PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification S

GOGF 13/00, 12/00, 15/16 Al

(11) International Publication Number:

(43) International Publication Date:

WO 91/20038

26 December 1991 (26.12.91)

PCT/US91/04054
10 June 1991 (10.06.91)

(21) International Application Number:
(22) International Filing Date:

(30) Priority data:
535,786

(71) Applicant: SUPERCOMPUTER SYSTEMS LIMITED
PARTNERSHIP [US/US]; 1414 W. Hamilton Avenue,
Eau Claire, WI 54701 (US).

(72) Inventors: WILSON, Jimmie, R. ; 3716 Partridge Run, Eau
Claire, WI 54701 (US). BEARD, Douglas, R. ; S10505
Lowes Creek Road, Eleva, WI 54738 (US). CHEN,
Steve, S. ; Route 5, Box 4300, Chippewa Falls, WI 54729
(US). ECKERT, Roger, E. ; 3130 Eldorado Blvd., #610,
Eau Claire, WI 54701 (US). HESSEL, Richard, E. ; 3628
Altoona Avenue, Altoona, WI 54720 (US). PHELPS, An-
drew, E. ; 6551 Hillview Road, Eau Claire, WI 54701
(US). SILBEY, Alexander, A. ; 2518 West Princeton
Avenue, Eau Claire, WI 54703 (US). VANDERWARN,
Brian, D. ; East 2535 Kirk Drive, Eau Claire, WI 54701
(US).

11 June 1990 (11.06.90) UsS

(74) Agents: PEDERSEN, Brad, D. et al.; Patterson & Keough,
615 Peavey Building, 730 Second Avenue South, Min-
neapolis, MN 55402 (US).

(81) Designated States: AT (European patent), AU, BE (Euro-
pean patent), CA, CH (European patent), DE (Euro-
pean patent), DK (European patent), ES (European pa-
tent), FR (European patent), GB (European patent), GR
(European patent), IT (European patent), JP, KR, LU
(European patent), NL (European patent), SE (Euro-
pean patent).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: METHOD AND APPARATUS FOR NON-SEQUENTIAL RESOURCE ACCESS

(57) Abstract

A method and apparatus for non-sequential access to shared resources ' [- N\
(12) in a multiple requestor system uses a variety of tags to effectively re-order . Pl /“ i
the data at its destination. In simplest form, the tag directs switching logic to popey "
where in a buffer to locate another tag for direction information or where in a REGISTERS MEMORY MECHANISM
buffer or processor (register) to put the response associated with the tag. For)))
example, loading data from memory (14) requires that the requestor provides a -
request signal, an address, and a request tag. The request signal validates the NODE o |~ 40
address and request tag, The address specifies the location of the requested da-
ta in memory (14). The request tag specifies where to put the data when it is re- f__‘ rz
turned to the processor. The switching logic (44) for the requestor includes a CLUSTERS
tag queue for storing tl}e request tagg associated with the resource requ.ests, i Processons N EXTERNAL
logic means for associating the respective request tag from the tag queue with a 10 PORTS l
resource response, and means for returning the resource response and respec- _ *)
tive request tag to the requestor. The switching logic (400) associated with the 1
memory (14) includes switching means to route the request into and out of the STNOARD] 110 /24 |
shared resource, control logic to correctly route the requests, logic to handle PERPHERALS | Charagy 5.1 CONCENTRATOR l
multiple decision requests, and logic to store or retrieve the ultimate data enti- Y, j TEGH-SPEED I
ty being requested. P 26 RS

mm' L_/za
SYSTEM

applications under the PCT.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Canada
Central African Republic
Congo
Switzerland
Cate d’lvoire
Cameroon
Czechoslovakia
Germany
Denmark

Fl

FR
GA
GB
GN
GR
HU
IT

Je

KP

KR
Ll
LK

MC

Spain

Finland

France

Gabon

United Kingdom
Guinca

Greece

Hungary

ltaly

Japan

Democratic People’s Republic
of Korea
Republic of Korca
Licchtenstein

Sri Lanka
Luxembourg
Monaco

Madagascar
Mali
Mongolia
Mauritania
Malawi
Netherlands
Norway
Poland
Romania
Sudan
Sweden
Senegal
Sovict Union
Chad

Togo

United States of America

WO 91/20038 . PCT/US91/04054

10

15

20

30

35

METHOD AND APPARATUS FOR
NON-SEQUENTIAL RESOURCE ACCESS

TECHNICAL FIELD

This invention relates generally to the field of memory systems and
memory management for computer and electronic logic systems. More
particularly, the present invention relates to a method and apparatus for
non-sequential memory access capable of issuing requests to shared
resources, particularly main memory, for which the responses may be
returned out-of-order relative to the sequence in which the requests were
issued.

BACKGROUND ART

Traditional methods and apparatus in multiple requestor systems
for accessing shared hardware resources, and in particular main memory,
have required that requests to the shared resource maintain a
time-ordered or sequenced relationship with one another to prevent
overwriting or incorrect access to data or instructions by the system. In
fact, the possibility of an out-of-order access to a shared resource is
normally thought of as an incorrect access to data and/or instructions and
is referred to in the prior art as a memory access hazard.

In the prior art, one technique used to control access to shared
resources in a multiprocessor system is to maintain a centralized control
mechanism that handles requests to the shared resources with a global
decision algorithm. When the multiprocessor system has few requestors
and few shared resources in a physically small system, this approach is
viable. In larger multiprocessor systems with many requestors and many
shared resources, the centralized approach using a global decision

| WO 91/20038 PCT/US91/04054

10

15

20

30

35

2

algorithm becomes unwieldy and the decision time begins to impact the
overall processing performance of the multiprocessor system.

Another prior art technique is to interlock the various decisions
with time tags so that a given decision will be made only when previous
decisions have cleared. The problem with this approach is that the
transient time for signals to travel around the system updating these time
tags becomes prohibitive and, again, the overall system performance is
adversely affected.

In essence, the problem of resource lockout and shared resource
access has been managed in prior art supercomputers by employing
centralized control mechanisms that schedule each resource sequentially
throughout the multiprocessor system. This approach effectively avoids
the problem of memory access hazards at the expense of system
performance.

In designing new methods and systems for accessing shared
resources in a multiprocessor system, there are four important issues to be
considered. The first issue is how to maximize the throughput of the
shared resources. The second issue is how to maximize the bandwidth
between the processors and the shared resources. The third issue is how to
minimize the access time between the processors and shared resources.
The last issue is how to avoid access hazards so that predictable results are
obtained for resource requests. When a computer processing system does
not have optimized solutions to all of these issues, the performance of the
system is effectively limited.

For example, consider the problem of a processor making three
requests to main memory, each request destined for a different section of
main memory that, as a result, will be processed by three separate logic
mechanisms. In the prior art, each of the requests is required to be
consecutive and subsequent requests can not begin until the previous
request is completed. In the three request example, the requirement for
sequential access effectively results in two-thirds of the logic associated
with the main memory being idle. This limitation is particularly
damaging in high performance systems where the objective is to keep the
processing elements and shared resources continually busy by providing
them with a steady stream of work to be done in the form of pipelined
operations.

WO 91/20038 - PCT/US91/04054

10

15

20

30

35

3

In an effort to increase the processing speed and flexibility of such
high performance computer processing systems, often referred to as
supercomputers, the previously filed parent application to the present
invention entitled CLUSTER ARCHITECTURE FOR A HIGHLY
PARALLEL SCALAR/VECTOR MULTIPROCESSOR SYSTEM, PCT Serial
No.: PCT/US90/07655, provides an architecture for supercomputers
wherein a multiple number of processors and external interfaces can make
multiple and simultaneous requests to a common set of shared hardware
resources, such as main memory, global registers or interrupt
mechanisms. The prior art techniques that utilize centralized control
mechanisms to schedule each resource sequentially throughout the
multiprocessor system are unacceptable for this type of cluster architecture
for highly parallel multiprocessors. Consequently, a new method and
apparatus for memory access is needed to increase performance in a
multiprocessor system by insuring equal and democratic access for all
requestors across all shared resources and allowing each shared resource to
process data at independent rates, and at the same time avoiding access

hazards.

R I N

The present invention is a method and apparatus for
non-sequential access to shared resources in a multiple requestor system.
To accomplish this, the present invention uses a variety of tags to
effectively re-order the data at its destination. In simplest form, the tag
directs switching logic to where in a buffer to locate another tag for
direction information or where in a buffer or processor (register) to put the
response associated with the tag. For example, loading data from memory
requires that the requestor provide a request signal, an address, and a
request tag. The request signal validates the address and request tag. The
address specifies the location of the requested data in memory. The
request tag specifies where to put the data when it is returned to the
processor.

The apparatus for non-sequential shared resource access in
accordance with the present invention is used in a multiprocessor system
having a plurality of processors and a plurality of input/output interfaces
that may also access the shared resources of the multiprocessor system.
The shared resources in the preferred embodiment include main memory,

WO 91/20038 PCT/US91/04054

10

15

20

30

35

4

global registers and interrupt mechanisms. For non-sequential access
within a cluster of tightly-coupled processors, the present invention
comprises a request generation means for generating a plurality of
resource requests from the processors, switching means operably
connected to the request generation means for receiving the resource
requests in a time order in which the resource requests were generated and
routing the resource requests to the shared resources, and shared resource
means servicing the resource requests as the requested resources become
available. Each of the resource requests includes an address for a requested
shared resource, and a request tag designating a location within the
requestor where the resource request is to be returned.

The switching logic associated with the switching means includes a
tag queue for storing the request tags associated with the resource requests,
logic means for associating the respective request tag from the tag queue
with a resource response, and means for returning the resource response
and respective request tag to the processor. The switching logic associated
with the shared resource includes switching means to route the request
into and out of the shared resource, control logic to correctly route the
requests, logic to handle multiple decision requests, and logic to store or
retrieve the ultimate data entity being requested.

In an alternative embodiment, the present invention also permits
non-sequential access to shared resources external to a tightly-coupled
cluster of processors. In this embodiment, a remote cluster adapter is
provided with logic means to attach additional routing information to the
request tag to create a new tag which is called the cluster tag. The cluster
tag is passed to the target cluster's remote cluster adapter where the cluster
tag is stripped from the request and stored in a tag buffer. A new request
tag is generated for use internal to the target cluster. When the response is
returned to the target cluster's remote cluster adapter the returned request
tag is used to locate the corresponding cluster tag associated with it in the
tag buffer. The response and the cluster tag are then returned to the
requesting cluster. At the requesting cluster's remote adapter the cluster
tag is broken apart into its parts, additional return routing information
and request tag. The additional return routing part is used to steer the
response and the requesting tag part back to the requesting switch means.

It is a particular consequence of this system that control is handled
locally and decisions concerning access to shared resources are made

WO 91/20038 - PCT/US91/04054

10

15

20

30

35

5

quickly and only at the time necessary to insure full utilization of the
resource. By maintaining the highest possible system throughput coupled
with a very high system bandwidth, the present invention insures that
requestors are constantly supplied with data for processing in a minimal
access time, thereby increasing the overall performance of a
multiprocessor system for a given set of system bandwidth and
throughput parameters.

An objective of the present invention is to provide a method and
apparatus for non-sequential memory access capable of issuing requests to
shared resources for which the responses may be returned out-of-order as
compared with the time order in which the requests were issued.

Another objective of the present invention is to provide a method
and apparatus for memory access that can increase performance in an
interleaved shared resource system by insuring that each component of
the shared resource system may operate concurrently in parallel and
therefore potentially at different rates.

A further objective of the present invention is to provide a method
and apparatus for memory access system for a multiprocessor system that
delivers high bandwidth, high throughput, and low latency when the
multiprocessor system is configured with many requestors and many
shared resources.

These and other objectives of the present invention will become
apparent with reference to the drawings, the detailed description of the
preferred embodiment and the appended claims.

DESCRIPTION OF THE DRAWINGS

Figs. 1a, 1b, 1c and 1d are representations of the pipelining
request/response memory access techniques of the prior art and the

present invention.

Fig. 2 is a block diagram of a single multiprocessor cluster of the
preferred embodiment of the present invention.

Figs. 3a and 3b are a block diagram of a four cluster implementation
of the preferred embodiment of the present invention.

Fig. 4 is a block diagram of a single multiprocessor cluster showing
the arbitration node means of the preferred embodiment.

Figs. 5a and 5b are a detailed block diagram of the input/output
interface in the preferred embodiment of the present invention.

WO 91/20038 - PCT/US91/04054

10

15

20

30

35

6

Figs. 6a and 6b are a detailed block diagram of the ports associated
with the input/output interface in the processor.

Figs. 7a, 7b, 7¢c, 7d and 7e are representations of the various request
tags of the present invention.

Fig. 8 is a block diagram of the external interface ports.

Fig. 9 shows the correspondence between the request tag and the
command block word.

Fig. 10 is a detailed block diagram of the NRCA means in the
preferred embodiment of the present invention.

Figs. 11a and 11b are a detailed block diagram of the MRCA means
in the preferred embodiment of the present invention.

E PREFERRED E NT

Referring now to Figs. 1a-1d, a representation of the pipelined,
out-of-order access mechanism of the present invention as compared to
the prior art is set forth. These figures are applicable to a request/response
operation at each level of a memory/shared resource architecture. It will
be understood that the shared resource generally accessed in a multiple
requestor system is memory and the preferred embodiment of the present
invention may be described in terms of accesses to memory; however, the
present invention contemplates that the accesses are made to any type of
shared hardware resource. Shared hardware resources in this sense will
include memory, global registers, interrupt mechanism, as well as ports,
paths, functional units, registers, queues, banks, etc.

Fig. 1a shows how a stream of requests and responses would be
handled in a prior art system. Because there is no capability of out-of-order
access or streaming, each consecutive request must wait for its associated
response to be completed before the next request can be initiated. Referring
now to Fig. 1b, some prior art vector processors support the ability to make
consecutive requests to load or write a vector register without the need to
wait for each response to return. The limited pipeline technique shown in
Fig. 1b has been applied to vector processors accessing main memory, but
has not been applied to other system resources.

In contrast, Fig. 1c shows an interleaved series of requests and
responses in which all of the requests and their associated responses are
time ordered, however, response 1 may be returned before request n is
issued. In Fig. 1d the full capabilities of out-of-order access mechanism of

WO 91/20038 PCT/US91/04054

10

15

20

30

35

7

the present invention are illustrated with requests and their associated
responses occurring with no particular respect to time ordering. In the
memory access system shown here, response 2 is allowed to be returned
prior to response 1. The pipeline techniques shown in Fig. 1d have not
been applied in the prior art.

In describing the preferred embodiment, the presentation will begin
with a description of the preferred embodiment of the multiprocessor
system and then describe the method and apparatus for non-sequential
access starting with a description of the various requestors and their
associated ports and proceeding out into the shared resources of the

multiprocessor system.

Multiprocessor System
Referring now to Fig. 2, the architecture of a single multiprocessor

cluster of the preferred embodiment of the multiprocessor system for use
with the present invention will be described. The preferred cluster
architecture for a highly parallel scalar/vector multiprocessor system is
capable of supporting a plurality of high-speed processors 10 sharing a
large set of shared resources 12 (e.g., main memory 14, global registers 16,
and interrupt mechanisms 18). The processors 10 are capable of both
vector and scalar parallel processing and are connected to the shared
resources 12 through an arbitration node means 20. Also connected
through the arbitration node means 20 are a plurality of external interface
ports 22 and input/output concentrators (IOC) 24 which are further
connected to a variety of external data sources 26. The external data
sources 26 may include a secondary memory system (SMS) 28 linked to the
input/output concentrator 24 via a high speed channel 30. The external
data sources 26 may also include a variety of other peripheral devices and
interfaces 32 linked to the input/output concentrator 24 via one or more
standard channels 34. The peripheral devices and interfaces 32 may
include disk storage systems, tape storage system, printers, external
processors, and communication networks. Together, the processors 10,
shared resources 12, arbitration node 20 and external interface ports 22
comprise a single multiprocessor cluster 40 for a highly parallel
multiprocessor system in accordance with the preferred embodiment of

the present invention.

WO 91/20038

10

15

20

30

35

PCT/US91/04054

8

The preferred embodiment of the multiprocessor clusters 40
overcomes the direct-connection interface problems of present
shared-memory supercomputers by physically organizing the processors
10, shared resources 12, arbitration node 20 and external interface ports 22
into one or more clusters 40. In the preferred embodiment shown in Figs.
3a and 3b, there are four clusters: 40a, 40b, 40c and 40d. Each of the clusters
40a, 40b, 40c and 40d physically has its own set of processors 10a, 10b, 10c
and 10d, shared resources 12a, 12b, 12c and 12d, and external interface ports
22a, 22b, 22¢ and 22d that are associated with that cluster. The clusters 40a,
40b, 40c and 40d are interconnected through a remote cluster adapter 42
that is a logical part of each arbitration nodes means 20a, 20b, 20c and 20d.
Although the clusters 40a, 40b, 40c and 40d are physically separated, the
logical organization of the clusters and the physical interconnection
through the remote cluster adapter 42 enables the desired symmetrical
access to all of the shared resources 12a, 12b, 12c and 12d across all of the
clusters 40a, 40b, 40c and 40d. 7

Referring now to Fig. 4, the preferred embodiment of the arbitration
node means 20 for a single cluster 40 will be described. At a conceptual
level, the arbitration node means 20 comprises a plurality of crossbar
switch mechanisms that symmetrically interconnect the processors 10 and
external interface ports 22 to the shared resources 12 in the same cluster 40,
and to the shared resources 12 in other clusters 40 through the remote
cluster adapter means 42. Typically, a full crossbar switch would allow
each requestor to connect to each resource. In the present invention, the
arbitration node means 20 allows a result similar to a full crossbar switch
to be achieved in the situation where there are more requestors than
resources. In the preferred embodiment, the arbitration node means 20 is
comprised of sixteen arbitration nodes 44 and the remote cluster adapter
means 42. The remote cluster adapter means 42 is divided into a node
remote cluster adapter (NRCA) means 46 and a memory remote cluster
adapter (MRCA) means 48. The NRCA means 46 allows the arbitration
node 44 to access the remote cluster adapter means 42 of all other
multiprocessor clusters 40. Similarly, the MRCA means 48 controls access
to the shared resources 12 of this cluster 40 from the remote cluster adapter
means 42 of all other multiprocessor clusters 40.

In this embodiment, the sixteen arbitration nodes 44 interconnect
thirty-two processors 10 and thirty-two external interface ports 22 with the

WO 91/20038 ~ PCT/US91/04054

10

15

20

30

35

9

main memory 14, global register 16 and interrupt mechanism 18, and the
NRCA means 46. Each arbitration node 44 is connected with the main
memory 14 by eight bidirectional parallel paths 50. A single parallel
bidirectional path 52 connects each arbitration node 44 with the NRCA
means 46. In the preferred embodiment, the same path 52 from each
arbitration node 44 is also used to connect the arbitration node 44 with the
global registers 16 and the interrupt mechanism 18, although it will be
recognized that separate paths could be used to accomplish this
interconnection.

Like each of the arbitration nodes 44, the MRCA means 48 is
connected with the main memory 14 by eight parallel bidirectional paths
54. Similarly, a single parallel bidirectional path 56 connects the MRCA
means 48 with the global registers 16 and interrupt mechanism 18. In the
preferred embodiment, a total of six parallel bidirectional paths 58 are used
to interconnect the clusters 40. For example, cluster 40a has two paths 58
that connect with each cluster 40b, 40c and 40d. In this manner, the MRCA
means 48 allows other clusters 40 to have direct access to the shared
resources 12 of this cluster 40.

As shown in Figs. 5a and 5b, arbitration networks 303 and 306 for
each of the memory ports 310, the NRCA port 312, and each of the
processor ports 314, 315, 316, and 317, comprise the arbitration node 44.
Also included in the arbitration node 44 are input port queue 301,
crossbars 302 and 307, tag queue 304 and data queue 305. As explained in
detail in the parent application, the arbitration networks 303 and 306 usea
first-come-first-served, multiple-requestor-toggling system to insure that
the oldest reference is processed first. In the case of multiple old references
of the same age, a fairness algorithm ensures equal access to the ports 310
and 312 and 315, 316, and 317 that are controlled by that arbitration
network 303 or 306, respectively.

In other supercomputers, memory returns come back in the same
order the requests were sent out. Thus, there is no ambiguity in where to
place the data when it returns, and the memory return logic for the
processor is simple. However, restricting memory returns to be in-order
also means sacrificing performance because sequencing constraints would
cause the shared resources to wait until they were clear of any ordering
violations, therefore reducing the amount of concurrent activity. Early
returns are those that come back with shorter latency than previously

WO 91/20038 - PCT/US91/04054

10

15

20

30

35

10

requested returns because of the nonhomogeneous latency of the memory
system. If returns are not restricted to coming back in the same order as
the requests were issued, the memory subsystem has to provide a sorting
mechanism to guarantee this. This represents a considerable burden
when there are multiple ports requesting data and multiple memory
sections returning the data.

In the present invention, memory data returns may come back in a
random order relative to the order of the requests. It is a characteristic of
the queuing and arbitration networks throughout the multiprocessor
system that whenever requests accumulate in queues, the responses may
be returned out of order with respect to the relative time in which they
were first entered into the queue. This means that data for early requests
may come back later than data for late requests. However, it may not be
possible to use the early-arriving data because of sequencing restrictions in
the processor. For example, data involved in arithmetic must be used in
the same sequence specified in the original program if reproducible results
are desired. Therefore, in the present invention, memory return data is
placed in its final destination (a vector register, scalar register, L register,
instruction cache buffer, or input/output buffer) without regard to
whether it can actually be used yet. Whether it can be used is based on the
return status of previously issued requests.

The present invention provides a method and apparatus for shared
resource access wherein all system resources may be accessed using all of
the pipeline techniques as shown in Figs. 1b-1d. To accomplish this, the
present invention uses tags and queues to keep track of requests and
responses, to effectively re-order the data at its destination. In simplest
form, a tag tells the logic where in the buffer to locate another tag for
direction information or where in the buffer or processor (register) to put
the response associated with the tag. For example, requesting data from
memory requires that the requestor provide a request signal, an address,
and a request tag. The request signal validates the address and request tag.
The address specifies the location of the response data in main memory.
The request tag specifies where to put the data when it is returned to the
processor. Although the description of the preferred embodiment is
presented in the context of a multiprocessor system with each processor in
the system having multiple ports for accessing shared resources, it will be
evident that the present invention is equally applicable to a

WO 91/20038 . PCT/US91/04054

10

15

20

30

35

11

multiprocessor system wherein each processor has only a single port to
access memory, or a single processor system having multiple ports to
access memory.

Processor

The following paragraphs describe in greater detail how the
processor 10 of the preferred embodiment manages scalar, vector, and
instruction requests. There are four vector load ports, one scalar load port,
and one instruction load port. Each port has a different mechanism for
issuing out-of-order returns.

Referring now to Figs. 6a and 6b, vector load ports 724, 726, 728, and
730 provide a request signal, an address, and a request tag for memory
accesses whose data is destined for the vector registers 718. There are four
vector load ports, and each load port supports two outstanding vector
loads at any given time. Vector load ports make variable-size requests for
memory returns for a particular vector register 718. Each request group can
consist of between 1 and 64 individual requests. Of the two possible
outstanding vector loads for each port, only one can be issuing requests at
a time. However, because of the non-sequential nature of the memory
returns, it is possible that all of the returns for the second load would
arrive before any of the returns for the first load. The vector load port
control mechanism 732 must ensure that the data is placed in the proper
register, and that the data is not used before all previously issued data for
that register is used. '

As shown in Fig. 7a, the request tag accompanying each memory
request and address from a vector port is large enough to indicate the
destination of the memory return, i.e. which of the two possible vector
registers to put the data in and which location in that vector register to
use. When the request is issued, the vector load port control ensures that
the proper tag accompanies the request and address. The first component
of the vector tag is the destination register identifier bit. In the preferred
embodiment, instead of sending the destination register number as part of
the tag, the processor simply sends a single bit indicating one of two
registers. The specific register number is established upon instruction
issue, and may be different each time the load instruction is issued to the
port. Because only a single destination register identifier is included in the
tag, only two loads may be outstanding at any given time. Tag collisions
(reuse of the same destination register bit) within a port are prevented by

WO 91/20038 ~ PCT/US91/04054

10

15

20

30

35

12

waiting for all returns for each register to return before reusing its tag bit.
In addition, successive loads from each port always use different
destination register tag bits. Another type of tag collision, where multiple
loads are outstanding for each vector register (but in different vector load
ports), is avoided by waiting for the first vector register load to complete
before allowing another load for that register to begin.

The second part of the vector tag is the element number of the
vector register. This simply indicates which word of a given register
should be updated with the memory data.

The third, and final, part of the vector tag is the "cancel” indicator,
which effectively nullifies a load request with respect to the processor 10.
To the memory system, however, cancelled requests are treated just like
non-cancelled requests, with a minor exception. The exception is that
cancelled out-of-cluster requests are redirected in-cluster for performance
reasons. The ability to cancel a request after it is issued results in a
reduction of effective memory latency because it eliminates some
time-critical handshaking between the portion of the processor 10 and
arbitration node 44 that handles requests and the portion of the processor
10 and arbitration node 44 that handles addresses. In this embodiment,
the cancel bit allows for address validation and request arbitration to
overlap and be accomplished in parallel within the processor 10 and the
arbitration node 44. In other words, the arbitration node 44 proceeds to
arbitrate for a memory request, for examiple, at the same time that address
control logic within the processor 10 determines whether the address for
the memory request is a valid request, i.e. is within the proper address
range. If the processor 10 determines that the address is out-of-range, then
the cancel bit is set and the request is directed to an in-cluster address.

In one type of operation, the cancel feature is useful for allowing
bottom-loading of data in loops. In this software technique, the effect of
memory latency is sidestepped by pre-fetching data before you know
whether the addresses are valid. In the preferred multiprocessor system, a
program may turn off mapping exceptions and access memory at random
addresses (even addresses outside its data space) with impunity, and the
cancel mechanism makes sure that the program is not allowed to access
forbidden data. Thus, the program may access memory before validating
the addresses it uses, and the load instructions may be placed at the bottom
of the loop ("bottom-loading") rather than the top.

WO 91/20038 - PCT/US91/04054

10

15

20

30

35

13

Referring again to Figs. 6a and 6b, the scalar request tag will be
described. A single scalar port 722 to memory provides a path for memory
data to the S registers 714 and L registers 716. To ensure proper data
sequencing, the scalar port, like the vector ports, accompanies each
memory request and address with a request tag.

As shown in Fig. 7b, the scalar request tag indicates the destination
register type and register number. The first part of the scalar tag is a
register type. This distinguishes between L and S register returns. The
second part of the scalar tag is a register number. This indicates which
register number (L or S) to place the return data. Tag collisions are
prevented by allowing only one outstanding reference per register, or in
the case of L registers, one outstanding reference per register group. The
third, and final, part of the scalar tag is the "cancel" indicator, which
prevents user programs from accessing data which is outside their allowed
address space. This mechanism is described elsewhere in this document.

As shown in Figs. 6a and 6b, the scalar load port 722 accepts returns
destined for either the L registers 716 or the S registers 714. The L/S bit of
the return tag determines which destination register type to write when
the data returns from memory. When an S register is written, the request
tag performs two functions. First, it causes the register to be unreserved,
and this forms the write address for the S register file. When an L register
is written, the tag performs the same two functions. However, the L
registers are reserved and unreserved on a block basis rather than
individual registers. '

The request tag scheme outlined for scalar port returns allows L
register loads to be interrupted by higher priority loads, such as S register
loads. Since no ordering is imposed on the outgoing addresses, and none
is imposed on the incoming data stream, it is possible to treat one set of
register loads (e.g., L registers) as background activity, and treat another set
(S registers) as foreground, high priority activity. With proper software
assistance, then, the L registers can be treated as a software-managed cache
accessed by block loads and stores.

Referring again to Figs. 6a and 6b, the instruction request tag will be
described. The instruction and input/output port 720 provides a path
from memory to the instruction cache 710 and input/output buffers 712.
To ensure proper instruction sequencing, the instruction port, like the
other ports, supplies a request tag along with the request and address. The

WO 91/20038 - PCT/US91/04054

10

15

20

30

35

14

instruction request tag indicates the buffer number and element number
in the buffer for the instruction return as shown in Fig. 7c.

Like the vector port register number, the instruction port buffer
number indicator is encoded in a single tag bit. This restricts the number
of outstanding buffer requests to two, but simplifies the control and data
path associated with instruction loads. Instruction tag conflicts are
prevented by waiting for the oldest buffer fill to complete before allowing a
new one to start. Multiple outstanding loads for the same buffer are
prohibited by the cache replacement policy. An encoding of the tag
indicates whether the return destination is the instruction cache buffers
712 or the input/output return buffers 710.

Each vector load port 724, 726, 728, 730 maintains two sets of "back"
bits, one for each possible outstanding vector register for that port. As a
return comes back from memory, the back bit for that register and element
number is set equal to 1 and the data is written into the vector register.
However, the control mechanism 732 prevents the data from being used
until all elements up to and including the previous element have been
returned from memory. This ensures that all elements of a vector register
are used in order even though the returns may come back out of order.

When all elements of a vector register have been returned from
memory, the back bits for that side are marked "not back," and that set of
back bits is made available for another load instruction. Vector and scalar
load data whose tag indicates that the request has been cancelled, is
discarded and replaced by a non-signalling NaN (Not a Number). This is
how the preferred embodiment of the present invention protects memory
data from access by programs that do not enable operand mapping
exceptions. When instruction data returns from memory 14, the processor
10 uses the return tag to decide where to put it. Instruction returns, unlike
data returns, do not use the cancel feature because instruction mapping
exceptions are always enabled when in mapped mode. To avoid hazards
associated with a non-coherent memory system, the processors 10 and
external interface ports 22 require that the arbitration node 44 provide
information beyond the tags. This information relates to the sequencing
of requests and when those requests are committed to be processed by a
particular shared resource. In the preferred embodiment, the technique

WO 91/20038 _ PCT/US91/04054

10

15

20

30

35

15

used to insure coherency is referred to as, the data mark mechanism. The
data mark mechanism is disclosed in greater detail in the parent
application.

External Interface Ports

In addition to requests issued by the processor 10, the present
invention is also capable of servicing resource requests issued from
peripheral devices issued through the external interface ports 22. Data
fetched from main memory 14 or the global registers 16 by the external
interface ports 22 can return in an order that is different than the order in
which it was requested. To accomplish the non-sequential access of the
present invention, both the IOCs 24 and the SMSs 28 associated with the
external interface ports 22 append a request tag to resource requests made
through the external interface ports 22.

Referring now to Fig. 8, a detailed description of the external
interface ports 22 of the preferred embodiment is provided. The external
interface ports 22 accepts packets of command and data words from the
main memory 14 via a memory port cable (not shown) that physically
connects the cluster channel interface (CCI) 120. Command words are
placed in the command buffer 350 and data is routed into the data FIFO
360. The presence of a command in the command buffer 350 causes control
logic 370 in the external interface ports 22 to request access to memory 14
through the arbitration node 44. Data from the word count, command,
address, and mtag fields of the command word are loaded into the

- respective registers 382, 384, 386 and 388 in preparation for delivery to the

arbitration node 44 when the request is acknowledged. A new request tag

and address must be computed for every word request made.
For fetch requests, no data is sent but an address and request tag are

sent for a number of requests equal to the contents of the command word
count field. The request tags are computed starting with the lower six bits
set to zero and incrementing the contents of that field until the proper
number of tags have been sent. Similarly, addresses for requests are
computed starting with the address presented in the command word and
incrementing it as each request is acknowledged.

For store requests, the next word in the data FIFO 360 is presented
along with the address, tag, and command information. The word count
value is decremented after each request. No further requests are made

WO 91/20038

10

15

20

30

35

PCT/US91/04054

16

when the word count value reaches zero. FIFOs 350 and 360 are used to
hold commands and data to ensure that, wherever possible, a command

and data are always available at the external interface ports 22 to keep the
arbitration node 44 constantly busy.

Fetched data returns from the shared resources through the
transmit register 390. The request tag issued when the request was made is
returned with the data. The output of the transmit register 390 is
connected to the main memory 14. Control lines associated with the data
lines in the cable linking the external interface ports 22 are inserted to
indicate that a valid data word is on the bus for the CCI 120.

Input/output request tags are sent with the command word that
precedes the data packet when it travels through the I0C 24. The tags
contain a four-bit field indicating which buffer in the IOC 24 will receive
the data, and a 6-bit field indicating the location in that buffer where the
data will be stored. The four-bit buffer select field is decoded as shown in
Fig. 9. The code 1011 directs data to one of the two SMTC command
buffers. The other 6 tag bits indicate which buffer and in what location the
returning data word is to be stored. The code 1111 is not used by the IOC 24.
It is reserved for the processor instruction cache fetch operations. The 10C
24 shares a memory port with the instruction cache.

The 6 bit field is generated at the external interface ports for each
individual data word request when it is made. Requests are made in order
starting with the lowest address. Referring to Fig. 7d, the input/output
request tags, the 6-bit word identifier and the four bit destination
identifier, are placed in the 10 bit tag field. This tag travels with the
request through the memory system and is returned with each word of
data to the IOC 24. The request tags are then used in the JOC 24 means to
direct the data word to the appropriate buffer and location in that buffer.

Because tags are created in sequential order when requests are made,
using tags to address locations in destination buffers ensures that data is
always loaded into the buffer in proper sequence, even if data returns in
any arbitrary order. Reading the data from the buffer in sequential order
therefore guarantees that data is returned to the destination in proper
order.

Arbitration Node

WO 91/20038 PCT/US91/04054

10

15

20

30

35

17

Referring again to Figs. 5a and 5b, as viewed from the perspective of
the shared resource (in this case the paths 50 and 52), each incoming
request is arbitrated for by a request arbitration network 303. A similar
response arbitration network 306 arbitrates the returning data back to their
respective processor ports 315, 316, or 317. For incoming requests, an input
queue 301 holds up to sixteen requests that are waiting to be passed
through the request arbitration network 303. For returning responses, a
data queue 305 holds up to sixty-four responses waiting for the response
arbitration network 306 to pass the returning data back into the destination
port 315, 316, or 317. Each of the queues 301 and 305 are strategically sized
to cover any control latency as data flows between requestors and shared
resources. Also as data is returned from a memory section, its associated
tag is retrieved from the tag queue 304, and re-attached, before data and tag
are loaded into data queue 305. For returns via the NRCA path 52, data
and its associated tag are already paired, the NRCA and MRCA means
handle associating data and tags.

When the request arbitration network 303 determines that an
incoming request is requesting available resources and has the highest
priority and is destined for a memory section, the address and data
components of that request are placed on the path 50 and routed to the
proper memory section. When the request arbitration network 303
determines that an incoming request is requesting available resources and
has the highest priority and is destined for the NRCA 46, the address, data,
and tag components of that request are placed on the path 52 and routed to
the proper shared resource 12. It should be noted that the arbitration
network 303 is essentially controlling access to the interconnect wires 50
and 52. Subsequent arbitration networks further along in the request path
control access to other shared resources. Data may be returned to the
requesting ports 315, 316 and 317 in a different order than requested. The
arbitration node 44 receives a set of tags with each load address and queues
them for future reference. When data is returned from main memory, the
tags are re-attached to the corresponding data word and both data and tags
are passed back to the requesting port. The processor 10 uses these tags to
place the data in the proper destination and ensure that it is used in the

correct sequence.

Main Memory

WO 91/20038

10

15

20

30

35

PCT/US91/04054

18

Again referring to Figs. 5a and 5b, for memory references the
switching logic 400 for each memory section a subsection catch queue 401
in each memory subsection which collects all incoming requests to that
particular memory subsection from a given arbitration node 44. Each
arbitration node 44 has its own set of catch queues in each memory section
14. A bank request arbitration network 405 will arbitrate among its group
of subsection catch queues 401 that have pending requests for that bank 403
on each cycle. Once the request is selected, the selected request is issued to
the destination bank 403. If the request is a store, address and data are
issued to the bank. If the request is a load, only the address is issued to the
bank. If the request is a load&flag, the address and data are issued to the
bank. For the load and the loadé&flag requests, the returning data from the
bank 403, is held in a hold queue 406 before a return arbitration network
407 grants the outgoing responses from the memory section.

Remote Cluster Adapter

Referring now to Fig. 10, for the NRCA means 46 an input queue
610 or 630 collects incoming requests. The input queue 610 holds
references destined for the external interface. Arbitration network 612 will
arbitrate among its group of input queues 610 that have pending requests
for the external resource on each cycle. Once the request is selected, the
selected request is issued to the destination resource, with address, data, a
new tag called the cluster tag that is made up the request tag and additional
source information (See Fig. 7¢) being placed on path 58. The input queue
630 holds references destined for the interrupt mechanism, global register,
or SETN register. Arbitration network 634 will arbitrate among its group
of input queues 630 that have pending requests for that resource 620, 632,
or 633 on each cycle. Once the request is granted, it is issued to the
destination resource. If data is to be returned to the arbitration node 44
from the global registers 633 or SETN registers 632, a high priority request
is presented to the output arbitration network 615 which results in the
output path being cleared back to the arbitration node.

Data and tags returning from the MRCA means 48 via port 58 are
received into a queue 614. Data from the global registers 633 or SETN
registers 632 are pre-arbitrated and immediately place on the return path
52 along with the associated tags. During each clock cycle the response
arbitration network 615 arbitrates for the return data path for port 52 or 56.

WO 91/20038 ’ PCT/US91/04054

10

15

20

30

35

19

The appropriate data is selected from the data queue 614 or the global
registers 633 or SETN registers 632 and returned to the appropriate port 52
or 56.

Referring now to Figs. 11a and 11b, for the MRCA means 48 there
are six ports through which store and load operations from other clusters
are received, 520. Each of these ports consist of a receiving queue 500, a tag
buffer 502, a return queue 504, and port control logic 501 and 503. Each
port operates independently of all of the other ports. All operations that
arrive at a port from another cluster are returned to that cluster. This
includes stores as well as loads. The queues and arbitration for the MRCA
means 48 (506, 507, 508, 509, 510, 511, and 512) essentially operate in a
similar manner as the queues and arbitration for arbitration node 44 (301,
302, 303, 304, 305, 306, and 307, respectively).

When an operation arrives at an MRCA port 520 from an outside
cluster, the data, address, and tag information are written into a receive
queue 500 which is 64 locations deep. After a valid operation has been
written into the receiving queue 500, port control logic 501 performs a
resource check to determine if the operation can be passed into the MRCA
means 48. There are three resources that are checked. The first resource
that is checked concerns the availability of tags. As operations are passed
into the MRCA means 48, the original cluster tag that arrived with the
request is written into a tag buffer 502 and a new 8 bit request tag is
generated by tag generator 501. The address of the location in the tag buffer
502 to which the original tag is written becomes the new request tag. This
request tag must be unique, therefore once a new cluster tag has been
generated and passed into the MRCA means 48 it can not be reused until
that operation has returned back to the port from the MRCA means 48.
The implementation of this logic requires that the request tags be
generated in order. If the next request tag to be generated is still
outstanding in the MRCA means 48, the port can not issue its next
operation from the receive queue 500. The tag buffer 502 is 256 locations
deep.

The second resource that must be checked before an operation can
be issued to the MRCA means 48 concerns the availability of locations in
the return queue 504. The MRCA means 48 has no mechanism to force
the arbitration node 44 to hold a returning operation, therefore the MRCA
means 48 must guarantee that there is always a location in the return

WO 91/20038 PCT/US91/04054

10

15

20

20

queue 504 to store any operation that returns from the arbitration node 44.
This return queue 504 is 128 locations deep. Once all of the locations in
the return queue 504 have been allocated, no other operations can be
issued to the MRCA means 48 until locations become available.

The port queue 506 inside the MRCA means 48 is the third resource
that must be checked before an operation can be issued from the receive
queue 500. The port control logic 501 keeps a running total of the number
of operations currently in the port queue 506. If the port queue 506
becomes full, the port control logic 501 must hold issue until locations
become available.

When an operation returns from the MRCA means 48, the data, if
any, is stored directly into the return queue 504. The request tag that is
returned along with the operation is used to access the tag buffer and
recover the original cluster tag 503. This original cluster tag is extracted
from the tag buffer 502 and stored into the return queue 504 with the data.
The port conirol logic 501 then does a resource check on the cluster at the
far end of the inter-cluster path 520. If the far-end cluster has available
locations in its receive queue, the return queue 504 is unloaded.
Otherwise data is held until queue locations become available.

Although the description of the preferred embodiment has been
presented, it is contemplated that various changes could be made without
deviating from the spirit of the present invention. Accordingly, it is
intended that the scope of the present invention be dictated by the
appended claims, rather than by the description of the preferred
embodiment.

We claim:

WO 91/20038

10

15

20

30

35

1.

PCT/US91/04054

21

CLAIMS

An apparatus for non-sequential shared resource access in a

multiprocessor system having a plurality of processors, the shared
resources including main memory, global registers and interrupt
mechanisms, the apparatus comprising:

2.

request generation means operably connected to each of the
processors for generating a plurality of resource requests from the
processors, each of the resource requests comprising:
an address for a requested shared resource; and
a request tag designating a location within the
processor where the resource request is to be returned;
switching means operably connected to the request
generation means for receiving the resource requests in a time
order in which the resource requests were generated and routing
the resource requests to the shared resources, the switching means
including:
tag queue means for storing the request tags associated
with the resource requests; and
logic means for associating the respective request tag
from the tag queue means with a resource response; and
means for returning the resource response and
respective request tag to the processor; and '
means operably connected to the switching means and the
shared resources for servicing the resource requests as the requested
resources become available and returning the resource response to
the switching means in an order in which the resource requests are
serviced,
whereby the resource responses may be returned out-of-order
as compared with the time order in which the resource requests

were issued.
The apparatus of claim 1 wherein the switching means further

includes arbitration node means for arbitrating among the resource
requests that will be routed to the shared resource on a given clock cycle of
the multiprocessor system.

WO 91/20038 . PCT/US91/04054

10

15

20

30

35

22

3. The apparatus of claim 2 wherein the logic means for associating
the respective request tag further comprises cancel logic means for
receiving a cancel indication from the request generation means and for
cancelling the resource request prior to the time that the resource request
is routed to the shared resource in response to the cancel indication.
4, The apparatus of claim 3 wherein the cancel logic means indicates
that a resource request has been cancelled by returning a non a number
value in response to the resource request.
5. The apparatus of claim 1 wherein the switching means further
includes address verification means for verifying the validity of the
address of the resource request.
6. The apparatus of claim 5 wherein the logic means for associating
the respective request tag further comprises cancel logic means for
receiving a cancel indication from the request generation means and for
cancelling the resource request prior to the time that the resource request
is routed to the shared resource in response to the cancel indication.
7. An apparatus for non-sequential shared resource access in a
multiprocessor system having a plurality of requestors, the requestors
including both processors and external interface ports, the shared
resources including main memory, global registers and interrupt
mechanisms, the apparatus comprising:
request generation means operably connected to each
requestor for generating a plurality of resource requests from the
requestor, each of the resource requests comprising:
an address for a requested shared resource; and
a request tag designating a location within the
requestor where the resource request is to be returned;
switching means operably connected to the request
generation means for receiving the resource requests in a time
order in which the resource requests were generated and routing
the resource requests to the shared resources, the switching means
including:
tag queue means for storing the request tags associated
with the resource requests; and
logic means for associating the respective request tag
from the tag queue means with a resource response; and

(e

WO 91/20038 PCT/US91/04054

10

15

20

30

35

23

means for returning the resource response and
respective request tag to the requestor; and
means operably connected to the switching means and the
shared resources for servicing the resource requests as the requested
resources become available and returning the resource response to
the switching means in an order in which the resource requests are
serviced, '
whereby the resource responses may be returned out-of-order
as compared with the time order in which the resource requests
were issued.
8. The apparatus of claim 7 wherein the switching means further
includes arbitration node means for arbitrating among the resource
requests that will be routed to the shared resource on a given clock cycle of
the multiprocessor system and address verification means for verifying
the validity of the address of the resource request. 7
9. The apparatus of claim 8 wherein the logic means for associating
the respective request tag further comprises cancel logic means for
receiving a cancel indication from the request generation means and for
cancelling the resource request prior to the time that the resource request
is routed to the shared resource in response to the cancel indication.
10. The apparatus of claim 7 wherein the requestors and shared
resources are organized into a plurality of clusters and the switching
means further comprises remote cluster adapter means associated with
each cluster for receiving resource requests from requestors in the cluster -
which are directed to shared resources in a remote cluster and
transmitting those requests to a remote cluster adapter means in the
remote cluster and receiving resource responses from the remote cluster,
and for receiving resource requests from remote cluster adapter means in
the remote clusters which are directed to shared resources in the cluster
and for returning the resource responses to the remote cluster.
11. A multiprocessor system comprising:
means for establishing queues and pipelines between one or
more requestors;
means for making a request to a resource; and
one or more resource means for responding to said requests
such that said requests may be serviced in an order different from
the time sequence in which said requests were made..

WO 91/20038 _ PCT/US91/04054

10

15

20

30

35

24

12. A method for accessing shared resources in a multiprocessor system
having a plurality of processors, the shared resources including main
memory, global registers and interrupt mechanisms, the method
comprising the steps of:
generating a plurality of resource requests from one of the
processors, each of the resource requests comprising:
an address for a requested shared resource; and
a request tag designating a location within the
processor where the resource request is to be returned;
presenting the resource requests to a switching mechanism
associated with the shared resources in a time order in which the
resource requests were issued;
storing the request tags associated with the resource requests
in a tag queue in the switching means;
servicing the resource requests as the requested resources
become available to produce a resource response;
returning the resource response to the switching means in an
order in which the resource requests are serviced;
associating the respective tag from the tag queue with the
resource response; and
returning the resource response and respective tag to the
processor,
whereby the resource responses may be returned out-of-order
as compared with the time order in which the resource requests
were issued.
13. The method of claim 12 wherein the step of servicing the resource
requests comprises the steps of :
arbitrating among the resource requests that will be routed to
the shared resource on a given clock cycle of the multiprocessor
system; and
verifying the validity of the address of the resource request.
14. The method of cdlaim 13 wherein the step of servicing the resource
request further includes the step of checking for a cancel indication
associated with the resource request and for cancelling the resource request
prior to the time that the resource request is routed to the shared resource
in response to the cancel indication.

WO 91/20038 PCT/US91/04054

10

15

20

30

35

25

15. The method of claim 14 wherein the step of cancelling the resource
request indicates that the resource request has been cancelled by returning
a non a number value in response to the resource request.
16. A method for accessing shared resources in a multiprocessor system
having a plurality of requestors, the requestors including both processors
and external interface ports, the shared resources including main memory,
global registers and interrupt mechanisms, the method comprising the
steps of:
generating a plurality of resource requests from one of the
requestors, each of the resource requests comprising:
an address for a requested shared resource; and
a request tag designating a location within the
requestor where the resource request is to be returned;
presenting the resource requests to a switching mechanism
associated with the shared resources in a time order in which the
resource requests were issued;
storing the request tags associated with the resource requests
in a tag queue in the switching means;
servicing the resource requests as the requested resources
become available to produce a resource response;
returning the resource response to the switching means in an
order in which the resource requests are serviced;
associating the respective tag from the tag queue with the
resource response; and
returning the resource response and respective tag to the
processor, '
whereby the resource responses may be returned out-of-order
as compared with the time order in which the resource requests
were issued.
17. The method of claim 16 wherein the step of servicing the resource
requests comprises the steps of :
arbitrating among the resource requests that will be routed to
the shared resource on a given clock cycle of the multiprocessor
system; and
verifying the validity of the address of the resource request.
18. The method of claim 17 wherein the step of servicing the resource
request further includes the step of checking for a cancel indication

WO 91/20038 ~ PCT/US91/04054

10

15

26

associated with the resource request and for cancelling the resource request
prior to the time that the resource request is routed to the shared resource
in response to the cancel indication.
19. The method of claim 16 wherein the requestors and shared
resources are organized into a plurality of clusters and the step of servicing
the resource requests further comprises:
receiving remote resource requests from requestors in the
cluster which are directed to shared resources in a remote cluster;
and
transmitting the remote resource requests to a remote cluster
and receiving resource responses from the remote cluster.
20. The method of clam 19 the step of servicing the resource requests
further comprises:
receiving remote resource requests from the remote clusters
which are directed to shared resources in the cluster; and
returning the resource responses to the remote cluster for the
remote resource requests.

»

O

PCT/US91/04054

WO 91/20038

1/17

: g# 1S3NO3Y
N# 3SNOdS3H I # ISNOJS3H || N# 1S3NO3H|| 2# ISNOdS3d| °*°* °
1 _ ¥ L# 1S3NO3Y
]
PI ‘S5
N# 3SNOJS3H | * ¢ « |2# ISNOJSIH||N# LSINDIY| |14 ISNOJSIH| * * ¢ |2# LS3INO3Y || 1 # LSINOIY
A] _ P]
oI FLq
g# ISNOJS3H g# 1S3ND3Y
N# ISNOdS3H v o o | N# 1S3ND3Y °°
I# 3SNOJS3H b# 1S3NO3Y
 § 1
qr IR
N # 3SNOdS3d| | N# 1S3N03Y |* | 2# 3SNOdS3Y g# 1S3NO3Y| [1# ISNOdS3H| | L# 1S3NO3YH
L | t | 1 l
Bl FL]

WO 91/20038 PCT/US91/04054

2/17
Fig. 2.
r— ~
14
| /16 / /18
| GLOBAL MAIN INTERRUPT
| REGISTERS MEMORY MECHANISM
| T
Lt :
; Yy ,
1 2/ ARBITRATION 20 40
NODE MEANS
REMOTE . 22
CLUSTERS |
I EXTERNAL
’/I/- PROCESSORS INTERFACE
10 | r PORTS
, | ‘ l J
STANDARD =— 170 /24
PERIPHERALS ¢ | CONCENTRATOR
CHANNELS <~
HIGH-SPEED
CHANNELS
32 34 \/~30
SECONDARY 28
MEMORY L
SYSTEM
L)

v

WO 91/20038

_ PCT/US91/04054

e

SHARED RESOURCES

|
[
[
: SHARED RESOURCES
l

I \za

ARBITRATION
NODE MEANS

iz

Ve 20b

ARBITRATION
I NODE MEANS

-

T

EXTERNAL
INTERFACE
PORTS

A

PROCESSORS

_~10a

STANDARD
CHANNELS *

1/0
CONCENTRATORS

K 24

HIGH-SPEED
CHANNELS

SMS

10b\ v

v

EXTERNAL
INTERFACE
. PORTS

|
I
|
|
I
|| PROCESSORS
|

|

A

|

STANDARD«
CHANNELS *

fne———

CONCENTRATORS

1/0

HIGH-SPEED
CHANNELS

28"

SMS

S |

WO 91/20038 PCT/US91/04054
4/17
Fig. 3b
—————— e e e T T T -
i I |
| SHAREDRESOURCES | | SHARED RESOURCES |
| | |
I L — |
|

1 k 12¢ | 20d I 12d |
| 20, C |
l ARBITRATION | ARBITRATION l
| NODE MEANS | NODE MEANS |
| |
{ { | [zzdl

EXTERNAL EXTERNAL

g

| INTERFACE [~—22¢ INTERFACE

|
| PORTS || PORTS
: 10c \ | A : 100. ! 9 {
|
} PROCESSORS I PROCESSORS |
| | |
e . <
24— ¢ 24ﬁ ‘\ 40d
40c¢ L&

- -]

R 170 - 170
STANDARD ¢ |CONGENTRATORS| STANDARDS | CONCENTRATORS
CHANNELS CHANNELS ¢

- -

HIGH-SPEED HIGH-SPEED
CHANNELS CHANNELS

WO 91/20038 ' PCT/US91/04054

5/17

Fig. 5

FIG. 5a |, FIG.5b

FIG. 6éa

FIG. 6b

Fig.11

FIG. lla | FIG.lIb

PCT/US91/04054

WO 91/20038

6/17

81—

H3ldvav| .
d31SN10| ¢
J1ONW3YH

(VOUN)

3AON -

8

¥ '00¥ 0%
SH31sSN10
J1O0W3H OL

N—op

SEE T =TT
vao |

POY‘20¢'qo1
SH3aLSNTO
310N3d _ZOm_n_

A<OEEVEN._.Q<D<
H31SN10 310W3H
AHOWIN

mmJ

NmJ

WSINVHOIN |«
1dNH3LNI ® -

eor

A

o/l on| zz_AJon on| ~eec
ol
ya'l: \
OOmn__ o04Hd OOmn__
IH Y . i
9L#3AON | | r#3aON
NOLLYY LigdY- NOLLVH LIgHY _
Iy G, Ff§ < 3V.__
R i\,
NWJ
—— 05
L —— 05
! I

AHOWIN NIVIN

n—""p T

WO 91/20038 PCT/US91/04054
7/17
Eg-. 5a 520 ..o |
Y 4 10 rr l
,r |V.STORE .5 ARBITRATION NODE P
| V STORE > 314 (X 16) L |
i3 '
| +————:| npuT CROSSBARSTO |
T PORT (16X9) 302 & /]
| |_REG || QUEUES 73 8
{ ¢<—|—S—Li§—>]\\716" | 322 H 117 |
| s 316 301 |
REG || |
l —| >/ ARBIT- |
L == ouss >0, 303; TAG |
3 1/0 3 onossBAR S0dr |
a07 (9 X 12) 51 }
M~ v STORE QUELES 9
/ -
i 'V STORE g ~712 8§ [;? i
| "V LOAD Ea 71 |
Vv N 305
|| REG [l VLOAD [- 312
P [VLOWD p) AREON |
U L viow | ~
| 306
| | REG |
| e | SLIS o
| I
|| rea |
| |
|
| loackE]|
L—F— ioL/s | =
22 —
x 110 - SV

I N e —

WO 91/20038 PCT/US91/04054
8/17
| Fig. 5b
14
| s
| =
| 400 MEMORY SECTION (X 8)
| \\ CROS)?B;\R 402CROSSBAR
CATCH (17 X8 (8X8)
| O QUEUES B 404
| /16> 16 | Q
| 401
| ARBITRATION
| y \'\405
NN
| CFE‘g?(SBAR
50 408 17) HOLD
\n / / S\ QUEUES
776 B4 76 /
| [Je ‘ /8
/1 407
] 406
RBITRAT
| |54 ARBITR ION
T T T h_~42
7/——| |
d '3 MRCA |
| 78 | 7~
l -] NI 48 | 58
56 - l
| ~ 4!
| f | NRCA T’\46
} ' [EXTERNAL ||
| 52 1] SWITCH |
78[5 [INTERRUPT || 76 <X
6| MECHANISM || 58
A |
18 |/VE GLOBAL |
P REGISTERS ||
16 o J—_

PCT/US91/04054

WO 91/20038

9/17

-
| N3D
. ISanNoa | |ooaaav
‘OVL ‘SS3HAAY
O 14H0d HO103A 3sN OL MO
s1ia Mova STaVYNI ILHM 0 THOd A |
> arivA ©VL O ™o "oLoan §535aav 0 THOd A |
2 1HOd HOLD3A NEN |
VIVa O 190d "HO1D3A * oy
m wmummo< 3
= O3d OVL =1W]
Q| ‘ssauaavavos| LHYIVOS | -
pa
S geL L o1 su3LSI93™
3 30003a JTavYNT ILHM D34 1)
arivA ‘DVL avIvoS ™ ows 319VNT JLIEM O3H S
NEN ﬁ mwgg _IH SHILSIDIY S
VviVa 8vIvos — - a .
\N\
)
1S3ND3Y HVL ‘SSI”AQY oL2 viL
O/1/ NOILDONHLSNI /m/
N\
Py —— sy3d4ng
02. SSIHAAY ILEN IS »1 IHOVD NOLLONYLSNI
=] 300030 TTGVNT I1IHM JHOVD -
'BYL O/1/ NOLLONI oW OVL | - OVLO/| Sy344Ng
VNI JI-HM 33309 O/1]
VIVG O/17 NOILONYLSNI Ndo R NENL3Y o/l
L S
4 B9 S0y

PCT/US91/04054

WO 91/20038

10/17

[~

SHALSIODAH A

N3D
~VIVd € 1H0d 9O103A | [SS3daav
EA wEJ/
oL ¢
{sua ova STavVNT SLEME THOd A |
QrivA OvL € HOLO3A SSIHAAV € 1HOd A ™
€ 14Od HOLD3A NeN |
VIVa € 18504 HOI03A > >
N3O
R Tssnoag||SSRiaav
‘OVL ‘SS3HAQV A
€ 1HOd HO1O3A 3SN OL MO
gz v | o
sLig Mova T19vYNT SLIUM S THOd A
QrivA "OvL P 2 HOLO3A SS35Aav ¢ THOd A~
2 1HOd HO193A NeN |
VIVA ¢ 1d0d 50103A — >
> 21901 |
| ss3Haav SN
VIVd | 15O0d 4OI03A A Ssnosie 1 avad 2eL
. 53Hd
osz—t = HOLO3A |-
slig Mova I79VNI LM T 1HOd A H
QI VA ‘DVL ™1 "HoLO3A SS34aav I 1HOd A
I 1HOd HOLO3A NeN |
VIVa | 190d "O1O3A > ™
q9 5Ly

PCT/US91/04054

WO 91/20038

"OH3IZ HONOYHHL LHOI3 S119
A9 Q31VOIANI SI H3GWNN SSOHM H31SID34 S HO 1 NV 3LHM OL H3HL3IHM S31VOIaNI 118 S/1 3HL

VIVA NHNL3Y 3HL HO04 ad31Nu1sans 39 GTNOHS NN V iVHL S31VOIANI 1ig NVO 3HL 3H3IHM

| D DR T D I D I T
0D3H {1 D34 [29D3d _mmva iYO3H|SO3YH _wmuwm_hmvwm _wmvmm_ S/ I NVD |
R S I A A | [D S I |

o i c € 14 S 9 yA 8 6 o1

:SMOT104 SY A3NOILLILHV] St ODVL 1i1g-11 3HL
SHOVL 1HOd HV1IVOS
q/ Gy

11/17

ViVA DNINWOONI 3HL HLIM 31vadn OL "H3gaWNN

ININIT3 H3LS1D3H HOLO3A HOIHM 1034IA HDVL 3HL 40 S8S19 3HL "'ONIH3IAHO3H HO4 3SN
OL (@vO1 DNIANVLSLNO 319ISSOd H3d 1) S3IN3ND OML 3HL 40 HOIHM S3IVOIANI Lig |/ 3HL
Viva NHNL3Y 3HL HO4 a31N111sans 39 ATNOHS NeN V 1VHL S31vOIaNI 118 NVO 3HL 3H3HM

T T T T T T T T

_O.._w 113 |¢13 je13a .“ll.v.dm 1 g13 Tyl Z<UI_—

hlllrlllrll.rllr I R P
0 8 ré € 14 S 9 yA

‘SMOTT104 SV d3NOILILYVd SI OVL 118-8 3HL

g, Sy 002020000 CSowIHOJHOLO;A

SOVL 1HOd HOLO3A

PCT/US91/04054

12/17

WO 91/20038

"VAVA NHNL3H IHL HLIM DNO1TV Odid O/1 3HL NI @3HOLS 34V 0L HONOYHL 61 3HIHM

T T | T T T T T T

| oL | 1L |l eL | €L ¢h_mhﬂmh_ﬁ_wh 6L |

L1 _ | A R | ILIIFII_II.L
o) 1 4 e vy - S 9 l 8 6

:S3HO134 O/1 HO4 SMO 1104 SV ANV

PL 3Ly

‘H344N49 3HL NI H3aWNN AJ1N3T
JHL 31VvOIANI 03 HONOYHHL 3 ANV ‘SHIGWNN H344N8 OML 40 INO SILVOIIANI WNNE FH3HM

._||I_I|l_l .l_lnll_..ll.._ll.l_lu Jll T

|03 | 13 l_.¢w WNNE O (0] oO| 0 |

1 _ L||._..||._|II IIL.I.ILIII_.II._.II._nIIL
(0] L A 1] 9 L 8 6

:S3HO 134 NOILONYLSNI HO4 SMOT104 SV A3aNOILLLYHVd SI OVL Lig-01 3HL

o/ Sy

SOVL 1HOd Ol/ NOILLONYLSNI

PCT/US91/04054

WO 91/20038

13/17

.“I.:.IA_|I|I_.|J|II_||
d0 0D | D
(PRI

‘@314 OVL 3HL NI FDLNS HOA | = X NV OO1NS HO4 0 = X 3HIHM

10313S 301A3A VNOIS OL 1000 X1]

SS3HAAV GHOM LSHId AHOW3W NIV LOLOOOL L X 9
LNIWIHONI SS3HAAY %0019 NS 0010001 L X} S

| LNNOD Y0014 L LOOOOL L X} 14

$S3Haav 0014 LsHIld NS 0100001 L X1 e
ANVWWOO O1NS 100000} L X1 4

SNUVLS H34SNVHL 0000001 1 X} b

NOLIONAd (AQVNI@Y OVL GHOM D018 ANVINNOD
6 S

a1314 DVL L1HOd JAON NOLVHLIGHY TYNIDIHO

ANV ‘d1314 H3aWNN NOLLVOIHILNZAI 1HOd ‘1314 119 SSVY10 3HOLS H3N0 ALIHvVd dO

OVL 1HOd 3AON NOLLVHLIGHYV TVNIDIHO 06D
H3IgNNN NOLIVOIHIINGAI 1HOd O0d'€d

119 SSV10 3HOI1S oS

1314 H3gWNN NOLVIILHILINTAI SGON NOLIVHLIGHY HIAO AlliHvd dv
H3IGWNN NOILLVOIHILNIAl 3AON NOLLvHLIgHY Ov-ev

‘J3H3IHM

el moﬂﬂoamm.“.mulmmﬁwlhlmm od
11 [Ry T R T B

||_|I.I._|l|_|||_1||._l.l|_|lldl.||_|la
idjed|ed!DoSldviov]iviev | evi

€ ¥ 6 9 L 8 6 OF It

B IO N P DS U A A B
¢k €L ¥I G 9L L1 8L 6+ O¢C

'SMOT104 SV aNOLLILHVYd SI DVL H31SN10 Lig-1¢ 3HL

8, ‘T

PCT/US91/04054

WO 91/20038

14/17

O1907 TVNOIS ANV
1HOd 3AON NOLIVHLIgHY OL ‘SHALSIDE TVEOTD AHONSN NIV OL SLS3ND3H ~
o190 VOIS ANV r
‘SHILSID3Y Va0 1O viva _ SS3Haav OvL ANVAWOD |
‘AHOW3N NIVIN WOY4 _ 0O+ _
SOVL ANV VIVa T — W3H03a |
| [|weong | [lwson i |
_ Haisioan || [uaisoay| | [HFEA03H _
_ ozc” ! |eee””} ~ ANgge |anvawoo| |
o9e”"] “ xow || [xow XN nxwm |
O4id . A A A H
O No "
ANVNINOD
a ose” | »
L~ w
H3LSI93Y H31S193H _
LINSNVHL HANEO 8 Sy
« ozl _ooa

AN

SNVIN HOIVHINIONOD

;-

WO 91/20038 ’ PCT/US91/04054

15/17

Fig. 10 46

CROSSBAR

52 INPUT PORT (16 X 6)
{ QUEUES
W,

/ /
611 58
“» ARBITRATION

610

CROSSBAR
631. (17X 10)

INPUT PORT\\

56 QUEUES
| 17 e

INTERRUPT LOGIC
632>
SETN

REGISTERS
' GLOBAL | _
78 | REGISTERS

=/ ARBITRATION 633

630

CROSSBAR
(15X 17)
i 613\1\ /8
DATA
QUEUES 8

52 615 1l ‘6 =
S 614
ARBITRATION [*

56

WO 91/20038 | ~ PCI/US91/04054

’ 16/17

Fig. 11a

{ RECEIVE QUEUES
/ / -
i 76 N /6

500

Y

RESOURCE CHECK/ [%
TAG GENERATION 6

TAG Y
BUFFER :
\\502
503
AN
TAG CHECK -76L—
¥ 58
RETURN QUEUE
M\ Y /
/6 /6
504

520

WO 91/20038 PCT/US91/04054

17/17
Fig. 11b / 48
CROSSBAR 5, 530
ss. INPUTPORT GOX , o~

/é L QUEUES . 78 ;9
) 507} 531

506 508
| »-[ARBITRATION
TAG
QUEUE
o 500
558 QUEUES , ; 53
/
< /6 ‘< /8

2
512 | \,\510 /‘;l

ARBITRATION jee

INTERNATIONAL SEARCH REPORT

{nternational A'pplication No. PCT/USgl/OZ&OSZI-

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) ¢

IPC(5): GO6F 13/00, 12/00, 15/16

According to international Patent Classification (IPC) or to both National Classification and IPC

1. FIELDS SEARCHED

Minimum Documentation Searched 7

Classification System

Classification Symbols

U.S. CL. 395/650

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched $

Ill. DOCUMENTS CONSIDERED TO BE RELEVANT 9

Category * Citation of D t, 1t with indicat where appropriate, of the relevant passages 12 Relevant to Claim No. 1

Y US,A 4,807,111 (COHEN et al.) 21 FEBRUARY 1989 1-20
see the entire document

Y US,A 4,805,107 (KIECKHAFER et al.) 14 FEBRUARY 1989 1-20
see colum 2

Y US,A 4,644,461 (JENNINGS) 17 FEBRUARY 1987 1-20
see columms 7-50

Y US,A 4,663,706 (ALLEN et al.) 05 MAY 1987 1-20
see entire document

A US,A 4,779,194 (JENNINGS te al.) 18 OCTOBER 1988 1-20
see the entire document

AE US,A 5,031,089 (LIU et al.) 09 JULY 1991 1-20
see entire document

A US,A 4,615,001 (HUDGINS Jr.) 30 SEPTEMBER 1986 1-20
see the entire document

A US,A 4,320,451 (BACHMAN et al.) 16 MARCH 1982 1-20
see colums 6-35

¢ Special categories of cited documents: 0

"A" document defining the general state of the art which is not
considered to be of particular relevance

“E" earlier d t but published on or after the international
filing date

“L* document which may throw doubts on priority claim(s) or
which is cited to establish-the publication date of another
citation or other special reason (as spacified)

“O" document referring to an oral disclosure, use, exhibition or
other means

“p" document published prior to the international filing date but
later than the priority date claimed

“T" |ater documant published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underiying the
invention

“X" document of particular relevance; the claimed invention
cannot be considersd novel or cannot be considered to
invoive an inventive step

ay" document of particular relevance; the claimed invention
cannot be considered to invoive an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
in the art.

ug" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Complstion of the international Search

12 SEPTEMBER 1991

Date of Mailing of this International Search Report

17 0T 1991

international Searching Authority

ISA/US

Signature of Authogized N
INTERNATIONALDIVISION

Fa ROBERT S. HAUSER Mgut Ngayei

Form PCTASA210 (second sheet) (Fev.11-87)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

