOR MODIFYING MICRO­
INSTRUCTIONS USING A MACRO-INSTRUCTION PIPELINE

5
BACKGROUND

The present invention relates to the exe­
" cution of macro instructions by a central processing

unit utilizing sequences of microcode instructions.
10 In a typical modern computer, a program is

executed by fetching an instruction from memory and
placing it in an instruction register. The instruction
is then decoded to point to a starting address or
series of addresses in a microcode memory. The micro-

15 code memory provides the operations which make up the
instruction. The various operations from the microcode
memory are sequentially placed into a micro instruction
register where they are decoded to produce control
signals for executing the operations. These control

,20 signals may enable an access of memory, the placement
of operands into an arithmetic logic unit, the com­
bination of operands in an arithmetic logic unit, etc.
After all the microcode operations for a particular
macro-instruction have been executed, a new macro-

25 instruction is fetched from memory and the process is
repeated.

Once the macro-instruction has been decoded,
there is typically no interaction between the micro
coded operations and the macro-instruction except for

30 instances in which the macro-instruction includes a
data operand or a register specifier for a data oper­
and.

In efforts to speed computer operation,
attempts have been made to shorten the number of clock

35 cycles required for the macro instructions. One method
of doing this involves performing redundant microcode
operations and storing the results .of these operations

$■

r *

• ■

< 9
f »

9 9 99 »199 9
99 9 9

9
9 9 99

999999 9 V

• 9 ·« « ·4 « ·
« 9 9

9 9 «
* 4 9

9 9 9 999 9 9 9

9 9 99 9 99 9 9

f « c
2

in separate registers where necessary. The next
macro-instruction ca then be decoded to determine
whether it requires these operations. If it does, the
precomputed results can be used. If not, the result of

5 the redundant operation is thrown out. Unfortunately,
this method requires a significant amount of additional
hardware and often results in wasted operations. This
type of scheme is employed in the TXP and VLX proces­
sors manufactured by Tandem Computers, Inc.

10 Another method involves processing multiple
microcode instructions at one time to do some op­
erations not requiring the ALU in parallel with ALU
operations. The advantages of increased speed and
simplified control logic are balanced by the disadvan-

15 tage of requiring more hardware and making microcode
branches slower.

Another method involves simply hardwiring
certain macro-instruction operations so that microcode
does not have to be accessed at all for such op-

20 erations. The obvious disadvantage of this method, is
that the hardwired circuit becomes dedicated to that
function and can't be used for other purposes.

U. S. Patent No. 4,312,034 describes yet
another method for reducing the amount of time required

25 to execute a macro-instruction. Referring to Fig. 15
of that patent, a macro-instruction register (IRD) and
a ROM output register (microcode) are factored into a
ROM address whose outputs control an ALU and condition
codes. Thus, the macro-instruction itself is used to

30 control the ALU and condition codes instead of relying
on the microcode instructions entirely. Thus, for
example, to do an add or subtract operation the micro­
code would simply do the same fetch operation with the
controller looking directly to the macro-instruction to

35 determine whether to add or subtract.

5

10

15
• 99
e « 9
9 9 *0 99 O
9 * 9 9
9 9 9 « 9
9 9

9
9 9 9 9

,20
9 99 9

9
• A fl fl 9 fl9 fl

25
«99«9 fl
«999
0 9 9 9

9 9 9
9 · 9

9
9 9 «

9 9 9
• 9 9

‘yap
f

4 '

35

- 3 -

SUMMARY OF THE INVENTION
According to a first aspect of the present invention

there is provided a method for executing instructions in a
controller comprising the steps of:

fetching with said controller a first
macro-instruction and a next macro-instruction;

executing with said controller concurrently during a
single clock cycle first and second operations, said first
operation being used to carry out said first
macro-instruction and said second operation being
performed to carry out said next rnacro-instruction;

decoding with said controller said next
macro-instruction to determine whether less than a
predetermined number of operations are required; and

using in said controller the result of said second
operation during execution of said next macro-instruction
if said next macro-instruction has a number of operations
less than said predetermined number and otherwise
re-executing said second operation.

Preferably only one of said first and second
operations is a memory access operation. Alternatively
said first operation may be incrementing a program counter
and said second operation may be a data operand fetch.

The method preferably comprises the further steps of:
determining whether said next macro-instruction

requires less than a second predetermined number of clock
cycles; and

modifying one or more operations of said first
macro-instruction if said next macro-instruction requires
less than said second predetermined number of clock
pulses. In this case said operations of said first
macro-instruction which are modified are calculating an
operand address for said next macro-instruction and
fetching an operand from said memory. Alternatively said
operations are modified to calculate an address of a
i. ‘ogram counter plus one and to fetch an instruction
stored at said calculated address.

0807S/PAR

- 4 -

The second predetermined number is preferably three.
According to a second aspect of the present invention

there is provided an apparatus for executing instructions
in a controller having at least first and second function

5 units which each include an arithmetic logic unit,
comprising:

a macro-instruction register;
a next macro-instruction register coupled to said

instruction register; and
10 first logic means, coupled to one of said instruction

registers for generating control signals to concurrently
execute, during a single clock cycle, first and second
operations in said first and second function units,
respectively, said first operation being used to carry out

15 a first macro-instruction in said first macro-instruction
• ί*ί register and said second operation being performed to
,. carry out a next macro-instruction, and for using theft ft ft
ί >' result of said second operation during the execution of

·««· said next macro-instruction if said next rnacro-instruction
ft ft ft ft ,

,20 has a number of operations less than a predetermined«ft * ft
.,«ί number and otherwise re-executing said second operation;
«♦♦·»» and» ·

second logic means for decoding said next
macro-instruction to determine whether less than said

tsj25 predetemined number of operations are required.
*»··«" Preferably one of said first and second operations is
·,„· 5 a memory access operation and said first logic means

’ includes:ft ft 0
’♦ *·» a first logic stage for providing access to a memory;
·*··3β a second logic stage having a first arithmetic logic

‘ unit for performing arithmetic operations on data provided
‘1' from at least one of said first and next
* macro-instructions and said memory; and

a third logic stage having a second arithmetic logic
35 unit for performing arithmetic operations on data provided

from at least one of said first and next
macro-instructions and said memory, at least two of said

LS s)

^0807s/PAR

■

9 69 «
9 9 «9β β 9• 0 • 9

0 0 00
9

♦' 0 » · - -209
9 9 9 9

9
»099

0
09099«

9 0

25
«0 0«

4 0«*«♦
« · « «

I « 0
t « 0

*
4 0 «C « ·
< c a

«
“3P

- 5 -

first, second and third logic stages being concurrently-
operated for a portion of said first and next
macro-instructions.

Alternatively said first logic means includes a
microcode memory having a plurality of groups of encoded
micro-instructions, each group corresponding to a
different macro-instruction, including a number of said
groups for carrying out short macro-instructions which
require less than said predetemined number of clock
cycles, each said short macro-instruction group being
written to omit said first operation pertaining to said
short macro-instruction and all said groups of encoded
micro-instructions being written to include said first
operation pertaining to a subsequent macro-instruction.

Alternatively again said first logic means comprises:
microcode address generation logic for producing

microcode addresses responsive to a macro-instruction;
a microcode memory coupled to said microcode memory;

and
microcode control logic coupled to said microcode

instruction register, for concurrently generating said
control signals to said first and second function units.

The apparatus may additionally comprise: decoding
means coupled to said next macro-instruction register for
producing a signal if a next macro-instruction in said
next macro-instruction register requires less than a
second predetermined number of clock cycles; and means,
responsive to said signal, for modifying at least one
operation of a micro-instruction for a first
macro-instruction in said first macro-instruction
register. In this case the apparatus may further comprise
a third function unit for performing memory accesses, all
said function units being operable concurrently.

The operations can be classified into two groups.
The first group is referred to as macro-sequencing
operations and include operations that are performed for
all macro-instructions or are performed for all
macro-instructions of a certain type (i.e., all arithmetic

0807S/PAR

5

10

15
» β·• β β• · βtttttt tt
tt tt tt *• 0 tt• tt• β

»• tttttt
20

• tt tt ·

tt• · · tt « « • ·

25• · « *
(tt

♦ · tt ·

« · tt tt • · ·
♦ tt tt

tt
♦ · ·

• tt ·tt · tt

« t

«
< < t « e. #

t

tC '
t

35

6

instructions requiring an operand). For example, these
instructions include incrementing the program counter,
fetching a next instruction from memory, calculating the
address of an operand for the next instruction and
fetching the operand for the next instruction. The second
type of instruction which is executed in parallel covers
micro operations which are dependent upon the particular
macro-instruction. For example, this type of operation
includes addition, subtraction and other arithmetic
operations or specific movement of operands between
registers. In a typical instruction, four operations of
the first group are required, thus requiring four clock
cycles. However, often only three operations of the
second group are required, or in some instances, only
two. Accordingly, by performing the first operation of
the first group for a next instruction concurrently with
the last operation of the first group for a current
instruction, if the next instruction requires only three
operations of the second group, the next operation can
then be performed in three clock cycles. If the next
instruction in fact requires four operations of the second
group, the performance of its first operation of its first
group by the previous instruction cycle is simply
redundant. This procedure is followed because it is
simpler to redo the operation when needed rather than
store the result for the next clock cycle. The invention
differs from the redundancy found in the prior art because
the redundancy depends upon the number of operations
specified by the next macro-instruction.

For a fuller understanding of the nature and
advantages of the invention, reference should be made to
the ensuing detailed description taken in conjunction with
the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 is a block diagram of a typical prior art

controller;

0807S/PAR

- 7 -

Figure 2 is a block diagram of a controller embodying
the second aspect of the present invention; and

Figure 3 is a block diagram of the controller of
Figure 2 with a specific function unit arrangement for the
logic functions.

10

15
ft 0a ftft 0 ft ft ft ftftft ft
©ft ftft eft ft ft ft• ft

ttft tt ft * βft ft tt «<
20

• •«ft ftft ft ft ft
• ft *·♦* ft ft

25

3 ft · ft ft ft ftft ft ft

ftft · ft ft * < ft ft
£ « t«2&

ί C

35

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Figure 1 is a block diagram of a typical prior art

processor. An instruction register 10 receives an
instruction from memory which is decoded by microcode
address generation logic 12 to produce addresses to a
microcode memory 14. The instructions stored in microcode
memory 14 are supplied to a micro-instruction register 16,
which may itself affect the address of the next
instruction in microcode memory 14. The instruction in
micro-instruction register 16 is decoded by microcode
decode logic 18. The decoded logic generates control
signals which are supplied to function units 20 and 22.
The function units perform the memory fetches, arithmetic
operations, and other manipulations specified by the
micro-instruction.

Because the processor of Figure 1 has two function
units, during any one clock cycle two operations may be
performed concurrently. A typical macro-instruction
sequence may require a number of macro-sequencing
operations as well as micro-operations which may be
performed concurrently. The macro-sequencing operations
would be operations which are done for all
macro-instructions or for certain types of
macro-instructions (i.e., arithmetic operations requiring
the fetching of an operand), while other
micro-instructions are dependent upon a particular
macro-instruction (i.e., particular arithmetic
operations). Thus, for example, function unit 20 of
Figure 1 could be performing a macro-sequencing operation
(such as incrementing a program counter) while function
unit 22 could be performing another operation, such as
adding two operands. This parallel operation is shown in

0807S/PAR

- 8 -

the following table for macro-instructions 0 and 1 where
A, B, C and D represent macro-sequencing
micro-instructions and w, x, y and z represent
instruction-dependent micro operations.

5
TABLE 1

0
SlctcH. Cy.1».

0 A(0) w(0)
10 0 1 B<0) x(0)

0 2 C(0) y<o)
0 3 D(0) z(0)
1 0 A(l) x(l)
1 1 B(l) y(i>

15 1 2 C(l) z(l)
1 3 D(l)

As can be seen from the above table, by doing9 M
ϊ»ί .* operations in parallel, only four clock instructions are
·\·'2Ο required for each macro-instruction. In the example
»9
‘ * shown, for macro-instruction 1, four macro-level9

’Σ** operations are required while only three
» 9 9 9

» instruction-dependent micro-operations are required. The
“·« preferred embodiment takes advantage of this feature of

9
‘,*“•25 certain macro-instructions by adding a third function unit

so that three operations can be performed in parallel.
The present invention concerns the parallel

,,,, performance of macro-sequencing operations. For most
< ·

instruction-dependent micro-operations (w, x, y, z) the
έθ operations must be performed sequentially, and thus a time

. savings by parallel operation is not possible. However,
oftentimes more than one macro-sequencing operation can be
performed simultaneously. Accordingly, the embodiment

, uses a third function unit to perform a first
35 macro-sequencing operation of a next instruction
t

concurrently with the last macro-sequencing operation of a
first instruction. As can be seen in Table 2 below, this

07S/PAR

PA

9

results in macro-instruction 1 of Table 1 requiring only-
three clock cycles to execute.

TABLE 2
5

10

Macro-Instr,
0
0
0
0

£io_g.k.Cyi_u
0
1
2
3

Ooeration
A(0)
B(0)
C(0)
D(0) A(l)

w(0)
x(0)
y(0)
2(0)

1 0 B(l) x(l)
1 1 C(l) y(i>
1 2 D(l) A(2) 2(1)

15
2 0 A(2) W(2)

o00 2 1 B(2) x(2)
« a 2 2 C(2) y(2)
0 2 3 D(2) A(3) z(2)

•Γ20
„ As can be seen from Table 2, if a macro-instruction 2(o

requires four instruction-dependent micro operations (w,*
’ί x, y, z), then step A(2) performed during

macro-instruction 1 simply becomes redundant and is
25 repeated. Alternatively, step A(2) could simply be

, omitted from macro-instruction 2 with no macro-sequencing
‘ operation being performed during the first clock cycle,

5 L-3.

M (< l £ί I

35

A
LS s)

Λ
A? oy

0807S/PAR

10

f ««
t I ·
It ·
tri ·

ct <-*
t « ·e ·ε »

ι
tic·

c
t t t ι

c
ί u »

€£ I C

t t t €
γ *
till

c t t t
c t

< t <

C I ί < ♦€ ·

5 Referring to Fig. 2, both an instruction register 24

and a next, instruction register 26 are provided to give

a macro-instruction pipeline. These registers are

coupled to microcode address generation logic 28,

microcode memory 30 and micro-instruction register 32

10 in similar manner to the circuit of Fig. 1. However,

rather than using simply microcode decode logic which

only decodes micro-instruction register 32, a decode

logic block 34 is used which takes inputs from the

macro-instruction register as well as the micro-

15 instruction register. Decode logic 34 looks at the

contents of the next instruction register (NIR) 26 and’,

if it requires less than a certain number of clock

cycles, modifies the code from micro-instruction

register 32 to alter the control signals provided to

20 function units 36 and 38 - 40 (Fl, F2 through FN).

Decode ..logic 34 looks at the next instruction in next

instruction register 26 and determines how many clock

cycles it could be done in. For instance, if a next

instruction requires only instruction-dependent op-

25 erations y and z, then it can be done in two clock

cycles if macro-sequencing instruction A and. B are

performed during the current instruction. This can be

done by doing A and B in parallel with C and D of the

current instruction or, if C and D are not needed

30 because of the nature of the next instruction, op­

erations C and D can be modified to become operations A

and B.

An example is where A and B relate to incre­

menting the program counter and C and D relate to

35 calculating an operand address and fetching the operand

for the next instruction. Where the next instruction

has only two instruction-dependent .operations (y, z) ,

<< < ς<

v· "i

I A. <> i
\?yr

1
■lT
ί

c
?1

5

10
ί ί *«. ί t
’ i t t
it ι *
it ftt «

»· ♦»
ai t« «

» » e « oft » ft 0
ft

ft t i « ft ft
t ft

15

€ ft ftft «
Ift 20

and does not require an operand, steps C and D being
performed by the current instruction are unnecessary.
Accordingly, steps C and D can be modified to become
steps A and B for the next instruction. When the next
instruction is executed, it can thus do its steps C and
D concurrently with steps y and s.

Table 3 below shows the resulting sequence of
operations where a current instruction 0 in instruction
register 24 requires four clock cycles while a next
instruction in NIR register 26 requires only two clock
cycles. Decode logic 34 of Fig. 2 looks at the con­
tents of NIR 26 and .determines that only two clock
cycles are required. Accordingly, it modifies op­
erations C(0) and D(0) to become operations A(l) and
B(l), respectively. Thus, when macro-instruction 1 is
itself executed, since steps A and B have already been
performed, it can perform steps C(l) and D(l) concur­
rently with instruction-dependent steps y(1) and z(1),
thus enabling the instruction to be completed in only
two clock cycles.

: » ί »s■' t ϊ
TABLE 3

Macro Instr. Clock Cyc Operation

M ft ft
ft ftft ft ft 25

0
0
0
0

0 A(0) w(0)
1 B(0) x(0)
2 [C(0,] A(l) y(0)
3 [D(O)J B(l) z(0)

30

35

1
1

0 C(l) y(l)
1 D(l) z(l)

2 0 A(2) w(2)
2 1 B(2) x(2)
2 2 C(2) y(2)
2 3 D(2) 2(2)

Fig. 3 shows a specific embodiment of the
circuit of Fig. 2. In Fig. 3, the contents of next

· ι
' ft

3 ft
. t

< t ft * ftft 1*1
9 09 9

9ft ft *»
*< ft ft » « ft

ft 6

t I β
ft ♦

«. «ft«ft » ft ft ft

c
n

instruction register 26 are provided via a bus 42 to
microcode address generation logic 28. A data bus 59
couples IR 24 to the function units to provide data to
be operated on when appropriate. The decode logic 34

5 consists of a NIR decode circuit 44, microcode decode
logic 46 and combination logic 48. NIR decode logic 44
determines whether a two cycle instruction is present
in NIR 26 and, if so, presents a signal on a line 50 to
decode logic 48. Decode logic 4« passes control

10 signals 52 from microcode decode logic 46 if no signal
is present on line 50. Otherwise, the signal on
line 50 modifies the digital content of the control
signals.

Three function units 54, 56 and 58 are
15 utilized. Function units 54 and 56 contain arithmetic

logic units 60 and 62, respectively. In addition, each
contains a register file 64 or 66, respectively.
Register file 66 includes the program counter. Func­
tion unit 58 is used to access memory 68.

20 The sequencing of instructions through the
three function units is shown in Table 4 below.

TABLE 4
I ft ft ft

ft
ft ft ««

Clock Cyc. FI F2 F3
ft ft 0 ft ft ftft ft» 25 0 w (0) A(0)

1 x(0) - B (0)
2 y (0) C(0) or A(l) -
3...... — z(0) A(l) D(0) or B(l)

30

35

Table 4 shows a four clock cycle sequence
which combines the redundancy of Table 2 and the
macro-sequencing instruction modification of Table 3.
In clock cycles L-l and L, if the next instruction is a
two cycle instruction, steps C(0) and D(0) are modified
to become A(l) and B(l). During clock cycle L, while
either step D(0) or B(l) is being performed in function
unit F3, step A(l) is being performed in function unit
F2. As can be seen,, the operation in function unit F2

L

t

MMt
< I ft

« « 0 «
0

me
»

MUM C ft

£ ft ft
It 0

ft. ft ft

i

<

c
13

during clock cycle L will be redundant when the next
instruction is a two clock instruction, and will be
used only if the next instruction is a three-clock
instruction. In addition, it can be seen that function

5 unit F2 is not used during clock cycle L-2 and function
unit F3 is not used during clock cycles L-3 and L-l.
Accordingly, this gives added flexibility to the
programming to enable instruction-dependent operations
w, x and y to use two function units concurrently if

10 necessary. ,. .
The actual operations A, B, C and D performed

in the preferred embodiment. and the modifications
performed for a two tick (clock) cycle are set forth
below.

15
A(0): Calculate the address of the macro

program counter (P) plus 1. This is
equal to the address of the present
instruction plus 2.

B(0): Fetch the instruction from memory whose
20 address was calculated in A. Store the

address calculated in A to P.
C(0): If not two tick (NIR) then:

Calculate the address (base + displace­
ment) of the operand for the next
instruction.

25 (Else
A(l): calculate the address of the macro
program counter (P) plus 1. This is
equal to the address of the present
instruction plus 3.)
Load the current instruction register

30 (IR) with the instruction in the next
instruction register (NIR) and the
instruction fetched in B into NIR.

35

D(0): If not two tick (NIR) then:
Fetch the operand for the next instruc­
tion, now in IR.
(Else
B(l): Fetch the instruction from memory
whose address was calculated in C.
Store the address calculated in C to P.)

g
d 4

t
ί tt
t? u

««Oftft» « ft ft
«♦ t 11 H f ft

t
t t«

ftε « ft

t t
♦

« ft
€ » ft
ft «

t ft ft ft ftft ft ft *

Λ O«• ft ft • Oft

30

c c
1¼

A(l): Calculate the address of the
macro program counter (P) plus 1. This
is equal to the address of the instruc­
tion 3 after the present one.

A(l) is the redundant operation which is done
in parallel with D(0) for the sake of a three micro
cycle macro instruction which might follow the present
instruction. "Two tick (NIR)" is a decode of the next
instruction register that indicates that the next
instruction will be executed in two micro cycles. "Two
tick (IR) " of D (0) reflects the movement of the next
instruction into the instruction register during C(0).
'Because of this shift, NIR decode logic 44 includes a
register for storing the portion of the next instruc­
tion needed for D(0). The above description does not
include the instruction-dependent operations (x(0),
y(0), etc.) that occur in parallel with the macro
sequencing operations.

In a preferred embodiment, the macro­
instructions have lengths of either two, three or four
or more clock cycles This results in six possible
micro-instruction flows: four or more clock in­
structions, three clock instructions and two clock
instructions which are followed by either two or more
clock instructions or a two clock instruction. This
instruction flow is as set forth in the following
table.

- 15 -

C » » St 0» I ·
U * ♦

4 «t «
<

< » 9 9
i£ β »
»t t C 9 t' S <

•U ί t » » » ·

TABLE 5

Inst. 1 is >
2 Clocks

Inst. 1 is =
2 Clocks

£ 4 Clock Clock
Instruction Cyc. Operation Operation

0,L-3 A(U), w(0) A(0), w(0)
0,L-2 B(0), x(0) B(0), x(0)
0,L-l C(0), y(0) A(l), y(0)
0,L D(0) ,A (1) ,z (0) B (1) ,A(1) ,z (0)

3 Clock
Instruction -1,L D(-l,A(0) ,z(—1) D(-l,A(0) ,z(—1)

0,0 B(0), x(0) B(0), x(0)
0,1 C(0), y(0) A(1) , y(0)

. 0,2 D(0) ,A(1) ,z(0) B (1) ,A(1) ,2(0)

2 Clock -1,L-1 A(0), y(-l) A(0), y(-l)
Instruction -1,L B (0) ,A(0) z (-1) B(0) ,A(0) ,z (-1)

0,0 C(0), y(0) A(l), y(0)
0,1 D (0) , A (1) ,z (0) B (1) ,A (1) , z(0)

As will be understood by thoseι familiar with

« · « ·• ·• « · ·
« « · ·• · ·
o

** 0« ♦ · • «·
<

4 « 4 4 t I
< *
t

the art, the present invention may be embodied in other
20 specific forms without departing from the spirit or

essential characteristics thereof. For example, a next
instruction which would require modification of the
macro-sequencing operations of a current instruction
could be other than a two clock cycle instruction.

25 Accordingly, the disclosure of the preferred embodiments
of the invention is intended to be illustrative, but not
limiting, of the scope of the invention which is set
forth in the following claims.

II»€

35

16

THE CLAIMS DEFINING THP INVENTION ARE AS FOLLOWS:
1. A method for executing instructions in a

controller comprising the steps of:
fetching with said controller a first

5 macro-instruction and a next macro-instruction;
executing with said controller concurrently during a

single clock cycle first and second operations, said first
operation being used to carry out said first
macro-instruction and said second operation being

10 performed to carry out said next macro-instruction;
decoding with said controller said next

macro-instruction to determine whether less than a
predetermined number of operations are required; and

t using in said controller the result of said second
•,; 3,5 operation during execution of said next macro-instruction

if said next macro-instruction has a number of operations* «
* * less than said predetermined number and otherwise
,*»“ re-executing said second operation.
y.,, 2. The method of claim 1 wherein only one of said
'20 first and second operations is a memory access operation.

‘ “‘ί 3. The method of claim 1 wherein said first
operation is incrementing a program counter and said
second operation is a data operand fetch.

,»· », 4. The method of any preceding claim comprising the
’’^5 further steps of:

• Ο β
“ · determining whether said next macro-instruction

t··. · requires less than a second predetermined number of clock
”, cycles; and

β « « i t ft
* modifying one or more operations of said first <

3G macro-instruction if said next macro-instruction requires
less than said second predetermined number of clock pulses.

iite
* ‘ 5. The method of claim 4 wherein said operations of

said first macro-instruction which are modified are
calculating an operand address for said next

35 macro-instruction and fetching an operand from said memory.

0807S/PAR

- 17 -

• * tt« 0 *

» » ♦ · ff t ·
« ·

t <» *r« » t
t« < t ♦

6. The method of claim 5 wherein said operations
are modified to calculate an address of a program counter
plus one and to fetch an instruction stored at said
calculated address.

5 7. The method of claim 4 wherein said second
predetermined number is three.

8. An apparatus for executing instructions in a
controller having at least first and second .function units
which each include an arithmetic logic unit, comprising:

10 a macrc-instruction register;
a next macro-instruction register coupled to said

instruction register; and
first logic means, coupled to one of said instruction

registers for generating control signals to concurrently
execute, during a single clock cycle, first and second
operations in said first and second function units,
respectively, said first operation being used to carry out
a first macro-instruction in said first macro-instruction
register and said second operation being performed to

'’20 carry out a next macro-instruction, aiid for using the «
'“ί result of said seconu operation during the execution of

said next macro-instruction if said next macro-instruction
has a number of operations less than a predetermined

... number and otherwise re-executing said second operation;
and

second logic means for decoding said next
macro-instruction to determine whether less than said
predetemined number of operations are required.

9. The apparatus of claim 8 wherein one of said
30 first and second operations is a memory access operation

and said first logic means includes:
■ a first logic stage for providing access to a memory;

a second logic stage having a first arithmetic logic
unit for performing arithmetic operations on data provided

35 from at least one of said first and next
macro-instructions and said memory; and

‘**2*54 4 8»
• 0

«

< «μ t;
«

< 4
t

€ r * c

07S/PAR

)

5

10

• 0 0 0 © *
:.: is
«« 0 0
t 0 0
I 0
0 0

0
• · < 0

I« « f 0
«

t t I ·

"*'20
0

< t u » ·
< 0

0 0 0 0
0 0

0 0 » 0
..^5

• 0 0
0 9 0

0
«0 0

0 0 0« ·<
(

« 0 1 t t t
« £

<
30ic ■ ·

35

7s/PAR

- 18 -

a third logic stage having a second arithmetic logic
unit for performing arithmetic operations on data provided
from at least one of said first and next
macro-instructions and said memory, at least two of said
first, second and third logic stages being concurrently
operated for a portion of said first and next
macro-instructions.

10. The apparatus of claim 8 wherein said first
logic means includes a microcode memory having a plurality
of groups of encoded micro-instructions, each group
corresponding to a different macro-instruction, including
a number of said groups for carrying out short
macro-instructions which require less than said
predetemined number of clock cycles, each said short
macro-instruction group being written to omit said first
operation pertaining to said short macro-instruction and
all said groups of encoded micro-instructions being
written to include said first operation pertaining to a
subsequent macro-instruction.

11. The apparatus of claim 8 wherein said first
logic means comprises:

microcode address generation logic for producing
microcode addresses responsive to a macro-instruction;

a microcode memory coupled to said microcode memory;
and

microcode control logic coupled to said microcode
instruction register, for concurrently generating said
control signals to said firs4 and second function units.

12. The apparatus of claim 8 further comprising:
decoding means coupled to said next macro-instruction

register for producing a signal if a next
macro-instruction in said next macro-instruction register
requires less than a second predetermined number of clock
cycles; and

means, responsive to said signal, for modifying at
least one operation of a micro-instruction for a first
macro-instruction in said first macro-instruction register.

19

13. The apparatus of claim 12 further comprising a
third function unit for performing memory accesses, all
said function units being operable concurrently.

14. A method for executing instructions in a
5 controller substantially as herein described with

reference to tables 2 and 4 of the accompanying drawings,
15. Apparatus for executing instructions in a

controller substantially as herein described with
reference to Figures 2 and 3 of the accompanying drawings.

10
DATED this 5th day of December 1990

TANDEM COMPUTERS INCORPORATED

, ,, By their Patent Attorneys
•J }5 GRIFFITH HACK & CO.
·' ' Itf «

t«ft*
r € » «

<
t» « ·

****20

0·«««·«
0 0

0 0 00
» ·

0 0 0 0

» 0 00« «

·· «
I « t• < 2
t < O '

t

30
ft

7s/PAR

14435/88

.·.··. FIG.— I. (PRIOR ART)• · ·• · ·• « ·• » ·

FIG._2

Λ ο
Μ Ο

• · *» « ί1*» ■'» rt
ft ft

*

FIG._3

14 435/88

