

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2018/002656 A1

(43) International Publication Date

04 January 2018 (04.01.2018)

(51) International Patent Classification:

G02F 1/225 (2006.01)

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

(21) International Application Number:

PCT/GB2017/051934

Published:

— with international search report (Art. 21(3))

(22) International Filing Date:

30 June 2017 (30.06.2017)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

1611576.8 01 July 2016 (01.07.2016) GB

(71) Applicant: OCLARO TECHNOLOGY LIMITED [GB/GB]; Caswell, Towcester, Northamptonshire NN12 8EQ (GB).

(72) Inventors: DELL'ORTO, Flavio; Via Enstein 27, 20832 Desio (MB) (IT). VILLA, Marco; Via Corridoni 10, 22060 Cabiate (CO) (IT).

(74) Agent: WATKIN, Timothy; Marks & Clerk LLP, Fletcher House (2nd Floor), Heatley Road, The Oxford Science Park, Oxford, Oxfordshire OX4 4GE (GB).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, TZ,

(54) Title: GROUND STRUCTURE IN RF WAVEGUIDE ARRAY

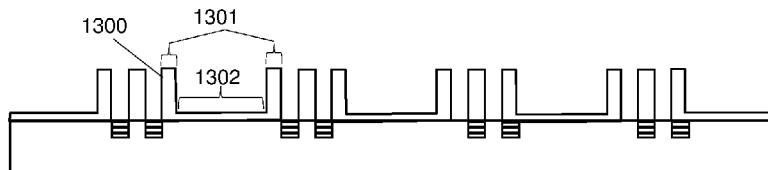


Figure 13

(57) **Abstract:** A radio frequency, RF, waveguide array. The array comprises a substrate and an electrical RF transmission line array. The substrate comprises a plurality of waveguides, each waveguide being elongate in a first direction. The electrical RF transmission line array is located on a face of the substrate and comprises a plurality of signal electrodes and at least two ground electrodes. Portions of the ground electrodes which are relatively distal from the signal electrodes have reduced height in the direction transverse to the substrate to reduce the amount of material required to produce them.

Ground structure in RF waveguide arrayField of the Invention

5 The invention relates to components for use in RF optical apparatus. In particular the invention relates to a waveguide array, for example for use in a dual parallel modulator.

Background

10 A dual parallel I/Q (in phase/quadrature) modulator typically has the structure schematically shown in Figure 1. The signal enters a splitter 101, which divides the signal into each channel of four Mach-Zehnder modulators 110, each of which comprises two waveguides 111, and an electrical RF (radio frequency) transmission line 112. The modulators apply the required modulation, and the signal is recombined
15 by a combiner 102.

20 The Mach-Zehnder modulator has a cross section along A as shown in Figure 2. The waveguide section of the Mach-Zehnder modulator comprises a substrate 201, which contains waveguides 202. The RF transmission line array 203 is placed on one face of the substrate. Each RF transmission line comprises a signal electrode 204. Each signal electrode 204 has a ground electrode 205 on either side. The modulators may either be arranged x-cut (210), with the waveguides positioned below the gaps between the signal and ground electrodes (symmetrically around the signal electrode), or z-cut (220) with one waveguide beneath the signal electrode, and one beneath one 25 of the ground electrodes. Normally, all modulators in an array would be the same type, but both z- and x-cut modulators are shown in Figure 2 for illustration. Intermediate ground electrodes (i.e. those between two signal electrodes) are shared between adjacent RF transmission lines.

30 Summary

A first aspect of the invention proposes in general terms, that there are a plurality of ground electrodes between each pair of signal electrodes. It has been found that this arrangement improves confinement of the field lines produced by each signal electrode within the RF transmission line. Successive ground lines are separated by a channel.

In particular, the first aspect proposes a radio frequency, RF, waveguide array. The array comprises a substrate and an electrical RF transmission line array. The substrate comprises a plurality of optical waveguides, each waveguide being elongate in a first direction. The electrical RF transmission line array is located on a face of the substrate and comprises a plurality of RF transmission lines. Each transmission line comprises a signal electrode and at least two ground electrodes located on either side of the signal electrode. Each electrode extends in the first direction. Each signal electrode is positioned to provide a signal to two respective waveguides, i.e. each RF transmission line is positioned adjacent to two respective waveguides. The ground electrodes include at least two intermediate ground electrodes positioned between each pair of signal electrodes. Intermediate ground electrodes of different RF transmission lines are separated from each other by channels.

Various arrangements of the ground lines are discussed below.

15

A second aspect of the invention proposes that the ground electrodes have reduced thickness (that is, height in the direction transverse to the surface of the substrate) in areas which are relatively distant from the signal electrodes. This reduces the amount of the material (typically gold) which is required to produce the ground electrodes, with acceptable (or even no) reduction in the quality of the RF transmission lines. Each ground electrode, which typically has a substantially homogenous chemical composition, may be formed in a single process step which produces the areas of reduced thickness and areas of greater thickness closer to the signal electrodes.

25

In particular, the second aspect proposes a radio frequency, RF, waveguide array. The array comprises a substrate and an electrical RF transmission line array. The substrate comprises a plurality of optical waveguides, each waveguide being elongate in a first direction. The electrical RF transmission line array is located on a face of the substrate and comprises a plurality of signal electrodes and a plurality of ground electrodes. Each electrode extends in the first direction. Each signal electrode is positioned to provide a signal to two respective waveguides. The ground electrodes include at least one intermediate ground electrode positioned between each pair of signal electrodes. The intermediate ground electrodes have a first height in one or more first regions and a second height in at least one second region, where the height is measured in a direction perpendicular to the face of the substrate. For each

intermediate electrode, each first region is closer to a respective signal electrode than the second region. The second height is less than 75% of the first height.

According to a further aspect of the invention, there is provided a dual parallel in-phase/quadrature, I/Q, modulator comprising an RF waveguide array according to either the first or second aspect.

Other embodiments of the invention are set out in claim 2 *et seq.*

10 Brief Description of the Drawings

Figure 1 is a schematic diagram of a dual parallel I/Q (in phase/quadrature) modulator;

Figure 2 is a cross section of a waveguide array along the line A in Figure 1;

15 Figure 3 shows the electric field distribution from a signal electrode in an RF transmission line array of the kind shown in Figure 1;

Figure 4 is a cross section of an exemplary waveguide array;

Figure 5 is a graph comparing the performance of the waveguide arrays of figures 2 and 4;

Figure 6 is a graph comparing the performance of exemplary waveguide arrays;

20 Figure 7 shows the electric field distribution from a signal electrode in an exemplary waveguide array;

Figure 8 shows plan and cross sectional views of a further exemplary waveguide array;

Figure 9A is a graph showing the performance of an exemplary waveguide array;

Figure 9B shows the electric field distribution of an exemplary waveguide array;

25 Figure 10 illustrates exemplary arrangements of ground electrodes for an exemplary waveguide array;

Figure 11 is a cross section of a yet further exemplary waveguide array;

Figure 12 is a cross section of a yet further exemplary waveguide array;

Figure 13 is a cross section of a yet further exemplary waveguide array;

30 Figure 14 is a cross section of a yet further exemplary waveguide array; and

Figure 15 is a plan view and cross section of a yet further exemplary waveguide array.

Detailed Description

“Length” is used herein to refer to distance in the direction of travel of the RF signals in the RF transmission lines – i.e. “out of the page” in Figure 2.

“Height” is used herein to refer to distance in a direction perpendicular to the face of the substrate to which the RF transmission lines are attached – i.e. vertically in Figure 2.

5 “Width” is used to refer to distance in a direction perpendicular to both height and length – i.e. horizontally in Figure 2, unless otherwise specified.

Figure 3 shows the electric field line distribution of the RF transmission line array shown in Figure 2 (the substrate and waveguides are omitted for clarity). Signal 10 electrodes are labelled 311, 312, 313, 314 from left to right, ground electrodes are labelled 321, 322, 323, 324, 325 from left to right. 321 and 325 are edge ground electrodes, 322, 323 and 324 are intermediate ground electrodes. As can be seen from the field lines 300, the signal from the signal electrode 312 extends through the ground electrodes 322 and 323, and to the nearest other signal electrodes 311 and 15 313. The wide electrical field distribution gives rise to high frequency losses – even in the case of a single transmission line – and the spread of the field to adjacent lines causes unwanted “crosstalk”, i.e. interference on one line caused by another.

20 Typically, ground electrodes have a width above 100 microns. In the case of a single transmission line, it has been found that the use of narrower ground electrodes in fact improves performance of the transmission line at high frequencies. This is unexpected, as it moves the structure of the transmission line further from the “ideal” case of a coplanar waveguide (where the ground electrodes have infinite width). It is theorised that the improvement is due to tighter confinement of the electrical field.

25 The current structure of an array of RF transmission lines as shown in Figure 2 could not use such narrow ground electrodes – if the ground electrodes are below 100 microns in width, then the distance between signal electrodes becomes so small that crosstalk is significant. Instead, we propose splitting each intermediate ground 30 electrode into at least two, as shown in Figure 4. In figure 4, each signal electrode 411, 412, 413, 414 is adjacent to two ground electrodes 421, 422, 423, ... 428. For example, signal electrode 412 is adjacent to ground electrodes 423 and 424. Intermediate ground electrodes 422, 423, 424, 425, 426, 427 are separated by channels 431, 432, 433. Each of the ground electrodes has a width which is preferably less than 150 microns, and preferably less than or equal to 100 microns. This 35

separation not only provides narrower ground electrodes, improving high frequency performance, but also provides some separation between the RF transmission lines, which reduces crosstalk.

5 Figure 5 shows these improvements – Figure 5 is a graph of the deviation from the ideal case of the transmission (S_{21}) curve of on one of the lines, with the lower curve showing a prior art transmission line array, and the upper curve showing the transmission line array of Figure 4. At higher frequencies, the transmission parameter S_{21} is closer to the ideal case.

10

The improvement in the S_{21} curve continues as the ground electrode becomes narrower – Figure 6 shows the deviation from an ideal S_{21} curve for RF transmission lines having standard ground electrodes (bottom curve), having ground electrodes 1/3 the width of a standard ground electrode (middle) and having ground electrodes 1/5 the 15 width of a standard ground electrode (top).

20

A further advantage of the narrow ground structure is that it improves electro-optical efficiency between the transmission lines and the waveguides. As shown in in Figure 7, because the electric field 711, 721 from the signal electrodes 712, 722 is more focussed, more of the field passes through the waveguides 713 (shown in z-cut) and 723 (shown in x-cut). This benefit is maximised when the width of the ground electrodes is similar to the width of the waveguides – e.g. less than twice the width of the waveguide. The benefit is greatest in the z-cut configuration. In the z-cut configuration, only narrowing of the ground electrode which is above the waveguide 25 provides any benefit to the electro-optic efficiency.

30

When the ground electrodes are very narrow, there is significant non-smoothness in the S_{21} curve – likely due to the narrow electrodes meaning that any asymmetry causes much larger variations. This effect can be mitigated while retaining the gains in electro-optical efficiency by using a structure such as that shown in Figure 8. The signal electrode, waveguide, and ground electrodes 810 not above a waveguide in the z-cut case are unchanged. The ground electrodes 800 which are located above a waveguide in the z-cut case, or both the ground electrodes in the x-cut case, each have a plurality of slots 801 in them. The slots are elongate along the length of the ground electrode, 35 and divide the electrode into a region which is above the waveguide, and a region

which is not. The region above the waveguide can be made narrow in order to provide improved electro-optic efficiency, and the region not above the waveguide and regions of the ground electrode which do not have slots act to smooth out the S_{21} curve. Although only two slots are shown per ground electrode, there may be any number of 5 slots per ground electrode, preferably all co-linear and extending in the same direction.

The length of the slots may be selected based on a number of constraints. If the slots are too short, then they have no effect on the performance of the modulator. If the slots are too long, then they form cavities in the line which can cause notches on the 10 S_{21} curve. Possible length values are above 50 microns, and below 350 microns. At length values above 350 microns, resonances will become apparent in the S_{21} curve, though for some applications these may be acceptable at higher lengths. For example, the slot may have a length of 80 microns, and the distance between slots may be 40 microns, resulting in a "cell" of 120 microns which is duplicated along the line. The 15 slots may be arranged periodically (that is, all the slots have the same length, and slots are spaced apart from each other pairwise by a certain fixed distance) or non-periodically. Arranging the slots periodically may cause resonances in the line, but these could be compensated for by other means.

20 Figure 9A and B illustrate the low frequency behaviour of a transmission line according to Figure 4. While the graph on Figure 5A demonstrated a case where the ground electrodes were connected with a probe station (i.e. electrically isolated from each other), Figure 9A is a graph showing the case where the ground electrodes are electrically connected at some point at or beyond the start or end of the transmission 25 line (e.g. connected to a common ground, which will generally be the case in a packaged product as the package acts as a ground). As can be seen from the graph, there is a large amount of distortion at low frequency ranges. This is not seen in transmission line arrays without separated ground electrodes, or in single transmission lines with narrow ground electrodes, and its discovery in this case is surprising.

30 This effect appears to occur due to the field distribution shown in Figure 9B. At low frequencies, a mode emerges with a significant electric field between the intermediate ground electrodes of adjacent transmission lines. This causes coupling between the lines, and the instabilities on the S_{21} curve. At high frequencies, this effect is absent. 35 Therefore, for modulators (or other applications of the transmission line array) which

are required to work at low RF frequencies in the transmission line, this mode is undesirable.

We propose, in broad terms, two approaches for removing the undesirable mode. In
5 the first approach, the transmission line array is configured to cause increased losses
to the mode compared to the architecture of Figure 4 – the higher the loss of the mode,
the lower the frequency at which the mode is significant, so the waveguide can be
configured to “push” the mode below the operating frequency of the waveguide. In the
second approach, adjacent intermediate ground electrodes are connected in such a
10 way that they act as a single shared electrode at low frequency, and as separated
electrodes at high frequency.

An example of the first approach is to narrow the channel between intermediate
electrodes. The narrower the channel, the higher the loss of the low frequency mode.
15 This effect becomes significant when the channel is less than 20 microns wide, and the
curve is smoother as the channel becomes narrower. However, very narrow channels
can have a negative effect due to manufacturing errors causing the intermediate
ground electrodes to come into contact. With current technology, this is anticipated to
occur for channels less than 5 microns wide, but future improvements in manufacturing
20 may allow for narrower channels. The preferred separation between ground electrodes
is 10 microns.

Another example of the first approach is to vary the width of the intermediate ground
electrodes along their length. This forces changes in the distribution of the electric field
25 in the channel, which causes the unwanted mode to become very lossy. This can be
achieved by varying the width of each intermediate ground electrode independently
(i.e. by varying the width of the channel, but ensuring that the intermediate ground
electrodes remain separate). Alternatively, this can be done by varying the width of
each intermediate ground electrode in a coordinated fashion such that adjacent
30 intermediate ground electrodes interleave with each other. The channel width may be
maintained constant, either as measured perpendicular to the length of the electrodes,
or perpendicular to the walls of the channel. The minimum width of each ground
electrode is preferably greater than or equal to 10 microns but less than 80 microns.

Exemplary structures are shown in Figure 10. In each of the structures shown the width variation is a “wave-like” formation over the length of the ground electrode, i.e. the width varies repeatedly between a minimum and a maximum width in a periodic or modulated periodic fashion. It will be appreciated that other variations of the width, 5 both wave-like and not wave-like are possible. The structure which shows the greatest benefit is that where the channel forms a “square wave” 1001, i.e. each of the ground electrodes varies according to a square wave along its length, such that the two square waves can interleave without the ground electrodes coming into contact. However, it is anticipated that the “square wave” pattern may be difficult to manufacture, so as an 10 alternative the shape of the channel (and variation in width of the intermediate ground electrodes) may form a triangular wave 1002, a sinusoidal wave 1003, or other varying formation which is a function of the distance along the electrode. Where the width varies by a periodic function, the wavelength of that function may be changed over the 15 length of the electrodes (i.e. modulated), since using a periodic function with constant wavelength may result in resonances and the formation of cavities within the waveguide. An example of this is shown for a sinusoidal wave 1004. Cavities in the waveguide may also be avoided by providing a periodic function with a low wavelength, e.g. less than 600 microns, more preferably less than 500 microns, e.g. 450 microns, 20 more preferably less than 250 microns, e.g. 200 microns.

20

Where width variation is used, the width may vary between a width less than twice the width of the waveguides and a larger width, in order to provide some of the advantages of narrow waveguides mentioned above with reference to Figure 7.

25

Yet another example of the first approach, as shown in Figure 11, is to introduce a material 1101, 1102, 1103 into the channel which causes high RF losses at the frequencies at which the unwanted mode is problematic, e.g. a material with a high absorption, and/or with a high loss tangent (e.g. greater than 0.1), for example a magnetic loaded material. Since only the unwanted mode propagates significantly into 30 the channel, this would favourably cause losses to the unwanted modes. The material may completely fill the channel 1101, or it may only partially fill the channel along its height 1102, width 1103, and/or length. The frequencies at which the losses are required are those where a) the unwanted mode is significant (e.g. less than 10GHz, or less than 5GHz) and b) the performance of the waveguide at those frequencies is

important (e.g. greater than 0.5GHz, greater than 1GHz, or otherwise according to the performance requirements of the application).

5 The second approach, illustrated in Figure 12 may be achieved by connecting adjacent intermediate ground electrodes with a low pass filter 1201 (shown schematically), or some other structure which acts equivalently to a low pass filter. For example, the adjacent intermediate ground electrodes may be connected by a thin (e.g. less than 1 micron) metal layer 1202 (e.g. formed directly on the substrate), which will cause the intermediate ground electrodes to be effectively connected at low frequencies, and 10 effectively disconnected at high frequencies. This means that the unwanted mode, which only occurs for separate ground electrodes, cannot occur at low frequencies. Since the benefits of separate ground electrodes are only significant at high frequencies (e.g. above 25GHz), there is little downside to connecting the ground electrodes at low frequency.

15

20 A further improvement that can be made to RF transmission line arrays is to reduce the amount of gold required. In prior art RF transmission lines, the ground electrodes have the same height as the signal electrodes. However, the behaviour of the transmission line is mostly governed by the regions of the ground electrodes closest to the signal electrodes. As such, a ground electrode structure as shown in Figure 13 can be used 25 to reduce the amount of gold required. Each ground electrode 1300 has first regions 1301 close to the respective signal electrodes which are the same height as the signal electrodes, and a second region 1302 further from the signal electrode which is a reduced height. In this way, the amount of gold needed to form the ground electrodes can be significantly reduced. The reduced height may be 75% of the height of the signal electrodes, or less, for example less than 50%, 25%, 10% or 5% of the height of the signal electrodes, or less than 10 microns, 5 microns, 2 microns, or 1 micron. The ground electrodes may have a U-shaped profile.

30

Any of the above improvements can be combined – for example:

35

- Use of both a narrow channel and varying width ground electrodes can be implemented to further suppress the unwanted mode at low frequencies.
- The “slots” in the intermediate ground electrodes presented in Figure 8 can be combined with ground electrodes of varying width. This can be done either by providing the slots within the minimum width of the ground

electrodes, or within the region of the ground electrodes between the minimum and maximum widths.

- The reduced height ground electrodes can be implemented in structures with separated intermediate ground electrodes.

5

The last point is illustrated in Figure 14. Intermediate ground electrodes 1400 may be provided with a first region 1301 having the same height as a signal electrode, and a second region 1302 having a reduced height, where the first region is further from the signal electrode. As an example, each intermediate ground electrode may have an L-shaped profile. Reducing the height of the ground electrodes in these embodiments 10 also helps reduce the risk of shorts in the channel – where the height of the ground electrodes adjacent to the channel is similar to or less than the width of the channel, the channel is easier to manufacture without shorts.

15 The reduced height may be less than 75% of the height of the signal electrodes, more preferably less than 50%, more preferably less than 10%, more preferably less than 3%. In microns, the reduced height may be less than or equal to 5 microns, more preferably less than or equal to 3 microns, more preferably less than or equal to 1.5 microns.

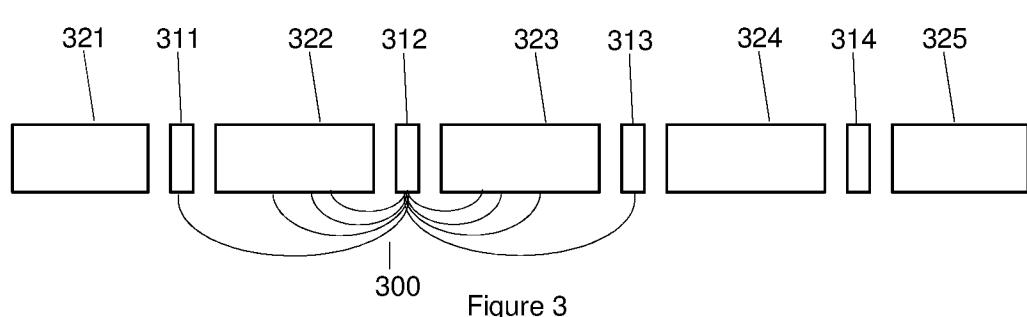
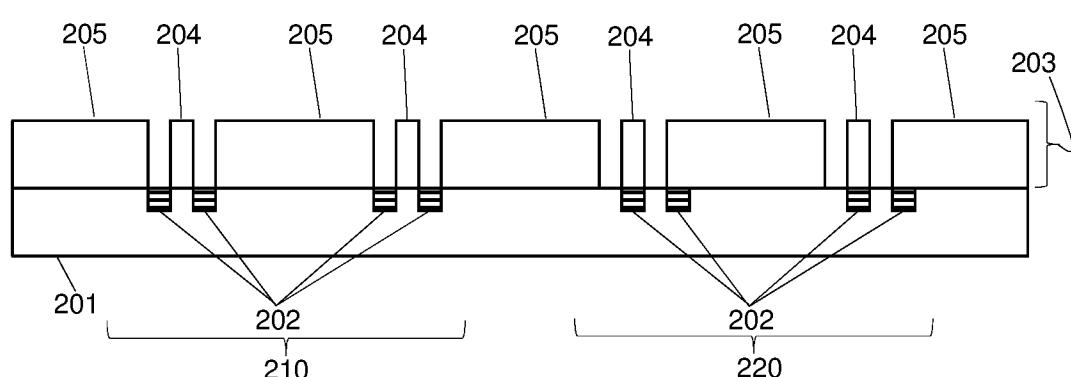
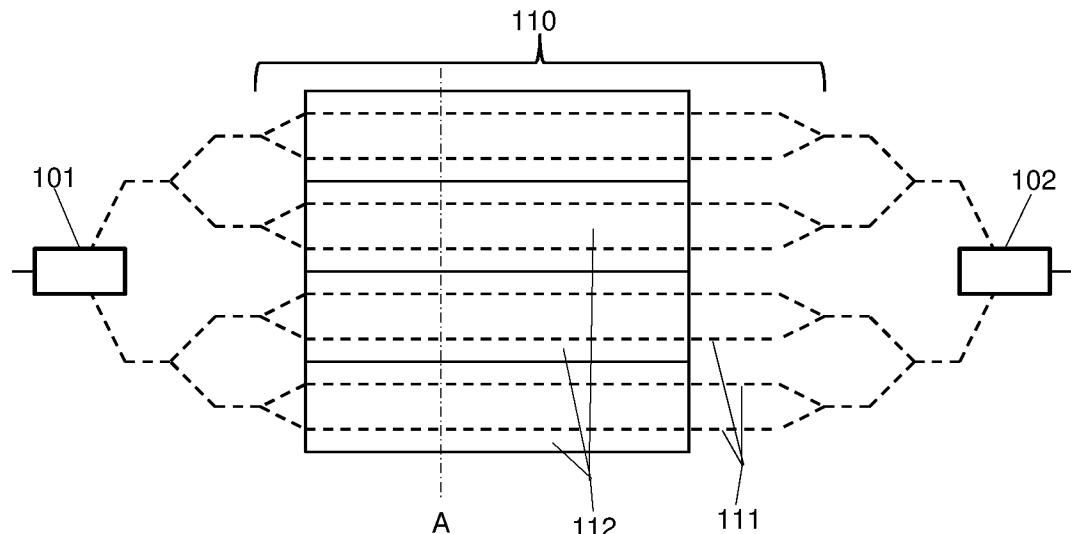
20

25 This provides a further advantage when the width of the ground electrodes varies along their length – such variation is simpler to manufacture in the reduced height portions of the ground electrodes than for ground electrodes which are the same height as the signal electrode throughout. Therefore, it is proposed that the variation in width occurs entirely within the second region, or equivalently, that the first region is entirely within the minimum width of the ground electrodes. An example is shown in Figure 15, where 30 intermediate ground electrodes 1501, 1502 each have a height equivalent to the signal electrode in a first region 1503, and a reduced height in a second region 1504. Each intermediate ground electrode 1501, 1502 varies in width, with the variation occurring within the second region 1504.

35 It should be noted that any design for a waveguide array according to the above examples will be a trade-off of various factors, and the performance required will depend on the application. Therefore, a feature being described as advantageous does not mean that that feature is required – in many applications, there will be

sufficient tolerances that some crosstalk or non-smoothness in the S_{21} curve is acceptable, so a less preferred example may be used.

Although the invention has been described in terms of preferred embodiments as set forth above, it should be understood that these embodiments are illustrative only and that the claims are not limited to those embodiments. Those skilled in the art will be able to make modifications and alternatives in view of the disclosure which are contemplated as falling within the scope of the appended claims. Each feature disclosed or illustrated in the present specification may be incorporated in the invention, whether alone or in any appropriate combination with any other feature disclosed or illustrated herein.




CLAIMS:

1. A radio frequency, RF, waveguide array, the array comprising:
 - a substrate comprising a plurality of optical waveguides, each waveguide being elongate in a first direction;
 - 5 an electrical RF transmission line array located on a face of the substrate and comprising:
 - a plurality of signal electrodes; and
 - a plurality of ground electrodes;
 - 10 each electrode extending in the first direction;
- wherein:
 - each signal electrode is positioned to provide a signal to two respective waveguides;
 - 15 the ground electrodes include at least one intermediate ground electrode positioned between each pair of signal electrodes;
 - the intermediate ground electrodes have a first height in one or more first regions and a second height in at least one second region, where the height is measured in a direction perpendicular to the face of the substrate;
 - 20 for each intermediate electrode, each first region is closer to a respective signal electrode than the second region; and
 - the second height is less than 75% of the first height.
- 25 2. An RF waveguide array according to claim 1, wherein only one intermediate ground electrode is positioned between each pair of adjacent signal electrodes.
- 30 3. An RF waveguide array according to claim 1, wherein two or more intermediate ground electrodes are positioned between each pair of signal electrodes, and the intermediate ground electrodes are separated from each other by channels, and each second region extends to one of the channels.
4. An RF waveguide array according to claim 3 wherein intermediate ground electrodes have non uniform width in a second direction perpendicular to the first direction and parallel to the face of the substrate.

5. An RF waveguide array according to claim 4, wherein the width of the intermediate ground electrodes varies to cause adjacent intermediate ground electrodes to have interleaving profiles.
- 5 6. An RF waveguide array according to claim 4 or 5, wherein the width of each intermediate ground electrode varies along its length in a wave-like formation.
7. An RF waveguide array according to claim 4, 5 or 6, wherein the thickness of each ground electrode varies along its length by a wave which is one of:
 - 10 a square wave;
 - a sinusoidal wave;
 - a triangular wave.
8. An RF waveguide array according to claim 8, wherein the wavelength of the wave varies along the first direction.
- 15 9. An RF waveguide array according to any one of claims 4 to 8, wherein each first region has a width less than or equal to the minimum width of the respective intermediate ground electrode.
- 20 10. An RF waveguide array according to any one of claims 3 to 9, wherein each channel is between 5 and 20 microns wide.
11. An RF waveguide array according to any one of claims 3 to 10, wherein said second height is less than or equal to a minimum width of the channels.
- 25 12. An RF waveguide array according to any one of claims 3 to 11, wherein each intermediate ground electrode has an L-shaped cross section perpendicular to the first direction.
- 30 13. An RF waveguide array according to claim 2, wherein each intermediate ground electrode has a U-shaped cross-section perpendicular to the first direction.
14. An RF waveguide array according to any preceding claim, wherein the second height is less than or equal to 5 microns.
- 35

15. An RF waveguide array according to any preceding claim in which the second height is less than 10% of the first height.
- 5 16. An RF waveguide array according to any preceding claim in which the second height is less than 3% of the first height.
17. An RF waveguide array according to any preceding claim, wherein the first height is at least equal to a height of the signal electrode.
- 10 18. A dual parallel in-phase/quadrature, I/Q, modulator comprising an RF waveguide array according to any preceding claim, wherein the waveguides associated with each signal electrode are configured to form a Mach-Zehnder modulator.

1/7

2/7

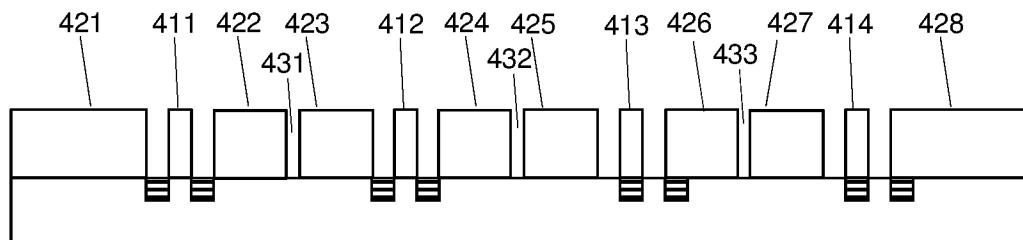


Figure 4

S21 deviation from ideal case

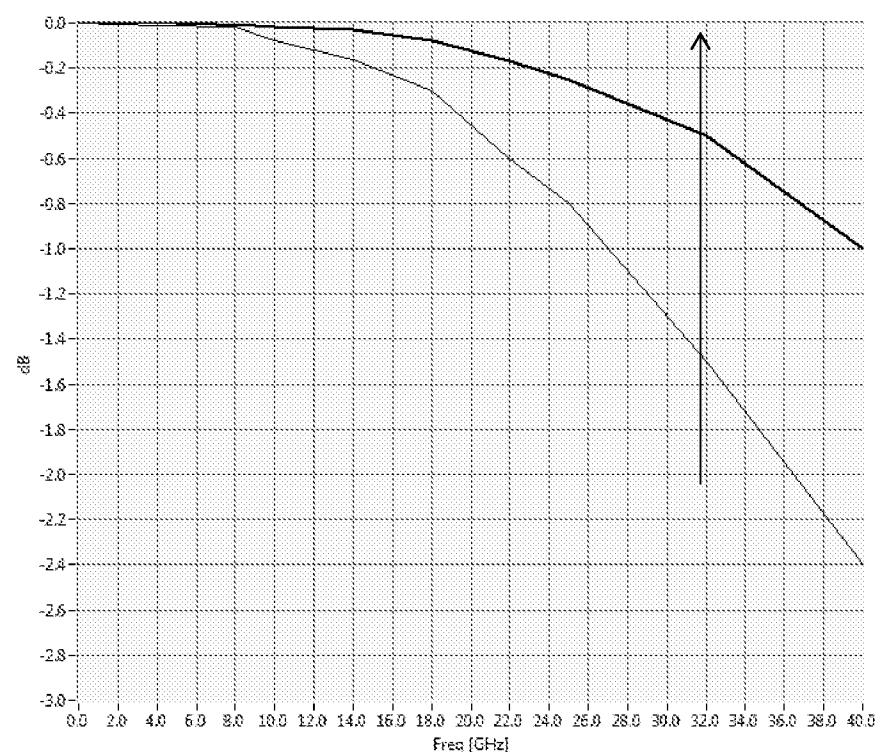


Figure 5

3/7

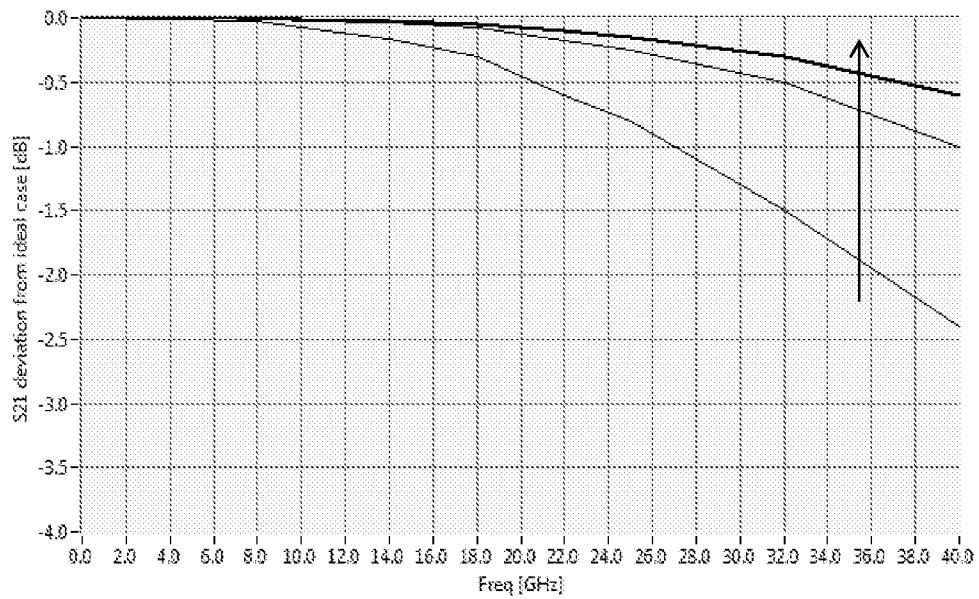


Figure 6

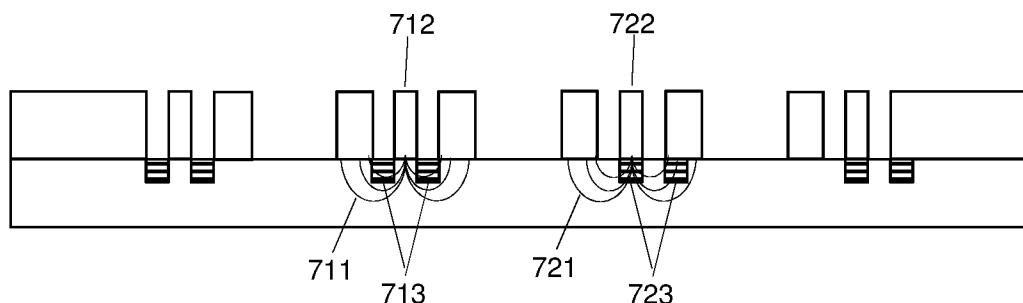


Figure 7

4/7

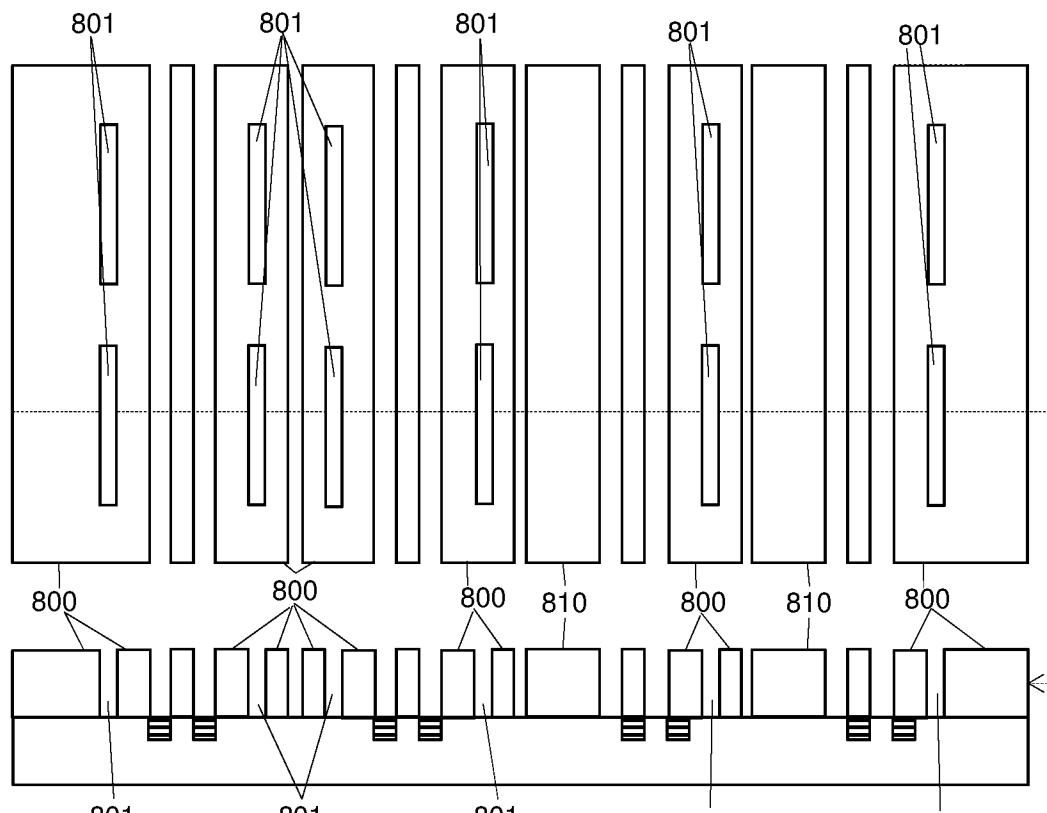


Figure 8

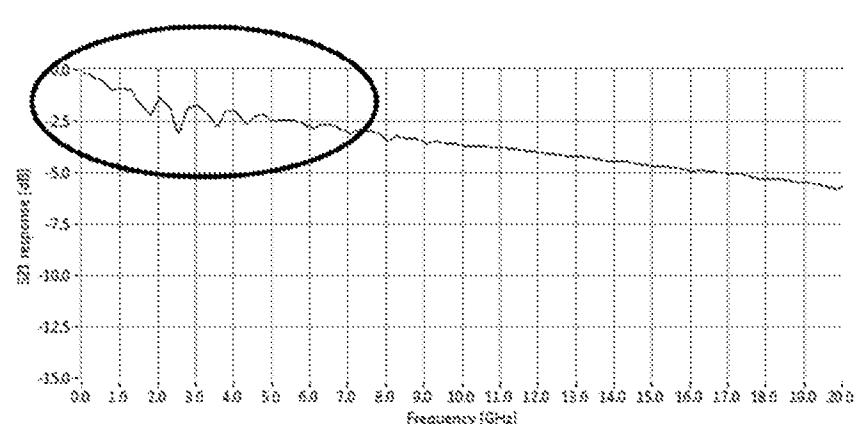


Figure 9A

5/7

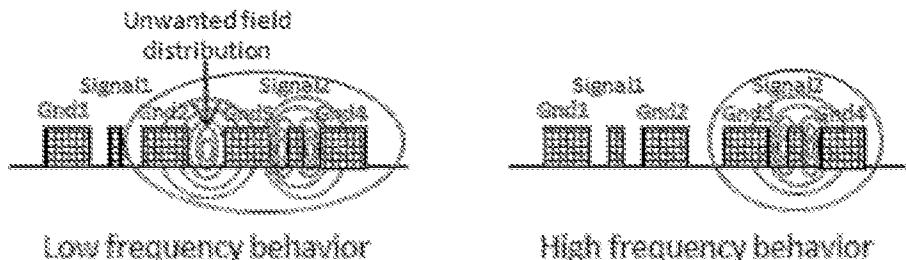


Figure 9B

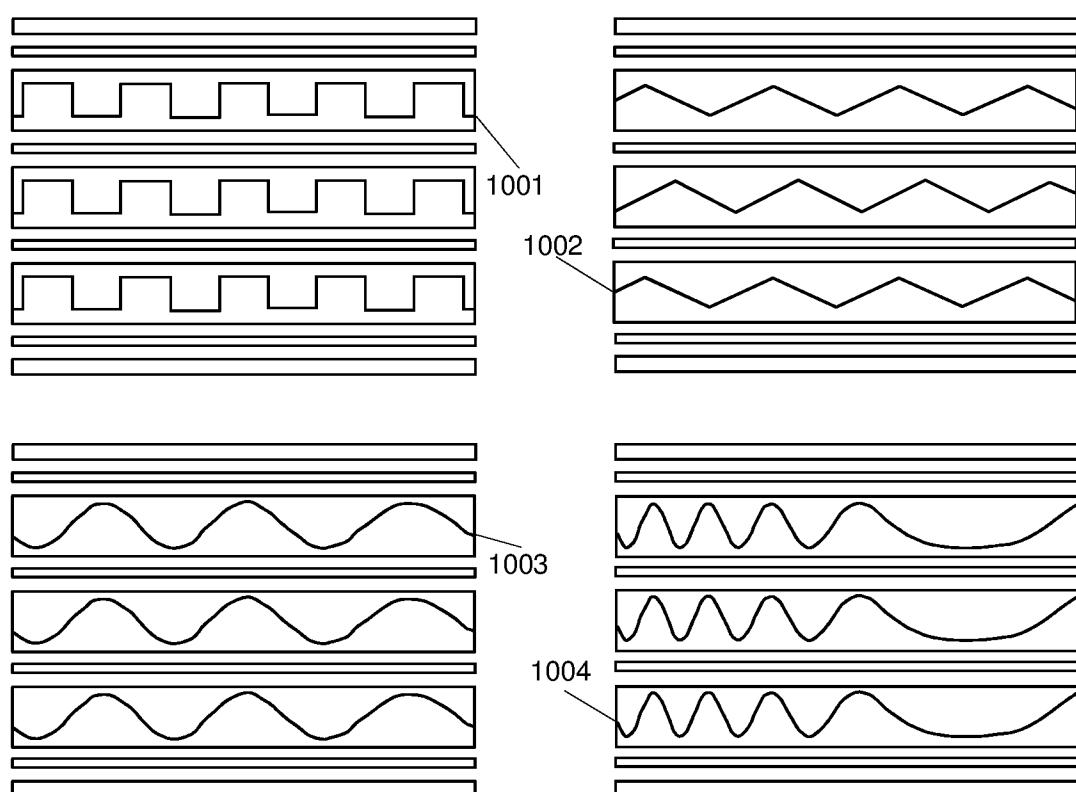


Figure 10

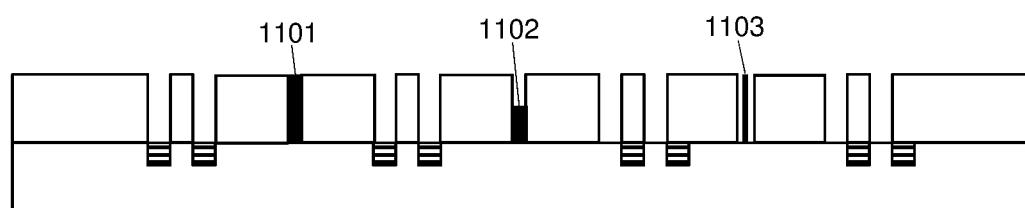


Figure 11

6/7

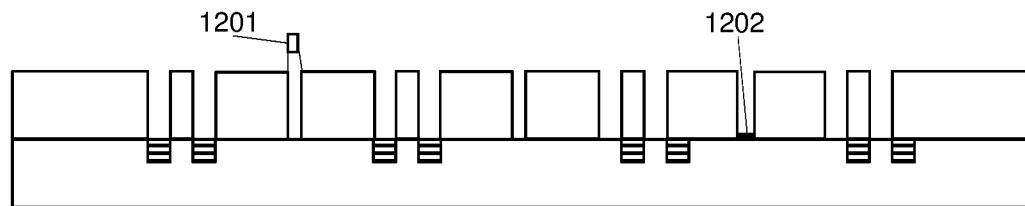


Figure 12

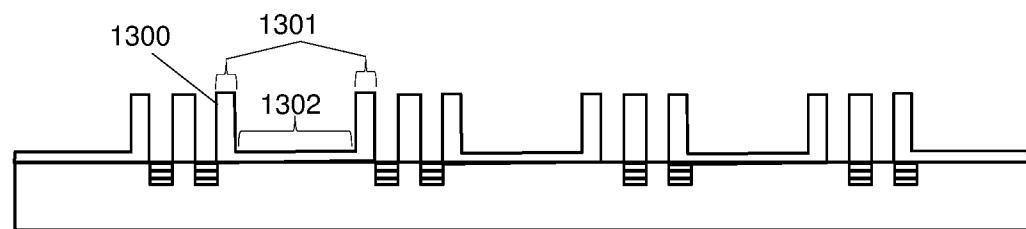


Figure 13

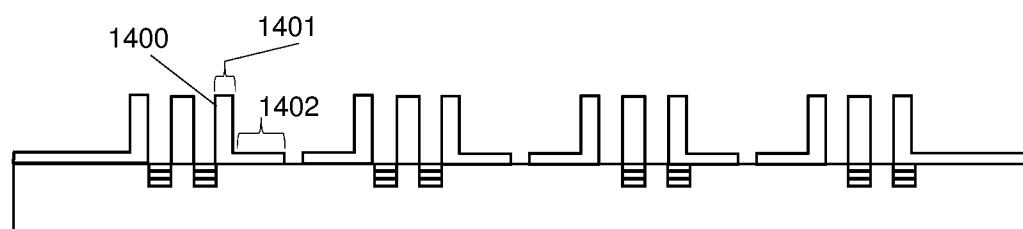


Figure 14

7/7

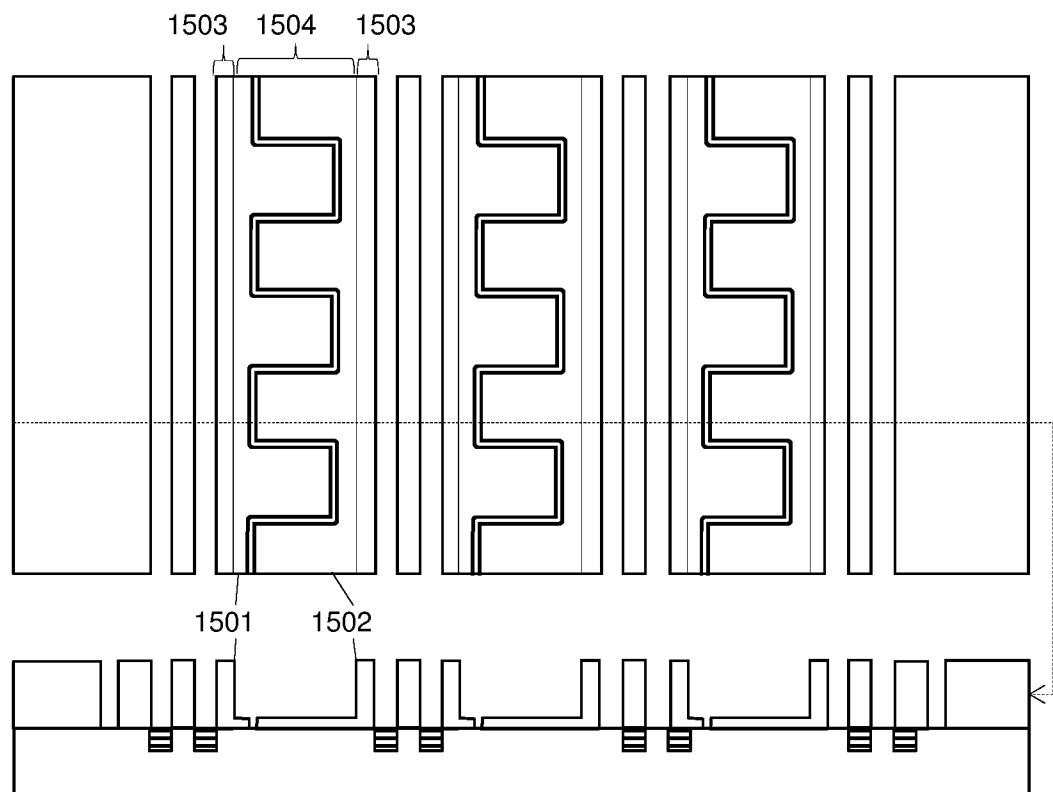


Figure 15

INTERNATIONAL SEARCH REPORT

International application No
PCT/GB2017/051934

A. CLASSIFICATION OF SUBJECT MATTER
INV. G02F1/225
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
G02F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 2016/033848 A1 (KATAOKA TOSHIRO [JP] ET AL) 4 February 2016 (2016-02-04) figure 7 -----	1-18
Y	JP 2012 068679 A (SUMITOMO OSAKA CEMENT CO LTD) 5 April 2012 (2012-04-05) figure 2 -----	1-18
A	US 2002/146190 A1 (DOI MASAHIRO [JP] ET AL) 10 October 2002 (2002-10-10) the whole document -----	1-18

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
15 September 2017	25/09/2017
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Gill, Richard

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/GB2017/051934

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
US 2016033848	A1 04-02-2016	CN JP JP US WO	105122124 A 5590175 B1 2014191095 A 2016033848 A1 2014156684 A1	02-12-2015 17-09-2014 06-10-2014 04-02-2016 02-10-2014
JP 2012068679	A 05-04-2012	JP JP	5229378 B2 2012068679 A	03-07-2013 05-04-2012
US 2002146190	A1 10-10-2002	US US	2002146190 A1 2003147581 A1	10-10-2002 07-08-2003