

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

WIPO | PCT

**(43) International Publication Date
28 July 2016 (28.07.2016)**

(10) International Publication Number

0) International Publication Number:

WO 2016/115630 A1

(51) **International Patent Classification:**

<i>C12N 7/04</i> (2006.01)	<i>C12N 15/86</i> (2006.01)
<i>A01H 5/00</i> (2006.01)	<i>C12N 7/01</i> (2006.01)
<i>C12N 15/46</i> (2006.01)	<i>C12N 7/02</i> (2006.01)
<i>C12N 15/82</i> (2006.01)	

(21) **International Application Number:**

PCT/CA2016/050043

(22) **International Filing Date:**

21 January 2016 (21.01.2016)

(25) **Filing Language:** English

(26) **Publication Language:** English

(30) **Priority Data:**

62/106,941	23 January 2015 (23.01.2015)	US
------------	------------------------------	----

(71) **Applicants:** MEDICAGO INC. [CA/CA]; 600 - 1020 Route de l'Eglise, Quebec, Québec G1V 3V9 (CA). MIT-SUBISHI TANABE PHARMA CORPORATION [JP/JP]; 3-2-10, Dosho-machi, Chuo-ku, Osaka, 541-8505 (JP).

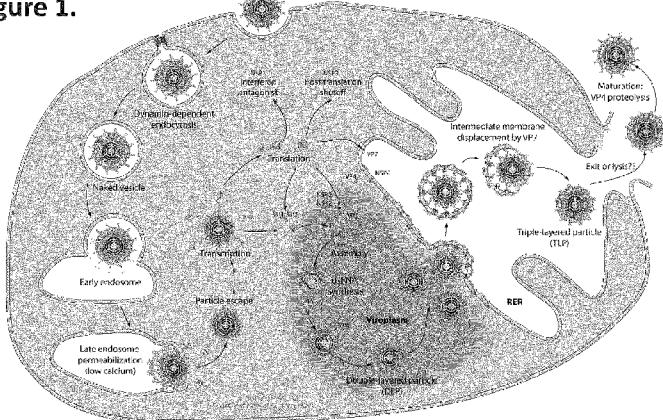
(72) **Inventors:** LAVOIE, Pierre-Olivier; 621 Franklin, Quebec, Québec G1N 2L7 (CA). D'AOUST, Marc-Andre; 3925 Louise-Fiset, Quebec, Québec G1X 4N4 (CA).

(74) **Agents:** SECHLEY, Konrad et al.; Gowling WLG (Canada) LLP, 550 Burrard Street, Suite 2300, Vancouver, British Columbia V6C 2B5 (CA).

(81) **Designated States** (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) **Designated States** (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:


- with international search report (Art. 21(3))
- with sequence listing part of description (Rule 5.2(a))

Published:

- with international search report (Art. 21(3))
- with sequence listing part of description (Rule 5.2(a))

(54) Title: ROTAVIRUS-LIKE PARTICLE PRODUCTION IN PLANTS

Figure 1.

(57) Abstract: A method of producing a rotavirus-like particle (RLP) in a plant is provided. The method comprises expressing with-in a host or host cell for example a plant, portion of a plant or plant cell one or more nucleic acid comprising one or more regulatory region operatively linked to a first, second and third nucleotide sequence, the regulatory region active in the host or host cell. The first nucleotide sequence encoding a first rotavirus protein, the second nucleotide sequence encoding a second rotavirus protein and the third nucleotide sequence encoding a third rotavirus protein. The first, second and third encode rotavirus protein NSP4 and VP2 or VP6 and VP4 or VP7. The host or host cell is incubated under conditions that permit the expression of the nucleic acids, so that NSP4 and either VP2 or VP6 and VP4 or VP7 are expressed, thereby producing the RLP. Hosts comprising the RLP, compositions comprising the RLP and method for using the composition are also provided.

Rotavirus-like particle production in plants

FIELD OF INVENTION

[0001] This invention relates to producing rotavirus-like particles in plants.

BACKGROUND OF THE INVENTION

5 [0002] Rotavirus infection is a global problem mainly affecting children under the age of five. It results in severe gastroenteritis and in worst cases death.

10 [0003] Rotaviruses are members of the Reoviridae family of viruses (genus Rotavirus) that affect the gastrointestinal system and respiratory tract. The name is derived from the wheel like appearance of virions when viewed by negative contrast electron microscopy. The rotavirus is usually globular shape and is named after the outer and inner shells or double-shelled capsid structure of the same. The outer capsid is about 70 nm, and inner capsid is about 55 nm in diameter, respectively. The double-shelled capsid of the rotavirus surrounds the core including the inner protein shell and genome. The genome of the rotavirus consists of double stranded RNA segments encoding at least 11 rotavirus proteins - either structural viral proteins (VP) or nonstructural proteins (NSP; Desselberger, Virus Res 190: 75-96 (2014)).

15 [0004] The dsRNA codes for six structural proteins (VP) and six non-structural proteins (NSP). The structural proteins comprise VP1, VP2, VP3, VP4, VP6 and VP7. Three concentric layers are formed by the assembly of VP2, VP6 and VP7 respectively, with VP4 forming “spikes” on the surface of the virus structure. VP4 is cleaved by trypsin to VP8* and VP5*. VP8* and VP5* are proteolytic products of VP4.

20 [0005] VP2 is a 102 kDa protein and is the most abundant protein of the viral core. It forms the inner-most structural protein layer and provides a scaffold for the correct assembly of the components and transcription enzymes of the viral core (Lawton, 2000). VP1, the largest viral protein at 125 kDa, acts as an RNA-dependent polymerase for rotavirus, creating a core replication intermediate, and associates with VP2 at its icosahedral vertices (Varani and Allain, 2002; Vende et al., 2002). VP3, a 98 kDa protein, is also directly associated with the viral genome, acting as an mRNA

capping enzyme that adds a 5' cap structure to viral mRNAs. Together, VP1 and VP3 form a complex that is attached to the outer 5-fold vertices of the VP2 capsid layer (Angel, 2007). VP6 is a 42 kDa protein which forms the middle shell of the viral core, is the major capsid protein and accounts for more than 50% of the total protein mass of the virion (González et al., 2004; Estes, 1996). It is required for gene transcription and may have a role in encapsulation of the rotavirus RNA by anchoring VP1 to VP2 in the core, as seen in bluetongue virus, another member of the Reoviridae family. It also determines the classification of rotaviruses into five groups (A to E) with group A most commonly affecting humans (Palombo, 1999). VP6 in rotavirus group A has at least four subgroups (SG), which depend on the presence or absence of SG specific epitopes: SG I, SG II, SG (I+II) and SG non-(I+II). Groups B and C lack a common group A antigen but are also known to infect humans, while group D only affects animals e.g. chickens and cows (Thongprachum, 2010).

[0006] The two outer capsid proteins VP7, a 37 kDa glycoprotein (G) and the 87 kDa protease sensitive VP4 (P), define the virus' serotypes. These two proteins induce neutralizing antibody responses and are thus used to classify rotavirus serotypes into a dual nomenclature system, depending on the G-P antigen combination (e.g. G1 P[8] or G2 P[4]) (Sanchez-Padilla et al., 2009, Rahman et al., J Clin Microbiol 41: 2088-2095 (2003)). The VP4 protein dimerizes to form 60 spikes on the outer shell of the virus, which are directly involved in the initial stages of host cell entry. The spike protein contains a cleavage site at amino acid (aa) position 248. Upon infection, it is cleaved by the protease trypsin to produce VP5 (529 aa, 60 kDa) and VP8 (246 aa, 28 kDa) (Denisova et al., 1999). This process enhances virus infectivity (cell attachment and invasion of host cell) and stabilizes the spike structure (Glass, 2006). The VP7 glycoprotein forms the third or outside layer of the virus. At present, 27 G and 35 P genotypes are known (Greenberg and Estes, 2009). VP4 and VP7 are the major antigens involved in virus neutralization and are important targets for vaccine development (Dennehy, 2007).

[0007] The non-structural proteins (NSPs) are synthesized in infected cells and function in various parts of the replication cycle or interact with some of the host proteins to influence pathogenesis or the immune response to infection (Greenberg and Estes, 2009). The rotavirus nonstructural protein, NSP4, has been shown to have

multiple functions including the release of calcium from the endoplasmic reticulum (ER; Tian et al, 1995); the disruption of the ER membranes and may play an important role in the removal of the transient envelope from budding particles during viral morphogenesis (see Figure 1); affecting membrane trafficking from the ER to the Golgi complex with its ability to bind to micro tubules (Xu et al 2000); and function as an intracellular receptor to aid in the budding of subviral particles into the ER (Tian et al 1996).

5

10

15

[0008] In infected mammalian cells, rotaviruses undergo a unique mode of morphogenesis to form the complete triple-layered VP2/6/4/7 viral particles (Lopez et al., 2005). The triple-layer capsid is a very stable complex which enables faecal-oral transmission and delivery of the virus into the small intestine where it infects non-dividing differentiated enterocytes near the tips of the villi (Greenberg and Estes, 2009). Firstly, the intact virus attaches to sialic acid-independent receptors via 60 VP4 dimer spikes on the surface of the virus (Lundgren and Svensson, 2001). The 60 VP4 dimer spikes on the surface of the virus allow the virus to attach to these cell receptors. VP4 is susceptible to proteolytic cleavage by trypsin which results in a conformational change that exposes additional attachment sites on the surface of the glycoprotein for interaction with a series of co-receptors.

20

25

30

[0009] The multi-step attachment and entry process is, however, not clearly understood but the virus is delivered across the host's plasma membrane. The VP7 outer capsid shell which is also involved in the entry process, is removed in the process and double-layered particles (DLP) are delivered into the cell cytoplasm in vesicles (Figure 1; prior art). The DLP escapes from the vesicle and goes into non-membrane bound cytoplasmic inclusions. Early transcription of the genome by VP1 begins in particles so that dsRNA is never exposed to the cytoplasm. RNA replication and core formation takes place in these non-membrane-bound cytoplasmic inclusions. The nascent (+) RNAs are then transported into the cytoplasm and serve as templates for viral protein synthesis. VP4 is produced in the cytosol and transported to the rough endoplasmic reticulum (RER), and VP7 is secreted into the RER. VP2 and VP6 are produced and assemble in the cytosol in virosomes and subsequently bud into the RER compartments, receiving a transient membrane envelope in the process (Lopez et al., 2005; Tian et al., 1996). In the RER, the transient envelopes of the viral

5 particles are removed and replaced by VP4 and VP7 protein monomers, with critical involvement of rotaviral glycoprotein NSP4 (Tian et al., 1996; Lopez et al., 2005; Gonzalez et al., 2000). NSP4 functions as an intracellular receptor in the ER membrane and binds newly made subviral particles and probably also the spike protein VP4 (Tian et al., 1996). NSP4 is also toxic to humans and is the causative agent of the diarrhea. The complete, mature particles are subsequently transferred from the RER through the Golgi apparatus to the plasma membrane for secretion (Lopez et al., 2005).

10 [0010] A variety of different approaches have been taken to generate a rotavirus vaccine suitable to protect human populations from the various serotypes of rotavirus. These approaches include various Jennerian approaches, use of live attenuated viruses, use of virus-like particles, nucleic acid vaccines and viral sub-units as immunogens. At present there are two oral vaccines available on the market, however, these have low efficacy in due to strain variation.

15 [0011] U.S. Pat. Nos. 4,624,850, 4,636,385, 4,704,275, 4,751,080, 4,927,628, 5,474,773, and 5,695,767, each describe a variety of rotavirus vaccines and/or methods of preparing these vaccines, where the whole viral particles is used to create each of the rotavirus vaccines.

20 [0012] Production of rotavirus-like particles is a challenging task, as both the synthesis and assembly of one or more recombinant proteins are required. Rotavirus comprises a capsid formed by 1860 monomers of four different proteins. For RLP production the simultaneous expression and assembly of two to three recombinant proteins may be required. For example, an inner layer comprising 120 molecules of VP2, 780 molecules of VP6 (middle layer) and an outer layer of 780 molecules of the glycoprotein VP7 and 60 VP4 dimers, to form a double or triple-layered particle (Libersou et al. J. of Virology, Mar. 2008).

25 [0013] Crawford et al. (J Virol. 1994 September; 68(9): 5945–5952) describe the expression of VP2, VP4, VP6, and VP7 in a baculovirus expression system. Co-expression of different combinations of the rotavirus major structural proteins resulted in the formation of stable virus-like particles (VLPs). The co-expression of VP2 and

5 VP6 alone or with VP4 resulted in the production of VP2/6 or VP2/4/6 VLPs, which were similar to double-layered rotavirus particles. Co-expression of VP2, VP6, and VP7, with or without VP4, produced triple-layered VP2/6/7 or VP2/4/6/7 VLPs, which were similar to native infectious rotavirus particles. The VLPs maintained the structural and functional characteristics of native particles, as determined by electron microscopic examination of the particles, the presence of non-neutralizing and neutralizing epitopes on VP4 and VP7, and hemagglutination activity of the VP2/4/6/7 VLPs.

10 [0014] Vaccine candidates generated from rotavirus-like particles of different protein compositions have shown potential as subunit vaccines. O'Neal et al. (J. Virology, 1997, 71(11):8707-8717) show that VLPs containing VP 2 and VP6, or VP2, VP6, and VP7, and administered to mice with and without the addition of cholera toxin induced protective immunity in immunized mice. Core-like particles (CLP) and VLPs have also been used to immunize cows with VLPs more effective than CLPs in 15 inducing passive immunity Fernandez, et al., (Vaccine, 1998, 16(5):507-516).

20 [0015] Plants are increasingly being used for large-scale production of recombinant proteins. For example US 2003/0175303 discloses the expression of recombinant rotavirus structural protein VP6, VP2, VP4 or VP7 in stably transformed tomato plants.

25 [0016] Saldana et al. (Viral Immunol. 19: 42-53 (2006)) expressed VP2 and VP6 in the cytoplasm of tomato plants. Electron microscopy studies showed that a small proportion of the proteins had assembled into 2/6 VLPs. A protective immune response was detected in mice and this may have to some extent been contributed by the non-assembled VPs. Individual proteins have been shown to elicit immune responses in mice, as in the case of VP8 and VP6 (Rodriguez-Diaz et al. Biotechnol Lett. 2011, 33(6):1169-75, Zhou et al., Vaccine 28: 6021-6027 (2010)).

30 [0017] Matsumura et al., (Archives of Virology 147: 1263-1270 (2002)) report bovine rotavirus A VP6 expression in transgenic potato plants. The VP6 was expressed, purified and immunogenic studies performed. Immune-response in adult mice showed presence of VP6 antibodies in the sera. However, no evidence of assembled VP6 proteins was provided. It may have been that monomers or trimers of

VP6 were responsible for eliciting the immune response. O'Brien et al. (2000, Virol. 270: 10444–10453) show VP6 assembly in *Nicotiana benthamiana* using a potato virus X (PVX) vector. Assembly of VP6 protein into icosahedral VLPs was only observed when the VP6 was fused to the PVX protein rods. Following cleavage the VP6 assembled into the icosahedral VLPs.

5

[0018] Codon-optimized human rotavirus VP6 has been successfully expressed in *Chenopodium amaranticolor* using a Beet black scorch virus (BBSV) mediated expression system. The protein was engineered as a replacement to the coat protein of BBSV. Oral immunization of female BALB/c mice with the plant based VP6 protein induced high titers of anti-VP6 mucosal IgA and serum IgG (Zhou et al., Vaccine 28: 6021-6027 (2010)). However, there was no teaching that the VP6 proteins assembled into VLPs or particles.

10

[0019] Rotavirus VP7 has been expressed in potato plants and was shown to produce a neutralizing immune response in mice (Yu and Langridge, 2001 Nature Biotechnol 19: 548-552). In transgenic potato plants, the VP7 gene was stable over 50 generations, with the VP7 protein from the 50th generation induced both protective and neutralizing antibodies in adult mice (Li et al., 2006, Virol 356:171-178).

15

20

25

[0020] Yang et al. (Yang Y M, Li X, Yang H, et al. Science China Life Science 54: 82-89 (2011)) co-expressed three rotavirus capsid proteins VP2, VP6 and VP7 of group A RV (P[8]G1) in tobacco plants and expression levels of these proteins, as well as formation of rotavirus-like particles and immunogenicity were studied. VLPs were purified from transgenic tobacco plants and analyzed by electron microscopy and Western blot. These results indicate that the plant derived VP2, VP6 and VP7 protein self-assembled into 2/6 or 2/6/7 rotavirus like particle with a diameter of 60-80 nm.

[0021] WO 2013/166609 described the production of rotavirus-like particle (RLPs) in plants, by co-expressing rotavirus structural proteins VP2, VP4, VP6 and VP7 in plants and purifying the resulting RLPs in the presence of calcium.

30

[0022] Rotavirus NSP4 has been expressed and purified from insect cells (Tian et al. 1996, Arch Virol. 1996; Rodriguez-Diaz et al. Protein Expr. Purif. 2003) and in *E.*

coli (Sharif et al. Medical Journal of the Islamic Republic of Iran 2003). NSP4 has also been expressed as a fusion protein with the cholera toxin B (CTB) subunit in potato (Arakawa et al., Plant Cell Report 20 : 343-348 (2001)).

SUMMARY OF THE INVENTION

5 [0023] The present invention relates to producing rotavirus-like particles in plants.

[0024] It is an object of the invention to produce rotavirus-like particles in plants.

[0025] Several methods to produce a rotavirus like particle (RLP) in a plant, portion of a plant or plant cell are described.

10 [0026] For example, a method (A) for producing a rotavirus like particle (RLP) in a host or host cell may comprise:

15 a) providing a host or host cell comprising one or more nucleic acid comprising a first nucleotide sequence encoding a first rotavirus protein, a second nucleotide sequence encoding a second rotavirus protein and a third nucleotide sequence encoding a third rotavirus protein, the first, second and third nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and

the first nucleotide sequence encoding rotavirus protein NSP4, the second nucleotide sequence encoding rotavirus protein VP6, and the third nucleotide sequence encoding one of rotavirus protein VP7 or VP4;

20 b) incubating the host or host cell under conditions that permit the expression of the one or more nucleic acid, so that each of NSP4, VP6 and VP7 or VP4 are expressed, thereby producing the RLP.

25 [0027] In the method (A) as described above the one or more nucleic acid may further comprises a fourth nucleotide sequence encoding a fourth rotavirus protein, the first, second, third, and fourth nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and

the first nucleotide sequence encoding rotavirus protein NSP4, the second nucleotide sequence encoding rotavirus protein VP6, and the third and fourth nucleotide

sequence encoding rotavirus protein VP2, VP4 or VP7 and wherein each of NSP4, VP6 and two of VP2, VP4 and VP7 are expressed from the one or more nucleic acid.

[0028] A method (B) to produce a rotavirus like particle (RLP) in a host or host cell is further described, the method may comprise:

5 a) providing a host or host cell comprising one or more nucleic acid comprising

a first nucleotide sequence encoding a first rotavirus protein, a second nucleotide sequence encoding a second rotavirus protein and a third nucleotide sequence encoding a third rotavirus protein, the first, second and third nucleotide sequence being operatively linked to one or more regulatory region active in the host or host

10 cell; and

the first, second and third nucleotide sequence encoding one of rotavirus protein NSP4, VP6 and one of rotavirus protein VP7 or VP4;

15 b) incubating the host or host cell under conditions that permit the expression of the one or more nucleic acid, so that each of NSP4, VP6 and VP7 or VP4 are expressed, thereby producing the RLP.

[0029] In the method (B) as described above the one or more nucleic acid may further comprises a fourth nucleotide sequence encoding a fourth rotavirus protein, the first, second, third, and fourth nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and

20 the first, second, third and fourth nucleotide sequence encoding one of rotavirus protein NSP4, VP6 and two of rotavirus protein VP2, VP7 or VP4 and wherein each of NSP4, VP6 and two of VP2, VP7 or VP4 are expressed from the one or more nucleic acid.

[0030] In the method (A) and (B) as described above the one or more nucleic acid 25 may further comprises a fourth nucleotide sequence encoding a fourth rotavirus protein and a fifth nucleotide sequence encoding a fifth rotavirus protein, the first, second, third, fourth and fifth nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and

the first, second, third, fourth and fifth nucleotide sequence encoding one of rotavirus protein VP2, VP4, VP6, VP7 or NSP4 and wherein each of VP2, VP4, VP6, VP7 and NSP4 are expressed from the one or more nucleic acid.

[0031] In the method (A) or (B) as described above, if a host or host cell is provided where the one or more nucleic acid comprising a first nucleotide sequence encoding a first rotavirus protein, a second nucleotide sequence encoding a second rotavirus protein, a third nucleotide sequence encoding a third rotavirus protein, fourth nucleotide sequence encoding a fourth rotavirus protein and a fifth nucleotide sequence encoding a fifth rotavirus protein, the first, second, third, fourth and fifth nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell, then the one or more nucleic acid may comprise the first, second, third, fourth and fifth nucleotide sequence encoding the first, second, third, fourth and fifth rotavirus protein, or the one or more nucleic acid may comprise for example two nucleic acids, a first nucleic acid comprising the first nucleotide sequence encoding the first rotavirus protein, and a second nucleic acid comprising the second, third, fourth and fifth nucleotide sequence encoding the second, third, fourth and fifth rotavirus protein, or the one or more nucleic acid may comprise for example two nucleic acids, a first nucleic acid comprising the first and second nucleotide sequence encoding the first and second rotavirus protein, and a second nucleic acid comprising the third, fourth and fifth nucleotide sequence encoding the third, fourth and fifth rotavirus protein or the one or more nucleic acid may comprise for example three nucleic acids, a first nucleic acid comprising the first and second nucleotide sequence encoding the first and second rotavirus protein, a second nucleic acid comprising the third and fourth nucleotide sequence encoding the third and fourth rotavirus protein, and a third nucleic acid comprising the fifth nucleotide sequence encoding the fifth rotavirus protein or the one or more nucleic acid may comprise for example three nucleic acids, a first nucleic acid comprising the first nucleotide sequence encoding the first rotavirus protein, a second nucleic acid comprising the second nucleotide sequence encoding the second rotavirus protein, and a third nucleic acid comprising the third, fourth and fifth nucleotide sequence encoding the third, fourth and fifth rotavirus protein or the one or more nucleic acid may comprise for example four nucleic acids, a first nucleic acid comprising the first nucleotide sequence encoding the first rotavirus protein, a second nucleic acid

5

10

15

20

25

30

comprising the second nucleotide sequence encoding the second rotavirus protein, a third nucleic acid comprising the third nucleotide sequence encoding the third rotavirus protein, and a fourth nucleic acid comprising the fourth and fifth nucleotide sequence encoding the fourth and fifth rotavirus protein or the one or more nucleic acid may comprise for example five nucleic acids, a first nucleic acid comprising the first nucleotide sequence encoding the first rotavirus protein, a second nucleic acid comprising the second nucleotide sequence encoding the second rotavirus protein, a third nucleic acid comprising the third nucleotide sequence encoding the third rotavirus protein, a fourth nucleic acid comprising the fourth nucleotide sequence encoding the fourth rotavirus protein, and a fifth nucleic acid comprising the fifth nucleotide sequence encoding the fifth rotavirus protein.

[0032] The methods (A) or (B) as described above may further comprise the steps of:

- c) harvesting the host or host cell, and
- d) purifying the RLPs from the host or host cell, wherein the RLPs range in size from 70-100 nm.

[0033] The one or more nucleotide sequence of the method (A) or (B) as described above may be operatively linked to one or more expression enhancer. Furthermore, the expression enhancer may be selected from the group consisting of CPMV HT, CPMV 160, CPMV 160+ and CPMV HT+.

[0034] Also described herein is a method (C) of producing a rotavirus like particle (RLP) in host or host cell comprising:

a) introducing into the host or host cell one or more nucleic acid comprising
a first nucleotide sequence encoding a first rotavirus protein, a second nucleotide
sequence encoding a second rotavirus protein and a third nucleotide sequence
encoding a third rotavirus protein, the first, second and third nucleotide sequence
being operatively linked to one or more regulatory region active in the host or host
cell; and

the first nucleotide sequence encoding rotavirus protein NSP4, the second nucleotide sequence encoding rotavirus protein VP6, and the third nucleotide sequence encoding one of rotavirus protein VP7 or VP4;

5 b) incubating the host or host cell under conditions that permit the expression of the one or more nucleic acid so that each of NSP4, VP6 and VP7 or VP4 are expressed, thereby producing the RLP.

[0035] In the method (C) as described above the one or more nucleic acid may further comprises a fourth nucleotide sequence encoding a fourth rotavirus protein, the first, second, third, and fourth nucleotide sequence being operatively linked to one or more 10 regulatory region active in the host or host cell; and

the first nucleotide sequence encoding rotavirus protein NSP4, the second nucleotide sequence encoding rotavirus protein VP6, and the third and fourth nucleotide sequence encoding rotavirus protein VP2, VP4 or VP7 and wherein each of NSP4, VP6 and two of VP2, VP4 and VP7 are expressed from the one or more nucleic acid.

15 [0036] Also described herein is a method (D) of producing a rotavirus like particle (RLP) in host or host cell comprising:

a) introducing into the host or host cell one or more nucleic acid comprising a first nucleotide sequence encoding a first rotavirus protein, a second nucleotide sequence encoding a second rotavirus protein and a third nucleotide sequence 20 encoding a third rotavirus protein, the first, second and third nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and

the first, second and third nucleotide sequence encoding one of rotavirus protein NSP4, VP6 and one of rotavirus protein VP7 or VP4;

25 b) incubating the host or host cell under conditions that permit the expression of the one or more nucleic acid so that each of NSP4, VP6 and VP7 or VP4 are expressed, thereby producing the RLP.

[0037] In the method (D) as described above the one or more nucleic acid may further comprises a fourth nucleotide sequence encoding a fourth rotavirus protein, the first, second, third, and fourth nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and

5 the first, second, third and fourth nucleotide sequence encoding one of rotavirus protein NSP4, VP6 and two of rotavirus protein VP2, VP7 or VP4 and wherein each of NSP4, VP6 and two of VP2, VP7 or VP4 are expressed from the one or more nucleic acid.

[0038] In the method (C) and (D) as described above the one or more nucleic acid may further comprises a fourth nucleotide sequence encoding a fourth rotavirus protein and a fifth nucleotide sequence encoding a fifth rotavirus protein, the first, second, third, fourth and fifth nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and

10 the first, second, third, fourth and fifth nucleotide sequence encoding one of rotavirus protein VP2, VP4, VP6, VP7 or NSP4 and wherein each of VP2, VP4, VP6, VP7 and NSP4 are expressed from the one or more nucleic acid.

15 [0039] The methods (C) or (D) as described above may further comprise the steps of:

c) harvesting the host or host cell, and

20 d) purifying the RLPs from the host or host cell, wherein the RLPs range in size from 70-100 nm.

[0040] In the method (C) or (D) as described above, if a host or host cell is provided where the one or more nucleic acid comprising a first nucleotide sequence encoding a first rotavirus protein, a second nucleotide sequence encoding a second rotavirus protein, a third nucleotide sequence encoding a third rotavirus protein, fourth nucleotide sequence encoding a fourth rotavirus protein and a fifth nucleotide sequence encoding a fifth rotavirus protein, the first, second, third, fourth and fifth nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell, then in the step of introducing (step a), the one or more nucleic acid may comprise two nucleic acids, with a first nucleic acid comprising encoding the NSP4, and a second nucleic acid encoding VP2, VP4, VP6 and VP7, the ratio of

an amount of the first nucleic acid relative to the second nucleic acid that is introduced into the plant, portion of a plant or plant cell is between 1:0.8 and 1:2. The ratio may also be 1:1. Alternatively, the one or more nucleic acid may comprise two nucleic acids, with a first nucleic acid comprising the first nucleotide sequence encoding the first rotavirus protein and the second nucleotide sequence encoding the second rotavirus protein, and a second nucleic acid comprising the third to fifth nucleotide sequence encoding the third to fifth rotavirus protein.

5

10

15

20

25

[0041] In the method (C) or (D) as described above, in the step of introducing (step a), the one or more nucleic acid may comprise three nucleic acids, with a first nucleic acid comprising the first and the second nucleotide sequence encoding the first and the second rotavirus protein, a second nucleic acid comprising the third and fourth nucleotide sequence encoding the third and the fourth rotavirus protein, and a third nucleic acid comprising the fifth nucleotide sequence encoding the fifth rotavirus protein, and wherein the ratio of an amount of the first nucleic acid relative to the second nucleic acid and to the third nucleic that is introduced into the plant, the portion of the plant, or the plant cell, is 1:1:1.

[0042] Alternatively, in the method (C) or (D) as described above, in the step of introducing (step a), the one or more nucleic acid may comprise three nucleic acids, with the first nucleic acid comprising the first nucleotide sequence encoding the first rotavirus protein, the second nucleic acid comprising the second nucleotide sequence encoding the second rotavirus protein, and the third nucleic acid comprising the third to fifth nucleotide sequence encoding the third to fifth rotavirus protein, and wherein the ratio of an amount of the first nucleic acid relative to the second nucleic acid and to the third nucleic that is introduced into the plant, the portion of the plant, or the plant cell, is 1:1:1.

30

[0043] Furthermore, in method (C) or (D) described above, in the step of introducing (step a), the one or more nucleic acid may comprise four nucleic acids, a first nucleic acid comprising the first nucleic acid encoding the first rotavirus protein, a second nucleic acid comprising the second nucleotide sequence encoding the second rotavirus protein, a third nucleic acid comprising the third nucleotide sequence encoding the third rotavirus protein, and a fourth nucleic acid comprising the fourth

and the fifth nucleotide sequence encoding the fourth and fifth rotavirus protein, wherein the ratio of an amount of the first nucleic acid relative to the second nucleic acid, to the third nucleic acid and to the fourth nucleic acid that is introduced into the plant, the portion of the plant, or the plant cell, is 1:1:1:1.

5 [0044] In the method (C) or (D) as described above, in the step of introducing (step a), the one or more nucleic acid may comprise five nucleic acids, a first nucleic acid comprising the first nucleotide sequence encoding the first rotavirus protein, a second nucleic acid comprising the second nucleotide sequence encoding the second rotavirus protein, a third nucleic acid comprising the third nucleotide sequence encoding the third rotavirus protein, a fourth nucleic acid comprising the fourth nucleotide sequence encoding the fourth rotavirus protein, and a fifth nucleic acid comprising the fifth nucleotide sequence encoding the fifth rotavirus protein, and the ratio of an amount of the first nucleic acid relative to the second nucleic acid, to the third nucleic acid, to the fourth nucleic acid and to the fifth nucleic acid that is introduced into the plant, the portion of the plant, or the plant cell, is 1:1:1:1:1.

10

15

[0045] The one or more nucleotide sequence of the method (C) or (D) as described above may be operatively linked to one or more expression enhancer. Furthermore, the expression enhancer may be selected from the group consisting of CPMV HT, CPMV 160, CPMV 160+ and CPMV HT+.

20 [0046] A method (E) of increasing incorporation of VP4, VP7, or both VP4 and VP7 in a rotavirus like particle (RLP) is also described, the method comprising:

25 a) providing a host or host cell comprising one or more nucleic acid comprising a first nucleotide sequence encoding a first rotavirus protein, a second nucleotide sequence encoding a second rotavirus protein and a third nucleotide sequence encoding a third rotavirus protein, the first, second and third nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and

the first nucleotide sequence encoding rotavirus protein NSP4, the second nucleotide sequence encoding rotavirus protein VP6, and the third nucleotide sequence encoding one of rotavirus protein VP7 or VP4;

5 b) incubating the host or host cell under conditions that permit the expression of the one or more nucleic acid, so that each of NSP4, VP6 and VP7 or VP4 are expressed, thereby producing the RLP with enhanced levels of VP4, VP7, or both VP4 and VP7 when compared to the level of VP4 or VP7 produced by a second host or host cell that expresses the one or more nucleic acid that does not comprise NSP4, under the same conditions.

10 [0047] In the method (E) as described above the one or more nucleic acid may further comprises a fourth nucleotide sequence encoding a fourth rotavirus protein, the first, second, third, and fourth nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and

15 the first nucleotide sequence encoding rotavirus protein NSP4, the second nucleotide sequence encoding rotavirus protein VP6, and the third and fourth nucleotide sequence encoding rotavirus protein VP2, VP4 or VP7 and wherein each of NSP4, VP6 and two of VP2, VP4 and VP7 are expressed from the one or more nucleic acid.

[0048] A method (F) of increasing incorporation of VP4, VP7, or both VP4 and VP7 in a rotavirus like particle (RLP) is also described, the method comprising:

20 a) providing a host or host cell comprising one or more nucleic acid comprising a first nucleotide sequence encoding a first rotavirus protein, a second nucleotide sequence encoding a second rotavirus protein and a third nucleotide sequence encoding a third rotavirus protein, the first, second and third nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and

25 the first, second and third nucleotide sequence encoding one of rotavirus protein NSP4, VP6 and one of rotavirus protein VP7 or VP4;

5 b) incubating the host or host cell under conditions that permit the expression of the one or more nucleic acid, so that each of NSP4, VP6 and VP7 or VP4 are expressed, thereby producing the RLP with enhanced levels of VP4, VP7, or both VP4 and VP7 when compared to the level of VP4 or VP7 produced by a second host or host cell that expresses the one or more nucleic acid that does not comprise NSP4, under the same conditions.

10 [0049] In the method (F) as described above the one or more nucleic acid may further

comprises a fourth nucleotide sequence encoding a fourth rotavirus protein, the first, second, third, and fourth nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and

the first, second, third and fourth nucleotide sequence encoding one of rotavirus protein NSP4, VP6 and two of rotavirus protein VP2, VP7 or VP4 and wherein each of NSP4, VP6 and two of VP2, VP7 or VP4 are expressed from the one or more nucleic acid.

15 [0050] In the method (E) and (F) as described above the one or more nucleic acid may further comprises a fourth nucleotide sequence encoding a fourth rotavirus protein and a fifth nucleotide sequence encoding a fifth rotavirus protein, the first, second, third, fourth and fifth nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and

20 the first, second, third, fourth and fifth nucleotide sequence encoding one of rotavirus protein VP2, VP4, VP6, VP7 or NSP4 and wherein each of VP2, VP4, VP6, VP7 and NSP4 are expressed from the one or more nucleic acid.

25 [0051] The one or more nucleotide sequence of the method (E) or (F) as described above may be operatively linked to one or more expression enhancer. Furthermore, the expression enhancer may be selected from the group consisting of CPMV HT, CPMV 160, CPMV 160+ and CPMV HT+.

[0052] A method (G) of increasing incorporation of VP4, VP7, or both VP4 and VP7 in a rotavirus like particle (RLP) is also described, the method comprising:

a) introducing into a host or host cell one or more nucleic acid comprising

5 a first nucleotide sequence encoding a first rotavirus protein, a second nucleotide sequence encoding a second rotavirus protein and a third nucleotide sequence encoding a third rotavirus protein, the first, second and third nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and

the first nucleotide sequence encoding rotavirus protein NSP4, the second nucleotide sequence encoding rotavirus protein VP6, and the third nucleotide sequence encoding one of rotavirus protein VP7 or VP4;

10 b) incubating the host or host cell under conditions that permit the expression of the one or more nucleic acid, so that each of NSP4, VP6 and VP7 or VP4 are expressed, thereby producing the RLP with enhanced levels of VP4, VP7, or both VP4 and VP7 when compared to the level of VP4 or VP7 produced by a second host or host cell that expresses the one or more nucleic acid that does not comprise NSP4, under the same conditions.

15 [0053] In the method (G) as described above the one or more nucleic acid may further comprises a fourth nucleotide sequence encoding a fourth rotavirus protein, the first, second, third, and fourth nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and

20 the first nucleotide sequence encoding rotavirus protein NSP4, the second nucleotide sequence encoding rotavirus protein VP6, and the third and fourth nucleotide sequence encoding rotavirus protein VP2, VP4 or VP7 and wherein each of NSP4, VP6 and two of VP2, VP4 and VP7 are expressed from the one or more nucleic acid.

[0054] A method (H) of increasing incorporation of VP4, VP7, or both VP4 and VP7 in a rotavirus like particle (RLP) is also described, the method comprising:

25 a) introducing in a host or host cell comprising one or more nucleic acid comprising a first nucleotide sequence encoding a first rotavirus protein, a second nucleotide sequence encoding a second rotavirus protein and a third nucleotide sequence encoding a third rotavirus protein, the first, second and third nucleotide sequence

being operatively linked to one or more regulatory region active in the host or host cell; and

the first, second and third nucleotide sequence encoding one of rotavirus protein NSP4, VP6 and one of rotavirus protein VP7 or VP4;

5 b) incubating the host or host cell under conditions that permit the expression of the one or more nucleic acid, so that each of NSP4, VP6 and VP7 or VP4 are expressed, thereby producing the RLP with enhanced levels of VP4, VP7, or both VP4 and VP7 when compared to the level of VP4 or VP7 produced by a second host or host cell that expresses the one or more nucleic acid that does not comprise NSP4, under 10 the same conditions.

[0055] In the method (H) as described above the one or more nucleic acid may further comprises a fourth nucleotide sequence encoding a fourth rotavirus protein, the first, second, third, and fourth nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and

15 the first, second, third and fourth nucleotide sequence encoding one of rotavirus protein NSP4, VP6 and two of rotavirus protein VP2, VP7 or VP4 and wherein each of NSP4, VP6 and two of VP2, VP7 or VP4 are expressed from the one or more nucleic acid.

[0056] In the method (G) and (H) as described above the one or more nucleic acid 20 may further comprises a fourth nucleotide sequence encoding a fourth rotavirus protein and a fifth nucleotide sequence encoding a fifth rotavirus protein, the first, second, third, fourth and fifth nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and

25 the first, second, third, fourth and fifth nucleotide sequence encoding one of rotavirus protein VP2, VP4, VP6, VP7 or NSP4 and wherein each of VP2, VP4, VP6, VP7 and NSP4 are expressed from the one or more nucleic acid.

[0057] In the method (G) and (H) as described above the one or more nucleic acid 25 may further comprises a fourth nucleotide sequence encoding a fourth rotavirus protein and a fifth nucleotide sequence encoding a fifth rotavirus protein, the first,

second, third, fourth and fifth nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and

the first, second, third, fourth and fifth nucleotide sequence encoding one of rotavirus protein VP2, VP4, VP6, VP7 or NSP4 and wherein each of VP2, VP4, VP6, VP7 and NSP4 are expressed from the one or more nucleic acid.

5

10

15

20

25

30

[0058] In the method (G) or (H) as described above, in the step of introducing (step a), the one or more nucleic acid may comprise two nucleic acids, with a first nucleic acid comprising encoding the NSP4, and a second nucleic acid encoding VP2, VP4, VP6 and VP7, the ratio of an amount of the first nucleic acid relative to the second nucleic acid that is introduced into the plant, portion of a plant or plant cell is between 1:0.8 and 1:2. The ratio may also be 1:1. Alternatively, the one or more nucleic acid may comprise two nucleic acids, with a first nucleic acid comprising the first nucleotide sequence encoding the first rotavirus protein and the second nucleotide sequence encoding the second rotavirus protein, and a second nucleic acid comprising the third to fifth nucleotide sequence encoding the third to fifth rotavirus protein.

[0059] In the method (G) or (H) as described above, in the step of introducing (step a), the one or more nucleic acid may comprise three nucleic acids, with a first nucleic acid comprising the first and the second nucleotide sequence encoding the first and the second rotavirus protein, a second nucleic acid comprising the third and fourth nucleotide sequence encoding the third and the fourth rotavirus protein, and a third nucleic acid comprising the fifth nucleotide sequence encoding the fifth rotavirus protein, and wherein the ratio of an amount of the first nucleic acid relative to the second nucleic acid and to the third nucleic acid that is introduced into the plant, the portion of the plant, or the plant cell, is 1:1:1.

[0060] Alternatively, in the method (G) or (H) as described above, in the step of introducing (step a), the one or more nucleic acid may comprise three nucleic acids, with the first nucleic acid comprising the first nucleotide sequence encoding the first rotavirus protein, the second nucleic acid comprising the second nucleotide sequence encoding the second rotavirus protein, and the third nucleic acid comprising the third to fifth nucleotide sequence encoding the third to fifth rotavirus protein, and wherein the ratio of an amount of the first nucleic acid relative to the second nucleic acid and

to the third nucleic acid that is introduced into the plant, the portion of the plant, or the plant cell, is 1:1:1.

[0061] Furthermore, in the method (G) or (H) described above, in the step of introducing (step a), the one or more nucleic acid may comprise four nucleic acids, a first nucleic acid comprising the first nucleotide sequence encoding the first rotavirus protein, a second nucleic acid comprising the second nucleotide sequence encoding the second rotavirus protein, a third nucleic acid comprising the third nucleotide sequence encoding the third rotavirus protein, and a fourth nucleic acid comprising the fourth and the fifth nucleotide sequence encoding the fourth and fifth rotavirus protein, wherein the ratio of an amount of the first nucleic acid relative to the second nucleic acid, to the third nucleic acid and to the fourth nucleic acid that is introduced into the plant, the portion of the plant, or the plant cell, is 1:1:1:1.

[0062] In the method in the method (G) or (H) as described above, in the step of introducing (step a), the one or more nucleic acid may comprise five nucleic acids, a first nucleic acid comprising the first nucleotide sequence encoding the first rotavirus protein, a second nucleic acid comprising the second nucleotide sequence encoding the second rotavirus protein, a third nucleic acid comprising the third nucleotide sequence encoding the third rotavirus protein, a fourth nucleic acid comprising the fourth nucleotide sequence encoding the fourth rotavirus protein, and a fifth nucleic acid comprising the fifth nucleotide sequence encoding the fifth rotavirus protein, and the ratio of an amount of the first nucleic acid relative to the second nucleic acid, to the third nucleic acid, to the fourth nucleic acid and to the fifth nucleic acid that is introduced into the plant, the portion of the plant, or the plant cell, is 1:1:1:1:1.

[0063] The one or more nucleotide sequence of the method (G) or (H) as described above may be operatively linked to one or more expression enhancer. Furthermore, the expression enhancer may be selected from the group consisting of CPMV HT, CPM 160, CPMV 160+ and CPMV HT+.

[0064] The methods (G) or (H) as described above may further comprise the steps of:
c) harvesting the host or host cell, and

d) purifying the RLPs from the host or host cell, wherein the RLPs range in size from 70-100 nm.

[0065] In the method (A), the method (B), the method (C), the method (D), the method (E), the method (F), the method (G) or the method (H) as described above, 5 the one or more nucleic acid may comprise one nucleic acid comprising the first, second, third, fourth and fifth nucleotide sequence encoding the first, second, third, fourth, and fifth rotavirus protein.

[0066] In the method (A), the method (B), the method (C), the method (D), the method (E), the method (F), the method (G) or the method (H) as described above, 10 the one or more nucleic acid may comprise two nucleic acids, for example, a first nucleic acid comprising the first nucleotide sequence encoding the first rotavirus protein, and a second nucleic acid comprising the second to fifth nucleotide sequence encoding the second to fifth rotavirus protein. Alternatively, the one or more nucleic acid may comprise two nucleic acids, with a first nucleic acid comprising the first 15 nucleotide sequence encoding the first rotavirus protein and the second nucleotide sequence encoding the second rotavirus protein, and a second nucleic acid comprising the third to fifth nucleotide sequence encoding the third to fifth rotavirus protein.

[0067] In the method (A), the method (B), the method (C), the method (D), the method (E), the method (F), the method (G) or the method (H) as described above, 20 the one or more nucleic acid may also comprise three nucleic acids, a first nucleic acid comprising the first nucleotide sequence encoding the first rotavirus protein, the second nucleotide sequence encoding the second rotavirus protein, a second nucleic acid comprising the third nucleotide sequence encoding the third rotavirus protein and fourth nucleotide sequence encoding the fourth rotavirus protein, and a third nucleic acid comprising the fifth nucleotide sequence encoding the fifth rotavirus protein. 25

Alternatively, the one or more nucleic acid may comprise three nucleic acids, with a first nucleic acid comprising the first nucleotide sequence encoding the first rotavirus protein, a second nucleic acid comprising the second nucleotide sequence encoding the second rotavirus protein, and a third nucleic acid comprising the third to fifth 30 nucleotide sequence encoding the third to fifth rotavirus protein.

[0068] In the method (A), the method (B), the method (C), the method (D), the method (E), the method (F), the method (G) or the method (H) as described above the one or more nucleic acid comprises four nucleic acids, a first nucleic acid comprising the first nucleotide sequence encoding the first rotavirus protein, a second nucleic acid comprising the second nucleotide sequence encoding the second rotavirus protein, a third nucleic acid comprising the third nucleotide sequence encoding the third rotavirus protein, and a fourth nucleic acid comprising the fourth and fifth nucleotide sequence encoding the fourth and fifth rotavirus protein.

[0069] Furthermore, in the method (A), the method (B), the method (C), the method (D), the method (E), the method (F), the method (G) or the method (H) as described above the one or more nucleic acid may comprise five nucleic acids, with a first nucleic acid comprising the first nucleotide sequence encoding the first rotavirus protein, a second nucleic acid comprising the second nucleotide sequence encoding the second rotavirus protein, a third nucleic acid comprising the third nucleotide sequence encoding the third rotavirus protein, a fourth nucleic acid comprising the fourth nucleotide sequence encoding the fourth rotavirus protein, and a fifth nucleic acid comprising the fifth nucleotide sequence encoding the fifth rotavirus protein.

[0070] The one or more nucleotide sequence of the method (A), the method (B), the method (C), the method (D), the method (E), the method (F), the method (G) or the method (H) as described above may be operatively linked to one or more expression enhancer. Furthermore, the expression enhancer may be selected from the group consisting of CPMV HT, CPM 160, CPMV 160+ and CPMV HT+.

[0071] In the method (A), the method (B), the method (C), the method (D), the method (E), the method (F), the method (G) or the method (H) as described above the host or host cell may comprise insect cells, mammalian cells, plant, portion of a plant or plant cells. The plant may be *Nicotiana benthamiana*.

[0072] Also described herein is an RLP produced by the method (A), the method (B), the method (C), the method (D), the method (E), the method (F), the method (G) or the method (H) described above, wherein the RLP is a triple layered RLP comprising rotavirus protein, the rotavirus protein consists of VP2, VP4, VP6 and VP7. The RLP may not comprise NSP4.

[0073] A composition comprising an effective dose of the RLP for inducing an immune response in a subject, and a pharmaceutically acceptable carrier, and a method of inducing immunity to a rotavirus infection in a subject, that comprises administering the composition, are also described. In the method of inducing immunity, the composition may be administered to a subject orally, intradermally, intranasally, intramuscularly, intraperitoneally, intravenously, or subcutaneously.

[0074] Also described herein is plant matter comprising an RLP produced by the method (A), the method (B), the method (C), the method (D), the method (E), the method (F), the method (G) or the method (H) as described above.

[0075] In the method (A), the method (B), the method (C), the method (D), the method (E), the method (F), the method (G) or the method (H) as described above, the one or more nucleic acid may comprise one nucleic acid comprising the first, second and third nucleotide sequence encoding the first, second and third, rotavirus protein. Furthermore, in the method (A), the method (B), the method (C), the method (D), the method (E), the method (F), the method (G) or the method (H) as described above the one or more nucleic acid may comprise two nucleic acids, a first nucleic acid comprising the first nucleotide sequence encoding the first rotavirus protein, and a second nucleic acid comprising the second and third nucleotide sequence encoding the second and third rotavirus protein. Furthermore, in the method (A), the method (B), the method (C), the method (D), the method (E), the method (F), the method (G) or the method (H) as described above the one or more nucleic acid may comprise two nucleic acids, a first nucleic acid comprising the first and second nucleotide sequence encoding the first and second rotavirus protein, and a second nucleic acid comprising the third nucleotide sequence encoding the third rotavirus protein. Alternatively, in the method (A), the method (B), the method (C), the method (D), the method (E), the method (F), the method (G) or the method (H) as described above the one or more nucleic acid may comprise three nucleic acids, a first nucleic acid comprising the first nucleotide sequence encoding the first rotavirus protein, a second nucleic acid comprising the second nucleotide sequence encoding the second rotavirus protein and a third nucleic acid comprising the third nucleotide sequence encoding the third rotavirus protein.

[0076] As described herein, by co-expressing NSP4 along with VP6 and VP4 or VP7, in a host or host cell, for example a plant, portion of the plant, or a plant cell, RLPs comprising increased levels of VP4, VP7, or both VP4 and VP7 are observed, when compared to the level of VP4 and VP7 in RLPs produced by a second host or host cell for example a plant, portion of a second plant, or second plant cell, that expresses the one or more nucleic acid that encodes VP6 and VP4 or VP7, and does not encode NSP4, the second host or second host cell for example a second plant, the second portion of plant, or the second plant cell, incubated or grown, under the same conditions as the host or host cell for example a plant, portion of the plant, or plant cell.

10

[0077] This summary of the invention does not necessarily describe all features of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

15

[0078] These and other features of the invention will become more apparent from the following description in which reference is made to the appended drawings wherein:

20

[0079] **Figure 1** shows rotavirus cell entry and replication. When rotavirus enters a cell, VP4 and VP7 are lost, forming a double layered particle (DLP). Transcription of the dsRNA commences resulting in translation of VP2, VP4, VP6 and VP7. Progeny cores with replicase activity are produced in virus factories (also called viroplasms). Late transcription occurs in these progeny cores. At the periphery of virus factories, these cores are coated with VP6, forming immature DLPs that bud across the membrane of the endoplasmic reticulum, acquiring a transient lipid membrane which is modified with the ER resident viral glycoproteins NSP4 and VP7; these enveloped particles also contain VP4. As the particles move towards the interior of the ER cisternae, the transient lipid membrane and the nonstructural protein NSP4 are lost, while the virus surface proteins VP4 and VP7 rearrange to form the outermost virus protein layer, yielding mature infectious triple-layered particles (see Swiss Institute of Bioinformatics (ViralZone): viralzone.expasy.org/viralzone/all_by_species/107.html)

25

[0080] **Figure 2** shows rotavirus-like particle purification by ultracentrifugation on iodixanol density gradient. **Figure 2A** presents the percentage of iodixanol and

30

volume for each layer of the gradient used for the purification of rotavirus-like particles. After centrifugation, the gradient was fractionated into 1 ml fractions starting from the bottom of the tube. The approximate localization of fractions 1 to 13 are indicated by arrows. **Figure 2B** shown a Coomassie-stained SDS-PAGE analysis of the protein content of fractions 1 to 10 from an iodixanol density gradient separation applied to a crude protein extract from leaves expressing rotavirus VP2, VP4, VP6 and VP7 antigens.

5 [0081] **Figure 3** shows rotavirus protein expression. **Figure 3A** shows a Coomassie-stained SDS-PAGE analysis of fractions 2 and 3 from an iodixanol density gradient separation applied to crude protein extracts from leaves expressing VP2, VP4, VP6, VP7 in the presence or absence of NSP4. Rotavirus structural proteins VP2, VP6, VP7, VP4 were expressed, left panel, using individual constructs for each structural antigen ("single gene constructs"), with NSP4 on a separate construct ; middle panel, two constructs, each having the genes of two structural antigens ("dual gene constructs"), with NSP4 on a separate construct ; or right panel, a single construct for the co-expression of the four structural antigens (Quadruple gene constructs) , with a separate construct for the expression of NSP4. Position of the rotavirus VP2 and VP6 antigen are shown by arrows. **Figure 3B** shows a Western blot analysis of fraction F2 from the same treatments as in figure 3A using an anti-rotavirus VP4 or VP7 antibody as specified.

10 [0082] **Figure 4** shows rotavirus protein expression in the presence of an expression enhancer. **Figure 4A** shows a Coomassie-stained SDS-PAGE analysis of fractions F2 and F3 from an iodixanol density gradient applied to crude protein extracts from leaves co-expressing VP2, VP4, VP6, VP7 and NSP4 . Rotavirus structural proteins VP2, VP6, VP7, VP4 were expressed from single gene constructs, and one construct expressing NSP4 (left panel), or from two dual gene constructs and one construct expressing NSP4 (middle and right panel)). Each construct comprised an expression enhancer, either CPMV HT (left and middle panels) or CMPV 160 (right panel), except for NSP4 which always comprised the CPMV-HT enhancer. The ratios indicate the proportion of the *Agrobacterium* strains in the bacterial suspension used for transformation: left panel - five single gene constructs (VP2, VP6, VP4, VP7 and NSP4; ratio of 1:1:1:1:1); middle and right panels – dual gene constructs encoding

structural proteins (VP6/2 and VP7/4) and the construct encoding non-structural protein (NSP4; ratio of 1:1:1). **Figure 4B** shows a Western blot analysis of F2 from the same treatments as in Figure 4A using an anti-rotavirus VP4 or VP7 antibody as specified. The ratios indicate the proportion of the *Agrobacterium* strains in the bacterial suspension used for transformation: left panel - five single gene constructs (VP2, VP6, VP4, VP7 and NSP4; ratio of 1:1:1:1:1); middle and right panels – dual gene constructs encoding structural proteins (VP6/2 and VP7/4) and the construct encoding non-structural protein (NSP4; ratio of 1:1:1).

[0083] **Figure 5** shows rotavirus protein expression. Upper panel shows a Coomassie-stained SDS-PAGE analysis of fractions F2 and F3 an iodixanol density gradient applied to crude protein extracts from leaves co-expressing VP2, VP4, VP6, VP7 and NSP4, and the lower panel shows a Western blot analysis of the corresponding F2 fraction from the upper panel. Rotavirus structural proteins VP2, VP6, VP7 and VP4 were expressed within a quadruple gene construct, and the non-structural protein NSP4 was co-expressed from a distinct single gene construct (lanes 1 and 2), or structural proteins VP2, VP6, VP7, VP4 and the non-structural protein NSP4 were expressed within a quintuple gene construct (lane 3). The ratio of agroinfiltration of the constructs is indicated. An OD of 0.4 of *Agrobacterium* strains in the bacterial suspension is indicated as 1. An OD of 0.6 of *Agrobacterium* strains in the bacterial suspension is indicated as 1.5.

[0084] **Figure 6** shows a general schematic of an example of several enhancer sequences that may be used in the constructs of the present invention. **Figure 6A** and **Figure 6B** show a general schematic of the CPMV HT and CPMV HT+ enhancer sequences fused to a nucleotide sequence of interest (for example encoding a rotavirus structural protein VP2, VP4, VP6, VP7, or a non-structural protein NSP4). Not all of the elements shown in Figures 5A or 5B may be required within the enhancer sequence. Additional elements may be included at the 3' end of the nucleotide sequence of interest including a sequence encoding a comovirus 3' untranslated region (CPMV 3' UTR), or a plastocyanin 3' UTR (3'UTR). **Figure 6C** and **6D** show a general schematic of the enhancer sequence of CPMVX, and CPMVX+ (comprising CPMVX, and a stuffer fragment, which in this non-limiting example, comprises a multiple cloning site and a plant kozak sequence), as described

herein. CPMVX and CPMVX+ are each shown as operatively linked to plant regulatory region at their 5'ends, and at their 3' ends, in series, a nucleotide sequence of interest (including an ATG initiation site and STOP site), a 3'UTR, and a terminator sequence. An example of construct CPMVX as described herein, is CPMV160. An example of construct CPMVX+ as described herein, is CPMV160+.

5

[0085] **Figure 7** shows sequence components used to prepare construct number 1710 (2X35S/CPMV-HT/ RVA(WA) VP2(opt)/ NOS. **Figure 7A** shows the nucleotide sequence of IF-WA_VP2(opt).s1+3c (SEQ ID NO: 19). **Figure 7B** shows the nucleotide sequence of IF-WA_VP2(opt).s1-4r (SEQ ID NO: 20). **Figure 7C** shows the optimized coding sequence of Rotavirus A VP2 from strain WA (SEQ ID NO: 21). **Figure 7D** shows the schematic representation of construct 1191. **Figure 7E** shows the nucleotide sequence of construct 1191 (SEQ ID NO: 22). **Figure 7F** shows the nucleotide sequence of expression cassette number 1710 (SEQ ID NO: 23). **Figure 7G** shows the amino acid sequence of VP2 from Rotavirus A WA strain (SEQ ID NO: 24). **Figure 7H** shows the schematic representation of construct number 1710.

10

[0086] **Figure 8** shows sequence components used to prepare construct number 1713 (2X35S/CPMV-HT/RVA(WA) VP6(opt)/NOS). **Figure 8A** shows the nucleotide sequence of IF-WA_VP6(opt).s1+3c (SEQ ID NO: 25). **Figure 8B** shows the nucleotide sequence of IF-WA_VP6(opt).s1-4r (SEQ ID NO: 26). **Figure 8C** shows the optimized coding sequence of Rotavirus A VP6 from strain WA (SEQ ID NO: 217). **Figure 8D** shows the nucleotide sequence of expression cassette number 1713 (SEQ ID NO: 28). **Figure 8E** shows the amino acid sequence of VP6 from Rotavirus A WA strain (SEQ ID NO: 29). **Figure 8F** shows the schematic representation of construct number 1713.

15

20

25

25

30

[0087] **Figure 9** shows sequence components used to prepare construct number 1730 (2X35S/CPMV-HT/ RVA(Rtx) VP4(opt)/ NOS). **Figure 9A** shows the nucleotide sequence of IF-Rtx_VP4(opt).s1+3c (SEQ ID NO: 30). **Figure 9B** shows the nucleotide sequence of IF-Rtx_VP4(opt).s1-4r (SEQ ID NO: 31). **Figure 9C** shows the optimized coding sequence of Rotavirus A VP4 from strain RVA/Vaccine/USA/Rotarix-A41CB052A/1988/G1P1A[8] (SEQ ID NO:32). **Figure**

9D shows the nucleotide sequence of expression cassette number 1730 (SEQ ID NO: 33). **Figure 9E** shows the amino acid sequence of VP4 from Rotavirus A Rotarix strain (SEQ ID NO: 34). **Figure 9F** shows the schematic representation of construct number 1730.

5 [0088] **Figure 10** shows sequence components used to prepare construct number 1734 (2X35S/CPMV-HT/RVA(Rtx) VP7(Opt)/NOS). **Figure 10A** shows the nucleotide sequence of IF-TrSP+Rtx_VP7(opt).s1+3c (SEQ ID NO: 35). **Figure 10B** shows the nucleotide sequence of IF-Rtx_VP7(opt).s1-4r (SEQ ID NO: 36). **Figure 10C** shows the optimized coding sequence of Rotavirus A VP7 from strain 10 RVA/Vaccine/USA/Rotarix-A41CB052A/1988/G1P1A[8] (SEQ ID NO: 37). **Figure 10D** shows the nucleotide sequence of expression cassette number 1734 (SEQ ID NO: 38). **Figure 10E** shows the amino acid sequence of TrSp-VP7 from Rotavirus A vaccine USA/Rotarix-A41CB052A/1988/G1P1A[8] strain (SEQ ID NO: 39). **Figure 10F** shows the schematic representation of construct number 1734.

15 [0089] **Figure 11** shows sequence components used to prepare construct number 1706 (2X35S/CPMV-HT/RVA(WA) NSP4/NOS). **Figure 11A** shows the nucleotide sequence of IF-WA_NSP4.s1+3c (SEQ ID NO: 40). **Figure 11B** shows the nucleotide sequence of IF-WA_NSP4.s1-4r (SEQ ID NO: 41). **Figure 11C** shows the coding sequence of Rotavirus A VP6 from strain WA (SEQ ID NO: 42). **Figure 11D** shows 20 the nucleotide sequence of expression cassette number 1706 (SEQ ID NO: 43). **Figure 11E** shows the amino acid sequence of NSP4 from Rotavirus A WA strain (SEQ ID NO: 44). **Figure 11F** shows the schematic representation of construct number 1706.

25 [0090] **Figure 12** shows sequence components used to prepare construct number 1108 (2X35S/CPMV-160/ RVA(WA) VP2(opt)/ NOS). **Figure 12A** shows the nucleotide sequence of IF(C160)-WA_VP2(opt).c (SEQ ID NO: 45). **Figure 12B** shows a schematic representation of construct 1190. **Figure 12C** shows the nucleotide sequence of construct 1190 (SEQ ID NO: 46). **Figure 12D** shows the nucleotide sequence of expression cassette number 1108 (SEQ ID NO: 47). **Figure 12E** shows a 30 schematic representation of construct number 1108.

[0091] **Figure 13** shows sequence components used to prepare construct number 1128 (2X35S/CPMV-160/RVA(WA) VP6(opt)/NOS). **Figure 13A** shows the nucleotide sequence of IF(C160)-WA_VP6(opt).c (SEQ ID NO: 48). **Figure 13B** shows the nucleotide sequence of expression cassette number 1128 (SEQ ID NO: 49). **Figure 13C** shows a schematic representation of construct number 1128.

[0092] **Figure 14** shows sequence components used to prepare construct number 1178 (2X35S/CPMV-160/ RVA(Rtx) VP4(opt)/ NOS). **Figure 14A** shows the nucleotide sequence of IF(C160)-Rtx_VP4(opt).c (SEQ ID NO: 50). **Figure 14B** shows the nucleotide sequence of expression cassette number 1178 (SEQ ID NO: 51). **Figure 14C** shows the schematic representation of construct number 1178.

[0093] **Figure 15** shows sequence components used to prepare construct number 1199 (2X35S/CPMV-160/TrSp-RVA(Rtx) VP7(Opt)/NOS). **Figure 15A** shows the nucleotide sequence of IF(C160)-TrSP+Rtx_VP7(opt).c (SEQ ID NO: 52). **Figure 15B** shows the nucleotide sequence of Expression cassette number 1199 (SEQ ID NO: 53). **Figure 15C** shows the schematic representation of construct number 1199.

[0094] **Figure 16** shows the schematic representation of construct number 1708 (double gene construct for the expression of VP6 and VP2 under CPMV-HT expression cassette).

[0095] **Figure 17** shows the schematic representation of construct number 1719 (double gene construct for the expression of VP7 and VP4 under CPMV-HT expression cassette).

[0096] **Figure 18** shows the schematic representation of construct number 2400 (double gene construct for the expression of VP6 and VP2 under CPMV-160 expression cassette).

[0097] **Figure 19** shows the schematic representation of construct number 2408 (double gene construct for the expression of VP7 and VP4 under CPMV-160 expression cassette).

[0098] **Figure 20** shows the schematic representation of construct number 1769 (quadruple gene construct for the expression of VP7, VP4, VP6 and VP2 under CPMV-HT expression cassette).

[0099] **Figure 21** shows the schematic representation of construct number 2441 (quintuple gene construct for the expression of VP4, VP7, NSP4, VP6 and VP2 under CPMV-HT expression cassette).

DETAILED DESCRIPTION

[00100] The following description is of a preferred embodiment.

[00101] The present invention relates to virus-like particles (VLPs) comprising one or more rotavirus structural protein (i.e. a rotavirus like particle, rotavirus VLP or RLP), and methods of producing rotavirus-like particle (RLPs) in any host, particularly in plants, a portion of a plant, or a plant cell. Other hosts might comprise, for example, insect cells and mammalian cells. The rotavirus like particle (RLP) may comprise one or more rotavirus structural protein. The RLP may triple layered. The RLP may be produced by co-expressing rotavirus structural and nonstructural proteins in plant, however, the RLP does not comprise any rotavirus nonstructural proteins.

[00102] The host or host cell may be from any source including plants, fungi, bacteria, insect and animals. In a preferred embodiment the host or host cell is a plant or plant cell.

[00103] The present invention in part provides further a method of producing a rotavirus-like particle (RLP) in a host, such as a plant, a portion of a plant, or a plant cell. The method may comprise introducing one or more nucleic acid comprising a regulatory region active in the host, such as a plant, a portion of a plant, or a plant cell, the regulatory region operatively linked to a nucleotide sequence encoding one or more rotavirus structural protein and one or more rotavirus nonstructural protein into the host, such as into a plant, portion of the plant, or plant cell. Followed by incubating the host, such as a plant, portion of the plant, or plant cell under conditions that permit the expression of the nucleic acids, thereby producing the RLP comprising one or more rotavirus structural protein. The one or more rotavirus structural protein

may be rotavirus protein VP2, VP4, VP6 or VP7. The rotavirus nonstructural protein may be NSP4. The RLP may be triple layered. The RLP may comprise rotavirus structural protein VP2, VP4, VP6 and VP7, and does not comprise the nonstructural protein NSP4.

5 [00104] The present invention in part provides further a method of producing a rotavirus like particle (RLP) in a host or host cell, the method may comprise:

providing a host or host cell comprising one or more nucleic acid comprising a first nucleotide sequence encoding a first rotavirus protein, a second nucleotide sequence encoding a second rotavirus protein and a third nucleotide sequence encoding a third rotavirus protein, the first, second and third nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and

10 the first, second and third nucleotide sequence encoding NSP4 and one or two of rotavirus protein VP2 or VP6 and one or two of rotavirus protein VP7 or VP4;

15 incubating the host or host cell under conditions that permit the expression of the one or more nucleic acid, so that NSP4 and either VP2, VP4 and VP7, or VP2, VP6 and VP7, or VP2, VP6 and VP4, or VP6, VP4 and VP7, are expressed, thereby producing the RLP.

20 [00105] Furthermore, the one or more nucleic acid may comprise a fourth nucleotide sequence encoding a fourth rotavirus protein. The first, second, third, and fourth nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and the first nucleotide sequence, the second nucleotide sequence, the third and fourth nucleotide sequence encoding rotavirus protein VP2, or VP6, VP4 or VP7 and NSP4, wherein NSP4 and wherein either VP2 or VP6 and VP4 or VP7 are expressed from the one or more nucleic acid.

25 [00106] Furthermore, the present invention in part provides a method of producing a rotavirus-like particle (RLP) vaccine candidate in a host, such as a plant, a portion of the plant, or a plant cell. The method may comprise expressing in a host, such as in a plant or portion of a plant, one or more nucleic acid (R₁-R₅) comprising one or more regulatory region active in the host, such as in the plant, portion of a plant, or plant cell, the regulatory region operatively linked to nucleotide sequences R₁-R₅, wherein

nucleotide sequence R₁ encodes rotavirus protein X₁, nucleotide sequence R₂ encodes rotavirus protein X₂, nucleotide sequence R₃ encodes rotavirus protein X₃, nucleotide sequence R₄ encodes rotavirus protein X₄ and nucleotide sequence R₅ encodes rotavirus protein X₅ and each of X₁-X₅ are selected from the group of rotavirus protein VP2, VP4, VP6, VP7 and NSP4, so that each of VP2, VP4, VP6, VP7 and NSP4 are expressed in the host, such as in the plant, portion of the plant, or plant cell (see Table 1). The RLP may comprise rotavirus structural protein VP2, VP4, VP6 and VP7. The RLP does not comprise nonstructural protein NSP4.

5

[00107] It has been found that by introducing and co-expressing rotavirus structural protein and a rotavirus non-structural protein in the host, such as a plant or portion of the plant that the yield of the RLP produced may be modulated. In particular, it has been found that by co-expressing rotavirus structural proteins along with a rotavirus non-structural protein NSP4 in the host, such as a plant, portion of the plant, or plant cell, that the incorporation of structural protein VP4, VP7 or both VP4 and VP7 into the RLP may be increased, when compared to the level of VP4 and VP7 produced by a second host, such as a second plant, portion of a second plant, or second plant cell that expresses the same rotavirus structural proteins but that does not express the rotavirus non-structural protein, under the same conditions.

10

[00108] For example a method of increasing incorporation of VP4, VP7, or both VP4 and VP7 in a rotavirus like particle (RLP) is provided. The method comprises:

20

- a) providing a host or host cell comprising one or more nucleic acid comprising a first nucleotide sequence encoding a first rotavirus protein, a second nucleotide sequence encoding a second rotavirus protein, a third nucleotide sequence encoding a third rotavirus protein and a fourth nucleotide sequence encoding a fourth rotavirus protein; the first, second, third and fourth nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; 25 and

the first, second, third and fourth nucleotide sequence encoding one of rotavirus protein VP7, VP4, NSP4 and VP2 or VP6;

5 b) incubating the host or host cell under conditions that permit the expression of the one or more nucleic acid, so that each of the VP7, VP4, NSP4 and VP2 or VP6 and are expressed, thereby producing the RLP with enhanced levels of VP4, VP7, or both VP4 and VP7 when compared to the level of VP4 or VP7 produced by a second host or host cell that expresses the one or more nucleic acid that does not comprise NSP4, under the same conditions.

[00109] Furthermore, an alternative method of increasing production of VP4, VP7 or both VP4 and VP7 in a rotavirus like particle (RLP) may comprises:

10 a) introducing into a plant, portion of a plant or plant cell one or more nucleic acid comprising one or more regulatory operatively linked to a first, second, third, fourth and fifth nucleotide sequence, the one or more regulatory region active in the plant, portion of the plant or the plant cell, the first nucleotide sequence encoding a first rotavirus protein, the second nucleotide sequence encoding a second rotavirus protein, the third nucleotide sequence encoding a third rotavirus protein, the fourth nucleotide sequence encoding a fourth rotavirus protein and the fifth nucleotide sequence encoding a fifth rotavirus protein, each of the first, second, third, fourth or fifth nucleotide sequence encoding one of VP2, VP4, VP6, VP7 or NSP4, and

15 b) incubating the plant, portion of a plant or plant cell under conditions that permit the transient expression of the one or more nucleic acid so that each of VP2, VP4, VP6, VP7 and NSP4 are transiently expressed, thereby producing the RLP with enhanced levels of VP4 and VP7 when compared to the level of VP4 and VP7 produced by a second plant, portion of a second plant, or second plant cell that expresses the one or more nucleic acid that does not comprise NSP4, under the same conditions.

20 [00110] If desired, the method may further comprises the steps of:

25 c) harvesting the plant, portion of a plant or plant cell, and

d) purifying the RLPs from the plant, portion of a plant or plant cell, wherein the RLPs range in size from 70-100 nm.

[00111] An alternate method of increasing production of VP4, VP7 or both VP4 and VP7 in a rotavirus like particle (RLP) is also provided, the method comprising:

5 a) providing a plant, portion of a plant or plant cell comprising one or more nucleic acid comprising one or more regulatory region operatively linked to a first, second, third, fourth and fifth nucleotide sequence, the one or more regulatory region active in the plant, portion of the plant or the plant cell, the first nucleotide sequence encoding a first rotavirus protein, the second nucleotide sequence encoding a second rotavirus protein, the third nucleotide sequence encoding a third rotavirus protein, the fourth nucleotide sequence encoding a fourth rotavirus protein and the fifth nucleotide sequence encoding a fifth rotavirus protein, each of the first, second, third, fourth and fifth nucleotide sequence encoding one of VP2, VP4, VP6, VP7 or NSP4, and

10 b) incubating the plant, portion of a plant or plant cell under conditions that permit the expression of the one or more nucleic acid, so that each of the VP2, VP4, VP6, VP7 and NSP4 are expressed, thereby producing the RLP with enhanced levels of 15 VP4 and VP7 when compared to the level of VP4 and VP7 produced by a second plant, portion of a second plant, or second plant cell that expresses the one or more nucleic acid that does not comprise NSP4, under the same conditions.

20 [00112] It has been further found that by modulating the ratio between constructs comprising nucleic acids encoding rotavirus structural proteins and the non-structural protein NSP4 during transient expression in the host, such as a plant, portion of the plant, or plant cell, the yield of RLP production and the incorporation of structural proteins VP4 and VP7 into the RLP may be improved.

25 [00113] Without wishing to be bound by theory, the co-expression of a rotavirus non-structural protein for example NSP4 together with one or more rotavirus structural protein for example VP2, VP4, VP6 and/or VP7 may lead to an increase in incorporation of VP4 and/or VP7 into RLPs. This increase of incorporation of VP4 and/or VP7 into RLPs may occur via an increase of expression or production of the rotavirus proteins and/or because of an increase of the efficacy of the assembly of 30 RLPs and/or an increase of recruiting of the rotavirus proteins at the RLP assembly site.

[00114] As shown in Figure 3A and 3B, the co-expression of rotavirus non-structural protein NSP4 together with rotavirus structural protein VP2, VP6, VP4 and VP7 in plants lead to an increase in incorporation of VP4 and VP7 into RLPs, when compared to the expression of structural protein VP2, VP6, VP4 and VP7 without the presence of NSP4 (see Figure 3B).

[00115] The ratios of the constructs encoding the various structural and non-structural proteins that are transiently expressed in the host, such as a plant, portion of the plant, or plant cell, may be altered by providing constructs comprising nucleic acid sequences encoding rotavirus structural proteins and the non-structural protein NSP4 on two, three, four or five constructs and varying the amount of each construct during the step of introducing the construct in the host (using Agrobacterium to the plant, plant portion or plant cell). For example, five separate constructs, each encoding one structural protein and the non-structural protein, may be co-introduced at various ratios resulting co-expression of the nucleic acids at various ratios within a plant, plant portion, or plant cell. Alternatively, the nucleic acid sequences may be provided in various combinations on two, three or four constructs and the constructs co-introduced in the plant, portion of the plant, or plant cell, at various ratios, as described below.

[00116] Additionally, the nucleic acid sequences may be provided on the same construct.

[00117] “Rotavirus protein” may refer to rotavirus structural protein or rotavirus nonstructural proteins. A “rotavirus structural protein” may refer to all or a portion of a rotavirus structural protein isolated from rotavirus, present in any naturally occurring, or a variant of any naturally occurring, rotavirus strain or isolate. Thus, the term rotavirus structural protein includes a naturally occurring rotavirus structural protein, or a variant of a rotavirus structural protein that may be produced by mutation during the virus life-cycle or produced in response to selective pressure (e.g., drug therapy, expansion of host cell tropism, or infectivity, etc.). As one of skill in the art appreciates, such rotavirus structural proteins and variants thereof may be also produced using recombinant techniques. Rotavirus structural proteins may include capsid proteins such for example VP2 and VP6, surface proteins, for example VP4, or

a combination of capsid and surface proteins. The structural protein may further include for example VP7.

[00118] By rotavirus "non structural protein", "nonstructural protein", "non-structural protein", "NSP" or "nonstructural rotavirus protein" it is meant a protein that is encoded by the rotavirus genome, but not packaged into the viral particle. Non-limiting examples of rotavirus nonstructural proteins are rotavirus NSP4.

[00119] By "co-expressed" it is meant that two, or more than two, nucleotide sequences are expressed at about the same time within the plant, within the same tissue of the plant and within the same cells in the plant. The nucleotide sequences need not be expressed at exactly the same time. Rather, the two or more nucleotide sequences are expressed in a manner such that the encoded products have a chance to interact within a desired cellular compartment. For example, the non-structural protein may be preferably expressed either before or during the period when the structural proteins are expressed. The two or more than two nucleotide sequences can be co-expressed using a transient expression system, where the two or more sequences are introduced within the plant at about the same time, under conditions that the two or more sequences are expressed. The two or more than two sequences may be present on different constructs, and co-expression requires introduction of each of the constructs into the plant, portion of plant or plant cell, or the two or more than two sequences may be present on one construct and the construct introduced into the plant, portion of plant or plant cell.

[00120] The term "virus-like particle" (VLP), or "virus-like particles" or "VLPs" refers to structures that self-assemble and comprise one or more structural proteins such as for example rotavirus structural protein, for example but not limited to VP2, VP4, VP6, VP7, or a combination of VP2, VP4, VP6, VP7, structural protein. VLPs comprising rotavirus structural protein maybe also be referred to "rotavirus VLP", "rotavirus -like particle (RVLP)", "rotavirus -like particle (RLP)", "rotavirus -like particle", "RVLP" or "RLP". VLPs or RLPs are generally morphologically and antigenically similar to virions produced in an infection, but lack genetic information sufficient to replicate and thus are non-infectious. VLPs may be produced in suitable eukaryotic host cells including plant host cells. Following extraction from the host

cell and upon isolation and further purification under suitable conditions, VLPs may be recovered as intact structures. The RLP may be a single, double, or triple-layered RLP. Triple-layered RLPs may be obtained by the simultaneous expression of three or more rotavirus structural proteins, and as described herein, co-expression with one or more non-structural protein. For example, the co-expression of structural proteins VP2, VP6, VP7, VP4 and nonstructural protein NSP4 results in producing triple-layered RLPs.

[00121] Co-expression of VP4, along with VP2, VP6, VP7, and one or more non-structural protein as required, results in a particle with spikes that resembles native rotavirus. VP4 may be processed or cleaved to produce VP5 and VP8. This processing may take place within the host using endogenous proteases, or by co-expressing a suitable protease, for example, trypsin, a trypsin-like protease, a serine protease, a chymotrypsin-like protease, subtilisin. Alternatively, VP4 may be processed to produce VP5 and VP8 by adding a suitable protease, for example, trypsin, a trypsin-like protease, a serine protease, a chymotrypsin-like protease, subtilisin during any step of the RLP extraction procedure, or after RLP purification.

[00122] Each of the rotavirus structural proteins has different characteristics and size, and is required in different amounts for assembly into RLP. The term "rotavirus VLP", "rotavirus virus-like particle (RVLP)", "rotavirus virus-like particle (RLP)" , "rotavirus virus-like particle", "RVLP" or "RLP" refers to a virus-like particle (VLP) comprising one or more rotavirus structural proteins. Example of rotavirus structural proteins may include, but are not limited to VP2, VP4 (or VP5 and VP8) VP6 and VP7 structural protein. The RLP may not comprise rotavirus nonstructural proteins.

[00123] The present invention provides for a method of producing RLPs in a plant, wherein one or more nucleic acid (N_1-N_5) comprising one or more regulatory region active in the plant are operatively linked to nucleotide sequences R_1-R_5 , wherein nucleotide sequence R_1 encodes rotavirus protein X_1 , nucleotide sequence R_2 encodes rotavirus protein X_2 , nucleotide sequence R_3 encodes rotavirus protein X_3 , nucleotide sequence R_4 encodes rotavirus protein X_4 and nucleotide sequence R_5 encodes rotavirus protein X_5 and wherein X_1-X_5 are selected from the group of rotavirus

protein VP2, VP4, VP6, VP7 and NSP4, wherein VP2, VP4, VP6, VP7 and NSP4 are each selected once (see Table 1). The final set, or combination, of nucleic acids used to transform the host results in the expression of each rotavirus protein within the host resulting in expression of VP2, VP4, VP6, VP7 and NSP4 and formation of an RLP..

5 [00124] For example, with reference to Table 1, 2 nucleic acids (N₁ and N₂), may be used to transform a host, (see example # 2.1). In this case N₁ comprises the R₁ nucleotide sequence and R₁ may encode one of VP2, VP4, VP6, VP7, or NSP4. The nucleic acid N₂ comprises four sequences R₂ to R₅, each of R₂ to R₅ encoding one of VP2, VP4, VP6, VP7, or NSP4, but not the protein encoded by R₁, so that each of the VP2, VP4, VP6, VP7 and NSP4 are expressed within the host, thereby producing the RLP. As a non-limiting example, N₁ may comprise R₁ which may encode VP2, and N₂ may comprise R₂ to R₅ which may encode VP4, VP6, VP7 and NSP4 respectively.

10 [00125] Table 1, provides an overview of combinations, which is not to be considered limiting, of nucleic acids (N), and nucleotide sequences (R) that may be expressed or co-expressed within a host to produce an RLP comprising VP2, VP4, VP6, and VP7.

15 [00126] Table 1

Combination #						Total # Nucleic Acids			
1.1	N ₁					1			
1.2	N ₁					1			
1.3	N ₁					1			
2.1	N ₁	N ₂				2			
2.2	N ₁	N ₂				2			
2.3	N ₁		N ₂			2			
2.4	N ₁		N ₂			2			
2.5	N ₁	N ₂				2			
3.1	N ₁		N ₂	N ₃		3			
3.2	N ₁	N ₂	N ₃			3			
3.3	N ₁	N ₂	N ₃			3			
3.4	N ₁	N ₂	N ₃						
4.1	N ₁	N ₂	N ₃	N ₄		4			
4.2	N ₁	N ₂	N ₃	N ₄		4			
5	N ₁	N ₂	N ₃	N ₄	N ₅	5			
	Nucleotide Sequence	R₁	R₂	R₃	R₄	R₅			
	Rotavirus Protein	X₁	X₂	X₃	X₄	X₅			
	X ₍₁₋₅₎ may be*	VP2	VP2	VP2	VP2	VP2			
		VP4	VP4	VP4	VP4	VP4			
		VP6	VP6	VP6	VP6	VP6			
		VP7	VP7	VP7	VP7	VP7			
		NSP4	NSP4	NSP4	NSP4	NSP4			
						Non-structural			

*For combinations 1.1, 2.1, 2.2, 3.1, 3.2, 4.1 and 5: X₁, X₂, X₃, X₄ and X₅ each have to be a different rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4.

For combination 1.3, 2.5 and 3.4: X₁, X₂ and X₃ each have to be a different rotavirus protein selected from either VP4, VP6 and NSP4 or VP7, VP6 and NSP4.

For combination 1.2, 2.3, 2.4, 3.3 and 4.2: X₁, X₂, X₃ and X₄ each have to be a different rotavirus protein selected from the group of VP2, VP4, VP6 and NSP4, VP2, VP7, VP6 and NSP4 or VP4, VP7, VP6 and NSP4.

5

10

1. One Construct

1.1 Quintuple gene construct

[00127] As described herein, a method of producing RLPs in a plant is provided, wherein a nucleic acid (N₁; a first nucleic acid) comprising a first, second, third, fourth and fifth nucleotide sequences (R₁, R₂, R₃, R₄, R₅) encoding a first, second, third, fourth and fifth rotavirus protein (X₁, X₂, X₃, X₄, X₅) is expressed in a plant or portion of a plant (See Table 1, Combination #1.1).

15

[00128] Accordingly, nucleic acid N₁ comprises nucleotide sequences R₁, R₂, R₃, R₄ and R₅, wherein R₁ encodes rotavirus protein X₁, where X₁ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₂–R₅ encode a rotavirus protein that is not X₁, where X₂ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₁ and R₃–R₅ encode a rotavirus protein that is not X₂, where X₃ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₁ R₂, R₄, and R₅ encode a rotavirus protein that is not X₃, where X₄ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₁ – R₃ and R₅ encode a rotavirus protein that is not X₄, where X₅ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₁ – R₄ encode a rotavirus protein that is not X₅, with the result that a nucleotide sequence encoding for each rotavirus protein VP2, VP4, VP6, VP7 and NSP4 is comprised on nucleic acid N₁, thereby allowing for the expression of each rotavirus protein VP2, VP4, VP6, VP7 and NSP4 in the transformed host.

[00129] The nucleic acid may comprise a nucleotide sequence R₁, wherein R₁ may encode rotavirus protein VP2, VP4, VP6, VP7 or NSP4 and nucleotide sequences R₂–R₅, wherein R₂–R₅ encode a rotavirus protein selected from VP2, VP4, VP6, VP7 or NSP4, and wherein the rotavirus protein is not encoded by R₁. For example which is not to be considered limiting, nucleotide sequence R₁ may encode rotavirus protein VP2 and nucleotide sequence R₂–R₅ may encode in any order rotavirus protein VP4, VP6, VP7 and NSP4, but R₂–R₅ may not encode VP2. In another example which is not to be considered limiting, nucleotide sequence R₁ may encode rotavirus protein VP4 and nucleotide sequence R₂–R₅ may encode in any order rotavirus protein VP2, VP6, VP7 and NSP4, but R₂–R₅ may not encode VP4. In yet another non-limiting example, nucleotide sequence R₁ may encode rotavirus protein VP6 and nucleotide sequence R₂–R₅ may encode in any order rotavirus protein VP2, VP4, VP7 and NSP4, but R₂–R₅ may not encode VP6. In yet another example which is not to be considered limiting, nucleotide sequence R₁ may encode rotavirus protein VP7 and nucleotide sequence R₂–R₅ may encode in any order rotavirus protein VP2, VP4, VP6 and NSP4, but R₂–R₅ may not encode VP7. In yet another example which is not to be considered limiting, nucleotide sequence R₁ may encode rotavirus protein NSP4 and nucleotide sequence

R_2 - R_5 may encode in any order rotavirus protein VP2, VP4, VP6 and VP7, but R_2 - R_5 may not encode NSP4.

[00130] For example, which is not to be considered limiting, the nucleotide sequence (N_1) comprises a first nucleotide sequences (R_1) encoding a first rotavirus protein, for example rotavirus protein VP7, a second nucleotide sequences (R_2) encoding a second rotavirus protein, for example rotavirus protein VP4, a third nucleotide sequences (R_3) encoding a third rotavirus protein, for example rotavirus protein NSP4, a fourth nucleotide sequences (R_4) encoding a fourth rotavirus protein, for example rotavirus protein VP6 and a fifth nucleotide sequences (R_5) encoding a fifth rotavirus protein, for example rotavirus protein VP2.

[00131] In a further non-limiting example the nucleotide sequence (N_1) comprises a first nucleotide sequences (R_1) encoding a first rotavirus protein, for example rotavirus protein VP4, a second nucleotide sequences (R_2) encoding a second rotavirus protein, for example rotavirus protein VP7, a third nucleotide sequences (R_3) encoding a third rotavirus protein, for example rotavirus protein NSP4, a fourth nucleotide sequences (R_4) encoding a fourth rotavirus protein, for example rotavirus protein VP6 and a fifth nucleotide sequences (R_5) encoding a fifth rotavirus protein, for example rotavirus protein VP2.

[00132] In a further non-limiting example the nucleotide sequence (N_1) comprises a first nucleotide sequences (R_1) encoding a first rotavirus protein, for example rotavirus protein VP4, a second nucleotide sequences (R_2) encoding a second rotavirus protein, for example rotavirus protein VP7, a third nucleotide sequences (R_3) encoding a third rotavirus protein, for example rotavirus protein VP6, a fourth nucleotide sequences (R_4) encoding a fourth rotavirus protein, for example rotavirus protein VP2 and a fifth nucleotide sequences (R_5) encoding a fifth rotavirus protein, for example rotavirus protein NSP4.

[00133] In another non-limiting example the nucleotide sequence (N_1) comprises a first nucleotide sequences (R_1) encoding a first rotavirus protein, for example rotavirus protein VP7, a second nucleotide sequences (R_2) encoding a second rotavirus protein, for example rotavirus protein VP4, a third nucleotide sequences (R_3) encoding a third rotavirus protein, for example rotavirus protein VP6, a fourth

nucleotide sequences (R₄) encoding a fourth rotavirus protein, for example rotavirus protein VP2 and a fifth nucleotide sequences (R₅) encoding a fifth rotavirus protein, for example rotavirus protein NSP4. (see Figure 5) A plant may be transformed with a single nucleic acid (N₁) comprising a first, second, third, fourth and fifth nucleotide sequences (R₁, R₂, R₃, R₄, R₅) encoding a first, second, third, fourth and fifth rotavirus protein, so that each of the first, second, third, fourth and fifth protein are expressed in the plant. The rotavirus proteins are selected from the group of rotavirus protein VP2, VP4, VP6, VP7 and NSP4, so that each of VP2, VP4, VP6, VP7 and NSP4 are expressed in the plant. The single nucleic acid may be introduced in the plant in a transient manner, or in a stable manner.

[00134] The VP4 may be processed or cleaved to produce VP5 and VP8 within the host by co-expressing a nucleic acid encoding a suitable protease, for example, trypsin, a trypsin-like protease, a serine protease, a chymotrypsin-like protease, subtilisin. Alternatively, VP4 may be processed during any step of RLP extraction, or after RLP purification by adding a suitable protease, for example, trypsin, a trypsin-like protease, a serine protease, a chymotrypsin-like protease, subtilisin.

1.2. *Quadruple gene construct*

[00135] As described herein, a method of producing RLPs in a plant is provided, wherein a nucleic acid (N₁; a first nucleic acid) comprising a first, second, third and fourth nucleotide sequences (R₁, R₂, R₃, R₄) encoding a first, second, third and fourth rotavirus protein (X₁, X₂, X₃, X₄) is expressed in a plant or portion of a plant (See Table 1, Combination #1.2).

[00136] Accordingly, nucleic acid N₁ may comprises nucleotide sequences (R₁, R₂, R₃, R₄), wherein R₁ encodes rotavirus protein X₁, where X₁ may be any rotavirus protein selected from the group of VP2, VP4, VP6 and NSP4, and wherein R₂-R₄ encode a rotavirus protein that is not X₁, where X₂ may be any rotavirus protein selected from the group of VP2, VP4, VP6 and NSP4, and wherein R₁ and R₃-R₄ encode a rotavirus protein that is not X₂, where X₃ may be any rotavirus protein selected from the group of VP2, VP4, VP6 and NSP4, and wherein R₁ R₂, and R₄ encode a rotavirus protein that is not X₃, where X₄ may be any rotavirus protein selected from the group of VP2, VP4, VP6 and NSP4, and wherein R₁ -R₃ encode a

rotavirus protein that is not X₄, with the result that a nucleotide sequence encoding for each rotavirus protein VP2, VP4, VP6 and NSP4 is comprised on nucleic acid N₁, thereby allowing for the expression of each rotavirus protein VP2, VP4, VP6 and NSP4 in the transformed host.

5 [00137] For example, which is not to be considered limiting, the nucleotide sequence (N₁) comprises a first nucleotide sequences (R₁) encoding a first rotavirus protein, for example rotavirus protein VP6, a second nucleotide sequences (R₂) encoding a second rotavirus protein, for example rotavirus protein VP4, a third nucleotide sequences (R₃) encoding a third rotavirus protein, for example rotavirus protein VP2, and a fourth nucleotide sequences (R₄) encoding a fourth rotavirus protein, for example rotavirus protein NSP4.

10 [00138] Further accordingly, nucleic acid N₁ may comprises nucleotide sequences (R₁, R₂, R₃, R₄), wherein R₁ encodes rotavirus protein X₁, where X₁ may be any rotavirus protein selected from the group of VP2, VP7, VP6 and NSP4, and wherein R₂-R₄ encode a rotavirus protein that is not X₁, where X₂ may be any rotavirus protein selected from the group of VP2, VP7, VP6 and NSP4, and wherein R₁ and R₃-R₄ encode a rotavirus protein that is not X₂, where X₃ may be any rotavirus protein selected from the group of VP2, VP7, VP6 and NSP4, and wherein R₁ R₂, and R₄ encode a rotavirus protein that is not X₃, where X₄ may be any rotavirus protein selected from the group of VP2, VP7, VP6 and NSP4, and wherein R₁ -R₃ encode a rotavirus protein that is not X₄, with the result that a nucleotide sequence encoding for each rotavirus protein VP2, VP7, VP6 and NSP4 is comprised on nucleic acid N₁, thereby allowing for the expression of each rotavirus protein VP2, VP7, VP6 and NSP4 in the transformed host.

15 [00139] For example, which is not to be considered limiting, the nucleotide sequence (N₁) comprises a first nucleotide sequences (R₁) encoding a first rotavirus protein, for example rotavirus protein VP6, a second nucleotide sequences (R₂) encoding a second rotavirus protein, for example rotavirus protein VP7, a third nucleotide sequences (R₃) encoding a third rotavirus protein, for example rotavirus protein VP2, and a fourth nucleotide sequences (R₄) encoding a fourth rotavirus protein, for example rotavirus protein NSP4.

10

15

20

25

30

[00140] Further accordingly, nucleic acid N₁ may comprises nucleotide sequences (R₁, R₂, R₃, R₄), wherein R₁ encodes rotavirus protein X₁, where X₁ may be any rotavirus protein selected from the group of VP7, VP4, VP6 and NSP4, and wherein R₂-R₄ encode a rotavirus protein that is not X₁, where X₂ may be any rotavirus protein selected from the group of VP7, VP4, VP6 and NSP4, and wherein R₁ and R₃-R₄ encode a rotavirus protein that is not X₂, where X₃ may be any rotavirus protein selected from the group of VP7, VP4, VP6 and NSP4, and wherein R₁ R₂, and R₄ encode a rotavirus protein that is not X₃, where X₄ may be any rotavirus protein selected from the group of VP7, VP4, VP6 and NSP4, and wherein R₁ –R₃ encode a rotavirus protein that is not X₄, with the result that a nucleotide sequence encoding for each rotavirus protein VP7, VP4, VP6 and NSP4 is comprised on nucleic acid N₁, thereby allowing for the expression of each rotavirus protein VP7, VP4, VP6 and NSP4 in the transformed host.

[00141] For example, which is not to be considered limiting, the nucleotide sequence (N₁) comprises a first nucleotide sequences (R₁) encoding a first rotavirus protein, for example rotavirus protein VP6, a second nucleotide sequences (R₂) encoding a second rotavirus protein, for example rotavirus protein VP4, a third nucleotide sequences (R₃) encoding a third rotavirus protein, for example rotavirus protein VP7, and a fourth nucleotide sequences (R₄) encoding a fourth rotavirus protein, for example rotavirus protein NSP4.

1. 3 Triple gene construct

[00142] As described herein, a method of producing RLPs in a plant is provided, wherein a nucleic acid (N₁; a first nucleic acid) comprising a first, second and third nucleotide sequences (R₁, R₂, R₃) encoding a first, second and third rotavirus protein (X₁, X₂, X₃) is expressed in a plant or portion of a plant (See Table 1, Combination #1.3).

[00143] Accordingly, nucleic acid N₁ may comprises nucleotide sequences (R₁, R₂, R₃), wherein R₁ encodes rotavirus protein X₁, where X₁ may be any rotavirus protein selected from the group of VP4, VP6 and NSP4, and wherein R₂-R₃ encode a rotavirus protein that is not X₁, where X₂ may be any rotavirus protein selected from the group of VP4, VP6 and NSP4, and wherein R₁ and R₃ encode a rotavirus protein

that is not X_2 , where X_3 may be any rotavirus protein selected from the group of VP4, VP6 and NSP4, and wherein R_1 R_2 encode a rotavirus protein that is not X_3 , with the result that a nucleotide sequence encoding for each rotavirus protein VP4, VP6 and NSP4 is comprised on nucleic acid N_1 , thereby allowing for the expression of each 5 rotavirus protein VP4, VP6 and NSP4 in the transformed host.

[00144] For example, which is not to be considered limiting, the nucleotide sequence (N_1) comprises a first nucleotide sequences (R_1) encoding a first rotavirus protein, for example rotavirus protein VP6, a second nucleotide sequences (R_2) encoding a second rotavirus protein, for example rotavirus protein VP4, a third nucleotide sequences 10 (R_3) encoding a third rotavirus protein, for example rotavirus protein.

[00145] Further accordingly, nucleic acid N_1 may comprises nucleotide sequences (R_1 , R_2 , R_3), wherein R_1 encodes rotavirus protein X_1 , where X_1 may be any rotavirus protein selected from the group of VP7, VP6 and NSP4, and wherein R_2 - R_3 encode a rotavirus protein that is not X_1 , where X_2 may be any rotavirus protein selected from the group of VP7, VP6 and NSP4, and wherein R_1 and R_3 encode a rotavirus protein 15 that is not X_2 , where X_3 may be any rotavirus protein selected from the group of VP7, VP6 and NSP4, and wherein R_1 R_2 encode a rotavirus protein that is not X_3 , with the result that a nucleotide sequence encoding for each rotavirus protein VP7, VP6 and NSP4 is comprised on nucleic acid N_1 , thereby allowing for the expression of each 20 rotavirus protein VP7, VP6 and NSP4 in the transformed host.

[00146] For example, which is not to be considered limiting, the nucleotide sequence (N_1) comprises a first nucleotide sequences (R_1) encoding a first rotavirus protein, for example rotavirus protein VP6, a second nucleotide sequences (R_2) encoding a second rotavirus protein, for example rotavirus protein VP7, a third nucleotide sequences 25 (R_3) encoding a third rotavirus protein, for example rotavirus protein.

2. Two Constructs

2.1. Quadruple gene construct + single gene construct

[00147] The present invention also provides for a method of producing RLPs in a plant, wherein a first nucleic acid (N_1) comprising a nucleotide sequence (R_1) 30 encoding a first rotavirus protein (X_1), is co-expressed with a second nucleic acid (N_2)

comprising four nucleotide sequences (R₂-R₅) encoding a second, third, fourth and fifth rotavirus protein (X₂-X₅)(see Table 1, Combination #2.1), so that the first, second, third, fourth and fifth nucleotide sequence (R₁-R₅) are co-expressed in the plant.

5 [00148] In this non-limiting example, N₁ comprises nucleotide sequence (R₁) and N₂ comprises nucleotide sequences (R₂, R₃, R₄, R₅), wherein each rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4 is encoded in the combination of both constructs N₁ and N₂, and wherein R₁ encodes rotavirus protein X₁, wherein X₁ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₂-R₅ encode a rotavirus protein that is not X₁, where X₂ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₁ and R₃-R₅ encode a rotavirus protein that is not X₂, where X₃ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₁ R₂, R₄, and R₅ encode a rotavirus protein that is not X₃, where X₄ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₁-R₃ and R₅ encode a rotavirus protein that is not X₄, where X₅ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₁-R₄ encode a rotavirus protein that is not X₅, with the result that each rotavirus protein VP2, VP4, VP6, VP7 and NSP4 is expressed in the host.

10 [00149] For example, which is not to be considered limiting, nucleotide sequence R₁ may encode rotavirus protein VP2 and nucleotide sequence R₂-R₅ may encode in any order rotavirus protein VP4, VP6, VP7 and NSP4, but R₂-R₅ may not encode VP2. In another non-limiting example nucleotide sequence R₁ may encode rotavirus protein VP4 and nucleotide sequence R₂-R₅ may encode in any order rotavirus protein VP2, VP6, VP7 and NSP4, but R₂-R₅ may not encode VP4. In yet another non-limiting example nucleotide sequence R₁ may encode rotavirus protein VP6 and nucleotide sequence R₂-R₅ may encode in any order rotavirus protein VP2, VP4, VP7 and NSP4, but R₂-R₅ may not encode VP6. In yet another example which is not to be considered limiting, nucleotide sequence R₁ may encode rotavirus protein VP7 and nucleotide sequence R₂-R₅ may encode in any order rotavirus protein VP2, VP4, VP6 and NSP4, but R₂-R₅ may not encode VP7. In yet another non-limiting example nucleotide

sequence R₁ may encode rotavirus protein NSP4 and nucleotide sequence R₂-R₅ may encode in any order rotavirus protein VP2, VP4, VP6 and VP7, but R₂-R₅ may not encode NSP4.

5 [00150] The first nucleic acid (N₁) and second nucleic acid (N₂) may be introduced into the plant in the same step, or may be introduced to the plant sequentially.

10 [00151] For example, which is not to be considered limiting, a first nucleotide sequence (N₁) comprising a nucleotide sequence (R₁) encoding a first rotavirus protein, for example NSP4, is co-expressed with a second nucleic acid (N₂) comprising four nucleotide sequences (R₂-R₅) encoding a second, third, fourth and fifth rotavirus protein, for example VP7, VP4, VP6 and VP2, respectively (see Figure 5).

15 [00152] In another non-limiting example, a first nucleotide sequence (N₁) comprising a nucleotide sequence (R₁) encoding a first rotavirus protein, for example NSP4, is co-expressed with a second nucleic acid (N₂) comprising four sequential nucleotide sequences (R₂-R₅) encoding a second, third, fourth and fifth rotavirus protein, for example VP4, VP7, VP6 and VP2, respectively. In yet another non-limiting example, a first nucleotide sequence (N₁) comprising a nucleotide sequence (R₁) encoding a first rotavirus protein, for example NSP4, is co-expressed with a second nucleic acid (N₂) comprising four sequential nucleotide sequences (R₂-R₅) encoding a second, third, fourth and fifth rotavirus protein, for example VP7, VP4, VP2 and VP6, respectively. In yet another non-limiting example, a first nucleotide sequence (N₁) comprising a nucleotide sequence (R₁) encoding a first rotavirus protein, for example NSP4, is co-expressed with a second nucleic acid (N₂) comprising four sequential nucleotide sequences (R₂-R₅) encoding a second, third, fourth and fifth rotavirus protein, for example VP7, VP4, VP2 and VP6, respectively. In yet another non-limiting example, a first nucleotide sequence (N₁) comprising a nucleotide sequence (R₁) encoding a first rotavirus protein, for example NSP4, is co-expressed with a second nucleic acid (N₂) comprising four sequential nucleotide sequences (R₂-R₅) encoding a second, third, fourth and fifth rotavirus protein, for example VP6, VP2, VP4 and VP7, respectively. In yet another non-limiting example, a first nucleotide sequence (N₁) comprising a nucleotide sequence (R₁) encoding a first rotavirus

protein, for example NSP4, is co-expressed with a second nucleic acid (N₂) comprising four sequential nucleotide sequences (R₂-R₅) encoding a second, third, fourth and fifth rotavirus protein, for example VP6, VP2, VP7 and VP4, respectively.

In yet another non-limiting example, a first nucleotide sequence (N₁) comprising a nucleotide sequence (R₁) encoding a first rotavirus protein, for example NSP4, is co-expressed with a second nucleic acid (N₂) comprising four sequential nucleotide sequences (R₂-R₅) encoding a second, third, fourth and fifth rotavirus protein, for example VP2, VP4, VP6 and VP7, respectively. In yet another non-limiting example, a first nucleotide sequence (N₁) comprising a nucleotide sequence (R₁) encoding a first rotavirus protein, for example NSP4, is co-expressed with a second nucleic acid (N₂) comprising four sequential nucleotide sequences (R₂-R₅) encoding a second, third, fourth and fifth rotavirus protein, for example VP7, VP6, VP4 and VP2, respectively. In yet another non-limiting example, a first nucleotide sequence (N₁) comprising a nucleotide sequence (R₁) encoding a first rotavirus protein, for example VP7, is co-expressed with a second nucleic acid (N₂) comprising four sequential nucleotide sequences (R₂-R₅) encoding a second, third, fourth and fifth rotavirus protein, for example NSP4, VP2, VP6 and VP4, respectively. In yet another non-limiting example, a first nucleotide sequence (N₁) comprising a nucleotide sequence (R₁) encoding a first rotavirus protein, for example VP4, is co-expressed with a second nucleic acid (N₂) comprising four sequential nucleotide sequences (R₂-R₅) encoding a second, third, fourth and fifth rotavirus protein, for example NSP4, VP2, VP6 and VP7, respectively.

[00153] A plant that expresses a first nucleic acid (N₁) comprising a first nucleotide sequence (R₁) encoding a first rotavirus protein (X₁), may be transformed with a second nucleic acid (N₂) comprising four nucleotide sequences (R₂-R₅) encoding a second, third, fourth and fifth rotavirus protein (X₂-X₅), so that the first, second, third, fourth and fifth nucleotide sequence are co-expressed in the plant. Furthermore, a plant that expresses a first nucleic acid (N₂) comprising four nucleotide sequences (R₂-R₅) encoding a rotavirus protein X₂-X₅ may be transformed with a second nucleic acid (N₁) comprising a nucleotide sequence (R₁) encoding a rotavirus protein (X₁), so that the first and second nucleotide sequences R₁-R₅ are co-expressed in the plant. The rotavirus protein X₁ may be any rotavirus protein selected from the group of VP2,

5 VP4, VP6, VP7 and NSP4, and rotavirus proteins X₂-X₅ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, but not X₁, so that each rotavirus protein VP2, VP4, VP₆, VP7 and NSP4 is expressed. Furthermore, a plant may be simultaneously co-transformed with a first nucleic acid (N₂) comprising four nucleotide sequences (R₂-R₅) encoding a rotavirus protein X₂-X₅, and with a second nucleic acid (N₁) comprising a nucleotide sequence (R₁) encoding a rotavirus protein (X₁), so that the first and second nucleotide sequences R₁-R₅ are co-expressed in the plant. The rotavirus protein X₁ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and rotavirus proteins X₂-X₅ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, but not the protein selected for X₁, so that each rotavirus protein VP2, VP4, VP6, VP7 and NSP4 is expressed. The first nucleic acid (N₁) and second nucleic acid (N₂) may be introduced in the plant in a transient manner, or in a stable manner.

10

15 [00154] For example, which is not to be considered limiting, a plant that expresses a first nucleic acid (N₁) comprising a first nucleotide sequence (R₁) encoding a first rotavirus protein (X₁) for example NSP4, may be transformed with a second nucleic acid encoding (N₂) comprising four nucleotide sequences (R₂-R₅) encoding a second, third, fourth and fifth rotavirus protein (X₂-X₅), for example VP7, VP4, VP6 and VP2, so that NSP4, VP7, VP4, VP6 and VP2 are co-expressed in the plant.

20 [00155] A first plant expressing a first nucleic acid (N₁) comprising a first nucleotide sequence (R₁) encoding a first rotavirus protein (X₁), may be crossed with a second plant expressing the second nucleic acid (N₂) comprising four nucleotide sequences (R₂-R₅) encoding a second, third, fourth and fifth rotavirus protein (X₂-X₅) to produce a progeny plant (third plant) that co-expresses the first, second, third, fourth and fifth rotavirus protein (X₁-X₅). Furthermore, a first plant expressing a first nucleic acid (N₂) comprising four nucleotide sequences (R₂-R₅) encoding a rotavirus protein X₂-X₅ may be crossed with a second plant expressing a second nucleic acid (N₁) comprising a nucleotide sequence (R₁) encoding a rotavirus protein (X₁), so that nucleotide sequences R₁-R₅ are co-expressed in the progeny plant. The rotavirus protein may be any rotavirus protein selected from the group of rotavirus protein VP2, VP4, VP6, VP7 and NSP4, wherein VP2, VP4, VP6, VP7 and NSP4 are selected once, so that

25

30

each rotavirus protein VP2, VP4, VP6, VP7 and NSP4 is expressed in the progeny plant.

[00156] The VP4 may be processed or cleaved to produce VP5 and VP8 within the host by co-expressing a nucleic acid encoding a suitable protease, for example, trypsin, a trypsin-like protease, a serine protease, a chymotrypsin-like protease, subtilisin. Alternatively, VP4 may be processed during any step of RLP extraction, or after RLP purification by adding a suitable protease, for example, trypsin, a trypsin-like protease, a serine protease, a chymotrypsin-like protease, subtilisin.

2.2 Triple gene construct + Dual gene construct

[00157] The present invention also provides for a method of producing RLPs in a plant, wherein a first nucleic acid (N₁) comprising two nucleotide sequences (R₁ and R₂) encoding a first rotavirus protein (X₁) and second rotavirus protein (X₂) respectively, is co-expressed with a second nucleic acid (N₂) comprising three nucleotide sequences (R₃-R₅) encoding a third, fourth and fifth rotavirus proteins (X₃-X₅) (see Table 1, Combination #2.2), so that the first, second, third, fourth and fifth nucleotide sequence are co-expressed in the plant.

[00158] In a non-limiting example, N₁ comprises nucleotide sequences (R₁, R₂) and N₂ comprises nucleotide sequences (R₃, R₄, R₅), wherein each rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4 is encoded and wherein R₁ encodes rotavirus protein X₁, wherein X₁ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₂-R₅ encode a rotavirus protein that is not X₁, where X₂ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₁ and R₃-R₅ encode a rotavirus protein that is not X₂, where X₃ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₁ R₂, R₄, and R₅ encode a rotavirus protein that is not X₃, where X₄ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₁-R₃ and R₅ encode a rotavirus protein that is not X₄, where X₅ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₁-R₄ encode a rotavirus protein that is not X₅, with the result that each rotavirus protein VP2, VP4, VP6, VP7 and NSP4 is expressed in the host.

[00159] Therefore, the first nucleic acid (N₁) may comprise a nucleotide sequence R₁, wherein R₁ may encode rotavirus protein VP2, VP4, VP6, VP7 or NSP4 and a second nucleotide sequence R₂ which may encode any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, that is not encoded by R₁. The second nucleic acid (N₂) may comprise nucleotide sequences R₃-R₅, wherein R₃-R₅ encode rotavirus protein VP2, VP4, VP6, VP7 or NSP4, but not rotavirus protein that are encoded by R₁ or R₂. For example, which is not to be considered limiting, nucleotide sequence R₁ may encode rotavirus protein VP2 and nucleotide sequence R₂-R₅ may encode in any order rotavirus protein VP4, VP6, VP7 and NSP4, but R₂-R₅ may not encode VP2. In another non-limiting example nucleotide sequence R₁ may encode rotavirus protein VP4 and nucleotide sequences R₂-R₅ may encode in any order rotavirus protein VP2, VP6, VP7 and NSP4. In yet another example nucleotide sequence R₁ may encode rotavirus protein VP6 and nucleotide sequences R₂-R₅ may encode in any order rotavirus protein VP2, VP4, VP7 and NSP4. In yet another non-limiting example nucleotide sequence R₁ may encode rotavirus protein VP7 and nucleotide sequences R₂-R₅ may encode in any order rotavirus protein VP2, VP4, VP6 and NSP4. In yet another non-limiting example nucleotide sequence R₁ may encode rotavirus protein NSP4 and nucleotide sequences R₂-R₅ may encode in any order rotavirus protein VP2, VP4, VP6 and VP7.

10

15

20

25

30

[00160] A plant that expresses a first nucleic acid (N₁) comprising a first and second nucleotide sequence (R₁ + R₂) encoding a first and second rotavirus protein (X₁ + X₂), may be transformed with a second nucleic acid (N₂) comprising three nucleotide sequences (R₃-R₅) encoding a third, fourth and fifth rotavirus protein (X₃-X₅), so that the first, second, third, fourth and fifth nucleotide sequence are co-expressed in the plant. The first nucleic acid (N₁) and second nucleic acid (N₂) may be introduced in the plant in a transient manner, or in a stable manner.

[00161] Furthermore, a plant that expresses a first nucleic acid (N₂) comprising three nucleotide sequences (R₃-R₅) encoding a first, second and third rotavirus protein (X₃-X₅) may be transformed with a second nucleic acid (N₁) comprising a fourth nucleotide sequence (R₁) encoding a fourth rotavirus protein (X₁) and a fifth rotavirus protein (X₂) so that the first and second nucleic acids R₁-R₅ are co-expressed in the plant. The rotavirus protein X₁ may be any rotavirus protein selected from the group

of VP2, VP4, VP6, VP7 and NSP4, and rotavirus proteins X₂-X₅ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, but not X₁, so that each rotavirus protein VP2, VP4, VP6, VP7 and NSP4 is expressed. For example, which is not to be considered limiting, a plant that expresses a first nucleic acid (N₂) comprising three nucleotide sequences (R₃-R₅) encoding a first, second and third rotavirus proteins (X₃-X₅), for example VP7, VP4 and VP6 may be transformed with a second nucleic acid encoding (N₁) comprising a fourth and a fifth nucleotide sequences (R₁-R₂) encoding a fourth and a fifth rotavirus protein (X₁-X₂) for example VP2 and NSP4, so that NSP4, VP7, VP4, VP6 and VP2 are co-expressed in the plant. Furthermore, a plant may be simultaneously co-transformed with a first nucleic acid (N₁) comprising a first and second nucleotide sequence (R₁ + R₂) encoding a first and second rotavirus protein (X₁ + X₂), and a second nucleic acid (N₂) comprising three nucleotide sequences (R₃-R₅) encoding a third, fourth and fifth rotavirus protein (X₃-X₅), so that the first, second, third, fourth and fifth nucleotide sequence are co-expressed in the plant. The first nucleic acid (N₁) and second nucleic acid (N₂) may be introduced in the plant in a transient manner, or in a stable manner.

[00162] A first plant expressing a first nucleic acid (N₁) comprising a first nucleotide sequence (R₁) encoding a first rotavirus protein (X₁) and a second nucleotide sequence (R₂) encoding a second rotavirus protein (X₂), may be crossed with a second plant expressing the second nucleic acid (N₂) comprising three nucleotide sequences (R₃-R₅) encoding a third, fourth and fifth rotavirus protein (X₃-X₅) to produce a progeny plant (third plant) that co-expresses the first, second, third, fourth and fifth rotavirus protein (X₁-X₅). Furthermore, a first plant expressing a first nucleic acid (N₂) comprising three nucleotide sequences (R₃-R₅) encoding a rotavirus protein X₃-X₅ may be crossed with a second plant expressing a second nucleic acid (N₁) comprising a nucleotide sequence (R₁) encoding a rotavirus protein (X₁) and a second nucleotide sequence (R₂) encoding a second rotavirus protein (X₂), so that nucleotide sequences R₁-R₅ are co-expressed in the progeny plant. The rotavirus protein may be any rotavirus protein selected from the group of rotavirus protein VP2, VP4, VP6, VP7 and NSP4, wherein VP2, VP4, VP6, VP7 and NSP4 are selected once, so that each rotavirus protein VP2, VP4, VP6, VP7 and NSP4 is expressed in the progeny plant.

2.3. Triple gene construct + Single gene construct

[00163] The present invention also provides for a method of producing RLPs in a plant, wherein a first nucleic acid (N₁) comprising one nucleotide sequence (R₁) encoding a first rotavirus protein (X₁), is co-expressed with a second nucleic acid (N₂) comprising three nucleotide sequences (R₂-R₄) encoding a second, third and fourth rotavirus proteins (X₂-X₄), so that the first, second, third and fourth nucleotide sequence are co-expressed in the plant (See Table 1, Combination #2.3).

[00164] In a non-limiting example, N₁ comprises nucleotide sequence (R₁) and N₂ comprises nucleotide sequences (R₂, R₃, R₄), wherein each rotavirus protein selected from the group of VP2, VP4, VP6 and NSP4 is encoded and wherein R₁ encodes rotavirus protein X₁, wherein X₁ may be any rotavirus protein selected from the group of VP2, VP4, VP6 and NSP4, and wherein R₂-R₄ encode a rotavirus protein that is not X₁, where X₂ may be any rotavirus protein selected from the group of VP2, VP4, VP6 and NSP4, and wherein R₁ and R₃-R₄ encode a rotavirus protein that is not X₂, where X₃ may be any rotavirus protein selected from the group of VP2, VP4, VP6 and NSP4, and wherein R₁ R₂, and R₄ encode a rotavirus protein that is not X₃, where X₄ may be any rotavirus protein selected from the group of VP2, VP4, VP6 and NSP4, and wherein R₁-R₃ encode a rotavirus protein that is not X₄, with the result that each rotavirus protein VP2, VP4, VP6 and NSP4 is expressed in the host.

[00165] In a further non-limiting example, N₁ comprises nucleotide sequence (R₁) and N₂ comprises nucleotide sequences (R₂, R₃, R₄), wherein each rotavirus protein selected from the group of VP2, VP7, VP6 and NSP4 is encoded and wherein R₁ encodes rotavirus protein X₁, wherein X₁ may be any rotavirus protein selected from the group of VP2, VP7, VP6 and NSP4, and wherein R₂-R₄ encode a rotavirus protein that is not X₁, where X₂ may be any rotavirus protein selected from the group of VP2, VP7, VP6 and NSP4, and wherein R₁ and R₃-R₄ encode a rotavirus protein that is not X₂, where X₃ may be any rotavirus protein selected from the group of VP2, VP7, VP6 and NSP4, and wherein R₁ R₂, and R₄ encode a rotavirus protein that is not X₃, where X₄ may be any rotavirus protein selected from the group of VP2, VP7, VP6 and NSP4, and wherein R₁-R₃ encode a rotavirus protein that is not X₄, with the result that each rotavirus protein VP2, VP7, VP6 and NSP4 is expressed in the host.

[00166] In yet a further non-limiting example, N₁ comprises nucleotide sequence (R₁) and N₂ comprises nucleotide sequences (R₂, R₃, R₄), wherein each rotavirus protein selected from the group of VP4, VP7, VP6 and NSP4 is encoded and wherein R₁ encodes rotavirus protein X₁, wherein X₁ may be any rotavirus protein selected from the group of VP4, VP7, VP6 and NSP4, and wherein R₂-R₄ encode a rotavirus protein that is not X₁, where X₂ may be any rotavirus protein selected from the group of VP4, VP7, VP6 and NSP4, and wherein R₁ and R₃-R₄ encode a rotavirus protein that is not X₂, where X₃ may be any rotavirus protein selected from the group of VP4, VP7, VP6 and NSP4, and wherein R₁ R₂, and R₄ encode a rotavirus protein that is not X₃, where X₄ may be any rotavirus protein selected from the group of VP4, VP7, VP6 and NSP4, and wherein R₁ -R₃ encode a rotavirus protein that is not X₄, with the result that each rotavirus protein VP4, VP7, VP6 and NSP4 is expressed in the host.

2. 4 Two Double gene constructs

[00167] The present invention also provides for a method of producing RLPs in a plant, wherein a first nucleic acid (N₁) comprising nucleotide sequences (R₁-R₂) encoding a first and a second rotavirus proteins (X₁-X₂), is co-expressed with a second nucleic acid (N₂) comprising two nucleotide sequences (R₃-R₄) encoding a third and fourth rotavirus proteins (X₃-X₄), so that the first, second, third and fourth nucleotide sequences are co-expressed in the plant (See Table 1, Combination #2.4).

[00168] In a non-limiting example, N₁ comprises nucleotide sequences (R₁, R₂) and N₂ comprises nucleotide sequences (R₃, R₄), wherein each rotavirus protein selected from the group of VP2, VP4, VP6 and NSP4 is encoded and wherein R₁ encodes rotavirus protein X₁, wherein X₁ may be any rotavirus protein selected from the group of VP2, VP4, VP6 and NSP4, and wherein R₂-R₄ encode a rotavirus protein that is not X₁, where X₂ may be any rotavirus protein selected from the group of VP2, VP4, VP6 and NSP4, and wherein R₁ and R₃-R₄ encode a rotavirus protein that is not X₂, where X₃ may be any rotavirus protein selected from the group of VP2, VP4, VP6 and NSP4, and wherein R₁ R₂, and R₄ encode a rotavirus protein that is not X₃, where X₄ may be any rotavirus protein selected from the group of VP2, VP4, VP6 and NSP4, and wherein R₁ -R₃ encode a rotavirus protein that is not X₄, with the result that each rotavirus protein VP2, VP4, VP6 and NSP4 is expressed in the host.

[00169] In a further non-limiting example, N₁ comprises nucleotide sequences (R₁, R₂) and N₂ comprises nucleotide sequences (R₃, R₄), wherein each rotavirus protein selected from the group of VP2, VP7, VP6 and NSP4 is encoded and wherein R₁ encodes rotavirus protein X₁, wherein X₁ may be any rotavirus protein selected from the group of VP2, VP7, VP6 and NSP4, and wherein R₂-R₄ encode a rotavirus protein that is not X₁, where X₂ may be any rotavirus protein selected from the group of VP2, VP7, VP6 and NSP4, and wherein R₁ and R₃-R₄ encode a rotavirus protein that is not X₂, where X₃ may be any rotavirus protein selected from the group of VP2, VP7, VP6 and NSP4, and wherein R₁ R₂, and R₄ encode a rotavirus protein that is not X₃, where X₄ may be any rotavirus protein selected from the group of VP2, VP7, VP6 and NSP4, and wherein R₁ -R₃ encode a rotavirus protein that is not X₄, with the result that each rotavirus protein VP2, VP7, VP6 and NSP4 is expressed in the host.

[00170] In yet a further non-limiting example, N₁ comprises nucleotide sequences (R₁, R₂) and N₂ comprises nucleotide sequences (R₃, R₄), wherein each rotavirus protein selected from the group of VP4, VP7, VP6 and NSP4 is encoded and wherein R₁ encodes rotavirus protein X₁, wherein X₁ may be any rotavirus protein selected from the group of VP4, VP7, VP6 and NSP4, and wherein R₂-R₄ encode a rotavirus protein that is not X₁, where X₂ may be any rotavirus protein selected from the group of VP4, VP7, VP6 and NSP4, and wherein R₁ and R₃-R₄ encode a rotavirus protein that is not X₂, where X₃ may be any rotavirus protein selected from the group of VP4, VP7, VP6 and NSP4, and wherein R₁ R₂, and R₄ encode a rotavirus protein that is not X₃, where X₄ may be any rotavirus protein selected from the group of VP4, VP7, VP6 and NSP4, and wherein R₁ -R₃ encode a rotavirus protein that is not X₄, with the result that each rotavirus protein VP4, VP7, VP6 and NSP4 is expressed in the host.

2.5 Double gene construct + Single gene construct

[00171] The present invention also provides for a method of producing RLPs in a plant, wherein a first nucleic acid (N₁) comprising nucleotide sequences (R₁-R₂) encoding a first and a second rotavirus proteins (X₁-X₂), is co-expressed with a second nucleic acid (N₂) comprising a nucleotide sequence (R₃) encoding a third rotavirus proteins (X₃), so that the first, second and third nucleotide sequences are co-expressed in the plant (See Table 1, Combination #2.5).

[00172] In a non-limiting example, N₁ comprises nucleotide sequences (R₁, R₂) and N₂ comprises nucleotide sequence (R₃), wherein each rotavirus protein selected from the group of VP4, VP6 and NSP4 is encoded and wherein R₁ encodes rotavirus protein X₁, wherein X₁ may be any rotavirus protein selected from the group of VP4, VP6 and NSP4, and wherein R₂-R₃ encode a rotavirus protein that is not X₁, where X₂ may be any rotavirus protein selected from the group of VP4, VP6 and NSP4, and wherein R₁ and R₃ encode a rotavirus protein that is not X₂, where X₃ may be any rotavirus protein selected from the group of VP4, VP6 and NSP4, and wherein R₁ and R₂ encode a rotavirus protein that is not X₃, with the result that each rotavirus protein VP4, VP6 and NSP4 is expressed in the host.

[00173] In a further non-limiting example, N₁ comprises nucleotide sequences (R₁, R₂) and N₂ comprises nucleotide sequence (R₃), wherein each rotavirus protein selected from the group of VP7, VP6 and NSP4 is encoded and wherein R₁ encodes rotavirus protein X₁, wherein X₁ may be any rotavirus protein selected from the group of VP7, VP6 and NSP4, and wherein R₂-R₃ encode a rotavirus protein that is not X₁, where X₂ may be any rotavirus protein selected from the group of VP7, VP6 and NSP4, and wherein R₁ and R₃ encode a rotavirus protein that is not X₂, where X₃ may be any rotavirus protein selected from the group of VP7, VP6 and NSP4, and wherein R₁ and R₂ encode a rotavirus protein that is not X₃, with the result that each rotavirus protein VP7, VP6 and NSP4 is expressed in the host.

3. *Three Constructs*

3.1 *Two Dual gene constructs + one Single gene construct*

[00174] The present invention also provides for a method of producing RLPs in a plant, wherein a first nucleic acid (N₁) comprising a nucleotide sequence (R₁) encoding a first rotavirus protein (X₁) and a second nucleotide sequence (R₂) encoding a second rotavirus protein (X₂), is co-expressed with a second nucleic acid (N₂) comprising a third nucleotide sequence (R₃) encoding a third rotavirus protein (X₃) and a fourth nucleotide sequences (R₄) encoding a fourth rotavirus protein (X₄) and a third nucleic acid (N₃) comprising a fifth nucleotide sequence (R₅) encoding a fifth rotavirus protein (X₅) (see Table 1, Combination #3.1) so that the first, second, third, fourth and fifth nucleotide sequence are co-expressed in the plant.

[00175] In this non-limiting example, N₁ comprises (R₁, R₂), N₂ comprises (R₃, R₄) and N₃ comprises (R₅), wherein each rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4 is encoded once and wherein R₁ encodes rotavirus protein X₁, wherein X₁ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₂-R₅ encode a rotavirus protein that is not X₁, where X₂ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₁ and R₃-R₅ encode a rotavirus protein that is not X₂, where X₃ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₁ R₂, R₄, and R₅ encode a rotavirus protein that is not X₃, where X₄ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₁-R₃ and R₅ encode a rotavirus protein that is not X₄, where X₅ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₁-R₄ encode a rotavirus protein that is not X₅, with the result that each rotavirus protein VP2, VP4, VP6, VP7 and NSP4 is expressed in the host.

10

15

20

25

30

[00176] For example, the first nucleic acid (N₁) may comprise a nucleotide sequence R₁, wherein R₁ may encode rotavirus protein VP2, VP4, VP6, VP7 or NSP4 and a second nucleotide sequence R₂ which may encode any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4 that is not encoded by R₁. The second nucleotide sequence may comprise nucleotide sequences R₃ and R₄, wherein R₃ encode rotavirus protein VP2, VP4, VP6, VP7 or NSP4, but not a rotavirus protein that are encoded by R₁ or R₂, and R₄ encodes rotavirus protein VP2, VP4, VP6, VP7 or NSP4, but not a rotavirus protein that are encoded by R₁, R₂ or R₃. The third nucleotide sequence may comprise nucleotide sequences R₅, wherein R₅ encode rotavirus protein VP2, VP4, VP6, VP7 or NSP4, but not a rotavirus protein that are encoded by R₁, R₂, R₃ or R₄, so that each of VP2, VP4, VP6, VP7 or NSP4 are expressed in a host.

[00177] For example which is not to be considered limiting, nucleotide sequence R₁ may encode rotavirus protein VP2 and nucleotide sequence R₂-R₅ may encode in any order rotavirus protein VP4, VP6, VP7 and NSP4, but R₂-R₅ may not encode VP2. In another example nucleotide sequence R₁ may encode rotavirus protein VP4 and nucleotide sequences R₂-R₅ may encode in any order rotavirus protein VP2, VP6, VP7

and NSP4. In yet another example nucleotide sequence R_1 may encode rotavirus protein VP6 and nucleotide sequences R_2-R_5 may encode in any order rotavirus protein VP2, VP4, VP7 and NSP4. In yet another non-limiting example nucleotide sequence R_1 may encode rotavirus protein VP7 and nucleotide sequences R_2-R_5 may encode in any order rotavirus protein VP2, VP4, VP6 and NSP4. In yet another non-limiting example nucleotide sequence R_1 may encode rotavirus protein NSP4 and nucleotide sequences R_2-R_5 may encode in any order rotavirus protein VP2, VP4, VP6 and VP7.

[00178] For example, which is not to be considered limiting, a first nucleic acid (N_1) comprising a first nucleotide sequence (R_1) encoding a first rotavirus protein, for example VP6 and a second nucleotide sequence (R_2) encoding a second rotavirus protein, for example VP2, is co-expressed with a second nucleic acid (N_2) comprising a third nucleotide sequence (R_3) encoding a third rotavirus protein for example VP7 and a fourth nucleotide sequence (R_4) encoding a fourth rotavirus protein, for example VP4 and a third nucleic acid (N_3) comprising a fifth nucleotide sequence (R_5) encoding a fifth rotavirus protein for example NSP4. (see Figures 2 and 3).

[00179] A plant that expresses a first nucleic acid (N_1) comprising a first nucleotide sequence (R_1) encoding a first rotavirus protein (X_1) and a second rotavirus protein (X_2), may be transformed with a second nucleic acid (N_2) comprising a third nucleotide sequence (R_3) encoding a third rotavirus protein (X_3) and a fourth nucleotide sequences (R_4) encoding a fourth rotavirus protein (X_4). The plant may be further transformed with a third nucleic acid (N_3) comprising a fifth nucleotide sequence (R_5) encoding a fifth rotavirus protein (X_5), so that the first, second, third, fourth and fifth nucleotide sequence are co-expressed in the plant. Rotavirus protein X_1-X_5 may be selected from the group of VP2, VP4, VP6, VP7 and NSP4, wherein VP2, VP4, VP6, VP7 and NSP4 are selected once, so that each rotavirus protein VP2, VP4, VP6, VP7 and NSP4 is expressed in the plant. Furthermore, a plant may be simultaneously co-transformed with a first nucleic acid (N_1) comprising a first and second nucleotide sequence ($R_1 + R_2$) encoding a first and second rotavirus protein ($X_1 + X_2$), a second nucleic acid (N_2) comprising a third and a fourth nucleotide sequences ($R_3 + R_4$) encoding a third and a fourth rotavirus protein ($X_3 + X_4$), and a third nucleic acid (N_3) comprising a fifth nucleotide sequences (R_5) encoding a fifth

rotavirus protein (X₅), so that the first, second, third, fourth and fifth nucleotide sequence are co-expressed in the plant. The first nucleic acid (N₁), second nucleic acid (N₂) and third nucleic acid (N₃) may be introduced in the plant in a transient manner, or in a stable manner.

5 *3.2 Two Single gene constructs + one Triple gene construct*

[00180] An alternated method of producing RLPs in a plant is also provided, wherein a first nucleic acid (N₁) comprising a nucleotide sequence (R₁) encoding a first rotavirus protein (X₁) is co-expressed with a second nucleic acid (N₂) comprising a second nucleotide sequence (R₂) encoding a second rotavirus protein (X₂) and a third nucleic acid (N₃) comprising a third nucleotide sequence (R₃) encoding a third rotavirus protein (X₃), a fourth nucleotide sequences (R₄) encoding a fourth rotavirus protein (X₄) and a fifth nucleotide sequence (R₅) encoding a fifth rotavirus protein (X₅) (see Table 1, Combination #3.2) so that the first, second, third, fourth and fifth nucleotide sequence are co-expressed in the plant.

15 [00181] In an alternate example, N₁ comprises (R₁), N₂ comprises (R₂) and N₃ comprises (R₃, R₄, R₅), wherein each rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4 is encoded once and wherein R₁ encodes rotavirus protein X₁, wherein X₁ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₂-R₅ encode a rotavirus protein that is not X₁, where X₂ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₁ and R₃-R₅ encode a rotavirus protein that is not X₂, where X₃ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₁ R₂, R₄, and R₅ encode a rotavirus protein that is not X₃, where X₄ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₁-R₃ and R₅ encode a rotavirus protein that is not X₄, where X₅ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₁-R₄ encode a rotavirus protein that is not X₅, with the result that each rotavirus protein VP2, VP4, VP6, VP7 and NSP4 is expressed in the host.

20

25

30 [00182] For example which is not to be considered limiting, the first nucleic acid (N₁) may comprise a nucleotide sequence R₁, wherein R₁ may encode rotavirus protein

VP2, VP4, VP6, VP7 or NSP4 and a second nucleotide sequence R₂ which may encode any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4 that is not encoded by R₁. The second nucleotide sequence may comprise nucleotide sequences R₃ and R₄, wherein R₃ encode rotavirus protein VP2, VP4, VP6, VP7 or NSP4, but not a rotavirus protein that are encoded by R₁ or R₂ and R₄ encodes rotavirus protein VP2, VP4, VP6, VP7 or NSP4, but not a rotavirus protein that are encoded by R₁, R₂ or R₃. The third nucleotide sequence may comprise nucleotide sequences R₅, wherein R₅ encode rotavirus protein VP2, VP4, VP6, VP7 or NSP4, but not a rotavirus protein that are encoded by R₁, R₂, R₃ or R₄, and wherein VP2, VP4, VP6, VP7 or NSP4 are encoded once. For example nucleotide sequence R₁ may encode rotavirus protein VP2 and nucleotide sequence R₂-R₅ may encode in any order rotavirus protein VP4, VP6, VP7 and NSP4, but R₂-R₅ may not encode VP2. In another example nucleotide sequence R₁ may encode rotavirus protein VP4 and nucleotide sequences R₂-R₅ may encode in any order rotavirus protein VP2, VP6, VP7 and NSP4. In yet another example nucleotide sequence R₁ may encode rotavirus protein VP6 and nucleotide sequences R₂-R₅ may encode in any order rotavirus protein VP2, VP4, VP7 and NSP4. In yet another example nucleotide sequence R₁ may encode rotavirus protein VP7 and nucleotide sequences R₂-R₅ may encode in any order rotavirus protein VP2, VP4, VP6 and NSP4. In yet another example nucleotide sequence R₁ may encode rotavirus protein NSP4 and nucleotide sequences R₂-R₅ may encode in any order rotavirus protein VP2, VP4, VP6 and VP7.

[00183] A plant that expresses a first nucleic acid (N₁) comprising a first nucleotide sequence (R₁) encoding a first rotavirus protein (X₁) may be transformed with a second nucleic acid (N₂) comprising a second nucleotide sequence (R₂) encoding a second rotavirus protein (X₂). The plant may be further transformed with a third nucleic acid (N₃) comprising a third nucleotide sequence (R₃) encoding a third rotavirus protein (X₃), a fourth nucleotide sequences (R₄) encoding a fourth rotavirus protein (X₄) and a fifth nucleotide sequence (R₅) encoding a fifth rotavirus protein (X₅), so that the first, second, third, fourth and fifth nucleotide sequence are co-expressed in the plant. Rotavirus protein X₁-X₅ may be selected from the group of VP2, VP4, VP6, VP7 and NSP4, wherein VP2, VP4, VP6, VP7 and NSP4 are selected once, so that each rotavirus protein VP2, VP4, VP6, VP7 and NSP4 is

expressed in the plant. Furthermore, a plant may be simultaneously co-transformed with a first nucleic acid (N₁) comprising a first nucleotide sequence (R₁) encoding a first rotavirus protein (X₁), a second nucleic acid (N₂) comprising a second nucleotide sequence (R₂) encoding a second rotavirus protein (X₂), and a third nucleic acid (N₃) comprising a third, a fourth and a five nucleotide sequences (R₃-R₅) encoding a third, a fourth and a fifth rotavirus protein (X₃-X₅), so that the first, second, third, fourth and fifth nucleotide sequence are co-expressed in the plant. The first nucleic acid (N₁), second nucleic acid (N₂) and third nucleic acid (N₃) may be introduced in the plant in a transient manner, or in a stable manner.

[00184] For example, a first plant expressing a first nucleic acid (N₁) comprising a first, second and third nucleotide sequence (R₁, R₂, and R₃) encoding a first, second and third rotavirus protein (X₁, X₂, and X₃) may be crossed with a second plant expressing a second nucleic acid (N₂) comprising a fourth nucleotide sequence (R₄) encoding a fourth rotavirus protein (X₄) to produce a progeny plant (third plant). The third plant may be crossed with a fourth plant expressing a third nucleic acid (N₃) comprising a fifth nucleotide sequence (R₅) encoding a fifth rotavirus protein (X₅) to produce a progeny plant that co-expresses the first, second, third, fourth and fifth rotavirus protein (X₁-X₅). Furthermore, a first plant expressing a first nucleic acid (N₁) comprising a first nucleotide sequence (R₁) encoding a first rotavirus protein (X₁) may be crossed with a second plant expressing a second nucleic acid (N₂) comprising a second nucleotide sequence (R₂) encoding a rotavirus protein (X₂) to produce a progeny plant (third plant). The third plant may be crossed with a fourth plant expressing a third nucleic acid (N₃) comprising a third, fourth and fifth nucleotide sequence (R₃, R₄ and R₅) encoding a third, fourth and fifth rotavirus protein (X₃, X₄, and X₅) to produce a progeny plant that co-expresses the first, second, third, fourth and fifth rotavirus protein (X₁-X₅). Rotavirus protein X₁-X₅ may be selected from the group of VP2, VP4, VP6, VP7 and NSP4, so that each rotavirus protein VP2, VP4, VP6, VP7 and NSP4 is expressed in the plant.

3.3 Two Single gene constructs + one Dual gene construct

[00185] An alternated method of producing RLPs in a plant is also provided, wherein a first nucleic acid (N₁) comprising a nucleotide sequence (R₁) encoding a first

rotavirus protein (X₁) is co-expressed with a second nucleic acid (N₂) comprising a second nucleotide sequence (R₂) encoding a second rotavirus protein (X₂) and a third nucleic acid (N₃) comprising a third nucleotide sequence (R₃) encoding a third rotavirus protein (X₃), and a fourth nucleotide sequence (R₄) encoding a fourth rotavirus protein (X₄), so that the first, second, third and fourth nucleotide sequence are co-expressed in the plant (See Table 1, Combination #3.3).

[00186] As a non-limiting example, N₁ comprises (R₁), N₂ comprises (R₂) and N₃ comprises (R₃, R₄), wherein each rotavirus protein selected from the group of VP2, VP4, VP6, and NSP4 is encoded once and wherein R₁ encodes rotavirus protein X₁, wherein X₁ may be any rotavirus protein selected from the group of VP2, VP4, VP6, and NSP4, and wherein R₂-R₄ encode a rotavirus protein that is not X₁, where X₂ may be any rotavirus protein selected from the group of VP2, VP4, VP6, and NSP4, and wherein R₁ and R₃-R₄ encode a rotavirus protein that is not X₂, where X₃ may be any rotavirus protein selected from the group of VP2, VP4, VP6, and NSP4, and wherein R₁ R₂, and R₄ encode a rotavirus protein that is not X₃, where X₄ may be any rotavirus protein selected from the group of VP2, VP4, VP6, and NSP4, and wherein R₁ -R₃ encode a rotavirus protein that is not X₄, with the result that each rotavirus protein VP2, VP4, VP6, and NSP4 is expressed in the host.

[00187] As another non-limiting example, N₁ comprises (R₁), N₂ comprises (R₂) and N₃ comprises (R₃, R₄), wherein each rotavirus protein selected from the group of VP2, VP7, VP6, and NSP4 is encoded once and wherein R₁ encodes rotavirus protein X₁, wherein X₁ may be any rotavirus protein selected from the group of VP2, VP7, VP6, and NSP4, and wherein R₂-R₄ encode a rotavirus protein that is not X₁, where X₂ may be any rotavirus protein selected from the group of VP2, VP7, VP6, and NSP4, and wherein R₁ and R₃-R₄ encode a rotavirus protein that is not X₂, where X₃ may be any rotavirus protein selected from the group of VP2, VP7, VP6, and NSP4, and wherein R₁ R₂, and R₄ encode a rotavirus protein that is not X₃, where X₄ may be any rotavirus protein selected from the group of VP2, VP7, VP6, and NSP4, and wherein R₁ -R₃ encode a rotavirus protein that is not X₄, with the result that each rotavirus protein VP2, VP6, VP7 and NSP4 is expressed in the host.

[00188] As a further non-limiting example, N₁ comprises (R₁), N₂ comprises (R₂) and N₃ comprises (R₃, R₄), wherein each rotavirus protein selected from the group of VP4, VP7, VP6, and NSP4 is encoded once and wherein R₁ encodes rotavirus protein X₁, wherein X₁ may be any rotavirus protein selected from the group of VP4, VP7, VP6, and NSP4, and wherein R₂-R₄ encode a rotavirus protein that is not X₁, where X₂ may be any rotavirus protein selected from the group of VP4, VP7, VP6, and NSP4, and wherein R₁ and R₃-R₄ encode a rotavirus protein that is not X₂, where X₃ may be any rotavirus protein selected from the group of VP4, VP7, VP6, and NSP4, and wherein R₁ R₂, and R₄ encode a rotavirus protein that is not X₃, where X₄ may be any rotavirus protein selected from the group of VP4, VP7, VP6, and NSP4, and wherein R₁ -R₃ encode a rotavirus protein that is not X₄, with the result that each rotavirus protein VP4, VP7, VP6, and NSP4 is expressed in the host.

3.4 Three Single gene constructs

[00189] An alternated method of producing RLPs in a plant is also provided, wherein a first nucleic acid (N₁) comprising a nucleotide sequence (R₁) encoding a first rotavirus protein (X₁) is co-expressed with a second nucleic acid (N₂) comprising a second nucleotide sequence (R₂) encoding a second rotavirus protein (X₂) and a third nucleic acid (N₃) comprising a third nucleotide sequence (R₃) encoding a third rotavirus protein (X₃), so that the first, second and third nucleotide sequence are co-expressed in the plant (See Table 1, Combination #3.4).

[00190] As a non-limiting example, N₁ comprises (R₁), N₂ comprises (R₂) and N₃ comprises (R₃), wherein each rotavirus protein selected from the group of VP4, VP6, and NSP4 is encoded once and wherein R₁ encodes rotavirus protein X₁, wherein X₁ may be any rotavirus protein selected from the group of VP4, VP6, and NSP4, and wherein R₂-R₃ encode a rotavirus protein that is not X₁, where X₂ may be any rotavirus protein selected from the group of VP4, VP6, and NSP4, and wherein R₁ and R₃ encode a rotavirus protein that is not X₂, where X₃ may be any rotavirus protein selected from the group of VP4, VP6, and NSP4, and wherein R₁ and R₂ encode a rotavirus protein that is not X₃, with the result that each rotavirus protein VP4, VP6, and NSP4 is expressed in the host.

[00191] As a further non-limiting example, N₁ comprises (R₁), N₂ comprises (R₂) and N₃ comprises (R₃), wherein each rotavirus protein selected from the group of VP7, VP6, and NSP4 is encoded once and wherein R₁ encodes rotavirus protein X₁, wherein X₁ may be any rotavirus protein selected from the group of VP7, VP6, and NSP4, and wherein R₂-R₃ encode a rotavirus protein that is not X₁, where X₂ may be any rotavirus protein selected from the group of VP7, VP6, and NSP4, and wherein R₁ and R₃ encode a rotavirus protein that is not X₂, where X₃ may be any rotavirus protein selected from the group of VP7, VP6, and NSP4, and wherein R₁ and R₂ encode a rotavirus protein that is not X₃, with the result that each rotavirus protein VP7, VP6, and NSP4 is expressed in the host.

5

10

4. *Four Constructs*

4.1. Three single gene constructs + one dual gene construct

15

20

[00192] Also provided herein is a method of producing RLPs in a plant, wherein a first nucleic acid (N₁) comprising a first nucleotide sequence (R₁) encoding a first rotavirus protein (X₁) is co-expressed with a second nucleic acid (N₂) comprising a second nucleotide sequence (R₂) encoding a second rotavirus protein (X₂), a third nucleic acid (N₃) comprising a third nucleotide sequence (R₃) encoding a third rotavirus protein (X₃), and fourth nucleic acid (N₄) comprising a fourth nucleotide sequences (R₄) encoding a fourth rotavirus protein (X₄) and a fifth nucleotide sequence (R₅) encoding a fifth rotavirus protein (X₅) (see Table 1, Combination #4.1) so that the first, second, third, fourth and fifth nucleotide sequence are co-expressed in the plant.

25

30

[00193] In this example, N₁ comprises (R₁), N₂ comprises (R₂), N₃ comprises (R₃), and N₄ comprises (R₄ and R₅), wherein each rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4 is encoded, and wherein R₁ encodes rotavirus protein X₁, wherein X₁ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₂-R₅ encode a rotavirus protein that is not X₁, where X₂ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₁ and R₃-R₅ encode a rotavirus protein that is not X₂, where X₃ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₁ R₂, R₄, and R₅ encode a rotavirus protein that is

not X₃, where X₄ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₁ –R₃ and R₅ encode a rotavirus protein that is not X₄, where X₅ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₁ –R₄ encode a rotavirus protein that is not X₅, with the result that each rotavirus protein VP2, VP4, VP6, VP7 and NSP4 is expressed in the host.

[00194] The four nucleic acids may be introduced into a plant in any order. For example, which is not be considered limiting, a plant that expresses a first nucleic acid (N₁) comprising a first nucleotide sequence (R₁) encoding a first rotavirus protein (X₁) may be transformed with a second nucleic acid (N₂) comprising a second nucleotide sequence (R₂) encoding a second rotavirus protein (X₂). The plant may be further transformed with a third nucleic acid (N₃) comprising a third nucleotide sequence (R₃) encoding a third rotavirus protein (X₃). The plant then may be further be transformed with a fourth nucleic acid (N₄) comprising a fourth nucleotide sequences (R₄) encoding a fourth rotavirus protein (X₄) and a fifth nucleotide sequence (R₅) encoding a fifth rotavirus protein (X₅), so that the first, second, third, fourth and fifth nucleotide sequence are co-expressed in the plant. Furthermore, a plant may be simultaneously co-transformed with a first nucleic acid (N₁) comprising a first nucleotide sequence (R₁) encoding a first rotavirus protein (X₁), a second nucleic acid (N₂) comprising a second nucleotide sequence (R₂) encoding a second rotavirus protein (X₂), a third nucleic acid (N₃) comprising a third nucleotide sequence (R₃) encoding a third rotavirus protein (X₃), and a fourth nucleic acid (N₄) comprising a fourth and a fifth nucleotide sequences (R₄-R₅) encoding a fourth and a fifth rotavirus protein (X₄-X₅) so that the first, second, third, fourth and fifth nucleotide sequence are co-expressed in the plant. The first nucleic acid (N₁), second nucleic acid (N₂), third nucleic acid (N₃) and fourth nucleic acid (N₄) may be introduced in the plant in a transient manner, or in a stable manner.

[00195] Furthermore, a plant that expresses a first nucleic acid (N₄) comprising a first nucleotide sequence (R₄) encoding a first rotavirus protein (X₄) and a second nucleotide sequence (R₅) encoding a second rotavirus protein (X₅) may be transformed with a second nucleic acid (N₁) comprising a third nucleotide sequence (R₁) encoding a third rotavirus protein (X₁). The plant may be further transformed

with a third nucleic acid (N₂) comprising a third nucleotide sequence (R₂) encoding a fourth rotavirus protein (X₃). The plant then may be further be transformed with a fourth nucleic acid (N₃) comprising a fifth nucleotide sequences (R₃) encoding a fifth rotavirus protein and a fifth nucleotide sequence (R₃) encoding a fifth rotavirus protein (X₃), so that the first, second, third, fourth and fifth nucleotide sequence are co-expressed in the plant. Rotavirus protein X₁-X₅ may be selected from the group of VP2, VP4, VP6, VP7 and NSP4, wherein VP2, VP4, VP6, VP7 and NSP4 are selected once, so that each rotavirus protein VP2, VP4, VP6, VP7 and NSP4 is expressed in the plant. The first nucleic acid (N₄), second nucleic acid (N₁), third nucleic acid (N₂) and fourth nucleic acid (N₃) may be introduced in the plant in a transient manner, or in a stable manner.

[00196] A first plant expressing a first nucleic acid (N₁) comprising a first nucleotide sequence (R₁) encoding a first rotavirus protein (X₁), may be crossed with a second plant expressing a second nucleic acid (N₂) comprising a second nucleotide sequence (R₂) encoding a second rotavirus protein (X₂) to produce a progeny plant (third plant). The third plant may be crossed with a fourth plant expressing a third nucleic acid (N₃) comprising a third nucleotide sequence (R₃) encoding a third rotavirus protein (X₃) to produces a progeny plant (fifth plant). The fifth plant may be crossed with a sixth plant expressing a fourth nucleic acid (N₄) comprising a fourth nucleotide sequences (R₄) encoding a fourth rotavirus protein (X₄) and a fifth nucleotide sequences (R₅) encoding a fifth rotavirus protein (X₅) to produce a progeny plant that co-expresses the first, second, third, fourth and fifth rotavirus protein (X₁-X₅).

[00197] Furthermore, a first plant expressing a first nucleic acid (N₄) comprising a first nucleotide sequence (R₄) encoding a first rotavirus protein (X₄) and a second nucleotide sequence (R₅) encoding a second rotavirus protein (X₅) may be crossed with a second plant expressing a second nucleic acid (N₂) comprising a third nucleotide sequence (R₁) encoding a third rotavirus protein (X₁) to produce a progeny plan (third plant). The third plant may be crossed with a fourth plant expressing a third nucleic acid (N₂) comprising a fourth nucleotide sequence (R₂) encoding a fourth rotavirus protein (X₂) to produce a progeny plant (fifth plant). The fifth plant may be crossed with a sixth plant expressing a fifth nucleotide sequence (R₃) encoding a fifth rotavirus protein (X₃) to produce a progeny plant that co-

expresses the first, second, third, fourth and fifth rotavirus protein (X₁-X₅). Rotavirus protein X₁-X₅ may be selected from the group of VP2, VP4, VP6, VP7 and NSP4, wherein VP2, VP4, VP6, VP7 and NSP4 are selected once, so that each rotavirus protein VP2, VP4, VP6, VP7 and NSP4 is expressed in the plant.

5 *4.2 Four single gene constructs*

[00198] Also provided herein is a method of producing RLPs in a plant, wherein a first nucleic acid (N₁) comprising a first nucleotide sequence (R₁) encoding a first rotavirus protein (X₁) is co-expressed with a second nucleic acid (N₂) comprising a second nucleotide sequence (R₂) encoding a second rotavirus protein (X₂), a third nucleic acid (N₃) comprising a third nucleotide sequence (R₃) encoding a third rotavirus protein (X₃), and a fourth nucleic acid (N₄) comprising a fourth nucleotide sequences (R₄) encoding a fourth rotavirus protein (X₄), so that the first, second, third, fourth and fifth nucleotide sequence are co-expressed in the plant (See Table 1, Combination #4.2).

15 [00199] In a non-limiting example, N₁ comprises (R₁), N₂ comprises (R₂), N₃ comprises (R₃), and N₄ comprises (R₄), wherein each rotavirus protein selected from the group of VP2, VP4, VP6 and NSP4 is encoded, and wherein R₁ encodes rotavirus protein X₁, wherein X₁ may be any rotavirus protein selected from the group of VP2, VP4, VP6 and NSP4, and wherein R₂-R₄ encode a rotavirus protein that is not X₁, where X₂ may be any rotavirus protein selected from the group of VP2, VP4, VP6 and NSP4, and wherein R₁ and R₃-R₄ encode a rotavirus protein that is not X₂, where X₃ may be any rotavirus protein selected from the group of VP2, VP4, VP6 and NSP4, and wherein R₁ R₂, and R₄ encode a rotavirus protein that is not X₃, where X₄ may be any rotavirus protein selected from the group of VP2, VP4, VP6 and NSP4, and wherein R₁ -R₃ encode a rotavirus protein that is not X₄, with the result that each rotavirus protein VP2, VP4, VP6 and NSP4 is expressed in the host.

20 [00200] In another non-limiting example, N₁ comprises (R₁), N₂ comprises (R₂), N₃ comprises (R₃), and N₄ comprises (R₄), wherein each rotavirus protein selected from the group of VP2, VP7, VP6 and NSP4 is encoded, and wherein R₁ encodes rotavirus protein X₁, wherein X₁ may be any rotavirus protein selected from the group of VP2, VP7, VP6 and NSP4, and wherein R₂-R₄ encode a rotavirus protein that is not X₁,

where X_2 may be any rotavirus protein selected from the group of VP2, VP7, VP6 and NSP4, and wherein R_1 and R_3 - R_4 encode a rotavirus protein that is not X_2 , where X_3 may be any rotavirus protein selected from the group of VP2, VP7, VP6 and NSP4, and wherein R_1 R_2 , and R_4 encode a rotavirus protein that is not X_3 , where X_4 may be any rotavirus protein selected from the group of VP2, VP7, VP6 and NSP4, and wherein R_1 - R_3 encode a rotavirus protein that is not X_4 , with the result that each 5 rotavirus protein VP2, VP7, VP6 and NSP4 is expressed in the host.

[00201] In a further non-limiting example, N_1 comprises (R_1), N_2 comprises (R_2), N_3 comprises (R_3), and N_4 comprises (R_4), wherein each rotavirus protein selected from 10 the group of VP4, VP7, VP6 and NSP4 is encoded, and wherein R_1 encodes rotavirus protein X_1 , wherein X_1 may be any rotavirus protein selected from the group of VP4, VP7, VP6 and NSP4, and wherein R_2 - R_4 encode a rotavirus protein that is not X_1 , where X_2 may be any rotavirus protein selected from the group of VP4, VP7, VP6 and NSP4, and wherein R_1 and R_3 - R_4 encode a rotavirus protein that is not X_2 , where X_3 may be any rotavirus protein selected from the group of VP4, VP7, VP6 and NSP4, and wherein R_1 R_2 , and R_4 encode a rotavirus protein that is not X_3 , where X_4 may be any rotavirus protein selected from the group of VP4, VP7, VP6 and NSP4, and 15 wherein R_1 - R_3 encode a rotavirus protein that is not X_4 , with the result that each rotavirus protein VP4, VP7, VP6 and NSP4 is expressed in the host.

20 5. *Five Constructs*

5. *Five single gene constructs*

[00202] The present invention also provides for a method of producing RLPs in a 25 plant, wherein a first nucleic acid (N_1) comprising a first nucleotide sequence (R_1) encoding a first rotavirus protein (X_1) is co-expressed with a second nucleic acid (N_2) comprising a second nucleotide sequence (R_2) encoding a second rotavirus protein (X_2) and a third nucleic acid (N_3) comprising a third nucleotide sequence (R_3) encoding a third rotavirus protein (X_3) and fourth nucleic acid (N_4) comprising a 30 fourth nucleotide sequences (R_4) encoding a fourth rotavirus protein (X_4) and a fifth nucleic acid (R_5) comprising a fifth nucleotide sequence (R_5) encoding a fifth rotavirus protein (X_5) (see Table 1, Combination #5) so that the first, second, third, fourth and fifth nucleotide sequence are co-expressed in the plant.

[00203] In this non-limiting example, N₁ comprises (R₁), N₂ comprises (R₂), N₃ comprises (R₃), N₄ comprises (R₄) and N₅ comprises (R₅), wherein each rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₁ encodes rotavirus protein X₁, wherein X₁ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₂-R₅ encode a rotavirus protein that is not X₁, where X₂ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₁ and R₃-R₅ encode a rotavirus protein that is not X₂, where X₃ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₁ R₂, R₄, and R₅ encode a rotavirus protein that is not X₃, where X₄ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₁-R₃ and R₅ encode a rotavirus protein that is not X₄, where X₅ may be any rotavirus protein selected from the group of VP2, VP4, VP6, VP7 and NSP4, and wherein R₁-R₄ encode a rotavirus protein that is not X₅, with the result that each rotavirus protein VP2, VP4, VP6, VP7 and NSP4 is expressed in the host.

[00204] For example, which is not to be considered limiting, nucleotide sequence R₁ may encode rotavirus protein VP2 and nucleotide sequence R₂-R₅ may encode in any order rotavirus protein VP4, VP6, VP7 and NSP4, but R₂-R₅ may not encode VP2. In another non-limiting example nucleotide sequence R₁ may encode rotavirus protein VP4 and nucleotide sequences R₂-R₅ may encode in any order rotavirus protein VP2, VP6, VP7 and NSP4. In yet another non-limiting example nucleotide sequence R₁ may encode rotavirus protein VP6 and nucleotide sequences R₂-R₅ may encode in any order rotavirus protein VP2, VP4, VP7 and NSP4. In yet another example which is not to be considered limiting, nucleotide sequence R₁ may encode rotavirus protein VP7 and nucleotide sequences R₂-R₅ may encode in any order rotavirus protein VP2, VP4, VP6 and NSP4. In yet another non-limiting example nucleotide sequence R₁ may encode rotavirus protein NSP4 and nucleotide sequences R₂-R₅ may encode in any order rotavirus protein VP2, VP4, VP6 and VP7.

[00205] For example, which is not to be considered limiting, a first nucleic acid (N₁) comprising a first nucleotide sequence (R₁) encoding a first rotavirus protein, for example VP2 is co-expressed with a second nucleic acid (N₂) comprising a second nucleotide sequence (R₂) encoding a second rotavirus protein, for example VP6, a

third nucleic acid (N₃) comprising a third nucleotide sequence (R₃) encoding a third rotavirus protein for example VP4, a fourth nucleic acid (N₄) comprising a fourth nucleotide sequence (R₄) encoding a fourth rotavirus protein, for example VP7 and a fifth nucleic acid (N₅) comprising a fifth nucleotide sequence (R₅) encoding a fifth rotavirus protein for example NSP4 (see Figure 3).

[00206] The five nucleic acids may be introduced into a plant in any order. For example, which is not to be considered limiting, a plant that expresses a first nucleic acid (N₁) comprising a first nucleotide sequence (R₁) encoding a first rotavirus protein (X₁) may be transformed with a second nucleic acid (N₂) comprising a second nucleotide sequence (R₂) encoding a second rotavirus protein (X₂). The plant may be further transformed with a third nucleic acid (N₃) comprising a third nucleotide sequence (R₃) encoding a third rotavirus protein (X₃). The plant then may be further transformed with a fourth nucleic acid (N₄) comprising a fourth nucleotide sequences (R₄) encoding a fourth rotavirus protein (X₄). The plant then may be further transformed with a fifth nucleic acid (N₅) comprising a fourth nucleotide sequences (R₅) encoding a fourth rotavirus protein (X₅), so that the first, second, third, fourth and fifth nucleotide sequence are co-expressed in the plant. Rotavirus protein X₁-X₅ may be selected from the group of VP2, VP4, VP6, VP7 and NSP4, wherein VP2, VP4, VP6, VP7 and NSP4 are selected once, so that each rotavirus protein VP2, VP4, VP6, VP7 and NSP4 is expressed in the plant. Furthermore, a plant may be co-transformed simultaneously with a first nucleic acid (N₁) comprising a first nucleotide sequence (R₁) encoding a first rotavirus protein (X₁), a second nucleic acid (N₂) comprising a second nucleotide sequence (R₂) encoding a second rotavirus protein (X₂), a third nucleic acid (N₃) comprising a third nucleotide sequence (R₃) encoding a third rotavirus protein (X₃), a fourth nucleic acid (N₄) comprising a fourth nucleotide sequences (R₄) encoding a fourth and a fifth rotavirus protein (X₄), and a fifth nucleic acid (N₅) comprising a fifth nucleotide sequences (R₅) encoding a fifth rotavirus protein (X₅) so that the first, second, third, fourth and fifth nucleotide sequence are co-expressed in the plant. The first nucleic acid (N₁), second nucleic acid (N₂), third nucleic acid (N₃), fourth nucleic acid (N₄) and fifth nucleic acid (N₅) may be introduced in the plant in a transient manner, or in a stable manner.

[00207] A first plant expressing a first nucleic acid (N₁) comprising a first nucleotide sequence (R₁) encoding a first rotavirus protein (X₁), may be crossed with a second plant expressing a second nucleic acid (N₂) comprising a second nucleotide sequence (R₂) encoding a second rotavirus protein (X₂) to produce a progeny plant (third plant).
5 The third plant may be crossed with a fourth plant expressing a third nucleic acid (N₃) comprising a third nucleotide sequence (R₃) encoding a third rotavirus protein (X₃) to produces a progeny plant (fifth plant). The fifth plant may be crossed with a sixth plant expressing a fourth nucleic acid (N₄) comprising a fourth nucleotide sequences (R₄) encoding a fourth rotavirus protein (X₄) to produce a progeny plant (seventh plant).
10 The seventh plant may be crossed with an eight plant expressing a fifth nucleic acid (N₅) comprising a fifth nucleotide sequences (R₅) encoding a fifth rotavirus protein (X₅) to produce a progeny plant that co-expresses the first, second, third, fourth and fifth rotavirus protein (X₁-X₅). Rotavirus protein X₁-X₅ may be selected from the group of VP2, VP4, VP6, VP7 and NSP4, wherein VP2, VP4, VP6, VP7 and
15 NSP4 are selected once, so that each rotavirus protein VP2, VP4, VP6, VP7 and NSP4 is expressed in the plant.

Ratio of nucleic acids (N) used to transform a host

[00208] As may be seen in Figure 5, the level of RLP accumulation in the plant, portion of the plant or plant cell, may be influenced by the ratio of the nucleic acids encoding rotavirus structural and nonstructural proteins that are expressed in a plant. For example, which is not to be considered limiting, the ratio of nucleic acids (N) that are introduced into a plant may be modified by providing different amounts of *Agrobacterium*, that are used to infiltrate the plant, portion of the plant or plant cell, where each *Agrobacterium* comprises a construct comprising a nucleic acid (N) as set out in Table 1 (and accompanying text) above. For example which is not to be considered limiting, the ratio of the structural protein-containing to nonstructural protein-containing *Agrobacterium* may range for example from about 0.8:1 to about 2.5:1.5 (structural protein : nonstructural protein), or any amount therebetween, for example from about 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 25 1.8:1, 1.9:1, 2:0.5, 2:1, 2.2:1, 2.3:1, 2.4:1, 2.5:1, 2.5:1.1, 2.5:1.2, 2.5:1.3, 2.5:1.4, 30 2.5:1.5 (structural protein : nonstructural protein), or any amount therebetween.

For example, as described below, the ratio of structural rotavirus protein to nonstructural protein may be varied for example by introducing different ratios of *Agrobacterium* containing the one or more nucleic acid (N) comprising one or more nucleotide sequence (R) encoding the rotavirus structural and non-structural proteins (X) into a host, for example a plant, portion of the plant or plant cell. For example the absorbance or optical density (OD) of *Agrobacterium* strains in the bacterial suspension may be used as measure to establish a ratio between *Agrobacterium* strains that containing the structural protein to *Agrobacterium* strains that contain the nonstructural protein. For example, which is not considered limiting, the OD may range for example from about 0.2:0.4 to about 1:0.6 (*Agrobacterium* strains containing structural protein : *Agrobacterium* strains containing nonstructural protein in the bacterial suspension) or any amount therebetween, for example from about 0.2:0.4, 0.3:0.4, 0.4:0.4, 0.5:0.4, 0.6:0.4, 0.7:0.4, 0.8:0.4, 0.9:0.4, 1:0.4, 0.2:0.5, 0.3:0.5, 0.4:0.5, 0.5:0.5, 0.6:0.5, 0.7:0.5, 0.8:0.5, 0.9:0.5, 1:0.5, 0.2:0.6, 0.3:0.6, 0.4:0.6, 0.5:0.6, 0.6:0.6, 0.7:0.6, 0.8:0.6, 0.9:0.6, 1:0.6, 0.3:0.4, 0.3:0.5, 0.3:0.6, 0.4:0.4, 0.4:0.5, 0.4:0.6, 0.5:0.4, 0.5:0.5, 0.5:0.6, 0.6:0.4, 0.6:0.5, 0.6:0.6, 0.7:0.4, 0.7:0.5, 0.7:0.6, 0.8:0.4, 0.8:0.5, 0.8:0.6, 0.9:0.4, 0.9:0.5, 0.9:0.6, 1:0.4, 1:0.5, 1:0.6 (*Agrobacterium* strains containing structural protein : *Agrobacterium* strains containing nonstructural protein in the bacterial suspension) or any amount therebetween. For example, which is not considered limiting, an OD of 0.4 of *Agrobacterium* strains in bacterial suspension may be designated as a reference of 1. Therefore a ratio of 1.5:1 of structural to non structural protein may be achieved by using an OD of 0.6 of *Agrobacterium* strain containing structural protein to an OD of 0.4 of *Agrobacterium* strain containing nonstructural protein in bacterial suspension.

[00209] The ratio of rotavirus structural protein to nonstructural protein may be varied for example by introducing different ratios of *Agrobacterium* containing the one or more nucleic acid (N) comprising one or more nucleotide sequence (R) encoding the rotavirus structural and non-structural proteins (X) into the plant, portion of the plant or plant cell. Alternatively, if the rotavirus structural proteins and nonstructural proteins are present on the same construct, and therefore are introduced into the plant, plant portion or plant cell, using one *Agrobacterium*, they may be differentially expressed within the plant, portion of the plant or plant cell using suitable promoters

so that the desired ratio of rotavirus structural proteins and nonstructural proteins is obtained.

[00210] Therefore as described herein, a method is provided for increasing RLP production yield, increasing VP4 and VP7 yield, or increasing both RLPS and VP4 and VP7 yield, by modulating the ratio between the one or more nucleic acid (N) comprising one or more nucleotide sequence (R) encoding the rotavirus structural proteins (X) and the one or more nucleic acid (N) comprising one or more nucleotide sequence (R) encoding the rotavirus nonstructural proteins (X).

[00211] For example, the percentage of the *Agrobacterium* containing rotavirus nonstructural protein may be between 20% to 60% or any amount therebetween, of total amount of *Agrobacterium* use to infiltrate the plant, plant portion or plant cell. For example the percent ratio of *Agrobacterium* containing rotavirus nonstructural protein may be 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, or any amount therebetween of the total *Agrobacterium* use to infiltrate the plant, plant portion or plant cell. Similarly, the percentage of *Agrobacterium* containing structural protein within the total amount of *Agrobacterium* infiltrated may be 80%, 79%, 78%, 77%, 76%, 75%, 74%, 73%, 72%, 71%, 70%, 69%, 68%, 67%, 66%, 65%, 64%, 63%, 62%, 61%, 60%, 59%, 58%, 57%, 56%, 55%, 54%, 53%, 52%, 51%, 50%, 49%, 48%, 47%, 46%, 45%, 44%, 43%, 42%, 41% or 40% or any amount therebetween, of the total *Agrobacterium* use to infiltrate the plant, plant portion or plant cell.

[00212] For example, the percentage ratio of *Agrobacterium* containing rotavirus structural protein to *Agrobacterium* containing nonstructural protein may be 70%:30%, 60%:40%, 50%:50%, 40%:60% or any percentage ratio amount therebetween. For example, the percentage ratio between *Agrobacterium* containing structural protein and *Agrobacterium* containing nonstructural protein may be 50%:50%, 51%:49%, 52%:48%, 53%:47%, 54%:46%, 55%:45%, 56%:44%, 57%:43%, 58%:42%, 59%: 41%, 60%:40%, or any percentage ratio in between.

5

10

15

20

25

30

[00213] As described below, the ratio of rotavirus structural protein to rotavirus nonstructural protein may further be varied for example by differentially expressing the rotavirus structural protein and the rotavirus nonstructural protein. Expression may be varied by modulating for example replication, transcription, translation, or a combination thereof, of the rotavirus structural protein, the rotavirus nonstructural protein, or both the rotavirus structural protein and the rotavirus nonstructural protein. For example different regulatory elements, including promoters, amplification elements, enhancers or a combination thereof, may be used in addition to varying the ratio of the rotavirus structural protein-containing *Agrobacterium* to rotavirus nonstructural protein-containing *Agrobacterium* infiltrated as described above. A first set or combination of regulatory elements may be used to regulate the replication, transcription or a combination thereof, of the one or more nucleic acid comprising one or more nucleotide sequence encoding rotavirus structural protein and a second set or combination of regulatory elements may be used to regulate the replication, transcription or a combination thereof, of the one or more nucleotide sequence encoding rotavirus nonstructural protein. The first set or combination of regulatory elements is different from the second set or combination of regulatory elements and permits differential expression of the one or more nucleic acid comprising one or more nucleotide sequence encoding rotavirus structural protein and the one or more nucleic acid comprising one or more nucleotide sequence encoding rotavirus nonstructural protein to permit modulating the ratio of rotavirus structural protein:rotavirus nonstructural protein *in vivo*.

[00214] For example, which is not to be considered limiting, one set or combination of regulatory elements, for example the first set, may include an enhancer element for example elements obtained from CPMV, such as CPMV HT, or CPMV 160 (see Figure 6). CPMV HT is described in US 61/971,274 (which is incorporated herein by reference) and CPMV 160 is described in US 61/925,852 (which is incorporated herein by reference). The enhancer element, for example those obtained from CPMV, for example CPMV HT or CPMV 160 (see Figure 6; US 61/971,274, and US 61/925,852, respectively) may be absent in the other set or combination of regulatory elements, for example the second set. Alternatively, the second set may include an enhancer element (for example elements obtained from CPMV, (for example CPMV

HT or CPMV 160), while the amplification element (for example elements obtained from CPMV, (for example CPMV HT or CPMV 160) may be absent in the first set or combination of regulatory elements. In a similar manner, the strength of a promoters may differ between the first and second set or combination of regulatory elements, or one of the promoters may be inducible, and the other constitutive, so that differential expression between the rotavirus structural protein relative to the rotavirus nonstructural protein is achieved *in vivo*.

[00215] For example, the ratio of rotavirus structural protein to nonstructural protein may be varied for example by introducing different ratios of *Agrobacterium* containing a first nucleic acid (N₁) comprising a nucleotide sequence (R₁) encoding first rotavirus protein for example rotavirus nonstructural protein NSP4 to *Agrobacterium* containing a second nucleic acid (N₂) comprising four nucleotide sequences (R₂-R₅) encoding a second, third, fourth and fifth rotavirus protein, for example in any order rotavirus structural proteins VP2, VP4, VP6 and VP7. For example the ratio of the *Agrobacterium* containing a first nucleic acid (N₁) comprising a nucleotide sequence (R₁) encoding rotavirus nonstructural protein NSP4 to the *Agrobacterium* containing a second nucleic acid (N₂) comprising four nucleotide sequences (R₂-R₅) encoding rotavirus structural proteins VP2, VP4, VP6 and VP7 may be 0.8:1 and 1:2 (*Agrobacterium* containing N₁ to N₂) or any amount there between for example 1:1.5 (*Agrobacterium* containing N₁ to N₂).

[00216] Furthermore, the ratio of rotavirus structural protein to nonstructural protein may be varied by differentially expressing within the plant, portion of the plant or plant cell the rotavirus structural protein to nonstructural protein using enhancer elements. For example, the ratio of rotavirus structural protein to nonstructural protein may be varied for example by co-expressing within the plant, portion of the plant or plant cell a first nucleic acid (N₁) comprising a nucleotide sequence (R₁) encoding a first rotavirus protein for example a nonstructural protein NSP4 with a second nucleic acid (N₂) comprising four nucleotide sequences (R₂-R₅) encoding a second, third, fourth and fifth rotavirus protein for example in any order rotavirus structural proteins VP2, VP4, VP6 and VP7, wherein the second, third, fourth and fifth nucleotide sequence are operatively linked to an enhancer sequence for example CPMV HT, CPMV 160, CPMV 160+ and CPMV HT+ (described in US 61/971,274,

and US 61/925,852, respectively which are incorporated herein by reference), as described below. In another example, the ratio of rotavirus structural protein to nonstructural protein may be varied for example by co-expressing within the plant, portion of the plant or plant cell a first nucleic acid (N₁) comprising first nucleotide sequence (R₁) encoding a first rotavirus protein for example structural protein VP6 or VP7 and second nucleotide sequence (R₂) encoding a second rotavirus protein for example structural protein VP2 or VP4, second nucleic acid (N₂) comprising a third nucleotide sequence (R₃) encoding a third rotavirus protein for example structural protein VP7 or VP6 and a fourth nucleotide sequence (R₄) encoding a fourth rotavirus protein for example structural protein VP4 or VP2 and a third nucleic acid (N₃) comprising fifth nucleotide sequences (R₅) encoding a fifth rotavirus protein for example nonstructural protein NSP4, wherein the first, second, third and fourth nucleotide sequence are operatively linked to an enhancer sequence for example CPMV HT, CPMV 160, CPMV 160+ and CPMV HT+, as described below.

[00217] In another example, the ratio of rotavirus structural protein to nonstructural protein may be varied for example by co-expressing within the plant, portion of the plant or plant cell one or more nucleic acids comprising a first nucleotide sequence (R₁) encoding a first rotavirus protein for example structural protein VP6 or VP7 and second nucleotide sequence (R₂) encoding a second rotavirus protein for example structural protein VP2 or VP4, a third nucleotide sequence (R₃) encoding a third rotavirus protein for example structural protein VP7 or VP6 and a fourth nucleotide sequence (R₄) encoding fourth rotavirus protein for example structural protein VP4 or VP2, and a fifth nucleotide sequences (R₅) encoding a fifth rotavirus protein for example nonstructural protein NSP4, wherein the first, second, third and fourth nucleotide sequence are operatively linked to an enhancer sequence for example CPM 160, CPMV 160+ and CPMV HT+, as described below and the fifth nucleotide sequence is operatively linked to CPMV HT as described below.

[00218] In another example, the ratio of rotavirus structural protein to nonstructural protein may be varied for example by co-expressing within the plant, portion of the plant or plant cell a first nucleic acid (N₁) comprising first nucleotide sequence (R₁) encoding a first rotavirus protein for example structural protein VP6 or VP7, a second nucleic acid (N₂) comprising second nucleotide sequence (R₂) encoding a second

rotavirus protein for example structural protein VP2 or VP4, a third nucleic acid (N₃) comprising a third nucleotide sequence (R₃) encoding a third rotavirus protein for example structural protein VP7 or VP6, a fourth nucleic acid (N₄) comprising a fourth nucleotide sequence (R₄) encoding a fourth rotavirus protein for example structural protein VP4 or VP2 and a fifth nucleic acid (N₅) comprising fifth nucleotide sequences (R₅) encoding a fifth rotavirus protein for example nonstructural protein NSP4, wherein the first, second, third and fourth nucleotide sequence are operatively linked to an enhancer sequence for example CPMV HT, CPMV 160, CPMV 160+ and CPMV HT+, as described below.

10 *Amplification Elements and Enhancer Elements/ Regulatory Elements*

[00219] The rotavirus protein or polypeptide may be expressed in an expression system comprising a viral based, DNA or RNA, expression system, for example but not limited to, a comovirus-based expression cassette and geminivirus-based amplification element.

15 [00220] Enhancer elements may be used to achieve high level of transient expression of rotavirus structural and nonstructural proteins. Enhancer elements may be based on RNA plant viruses, including comoviruses, such as *Cowpea mosaic virus* (CPMV; see, for example, WO2007/135480; WO2009/087391; US 2010/0287670, Sainsbury F. et al., 2008, *Plant Physiology*; 148: 121-1218; Sainsbury F. et al., 2008, *Plant Biotechnology Journal*; 6: 82-92; Sainsbury F. et al., 2009, *Plant Biotechnology Journal*; 7: 682-693; Sainsbury F. et al. 2009, *Methods in Molecular Biology, Recombinant Proteins From Plants*, vol. 483: 25-39).

20 **CPMV 160 (CPMVX) and CPMV 160+ (CPMVX+)**

25 [00221] In an embodiment the enhancer Elements are “CPMVX” (also referred as “CPMV 160”) and/ or “CPMVX+” (also referred to as “CPMV 160+”) and are described in US 61/925,852 (which is incorporated herein by reference).

30 [00222] Expression enhancer “CPMVX” comprises a comovirus cowpea mosaic virus (CPMV) 5' untranslated region (UTR). The 5'UTR from nucleotides 1-160 of the CPMV RNA -2 sequence (SEQ ID NO: 1), starts at the transcription start site to the first in frame initiation start codon (at position 161), which serve as the initiation

site for the production of the longer of two carboxy coterminal proteins encoded by a wild-type comovirus genome segment. Furthermore a 'third' initiation site at (or corresponding to) position 115 in the CPMV RNA-2 genomic sequence may also be mutated, deleted or otherwise altered. It has been shown that removal of AUG 115 in addition to the removal of AUG 161 enhances expression when combined with an incomplete M protein (Sainsbury and Lomonossoff, 2008, *Plant Physiology*; 148: 1212-1218; WO 2009/087391; which are incorporated herein by reference).

5

[00223] CPMVX comprises X nucleotides of SEQ ID NO:1, where X=160, 155, 150, or 114 of SEQ ID NO:1, or a sequence that comprises between 80% to 100% sequence similarity with CPMVX, where X=160, 155, 150, or 114 of SEQ ID NO:93. 10 This expression enhancer is generally referred to as CPMVX (see Figure 6c).

10

[00224] The expression enhancer CPMVX, where X=160, consists of nucleotides 1-160 of SEQ ID NO: 1:

15

```
1 tattaaaatc ttaataggtt ttgataaaaag cgaacgtggg gaaacccgaa ccaaacccttc
61 ttcttaaactc tctctcatct ctcttaaagc aaacttctct cttgtcttgc ttgcgtgagc
121 gatcttcaac gttgtcagat cgtgcttcgg caccagtaca (SEQ ID NO:1)
```

15

20

25

[00225] The CPMVX enhancer sequence may further be fused to a stuffer sequence, wherein the CPMVX comprises X nucleotides of SEQ ID NO:1, where X=160, 155, 150, or 114 of SEQ ID NO:1, or a sequence that comprises between 80 to 100 % sequence similarity with CPMVX, where X=160, 155, 150, or 114 of SEQ ID NO:1, and the stuffer sequence comprises from 1-100 nucleotides fused to the 3' end of the CPMVX sequence. For example, the stuffer sequence may comprise from about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 nucleotides, or any number of nucleotides therebetween.

25

30

[00226] If the CPMVX sequence comprises a stuffer fragment, then this expression enhancer may be referred to as CPMVX+ (see Figure 6d), where X=160, 155, 150, 114 of SEQ ID NO:1, it may also be referred to as CPMVX comprising a stuffer sequence, or it may be referred to as CPMV160+; CPMV155+; CPMV150+; CPMV114+, when X=160, 155, 150, or 114, respectively. Constructs comprising CPMVX that do not comprise a stuffer sequence may be termed CPMVX+, where

X=160, 155, 150, 114 of SEQ ID NO:1, and where the stuffer sequence is of 0 nucleotides in length.

[00227] The stuffer sequence may be modified by truncation, deletion, or replacement of the native CMPV5'UTR sequence that is located 3' to nucleotide 160. The modified stuffer sequence may be removed, replaced, truncated or shortened when compared to the initial or unmodified (i.e. native) stuffer sequence associated with the 5'UTR (as described in Sainsbury F., and Lomonossoff G.P., 2008, Plant Physiol. 148: pp. 1212-1218). The stuffer sequence may comprise a one or more restriction sites (polylinker, multiple cloning site, one or more cloning sites), one or more plant kozak sequences, one or more linker sequences, one or more recombination sites, or a combination thereof. For example, which is not to be considered limiting, a stuffer sequence may comprise in series, a multiple cloning site of a desired length fused to a plant kozak sequence. The stuffer sequence does not comprise a nucleotide sequence from the native 5'UTR sequence that is positioned 3' to nucleotide 160 of the native CPMV 5'UTR, for example nucleotides 161 to 512 as shown in Figure 1 of Sainsbury F., and Lomonossoff G.P. (2008, Plant Physiol. 148: pp. 1212-1218; which is incorporated herein by reference), or nucleotides 161-509 of prior art CPMV HT sequence. That is, the incomplete M protein present in the prior art CPMV HT sequence (Figure 1; of Sainsbury F., and Lomonossoff G.P., 2008) is removed from the 5'UTR in the present invention.

[00228] Plant Kozak consensus sequences are known in the art (see for example Rangan et al. Mol. Biotechnol., 2008, July 39(3), pp. 207-213). Both naturally occurring and synthetic Kozak sequences may be used in the expression enhancer or may be fused to the nucleotide sequence of interest as described herein.

[00229] The plant kozak sequence may be any known plant kozak sequences (see for example L. Rangan et. al. Mol. Biotechnol. 2008), including, but not limited to the following plant consensus sequences:

caA (A/C) a (SEQ ID NO:2; plant kingdom)

aaa (A/C) a (SEQ ID NO:3; dicots)

aa (A/G) (A/C) a (SEQ ID NO:4; arabidopsis)

The plant kozak sequence may also be selected from the group of:

5	AGAAA	(SEQ ID NO: 5)
	AGACA	(SEQ ID NO: 6)
	AGGAA	(SEQ ID NO: 7)
	AAAAA	(SEQ ID NO: 8)
	AAACA	(SEQ ID NO: 9)
	AAGCA	(SEQ ID NO: 10)
	AAGAA	(SEQ ID NO: 11)
	AAAGAA	(SEQ ID NO: 12)
10	AAAGAA	(SEQ ID NO: 13)

(A/-)A(A/G)(A/G)(A/C)A. (SEQ ID NO: 14; Consensus sequence)

[00230] The expression enhancer CPMVX, or CPMVX+, may be operatively linked at the 5'end of the enhancer sequence with a regulatory region that is active in a plant, and operatively linked to a nucleotide sequence of interest at the 3'end of the expression enhancer (Figure 6c), in order to drive expression of the nucleotide sequence of interest within a plant host.

20 **CPMV HT+, CPMV HT+[WT115], CPMV HT+[511]**

[00231] In another embodiment the enhancer elements is “CPMV HT+” which is described in US 61/971,274 (which is incorporated herein by reference). Expression enhancer “CPMV HT+” (see Figure 6b) comprises a comovirus 5' untranslated region (UTR) and a modified, lengthened, or truncated stuffer sequence.

[00232] A plant expression system comprising a first nucleic acid sequence comprising a regulatory region, operatively linked with one or more than one expression enhancer as described herein (e.g. CPMV HT+, CPMV HT+[WT115], CPMV HT+ [511]), and a nucleotide sequence encoding a rotavirus structural or nonstructural proteins is also provided. Furthermore, a nucleic acid comprising a promoter (regulatory region) sequence, an expression enhancer (e.g. CPMV HT+ or CPMV HT+[WT115]) comprising a comovirus 5'UTR and a stuffer sequence with a plant kozak sequence fused to one or more nucleic acid sequences encoding a rotavirus structural or nonstructural proteins are described. The nucleic acid may further comprise a sequence comprising a comovirus 3' untranslated region (UTR), for example, a plastocyanin 3' UTR, or other 3'UTR active in a plant, and a terminator sequence, for example a NOS terminator, operatively linked to the 3'end of the nucleotide sequence encoding a rotavirus structural or nonstructural proteins (referred to as nucleotide of interest in Figure 6a), so that the nucleotide sequence

encoding the rotavirus structural or nonstructural proteins is inserted upstream from the comovirus 3' untranslated region (UTR), plastocyanin 3' UTR, or other 3'UTR sequence.

[00233] SEQ ID NO:15 comprises a “CPMV HT” expression enhancer as known in the prior art (e.g. Figure 1 of Sainsbury and Lomonosoff 2008, Plant Physiol. 148: pp. 1212-1218; which is incorporated herein by reference). CPMV HT includes the 5'UTR sequence from nucleotides 1-160 of SEQ ID NO:15 with modified nucleotides at position 115 (cgt), and an incomplete M protein with a modified nucleotide at position 162 (acg), and lacks a plant kozak sequence (5'UTR: nucleotides 1-160; incomplete M protein underlined, nucleotides 161 – 509). SEQ ID NO:15 also includes a multiple cloning site (italics, nucleotides 510-528) which is not present in the prior art CPMV HT sequence:

1 tattaaaatc ttaataggtt ttgataaaaag cgaacgtggg gaaacccgaa ccaaacccttc
61 ttcttaaactc tctctcatct ctcttaaagc aaacttctct cttgtctttc ttgcgtgagc
121 gatcttcaac gttgtcagat cgtgcttcgg caccagtaca acgttttctt tcactgaagc
181 gaaatcaaag atctctttgt ggacacgtag tgccgcgcca ttaaataacg tgtacttgc
241 ctattcttgt cggtgtggc ttggaaaag aaagcttgct ggaggctgct gttcagcccc
301 atacattact tgttacgatt ctgctgactt tcggcgggtg caatatctct acttctgctt
361 gacgaggtat tgttgcctgt acttctttct tcttcttctt gctgattggc tctataagaa
421 atctagttatt ttctttgaaa cagagtttc ccgtgggtt cgaacttgga gaaagattgt
481 taagcttctg tatattctgc ccaaatttqt cgggccc SEQ ID NO: 15

[00234] CPMV HT+ with a plant kozak consensus sequence is provided in SEQ ID NO:16 (nucleotide 1-160, 5'UTR, including modified ATG at positions 115 (**GTG**) lower case bold and italics; stuffer fragment comprising: an incomplete M protein underlined, nucleotides 161 – 509, with modified nucleotide at 162 (**ACG**); a multiple cloning site, italics, nucleotides 510-528; and a consensus plant kozak sequence, caps and bold, nucleotides 529-534).

1 tattaaaatc ttaataggtt ttgataaaaag cgaacgtggg gaaacccgaa ccaaacccttc
61 ttcttaaactc tctctcatct ctcttaaagc aaacttctct cttgtctttc ttgc**gtg**agc

121 gattttcaac gttgtcagat cgtgttcgg caccagtaca **acg**ttttttt tcactgaagc
181 gaaatcaaag atctctttgt ggacacgtag tgccgcgcca ttaaataacg tgtacttgtc
241 ctattcttgt cgggtgtggc ttgggaaaag aaagcttgcg ggaggctgct gttcagcccc
301 atacattact tgttacgatt ctgctgactt tcggcggtg caatatctct acttctgctt
361 gacgaggtat tggtgcctgt acttctttct tcttcttctt gctgattggc tctataagaa
421 atctagttt ttctttgaaa cagagtttc ccgtgggtt cgaacttgga gaaagattgt
481 taagcttctg tatattctgc ccaaatttgc tcggggccaa taccgcgg (**A/-)A (A/G)**

(A/G) (A/C) A

(SEQ ID NO:16)

5

[00235] SEQ ID NO:17 (“CPMV HT+ 511”) comprises a segment of the native sequence of the CPMV RNA 2 genome from nucleotides 1-154. The 5’UTR sequence from nucleotides 1-511 of SEQ ID NO:17 comprises modified “atg” sequences at positions 115 (“g” in place of “a”; italics bold) and 162 (“c” in place of “t”; italics bold), and an incomplete M protein (underlined) from nucleotides 161 – 511. CPMV HT+ 511 comprises a native M protein kozak consensus sequence (nucleotides 508-511; bold):

10 1 tattaaaatc ttaataggtt ttgataaaaag cgaacgtggg gaaacccgaa ccaaacccttc
61 61 ttcttaaactc tctctcatct ctcttaaagc aaacttctct ctgtctttc ttgc**gtg**agc

15 121 gattttcaac gttgtcagat cgtgttcgg caccagtaca **acg**ttttttt tcactgaagc

181 181 gaaatcaaag atctctttgt ggacacgtag tgccgcgcca ttaaataacg tgtacttgtc

20 241 241 ctattcttgt cgggtgtggc ttgggaaaag aaagcttgcg ggaggctgct gttcagcccc

301 301 atacattact tgttacgatt ctgctgactt tcggcggtg caatatctct acttctgctt

361 361 gacgaggtat tggtgcctgt acttctttct tcttcttctt gctgattggc tctataagaa

421 421 atctagttt ttctttgaaa cagagtttc ccgtgggtt cgaacttgga gaaagattgt

481 481 taagcttctg tatattctgc ccaaatt**tga** a... SEQ ID NO: 17

25 [00236] Another non-limiting example of a CPMV HT+ enhancer sequence is provided by the sequence of SEQ ID NO:18 (CPMV HT+[WT115]). Expression cassettes or vectors comprising CPMV HT+ and including a plant regulatory region in operative association with the expression enhancer sequence of SEQ ID NO: 18, and

the transcriptional start site (ATG) at the 3' end fused to a nucleotide sequence encoding rotavirus structural or nonstructural protein are also part of the present invention.

[00237] SEQ ID NO: 18 (CPMV HT+[WT115]) nucleotide 1-160, 5'UTR, with an ATG at position 115-117, lower case bold; stuffer fragment comprising: an incomplete M protein underlined, nucleotides 161 - 509; with a modified ATG at position 161-153 lower case bold, and underlined, a multiple cloning site, italics, nucleotides 510-528; and a plant kozak sequence, caps and bold, nucleotides 529-534).

1 tattaaaatc ttaataggtt ttgataaaaag cgaacgtggg gaaacccgaa ccaaacccttc
61 ttcttaaactc tctctcatct ctcttaaagc aaacttctct cttgtcttcc ttgc**atg**agc
121 gatcttcaac gttgtcagat cgtgttcgg caccagtaca acgttttttt tcactgaagc
181 gaaatcaaag atctcttgtt ggacacgtag tgccgcgc ttaaataacg tgtacttgtc
241 ctattcttgtt cggtgtggc ttggaaaag aaagcttqct ggaggctqct gttcagcccc
301 atacattact tgttacgatt ctgctgactt tcggcgggtq caatatctct acttctgctt
361 gacgaggtat tggtgcctgt acttctttct tcttcttctt gctgatttgt tctataagaa
421 atcttagtatt ttcttgaaa cagagtttc ccgtgggtt cgaacttqga gaaagattgt
481 taagcttctg tatattctgc ccaaatttgt tcgggccccaa taccgcgg**AG AAAAA**

(SEQ ID NO:18)

[00238] The plant kozak sequence of SEQ ID NO:18 may be any plant kozak sequence, including but not limited, to one of the sequences of SEQ ID NO's: 2-14.

[00239] A plant expression system comprising a first nucleic acid sequence comprising a regulatory region, operatively linked with one or more than one expression enhancer as described herein (e.g. CPMV HT+, CPMV HT+[WT115], CPMV HT+ [511]), and a nucleotide sequence encoding a rotavirus structural or nonstructural protein is also provided. Furthermore, a nucleic acid comprising a promoter (regulatory region) sequence, an expression enhancer (e.g. CPMV HT+ or CPMV HT+[WT115]) comprising a comovirus 5'UTR and a stuffer sequence with a plant kozak sequence fused to one or more nucleic acid sequences encoding rotavirus

structural or nonstructural protein are described. The nucleic acid may further comprise a sequence comprising a comovirus 3' untranslated region (UTR), for example, a plastocyanin 3' UTR, or other 3'UTR active in a plant, and a terminator sequence, for example a NOS terminator, operatively linked to the 3'end of the nucleotide sequence encoding rotavirus structural or nonstructural protein (referred to as nucleotide of interest in Figure 6a), so that the nucleotide sequence encoding rotavirus structural or nonstructural protein is inserted upstream from the comovirus 3' untranslated region (UTR), plastocyanin 3' UTR, or other 3'UTR sequence.

[00240] The occurrence of RLPs produced using the methods described herein may be detected using any suitable method for example density gradient centrifugation or size exclusion chromatography. RLPs may be assessed for structure and size, for example by electron microscopy, size exclusion chromatography, or other techniques that would be evident to one of skill in the art.

[00241] For size exclusion chromatography, total soluble proteins may be extracted from plant tissue by homogenizing (Polytron) sample of frozen-crushed plant material in extraction buffer, and insoluble material removed by centrifugation. Precipitation with ice cold acetone or PEG may also be of benefit. The soluble protein is quantified, and the extract passed through a SephacrylTM column, for example a SephacrylTM S500 column. Blue Dextran 2000 may be used as a calibration standard. Following chromatography, fractions may be further analyzed by immunoblot to determine the protein complement of the fraction.

[00242] The separated fraction may be for example a supernatant (if centrifuged, sedimented, or precipitated), or a filtrate (if filtered), and is enriched for proteins, or suprastructure proteins, and include higher molecular weight, particles such as single-layered (sl), double-layered (dl) or triple-layered (tl) RLPs.

[00243] The separated fraction may be further processed to isolate, purify, concentrate or a combination thereof, the proteins, suprastructure proteins or higher-order particles by, for example, additional centrifugation steps, precipitation, chromatographic steps (e.g. size exclusion, ion exchange, affinity chromatography), tangential flow filtration, or a combination thereof. The presence of purified proteins, suprastructure proteins or higher-order particles such as RLPs, may be confirmed by,

for example, native or SDS-PAGE, Western analysis using an appropriate detection antibody, capillary electrophoresis, electron microscopy, or any other method as would be evident to one of skill in the art.

[00244] The RLP's produced according to the present invention may be purified, 5 partially purified from a plant, portion of a plant or plant matter, or may be administered as an oral vaccine, using methods as known to one of skill in the art.

[00245] RLP purification may involve gradient centrifugation, for example sucrose, iodixanol, OptiPrep™ or cesium chloride (CsCl) density gradients may be used to purify or partially purify the RLPs from transformed plant biomass. As shown for 10 example in Figure 4, an iodixanol step gradient or iodixanol continuous gradient might be used to purify the RLP and/or expressed rotavirus structural proteins.

[00246] Calcium (Ca²⁺) concentration has been shown to be important for the triple-layer particle (TLP) to double layer particle (DLP) transformation and is strain 15 dependent (see for example Martin et al. Journal of Virology, Jan 2002, which is incorporated herein by reference). Complete loss of the outer-capsid proteins from TLPs (TLP decapsidation) takes place in the nanomolar range of [Ca²⁺]. Therefore the extraction and/or purification of RLP may be performed in the presence of calcium, and the step of gradient centrifugation may be performed in the presence of calcium, for example in the present of CaCl₂. The concentration of CaCl₂ maybe 20 between for example, 1 mM and 1000 mM, or any amount there between, such as 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 25, 30, 40, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 50, 600, 650, 700, 750, 800, 850, 900, 950 mM or any amount therebetween.

[00247] The plants, or plant fragments may be minimally processed. By the term 25 "minimal processing" it is meant plant matter, for example, a plant or portion thereof comprising a protein of interest and /or the RLP which is partially purified to yield a plant extract, homogenate, fraction of plant homogenate or the like (i.e. minimally processed). Partial purification may comprise, but is not limited to disrupting plant cellular structures thereby creating a composition comprising soluble plant components, and insoluble plant components which may be separated for example, 30 but not limited to, by centrifugation, filtration or a combination thereof. In this regard,

proteins secreted within the extracellular space of leaf or other tissues could be readily obtained using vacuum or centrifugal extraction, or tissues could be extracted under pressure by passage through rollers or grinding or the like to squeeze or liberate the protein free from within the extracellular space. Minimal processing could also involve preparation of crude extracts of soluble proteins, since these preparations would have negligible contamination from secondary plant products. Further, minimal processing may involve aqueous extraction of soluble protein from leaves, followed by precipitation with any suitable salt. Other methods may include large scale maceration and juice extraction in order to permit the direct use of the extract. The RLPs may be purified or extracted using any suitable method for example mechanical or biochemical extraction.

[00248] The one or more rotavirus structural protein may be synthesized at an amount up to 2 g per kilogram of plant fresh weight. For example, the amount of synthesized structural protein maybe between 1 and 2 g per kilogram of fresh weight, or any amount there between, such as 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2 g per kilogram of fresh weight or any amount therebetween. For example, the structural protein may be synthesized at an amount up to 1.54 g per kilogram of plant fresh weight.

[00249] The size (i.e. the diameter) of the above-defined RLPs, maybe measures for example by dynamic light scattering (DLS) or electron microscope (EM) techniques, is usually between 50 to 110 nm, or any size therebetween. For example, the size of the intact RLP structure may range from about 70 nm to about 110 nm, or any size therebetween, such as 75 nm, 80 nm, 85 nm, 90 nm, 95 nm, 100 nm, 105 nm or any size therebetween.

25 *Nucleotide Sequences*

[00250] The present invention further provides a nucleic acid comprising a nucleotide sequence encoding one or more rotavirus structural protein operatively linked to a regulatory region active in a plant. The nucleotide sequence may be optimized for example for human codon usage or plant codon usage. Furthermore one or more rotavirus structural protein may be operatively linked to one or more than one amplification elements. In addition one or more rotavirus structural protein may be

operatively linked to one or more than one compartment targeting sequence. The one or more rotavirus structural protein encoded by the nucleotide sequence may be for example VP2, VP4, VP6 or VP7. Furthermore the one or more rotavirus structural protein encoded by the nucleotide sequence may be for example from any rotavirus group A to G, but more preferably from rotavirus group A. Furthermore, the one or more rotavirus structural protein encoded by the nucleotide sequence maybe from any rotavirus strain having a genotype of any combinations of G- and P- types from G1 to G27 and from P1 to P34, and more preferably from G1 to G19 and from P1 to P27, including, but not limited to G1P[8], G2P[4], G2P[8], G3P[8], G4P[8], G9P[6], G9P[8], rotavirus A WA strain, rotavirus A vaccine USA/Rotarix-A41CB052A/1988/G1P1A[8] strain or rotavirus SA11 strain.

[00251] A nucleic acid sequence referred to in the present invention, may be “substantially homologous”, “substantially similar” or “substantially identical” to a sequence, or a compliment of the sequence if the nucleic acid sequence hybridize to one or more than one nucleotide sequence or a compliment of the nucleic acid sequence as defined herein under stringent hybridization conditions. Sequences are “substantially homologous” “substantially similar” “substantially identical” when at least about 70%, or between 70 to 100%, or any amount therebetween, for example 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100%, or any amount therebetween, of the nucleotides match over a defined length of the nucleotide sequence providing that such homologous sequences exhibit one or more than one of the properties of the sequence, or the encoded product as described herein.

[00252] For example the present invention provides an isolated polynucleotide comprising a nucleotide sequence which encodes one or more rotavirus protein, for example a structural or nonstructural rotavirus protein, that is at least 60%, 65%, 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% 100% or any amount therebetween identical to sequences as defines for example in SEQ ID NOs: 21, 27, 32, 37 or 42. The polynucleotide may be human codon optimized by any of the methods known in the art. The nucleotide sequence may encode for example a rotavirus protein that is at least 60%, 65%, 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%,

97%, 98%, 99% 100% or any amount therebetween identical the amino acid sequence of SEQ ID NOS: 24, 29, 34, 39 or 44.

[00253] Furthermore, the present invention provides RLPS that comprise rotavirus structural proteins that are for example encoded by nucleic acids that are at least 60%, 5 65%, 70%, 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% 100% or any amount therebetween identical to sequences as defines for example in SEQ ID NOS: 21, 27, 32, 37 or 42.

[00254] Such a sequence similarity or identity may be determined using a nucleotide sequence comparison program, such as that provided within DNASIS (using, for 10 example but not limited to, the following parameters: GAP penalty 5, #of top diagonals 5, fixed GAP penalty 10, k tuple 2, floating gap 10, and window size 5). However, other methods of alignment of sequences for comparison are well-known in the art for example the algorithms of Smith & Waterman (1981, *Adv. Appl. Math.* 2:482), Needleman & Wunsch (J. Mol. Biol. 48:443, 1970), Pearson & Lipman (1988, Proc. Nat'l. Acad. Sci. USA 85:2444), and by computerized implementations of these 15 algorithms (GAP, BESTFIT, FASTA, and BLAST, available through the NIH.), or by manual alignment and visual inspection (see, e.g., *Current Protocols in Molecular Biology*, Ausubel et al., eds. 1995 supplement), or using Southern or Northern hybridization under stringent conditions (see Maniatis et al., in *Molecular Cloning (A Laboratory Manual)*, Cold Spring Harbor Laboratory, 1982). Preferably, sequences 20 that are substantially homologous exhibit at least about 80% and most preferably at least about 90% sequence similarity over a defined length of the molecule.

[00255] An example of one such stringent hybridization conditions may be overnight (from about 16-20 hours) hybridization in 4 X SSC at 65°C, followed by washing in 25 0.1 X SSC at 65°C for an hour, or 2 washes in 0.1 X SSC at 65°C each for 20 or 30 minutes. Alternatively an exemplary stringent hybridization condition could be overnight (16-20 hours) in 50% formamide, 4 X SSC at 42°C, followed by washing in 0.1 X SSC at 65°C for an hour, or 2 washes in 0.1 X SSC at 65°C each for 20 or 30 30 minutes, or overnight (16-20 hours), or hybridization in Church aqueous phosphate buffer (7% SDS; 0.5M NaPO4 buffer pH 7.2; 10 mM EDTA) at 65°C, with 2 washes

either at 50°C in 0.1 X SSC, 0.1% SDS for 20 or 30 minutes each, or 2 washes at 65°C in 2 X SSC, 0.1% SDS for 20 or 30 minutes each for unique sequence regions.

[00256] A nucleic acid encoding a rotavirus structural polypeptide may be described as a "rotavirus nucleic acid", a "rotavirus nucleotide sequence", a "rotavirus nucleic acid", or a "rotavirus nucleotide sequence". For example, which is not to be considered limiting, a virus-like particle comprising one or more rotavirus structural protein or rotavirus structural polypeptide, may be described as a "rotavirus VLP", "RVLP" or "RLP".

[00257] Many organisms display a bias for use of particular codons to code for insertion of a particular amino acid in a growing peptide chain. Codon preference or codon bias, differences in codon usage between organisms, is afforded by degeneracy of the genetic code, and is well documented among many organisms. Codon bias often correlates with the efficiency of translation of messenger RNA (mRNA), which is in turn believed to be dependent on, *inter alia*, the properties of the codons being translated and the availability of particular transfer RNA (tRNA) molecules. The predominance of selected tRNAs in a cell is generally a reflection of the codons used most frequently in peptide synthesis. Accordingly, genes can be tailored for optimal gene expression in a given organism based on codon optimization. The process of optimizing the nucleotide sequence coding for a heterologously expressed protein can be an important step for improving expression yields. The optimization requirements may include steps to improve the ability of the host to produce the foreign protein.

[00258] "Codon optimization" is defined as modifying a nucleic acid sequence for enhanced expression in cells of interest by replacing at least one, more than one, or a significant number, of codons of the native sequence with codons that may be more frequently or most frequently used in the genes of another organism or species.

Various species exhibit particular bias for certain codons of a particular amino acid.

[00259] The present invention includes synthetic polynucleotide sequences that have been codon optimized for example the sequences have been optimized for human codon usage or plant codon usage. The codon optimized polynucleotide sequences may then be expressed in plants. More specifically the sequences optimized for human codon usage or plant codon usage may be expressed in plants. Without

wishing to be bound by theory, it is believed that the sequences optimized for human codon increases the guanine-cytosine content (GC content) of the sequence and improves expression yields in plants.

[00260] There are different codon-optimisation techniques known in the art for improving, the translational kinetics of translationally inefficient protein coding regions. These techniques mainly rely on identifying the codon usage for a certain host organism. If a certain gene or sequence should be expressed in this organism, the coding sequence of such genes and sequences will then be modified such that one will replace codons of the sequence of interest by more frequently used codons of the host organism.

Amino acid Sequences

[00261] Non-limiting examples of rotavirus structural protein are rotavirus protein VP2, VP4, VP6 and VP7, and a fragment of VP2, VP4, VP6 and VP7. Non-limiting examples of VP2, VP4, VP6 and VP7, or fragments of VP2, VP4, VP6 and VP7 protein that may be used according to the present invention include those VP2, VP4 VP6 and VP7 protein from rotavirus strain G9 P[6], rotavirus A WA strain, rotavirus A vaccine USA/Rotarix-A41CB052A/1988/G1P1A[8] strain and rotavirus SA11 strain. For example, but not limited to Rotarix-A41CB052A: VP4 (accession # JN849113), VP7: (accession # JN849114), rotavirus A WA strain: VP2 (accession # X14942), VP4: (accession #L34161), VP6 (accession # K02086), VP7: (accession # GU723327), NSP4 (accession # K02032), rotavirus SA11 strain: VP2 (accession # NC_011506), VP4 (accession # NC_011510), VP6 (accession # NC_011509), VP7 (accession # NC_011503) and NSP4 (accession # NC_011504).

[00262] An example of a VP2 structural protein, which is not to be considered limiting, is set forth in the amino acid sequence of SEQ ID NO: 24. Furthermore, the VP2 structural protein may comprise the sequence set forth in SEQ ID NO: 24, or a sequence having at least about 90-100% sequence similarity thereto, including any percent similarity within these ranges, such as 91, 92, 93, 94, 95, 96, 97, 98, 99% sequence similarity thereto. In addition, a VP2 structural protein may be encoded by a nucleotide sequence as set forth in SEQ ID NO:21 or a sequence having at least about 80-100% sequence similarity thereto, including any percent similarity within these

ranges, such as 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99% sequence similarity thereto.

[00263] An example of a VP4 structural protein, which is not to be considered limiting, is set forth in the amino acid sequence of SEQ ID NO: 34. Furthermore, the VP4 structural protein may comprise the sequence set forth in SEQ ID NO: 34, or a sequence having at least about 90-100% sequence similarity thereto, including any percent similarity within these ranges, such as 91, 92, 93, 94, 95, 96, 97, 98, 99% sequence similarity thereto. In addition, a VP4 structural protein may be encoded by a nucleotide sequence as set forth in SEQ ID NO: 32 or a sequence having at least about 80-100% sequence similarity thereto, including any percent similarity within these ranges, such as 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99% sequence similarity thereto.

[00264] An example of a VP6 structural protein, which is not to be considered limiting, is set forth in the amino acid sequence of SEQ ID NO: 29. Furthermore, the VP6 structural protein may comprise the sequence set forth in SEQ ID NO: 29, or a sequence having at least about 90-100% sequence similarity thereto, including any percent similarity within these ranges, such as 91, 92, 93, 94, 95, 96, 97, 98, 99% sequence similarity thereto. In addition, a VP6 structural protein may be encoded by a nucleotide sequence as set forth in SEQ ID NO:27 or a sequence having at least about 80-100% sequence similarity thereto, including any percent similarity within these ranges, such as 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99% sequence similarity thereto.

[00265] An example of a VP7 structural protein, which is not to be considered limiting, is set forth in the amino acid sequence of SEQ ID NO: 39. Furthermore, the VP7 structural protein may comprise the sequence set forth in SEQ ID NO: 39, or a sequence having at least about 90-100% similarity thereto, including any percent similarity within these ranges, such as 91, 92, 93, 94, 95, 96, 97, 98, 99% sequence similarity thereto. In addition, a VP7 structural protein may be encoded by a nucleotide sequence as set forth in SEQ ID NO:37 or a sequence having at least about 80-100% sequence similarity thereto, including any percent similarity within these

ranges, such as 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99% sequence similarity thereto.

[00266] An example of a NSP4 structural protein, which is not to be considered limiting, is set forth in the amino acid sequence of SEQ ID NO: 44. Furthermore, the NSP4 nonstructural protein may comprise the sequence set forth in SEQ ID NO: 44, or a sequence having at least about 90-100% similarity thereto, including any percent similarity within these ranges, such as 91, 92, 93, 94, 95, 96, 97, 98, 99% sequence similarity thereto. In addition, a NSP4 nonstructural protein may be encoded by a nucleotide sequence as set forth in SEQ ID NO: 42 or a sequence having at least about 80-100% sequence similarity thereto, including any percent similarity within these ranges, such as 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99% sequence similarity thereto.

[00267] Amino acid sequence similarity or identity may be computed by using the BLASTP and TBLASTN programs which employ the BLAST (basic local alignment search tool) 2.0 algorithm. Techniques for computing amino acid sequence similarity or identity are well known to those skilled in the art, and the use of the BLAST algorithm is described in ALTSCHUL et al. (1990, J Mol. Biol. 215: 403- 410) and ALTSCHUL et al. (1997, Nucleic Acids Res. 25: 3389-3402).

[00268] Without wishing to be bound by theory, the protein concentration and ratio of the different rotavirus structural proteins may be important for the assembly efficiency of RLPs. Therefore multiplicity and time of infection, may be important to manipulate protein concentration and the overall assembly efficiency of RLPs in plants.

[00269] The construct of the present invention may be transiently expressed in a plants or portion of a plant. A transient expression system relying on the epichromosomal expression of recombinant Agrobacterium tumefaciens in a plant, portion of a plant or plant cell may be used to express the rotavirus structural protein, targeted to various cell compartments or sub-compartments. A transient expression system allows for a high production speed. Furthermore, large amounts of protein can be attained within a few days after infiltration of recombinant Agrobacterium in plants (Rybicki, 2010; Fischer et al., 1999). It is also possible to express long gene

sequences and have more than one gene simultaneously expressed in the same cell, allowing for efficient assembly of multimeric proteins (Lombardi et al., 2009).

[00270] The nucleotide sequences encoding for the rotavirus structural proteins and nonstructural proteins may be transferred into the plant host using 1, 2, 3, 4 or 5 transformed *Agrobacterium tumefaciens* strains (as described in Table 1 and accompanying text

[00271] During transient expression post-transcriptional gene silencing may limit the expression of the heterologous proteins in plants. The co-expression of a suppressor of silencing, for example, but not limited to NSS from Tomato spotted wilt virus may be used to counteract the specific degradation of transgene mRNAs (Brigneti et al., 1998). Alternate suppressors of silencing are well known in the art and may be used as described herein (Chiba et al., 2006, *Virology* 346:7-14; which is incorporated herein by reference), for example but not limited to HcPro, TEV - p1/HC-Pro (Tobacco etch virus-p1/HC-Pro), BYV -p21, p19 of Tomato bushy stunt virus (TBSV p19), capsid protein of Tomato crinkle virus (TCV -CP), 2b of Cucumber mosaic virus; CMV-2b), p25 of Potato virus X (PVX-p25), p11 of Potato virus M (PVM-p11), p11 of Potato virus S (PVS-p11), p16 of Blueberry scorch virus, (BScV -p16), p23 of Citrus tristeza virus (CTV-p23), p24 of Grapevine leafroll-associated virus-2, (GLRaV-2 p24), p10 of Grapevine virus A, (GVA-p10), p14 of Grapevine virus B (GVB-p14), p10 of Heracleum latent virus (HLV-p10), or p16 of Garlic common latent virus (GCLV-p16). Therefore, a suppressor of silencing, for example HcPro, TEV -p1/HC-Pro, BYV-p21, TBSV p19, TCV-CP, CMV-2b, PVX-p25, PVM-p11, PVS-p11, BScV-p16, CTV-p23, GLRaV-2 p24, GBV-p14, HLV-p10, GCLV-p16 or GVA-p10, may be co-expressed along with one or more rotavirus structural or non structural protein for example VP2, VP4, VP6, VP7 and NSP4 or a combination thereof, to further ensure high levels of protein production within a plant or portion of a plant.

[00272] The present invention also provides a methods as described above, wherein an additional (second, third, fourth, fifth or sixth) nucleotide sequence is expressed within the plant, the additional (second, third, fourth, fifth or sixth) nucleotide sequence encoding a suppressor of silencing is operatively linked with an additional

(second, third, fourth, fifth or sixth) regulatory region that is active in the plant. The nucleotide sequence encoding a suppressor of silencing may be, for example Nss, HcPro, TEV -p1/HC-Pro, BYV-p21, TBSV p19, TCV-CP, CMV-2b, PVX-p25, PVM-p11, PVS-p11, BScV-p16, CTV-p23, GLRaV-2 p24, GBV-p14, HLV-p10, GCLV-p16 or GVA-p10.

[00273] As described below, transient expression methods may be used to express the constructs of the present invention (see Liu and Lomonossoff, 2002, *Journal of Virological Methods*, 105:343-348; which is incorporated herein by reference).

Alternatively, a vacuum-based transient expression method, as described by Kapila et al., 1997, which is incorporated herein by reference) may be used. These methods may include, for example, but are not limited to, a method of Agro-inoculation or Agro-infiltration, syringe infiltration, however, other transient methods may also be used as noted above. With Agro-inoculation, Agro-infiltration, or syringe infiltration, a mixture of Agrobacteria comprising the desired nucleic acid enter the intercellular spaces of a tissue, for example the leaves, aerial portion of the plant (including stem, leaves and flower), other portion of the plant (stem, root, flower), or the whole plant. After crossing the epidermis the Agrobacteria infect and transfer t-DNA copies into the cells. The t-DNA is episomally transcribed and the mRNA translated, leading to the production of the protein of interest in infected cells, however, the passage of t-DNA inside the nucleus is transient.

[00274] To aid in identification of transformed plant cells, the constructs of this invention may be further manipulated to include plant selectable markers. Useful selectable markers include enzymes that provide for resistance to chemicals such as an antibiotic for example, gentamycin, hygromycin, kanamycin, or herbicides such as phosphinothrycin, glyphosate, chlorosulfuron, and the like. Similarly, enzymes providing for production of a compound identifiable by colour change such as GUS (beta-glucuronidase), or luminescence, such as luciferase or GFP, may be used.

[00275] Also considered part of this invention are transgenic plants, plant cells or seeds containing the constructs as described herein. Methods of regenerating whole plants from plant cells are also known in the art. In general, transformed plant cells are cultured in an appropriate medium, which may contain selective agents such as

antibiotics, where selectable markers are used to facilitate identification of transformed plant cells. Once callus forms, shoot formation can be encouraged by employing the appropriate plant hormones in accordance with known methods and the shoots transferred to rooting medium for regeneration of plants. The plants may then be used to establish repetitive generations, either from seeds or using vegetative propagation techniques. Transgenic plants can also be generated without using tissue cultures.

[00276] The use of the terms "regulatory region", "regulatory element" or "promoter" in the present application is meant to reflect a portion of nucleic acid typically, but not always, upstream of the protein coding region of a gene, which may be comprised of either DNA or RNA, or both DNA and RNA. When a regulatory region is active, and in operative association, or operatively linked, with a gene of interest, this may result in expression of the gene of interest. A regulatory element may be capable of mediating organ specificity, or controlling developmental or temporal gene activation. A "regulatory region" may include promoter elements, core promoter elements exhibiting a basal promoter activity, elements that are inducible in response to an external stimulus, elements that mediate promoter activity such as negative regulatory elements or transcriptional enhancers. "Regulatory region", as used herein, may also include elements that are active following transcription, for example, regulatory elements that modulate gene expression such as translational and transcriptional enhancers, translational and transcriptional repressors, upstream activating sequences, and mRNA instability determinants. Several of these latter elements may be located proximal to the coding region.

[00277] In the context of this disclosure, the term "regulatory element" or "regulatory region" typically refers to a sequence of DNA, usually, but not always, upstream (5') to the coding sequence of a structural gene, which controls the expression of the coding region by providing the recognition for RNA polymerase and/or other factors required for transcription to start at a particular site. However, it is to be understood that other nucleotide sequences, located within introns, or 3' of the sequence may also contribute to the regulation of expression of a coding region of interest. An example of a regulatory element that provides for the recognition for RNA polymerase or other transcriptional factors to ensure initiation at a particular site

5 is a promoter element. Most, but not all, eukaryotic promoter elements contain a TATA box, a conserved nucleic acid sequence comprised of adenosine and thymidine nucleotide base pairs usually situated approximately 25 base pairs upstream of a transcriptional start site. A promoter element comprises a basal promoter element, responsible for the initiation of transcription, as well as other regulatory elements (as listed above) that modify gene expression.

10 [00278] There are several types of regulatory regions, including those that are developmentally regulated, inducible or constitutive. A regulatory region that is developmentally regulated, or controls the differential expression of a gene under its control, is activated within certain organs or tissues of an organ at specific times during the development of that organ or tissue. However, some regulatory regions that are developmentally regulated may preferentially be active within certain organs or tissues at specific developmental stages, they may also be active in a developmentally regulated manner, or at a basal level in other organs or tissues within the plant as well. 15 Examples of tissue-specific regulatory regions, for example see-specific a regulatory region, include the napin promoter, and the cruciferin promoter (Rask et al., 1998, *J. Plant Physiol.* 152: 595-599; Bilodeau et al., 1994, *Plant Cell* 14: 125-130). An example of a leaf-specific promoter includes the plastocyanin promoter (see US 7,125,978, which is incorporated herein by reference).

20 [00279] An inducible regulatory region is one that is capable of directly or indirectly activating transcription of one or more DNA sequences or genes in response to an inducer. In the absence of an inducer the DNA sequences or genes will not be transcribed. Typically the protein factor that binds specifically to an inducible regulatory region to activate transcription may be present in an inactive form, which is then directly or indirectly converted to the active form by the inducer. However, the 25 protein factor may also be absent. The inducer can be a chemical agent such as a protein, metabolite, growth regulator, herbicide or phenolic compound or a physiological stress imposed directly by heat, cold, salt, or toxic elements or indirectly through the action of a pathogen or disease agent such as a virus. A plant cell containing an inducible regulatory region may be exposed to an inducer by externally applying the inducer to the cell or plant such as by spraying, watering, 30 heating or similar methods. Inducible regulatory elements may be derived from either

plant or non-plant genes (e.g. Gatz, C. and Lenk, L.R.P., 1998, Trends Plant Sci. 3, 352-358; which is incorporated by reference). Examples, of potential inducible promoters include, but not limited to, tetracycline-inducible promoter (Gatz, C., 1997, Ann. Rev. Plant Physiol. Plant Mol. Biol. 48, 89-108; which is incorporated by reference), steroid inducible promoter (Aoyama, T. and Chua, N.H., 1997, Plant 1, 2, 397-404; which is incorporated by reference) and ethanol-inducible promoter (Salter, M.G., et al, 1998, Plant Journal 16, 127-132; Caddick, M.X., et al, 1998, Nature Biotech. 16, 177-180, which are incorporated by reference) cytokinin inducible IB6 and CKI 1 genes (Brandstatter, I. and Kieber, I.I., 1998, Plant Cell 10, 1009-1019; Kakimoto, T., 1996, Science 274, 982-985; which are incorporated by reference) and the auxin inducible element, DR5 (Ulmasov, T., et al., 1997, Plant Cell 9, 1963-1971; which is incorporated by reference).

[00280] A constitutive regulatory region directs the expression of a gene throughout the various parts of a plant and continuously throughout plant development. Examples of known constitutive regulatory elements include promoters associated with the CaMV 35S transcript (Odell et al., 1985, Nature, 313: 810-812), the rice actin 1 (Zhang et al, 1991, Plant Cell, 3: 1155-1165), actin 2 (An et al., 1996, Plant J., 10: 107-121), or tms 2 (U.S. 5,428,147, which is incorporated herein by reference), and triosephosphate isomerase 1 (Xu et. al., 1994, Plant Physiol. 106: 459-467) genes, the maize ubiquitin 1 gene (Cornejo et al, 1993, Plant Mol. Biol. 29: 637-646), the Arabidopsis ubiquitin 1 and 6 genes (Holtorf et al, 1995, Plant Mol. Biol. 29: 637-646), and the tobacco translational initiation factor 4A gene (Mandel et al, 1995, Plant Mol. Biol. 29: 995-1004).

[00281] The term "constitutive" as used herein does not necessarily indicate that a gene under control of the constitutive regulatory region is expressed at the same level in all cell types, but that the gene is expressed in a wide range of cell types even though variation in abundance is often observed. Constitutive regulatory elements may be coupled with other sequences to further enhance the transcription and/or translation of the nucleotide sequence to which they are operatively linked. For example, the CPMV-HT system is derived from the untranslated regions of the Cowpea mosaic virus (CPMV) and demonstrates enhanced translation of the associated coding sequence. By "native" it is meant that the nucleic acid or amino

acid sequence is naturally occurring, or "wild type". By "operatively linked" it is meant that the particular sequences, for example a regulatory element and a coding region of interest, interact either directly or indirectly to carry out an intended function, such as mediation or modulation of gene expression. The interaction of operatively linked sequences may, for example, be mediated by proteins that interact with the operatively linked sequences.

[00282] The RLP produced within a plant may produce a rotavirus VP7 structural protein comprising plant-specific N-glycans. Therefore, this invention also provides for a RLP comprising VP7 having plant specific N-glycans.

[00283] Furthermore, modification of N-glycan in plants is known (see for example U.S. 60/944,344; which is incorporated herein by reference) and VP7 having modified N-glycans may be produced. VP7 comprising a modified glycosylation pattern, for example with reduced fucosylated, xylosylated, or both, fucosylated and xylosylated, N-glycans may be obtained, or VP7 having a modified glycosylation pattern may be obtained, wherein the protein lacks fucosylation, xylosylation, or both, and comprises increased galactosylation. Furthermore, modulation of post-translational modifications, for example, the addition of terminal galactose may result in a reduction of fucosylation and xylosylation of the expressed VP7 when compared to a wild-type plant expressing VP7.

[00284] For example, which is not to be considered limiting, the synthesis of VP7 having a modified glycosylation pattern may be achieved by co-expressing VP7 along with a nucleotide sequence encoding beta-1,4 galactosyltransferase (GalT), for example, but not limited to mammalian GalT, or human GalT however GalT from another sources may also be used. The catalytic domain of GalT may also be fused to a CTS domain (i.e. the cytoplasmic tail, transmembrane domain, stem region) of N-acetylglucosaminyl transferase (GNT1), to produce a GNT1-GalT hybrid enzyme, and the hybrid enzyme may be co-expressed with VP7. The VP7 may also be co-expressed along with a nucleotide sequence encoding N-acetylglucosaminyl transferase III (GnT-III), for example but not limited to mammalian GnT-III or human GnT-III, GnT-III from other sources may also be used. Additionally, a GNT1-GnT-III hybrid enzyme, comprising the CTS of GNT1 fused to GnT-III may also be used.

[00285] Therefore the present invention also provides RLPs comprising VP7 having modified N-glycans.

[00286] Without wishing to be bound by theory, the presence of plant N-glycans on VP7 may stimulate the immune response by promoting the binding of VP7 by antigen presenting cells. Stimulation of the immune response using plant N glycan has been proposed by Saint-Jore-Dupas et al. (2007).

[00287] Table 2 lists sequences provided in various embodiments of the invention.

Table 2:

SEQ ID NO	Description	Page/Figure
1	expression enhancer CPMVX	
2	plant kingdom kozak consensus sequence	
3	Dicots kozak consensus sequence	
4	Arabidopsis kozak consensus sequence	
5-13	plant kozak sequences	
14	Kozak consensus sequence	
15	CPMV HT	
16	CPMV HT+	
17	CPMV HT+ 511	
18	CPMV HT+[WT115]	
19	IF-WA_VP2(opt).s1+3c	Fig. 7A
20	IF-WA_VP2(opt).s1-4r	Fig. 7B
21	Optimized coding sequence of Rotavirus A VP2 from strain WA	Fig. 7C
22	Construct 1191	Fig. 7E
23	Expression cassette number 1710	Fig. 7F
24	Amino acid sequence of VP2 from Rotavirus A WA strain	Fig. 7G
25	IF-WA_VP6(opt).s1+3c	Fig. 8A
26	IF-WA_VP6(opt).s1-4r	Fig. 8B
27	Optimized coding sequence of Rotavirus A VP6 from strain WA	Fig. 8C
28	Expression cassette number 1713	Fig. 8D
29	Amino acid sequence of VP6 from Rotavirus A WA strain	Fig. 8E
30	IF-Rtx_VP4(opt).s1+3c	Fig. 9A
31	IF-Rtx_VP4(opt).s1-4r	Fig. 9B
32	Optimized coding sequence of Rotavirus A VP4 from strain RVA/Vaccine/USA/Rotarix-A41CB052A/1988/G1P1A[8]	Fig. 9C
33	Expression cassette number 1730	Fig. 9D
34	Amino acid sequence of VP4 from Rotavirus A Rotarix strain	Fig. 9E
35	IF-TrSP+Rtx_VP7(opt).s1+3c	Fig. 10A

36	IF-Rtx_VP7(opt).s1-4r	Fig. 10B
37	Optimized coding sequence of Rotavirus A VP7 from strain RVA/Vaccine/USA/Rotarix-A41CB052A/1988/G1P1A[8]	Fig. 10C
38	Expression cassette number 1734	Fig. 10D
39	Amino acid sequence of TrSp-VP7 from Rotavirus A vaccine USA/Rotarix-A41CB052A/1988/G1P1A[8] strain	Fig. 10E
40	IF-WA_NSP4.s1+3c	Fig. 11A
41	IF-WA_NSP4.s1-4r	Fig. 11B
42	Coding sequence of Rotavirus A NSV4 from strain WA	Fig. 11C
43	Expression cassette number 1706	Fig. 11D
44	Amino acid sequence of NSP4 from Rotavirus A WA strain	Fig. 11E
45	IF(C160)-WA_VP2(opt).c	Fig. 12A
46	Construct 1190	Fig. 12C
47	Expression cassette number 1108	Fig. 12D
48	IF(C160)-WA_VP6(opt).c	Fig. 13A
49	Expression cassette number 1128	Fig. 13B
50	IF(C160)-Rtx_VP4(opt).c	Fig. 14A
51	Expression cassette number 1178	Fig. 14B
52	IF(C160)-TrSP+Rtx_VP7(opt).c	Fig. 15A
53	Expression cassette number 1199	Fig. 15B

[00288] The present invention will be further illustrated in the following examples.

Examples

Example 1 Materials and Methods

5

Table 3: Constructs

Constr. #	Description	Fig.	Constr. #	Description	Fig.
1108	160-VP2	3A/3B	1706	CPMV-HT NSP4	3A/3B 4A/4B
1128	160-VP6	3A/3B	1708	CPMV-HT VP6/2	3A/3B 4A/4B
1178	160-VP4	3A/3B	2408	160-VP7/4	3A/3B 4A/4B
1199	160-VP7	3A/3B	1769	CPMV-HT VP7/4/6/2	3A/3B/5
1710	CPMV-HT VP2	4A/4B	2441	CPMV-HT VP4/7/NSP4/6/2	5
1713	CPMV-HT VP6	4A/4B	2400	160-VP6/2	4A/4B
1730	CPMV-HT VP4	4A/4B	1719	CPMV-HT VP7/4	4A/4B
1734	CPMV-HT VP7	4A/4B			

1. 2X35S/CPMV-HT/ RVA(WA) VP2(opt)/ NOS (Construct number 1710)

[00289] An optimized sequence encoding VP2 from Rotavirus A WA strain was cloned into 2X35S-CPMV-HT-NOS expression system in a plasmid containing Plasto_pro/P19/Plasto_ter expression cassette using the following PCR-based method. A fragment containing the VP2 coding sequence was amplified using primers IF-WA_VP2(opt).s1+3c (Figure 7a, SEQ ID NO: 19) and IF-WA_VP2(opt).s1-4r (Figure 7B, SEQ ID NO: 20), using optimized VP2 gene sequence (Figure 7C, SEQ ID NO :21) as template. For sequence optimization, VP2 protein sequence (Genbank accession number CAA33074) was backtranslated and optimized for human codon usage, GC content and mRNA structure. The PCR product was cloned in 10 2X35S/CPMV-HT/NOS expression system using In-Fusion cloning system (Clontech, Mountain View, CA). Construct number 1191 (Figure 7D) was digested with SacII and StuI restriction enzyme and the linearized plasmid was used for the In-Fusion assembly reaction. Construct number 1191 is an acceptor plasmid intended for “In Fusion” cloning of genes of interest in a CPMV-HT-based expression cassette. It 15 also incorporates a gene construct for the co-expression of the TBSV P19 suppressor of silencing under the alfalfa Plastocyanin gene promoter and terminator. The backbone is a pCAMBIA binary plasmid and the sequence from left to right t-DNA borders is presented in Figure 7E (SEQ ID NO: 22). The resulting construct was given number 1710 (Figure 7F, SEQ ID NO: 23). The amino acid sequence of VP2 from 20 Rotavirus A strain WA is presented in Figure 7G (SEQ ID NO: 24). A representation of plasmid 1710 is presented in Figure 7H.

2. 2X35S/CPMV-HT/RVA(WA) VP6(opt)/NOS (Construct number 1713)

[00290] An optimized sequence encoding VP6 from Rotavirus A WA strain was cloned into 2X35S-CPMV-HT-NOS expression system in a plasmid containing Plasto_pro/P19/Plasto_ter expression cassette using the following PCR-based method. A fragment containing the VP6 coding sequence was amplified using primers IF-WA_VP6(opt).s1+3c (Figure 8A, SEQ ID NO: 25) and IF-WA_VP6(opt).s1-4r (Figure 8B, SEQ ID NO: 26), using optimized VP6 gene sequence (Figure 8C, SEQ ID NO :27) as template. For sequence optimization, VP6 protein sequence (Genbank accession number AAA47311) was backtranslated and optimized for human codon usage, GC content and mRNA structure. The PCR product was cloned in 30 2X35S/CPMV-HT/NOS expression system using In-Fusion cloning system

(Clontech, Mountain View, CA). Construct number 1191 (Figure 7D) was digested with SacII and StuI restriction enzyme and the linearized plasmid was used for the In-Fusion assembly reaction. Construct number 1191 is an acceptor plasmid intended for “In Fusion” cloning of genes of interest in a CPMV-HT-based expression cassette. It also incorporates a gene construct for the co-expression of the TBSV P19 suppressor of silencing under the alfalfa Plastocyanin gene promoter and terminator. The backbone is a pCAMBIA binary plasmid and the sequence from left to right t-DNA borders is presented in Figure 7E (SEQ ID NO: 22). The resulting construct was given number 1713 (Figure 8D, SEQ ID NO: 28). The amino acid sequence of VP6 from Rotavirus A strain WA is presented in Figure 8E (SEQ ID NO: 29). A representation of plasmid 1713 is presented in Figure 8F.

3. 2X35S/CPMV-HT/RVA(VP4(opt)/NOS (Construct number 1730)

[00291] An optimized sequence encoding VP4 from Rotavirus A vaccine USA/Rotarix-A41CB052A/1988/G1P1A[8] strain was cloned into 2X35S/CPMV-HT/NOS in a plasmid containing Plasto_pro/P19/Plasto_ter expression cassette using the following PCR-based method. A fragment containing the VP4 coding sequence was amplified using primers IF-Rtx_VP4(opt).s1+3c (Figure 9A, SEQ ID NO: 30) and IF-Rtx_VP4(opt).s1-4r (Figure 9B, SEQ ID NO: 31), using optimized VP4 gene sequence (Figure 9C, SEQ ID NO: 32) as template. For sequence optimization, VP4 protein sequence (Genbank accession number AEX30660) was backtranslated and optimized for human codon usage, GC content and mRNA structure. The PCR product was cloned in 2X35S/CPMV-HT/NOS expression cassette using In-Fusion cloning system (Clontech, Mountain View, CA). Construct number 1191 (Figure 7D) was digested with SacII and StuI restriction enzyme and the linearized plasmid was used for the In-Fusion assembly reaction. Construct number 1191 is an acceptor plasmid intended for “In Fusion” cloning of genes of interest in a CPMV-HT-based expression cassette. It also incorporates a gene construct for the co-expression of the TBSV P19 suppressor of silencing under the alfalfa Plastocyanin gene promoter and terminator. The backbone is a pCAMBIA binary plasmid and the sequence from left to right t-DNA borders is presented in Figure 7E (SEQ ID NO: 22). The resulting construct was given number 1730 (Figure 9D, SEQ ID NO: 33). The amino acid sequence of VP4 from Rotavirus A vaccine USA/Rotarix-

A41CB052A/1988/G1P1A[8] is presented in Figure 9E (SEQ ID NO: 34). A representation of plasmid 1730 is presented in Figure 9F.

4. 2X35S/CPMV-HT/TrSp-RVA(Rtx) VP7(opt)/NOS (Construct number 1734)

[00292] An optimized sequence encoding VP7 with a truncated version of the native signal peptide from Rotavirus A vaccine USA/Rotarix-A41CB052A/1988/G1P1A[8] strain was cloned into 2X35S-CPMV-HT-NOS expression system in a plasmid containing Plasto_pro/P19/Plasto_ter expression cassette using the following PCR-based method. A fragment containing the VP7 coding sequence was amplified using primers IF-TrSP+Rtx_VP7(opt).s1+3c (Figure 10A, SEQ ID NO: 35) and IF-Rtx_VP7(opt).s1-4r (Figure 10B, SEQ ID NO: 36), using optimized VP7 gene sequence (corresponding to nt 88-891 from Figure 10C, SEQ ID NO: 37) as template. For sequence optimization, VP7 protein sequence (Genbank accession number AEX30682) was backtranslated and optimized for human codon usage, GC content and mRNA structure. The PCR product was cloned in 2X35S/CPMV-HT/NOS expression system using In-Fusion cloning system (Clontech, Mountain View, CA). Construct number 1191 (Figure 7D) was digested with SacII and StuI restriction enzyme and the linearized plasmid was used for the In-Fusion assembly reaction. Construct number 1191 is an acceptor plasmid intended for “In Fusion” cloning of genes of interest in a CPMV-HT-based expression cassette. It also incorporates a gene construct for the co-expression of the TBSV P19 suppressor of silencing under the alfalfa Plastocyanin gene promoter and terminator. The backbone is a pCAMBIA binary plasmid and the sequence from left to right t-DNA borders is presented in Figure 7E (SEQ ID NO: 22). The resulting construct was given number 1734 (Figure 10D, SEQ ID NO: 38). The amino acid sequence of VP7 with truncated signal peptide from Rotavirus A vaccine USA/Rotarix-A41CB052A/1988/G1P1A[8] strain is presented in Figure 10E (SEQ ID NO: 39). A representation of plasmid 1734 is presented in Figure 10F.

5. 2X35S/CPMV-HT/RVA(WA) NSP4/NOS (Construct number 1706)

[00293] A sequence encoding NSP4 from Rotavirus A WA strain was cloned into 2X35S-CPMV-HT-NOS expression system in a plasmid containing Plasto_pro/P19/Plasto_ter expression cassette using the following PCR-based method.

A fragment containing the NSP4 coding sequence was amplified using primers IF-WA_NSP4.s1+3c (Figure 11A, SEQ ID NO: 40) and IF-WA_NSP4.s1-4r (Figure 11B, SEQ ID NO: 41), using synthesized NSP4 gene (corresponding to nt 42-569 from GenBank accession number K02032) (Figure 11C, SEQ ID NO : 42) as template. The PCR product was cloned in 2X35S/CPMV-HT/NOS expression system using In-Fusion cloning system (Clontech, Mountain View, CA). Construct number 1191 (Figure 7D) was digested with SacII and StuI restriction enzyme and the linearized plasmid was used for the In-Fusion assembly reaction. Construct number 1191 is an acceptor plasmid intended for “In Fusion” cloning of genes of interest in a CPMV-HT-based expression cassette. It also incorporates a gene construct for the co-expression of the TBSV P19 suppressor of silencing under the alfalfa Plastocyanin gene promoter and terminator. The backbone is a pCAMBIA binary plasmid and the sequence from left to right t-DNA borders is presented in Figure 7E (SEQ ID NO: 22). The resulting construct was given number 1706 (Figure 11D, SEQ ID NO: 43). The amino acid sequence of NSP4 from Rotavirus A strain WA is presented in Figure 11E (SEQ ID NO: 44). A representation of plasmid 1706 is presented in Figure 11F.

6. 2X35S/CPMV-160/ RVA(WA) VP2(opt)/ NOS (Construct number 1108)

[00294] An optimized sequence encoding VP2 from Rotavirus A WA strain was cloned into 2X35S/CPMV-160/NOS expression system in a plasmid containing Plasto_pro/P19/Plasto_ter expression cassette using the following PCR-based method. A fragment containing the VP2 coding sequence was amplified using primers IF(C160)-WA_VP2(opt).c (Figure 12A, SEQ ID NO: 45) and IF-WA_VP2(opt).s1-4r (Figure 7B, SEQ ID NO: 20), using optimized VP2 gene sequence (Figure 7C, SEQ ID NO : 21) as template. For sequence optimization, VP2 protein sequence (Genbank accession number CAA33074) was backtranslated and optimized for human codon usage, GC content and mRNA structure. The PCR product was cloned in 2X35S/CPMV-160/NOS expression system using In-Fusion cloning system (Clontech, Mountain View, CA). Construct number 1190 (Figure 12B) was digested with SacII and StuI restriction enzyme and the linearized plasmid was used for the In-Fusion assembly reaction. Construct number 1190 is an acceptor plasmid intended for “In Fusion” cloning of genes of interest in a CPMV-160-based expression cassette. It also incorporates a gene construct for the co-expression of the TBSV P19 suppressor

of silencing under the alfalfa Plastocyanin gene promoter and terminator. The backbone is a pCAMBIA binary plasmid and the sequence from left to right t-DNA borders is presented in Figure 12C (SEQ ID NO: 46). The resulting construct was given number 1108 (Figure 12D, SEQ ID NO: 47). The amino acid sequence of VP2 from Rotavirus A strain WA is presented in Figure 7G (SEQ ID NO: 24). A representation of plasmid 1108 is presented in Figure 12E.

5 7. -2X35S/CPMV-160/RVA(WA) VP6(opt)/NOS (Construct number 1128) –

An optimized sequence encoding VP6 from Rotavirus A WA strain was cloned into 2X35S/CPMV-160/NOS expression system in a plasmid containing 10 Plasto_pro/P19/Plasto_ter expression cassette using the following PCR-based method. A fragment containing the VP6 coding sequence was amplified using primers IF(C160)-WA_VP6(opt).c (Figure 13A, SEQ ID NO: 48) and IF-WA_VP6(opt).s1-4r (Figure 8B, SEQ ID NO: 26), using optimized VP6 gene sequence (Figure 8C, SEQ ID NO : 27) as template. For sequence optimization, VP6 protein sequence (Genbank accession number AAA47311) was backtranslated and optimized for human codon 15 usage, GC content and mRNA structure. The PCR product was cloned in 2X35S/CPMV-160/NOS expression system using In-Fusion cloning system (Clontech, Mountain View, CA). Construct number 1190 (Figure 11B, SEQ ID NO:40) was digested with SacII and StuI restriction enzyme and the linearized 20 plasmid was used for the In-Fusion assembly reaction. Construct number 1190 is an acceptor plasmid intended for “In Fusion” cloning of genes of interest in a CPMV- 160-based expression cassette. It also incorporates a gene construct for the co-expression of the TBSV P19 suppressor of silencing under the alfalfa Plastocyanin gene promoter and terminator. The backbone is a pCAMBIA binary plasmid and the 25 sequence from left to right t-DNA borders is presented in Figure 11C (SEQ ID NO: 41). The resulting construct was given number 1128 (Figure 13B, SEQ ID NO: 49). The amino acid sequence of VP6 from Rotavirus A strain WA is presented in Figure 8E (SEQ ID NO: 28). A representation of plasmid 1128 is presented in Figure 13C.

8. X35S/CPMV-160/RVA(Rtx) VP4(opt)/NOS (Construct number 1178)

30 An optimized sequence encoding VP4 from Rotavirus A vaccine USA/Rotarix- A41CB052A/1988/G1P1A[8] strain was cloned into 2X35S/CPMV-160/NOS in a

plasmid containing Plasto_pro/P19/Plasto_ter expression cassette using the following PCR-based method. A fragment containing the VP4 coding sequence was amplified using primers IF(C160)-Rtx_VP4(opt).c (Figure 14A, SEQ ID NO: 50) and IF-Rtx_VP4(opt).s1-4r (Figure 9B, SEQ ID NO: 30), using optimized VP4 gene sequence (Figure 9C, SEQ ID NO: 31) as template. For sequence optimization, VP4 protein sequence (Genbank accession number AEX30660) was backtranslated and optimized for human codon usage, GC content and mRNA structure. The PCR product was cloned in 2X35S/CPMV-160/NOS expression system using In-Fusion cloning system (Clontech, Mountain View, CA). Construct number 1190 (Figure 11B, SEQ ID NO: 40) was digested with SacII and StuI restriction enzyme and the linearized plasmid was used for the In-Fusion assembly reaction. Construct number 1190 is an acceptor plasmid intended for “In Fusion” cloning of genes of interest in a CPMV-160-based expression cassette. It also incorporates a gene construct for the co-expression of the TBSV P19 suppressor of silencing under the alfalfa Plastocyanin gene promoter and terminator. The backbone is a pCAMBIA binary plasmid and the sequence from left to right t-DNA borders is presented in Figure 11C (SEQ ID NO: 41). The resulting construct was given number 1178 (Figure H2, SEQ ID NO: H2). The amino acid sequence of VP4 from Rotavirus A vaccine USA/Rotarix-A41CB052A/1988/G1P1A[8] is presented in Figure 9E (SEQ ID NO: 33). A representation of plasmid 1178 is presented in Figure 14C.

9. 2X35S/CPMV-160/TrSp-RVA(Rtx) VP7(opt)/NOS (Construct number 1199)

An optimized sequence encoding VP7 with a truncated version of the native signal peptide from Rotavirus A vaccine USA/Rotarix-A41CB052A/1988/G1P1A[8] strain was cloned into 2X35S/CPMV-160/NOS expression system in a plasmid containing Plasto_pro/P19/Plasto_ter expression cassette using the following PCR-based method. A fragment containing the VP7 coding sequence was amplified using primers IF(C160)-TrSP+Rtx_VP7(opt).c (Figure 15A, SEQ ID NO: 52) and IF-Rtx_VP7(opt).s1-4r (Figure 10B, SEQ ID NO: 35), using optimized VP7 gene sequence (corresponding to nt 88-891 from Figure 10C, SEQ ID NO: 36) as template. For sequence optimization, VP7 protein sequence (Genbank accession number AEX30682) was backtranslated and optimized for human codon usage, GC content and mRNA structure. The PCR product was cloned in 2X35S/CPMV-160/NOS

expression system using In-Fusion cloning system (Clontech, Mountain View, CA). Construct number 1190 (Figure 11B, SEQ ID NO: 40) was digested with SacII and StuI restriction enzyme and the linearized plasmid was used for the In-Fusion assembly reaction. Construct number 1190 is an acceptor plasmid intended for “In Fusion” cloning of genes of interest in a CPMV-160-based expression cassette. It also incorporates a gene construct for the co-expression of the TBSV P19 suppressor of silencing under the alfalfa Plastocyanin gene promoter and terminator. The backbone is a pCAMBIA binary plasmid and the sequence from left to right t-DNA borders is presented in Figure 11C (SEQ ID NO: 41). The resulting construct was given number 1199 (Figure 15B, SEQ ID NO: 53). The amino acid sequence of VP7 with truncated signal peptide from Rotavirus A vaccine USA/Rotarix-A41CB052A/1988/G1P1A[8] strain is presented in Figure 10E (SEQ ID NO: 38). A representation of plasmid 1199 is presented in Figure 15C.

10 15 10. Double gene construct for the expression of VP6 and VP2 under CPMV-HT expression cassette (construct number 1708)

[00295] A single vector for the co-expression of VP6 from Rotavirus A WA strain and VP2 from Rotavirus A WA strain under the control of CPMV-HT expression system was assembled using the following restriction enzyme/ligase-based method. Donor plasmid DNA (construct number 1710; 2X35S/CPMV-HT/ RVA(WA) VP2(opt)/ NOS)(Figure 7F, SEQ ID NO: 23) was digested with AvrII (located before the 2X35S promoter) and AscI (located after the NOS terminator) restriction enzymes and the fragment corresponding to 2X35S/CPMV-HT/ RVA(WA) VP2(opt)/ NOS expression cassette was gel-purified. This fragment was then inserted into the acceptor construct number 1713 (2X35S/CPMV-HT/RVA(WA) VP6(opt)/NOS)(Figure 8D, SEQ ID NO: 28) linearized using XbaI and AscI restriction enzymes (both sites are located after the NOS terminator of VP6 expression cassette). The resulting construct was given number 1708. A representation of plasmid 1708 is presented in Figure 16.

20 25 30 11. Double gene construct for the expression of VP7 and VP4 under CPMV-HT expression cassette (construct number 1719)

[00296] A single vector for the co-expression of VP7 with a truncated version of the native signal peptide from Rotavirus A vaccine USA/Rotarix-A41CB052A/1988/G1P1A[8] strain and VP4 from Rotavirus A vaccine USA/Rotarix-A41CB052A/1988/G1P1A[8] strain under the control of CPMV-HT expression system was assembled using the following restriction enzyme/ligase-based method. Donor plasmid DNA (construct number 1730; 2X35S/CPMV-HT/ RVA(Rtx) VP4(opt)/ NOS)(Figure 9D, SEQ ID NO: 32) was digested with AvrII (located before the 2X35S promoter) and AscI (located after the NOS terminator) restriction enzymes and the fragment corresponding to 2X35S/CPMV-HT/ RVA(Rtx) VP4(opt)/ NOS expression cassette was gel-purified. This fragment was then inserted into the acceptor construct number 1734 (2X35S/CPMV-HT/TrSp-RVA(Rtx) VP7(opt)/NOS)(Figure 10D, SEQ ID NO: 37) linearized using XbaI and AscI restriction enzymes (both sites are located after the NOS terminator of VP7 expression cassette). The resulting construct was given number 1719. A representation of plasmid 1719 is presented in Figure 17.

12. Double gene construct for the expression of VP6 and VP2 under CPMV-160 expression cassette (construct number 2400)

[00297] A single vector for the co-expression of VP6 from Rotavirus A WA strain and VP2 from Rotavirus A WA strain under the control of CPMV-160 expression system was assembled using the following restriction enzyme/ligase-based method. Donor plasmid DNA (construct number 1108; 2X35S/CPMV-160/ RVA(WA) VP2(opt)/ NOS)(Figure 12D, SEQ ID NO: 47) was digested with AvrII (located before the 2X35S promoter) and AscI (located after the NOS terminator) restriction enzymes and the fragment corresponding to 2X35S/CPMV-160/ RVA(WA) VP2(opt)/ NOS expression cassette was gel-purified. This fragment was then inserted into the acceptor construct number 1128 (2X35S/CPMV-160/RVA(WA) VP6(opt)/NOS)(Figure 13B, SEQ ID NO: 49) linearized using XbaI and AscI restriction enzymes (both sites are located after the NOS terminator of VP6 expression cassette). The resulting construct was given number 2400. A representation of plasmid 2400 is presented in Figure 18.

13. Double gene construct for the expression of VP7 and VP4 under CPMV-160 expression cassette (construct number 2408)

A single vector for the co-expression of VP7 with a truncated version of the native signal peptide from Rotavirus A vaccine USA/Rotarix-A41CB052A/1988/G1P1A[8] strain and VP4 from Rotavirus A vaccine USA/Rotarix-A41CB052A/1988/G1P1A[8] strain under the control of CPMV-160 expression system was assembled using the following restriction enzyme/ligase-based method. Donor plasmid DNA (construct number 1178; 2X35S/CPMV-160/ RVA(Rtx) VP4(opt)/ NOS)(Figure 14B, SEQ ID NO: 51) was digested with AvrII (located before the 2X35S promoter) and AscI (located after the NOS terminator) restriction enzymes and the fragment corresponding to 2X35S/CPMV-160/ RVA(Rtx) VP4(opt)/ NOS expression cassette was gel-purified. This fragment was then inserted into the acceptor construct number 1199 (2X35S/CPMV-160/TrSp-RVA(Rtx) VP7(opt)/NOS)(Figure 15B, SEQ ID NO: 53) linearized using XbaI and AscI restriction enzymes (both sites are located after the NOS terminator of VP7 expression cassette). The resulting construct was given number 2408. A representation of plasmid 2408 is presented in Figure 19.

14. Quadruple gene construct for the expression of VP7, VP4, VP6 and VP2 under CPMV-HT expression cassette (construct number 1769)

A single vector for the co-expression of VP7 with a truncated version of the native signal peptide from Rotavirus A vaccine USA/Rotarix-A41CB052A/1988/G1P1A[8] strain, VP4 from Rotavirus A vaccine USA/Rotarix-A41CB052A/1988/G1P1A[8] strain, VP6 from Rotavirus A WA strain and VP2 from Rotavirus A WA strain under the control of CPMV-HT expression system was assembled using the following restriction enzyme/ligase-based method. Donor plasmid DNA (construct number 1730; 2X35S/CPMV-HT/ RVA(Rtx) VP4(opt)/ NOS)(Figure 9D, SEQ ID NO: 32) was digested with AvrII (located before the 2X35S promoter) and AscI (located after the NOS terminator) restriction enzymes and the fragment corresponding to 2X35S/CPMV-HT/ RVA(Rtx) VP4(opt)/ NOS expression cassette was gel-purified. This fragment was then inserted into the acceptor construct number 1734 (2X35S/CPMV-HT/TrSp-RVA(Rtx) VP7(opt)/NOS)(Figure 10D, SEQ ID NO: 37) linearized using XbaI and AscI restriction enzymes (both sites are located after the

NOS terminator of VP7 expression cassette). Ligation of cohesive ends produced by AvrII and XbaI destroyed the original restriction sites producing a temporary acceptor vector with the same unique XbaI and AscI restriction enzyme sites at the end of the NOS terminator of the second expression cassettes (from left to right T-DNA). VP6 (construct number 1713; Figure 8D, SEQ ID NO: 28) and VP2 (construct number 1710; Figure 7F, SEQ ID NO: 23) expressed under CPMV-HT expression system were then inserted sequentially in the resulting temporary acceptor vector using the same digestion strategy to give the final VP7/VP4/VP6/VP2 construct. The resulting construct was given number 1769. A representation of plasmid 1769 is presented in Figure 20.

10 15. Quintuple gene construct for the expression of VP4, VP7, NSP4, VP6 and VP2 under CPMV-HT expression cassette (construct number 2441)

A single vector for the co-expression of VP4 from Rotavirus A vaccine USA/Rotarix-A41CB052A/1988/G1P1A[8] strain, VP7 with a truncated version of the native signal peptide from Rotavirus A vaccine USA/Rotarix-A41CB052A/1988/G1P1A[8] strain, NSP4 from Rotavirus A WA strain, VP6 from Rotavirus A WA strain and VP2 from Rotavirus A WA strain under the control of CPMV-HT expression system was assembled using the following restriction enzyme/ligase-based method. Donor plasmid DNA (construct number 1734; 2X35S/CPMV-HT/ TrSp-RVA(Rtx) VP7(opt)/ NOS)(Figure 10D, SEQ ID NO: 37) was digested with AvrII (located before the 2X35S promoter) and AscI (located after the NOS terminator) restriction enzymes and the fragment corresponding to 2X35S/CPMV-HT/ TrSp-RVA(Rtx) VP7(opt)/ NOS expression cassette was gel-purified. This fragment was then inserted into the acceptor construct number 1730 (2X35S/CPMV-HT/ RVA(Rtx) VP4(opt)/NOS)(Figure 9D, SEQ ID NO: 32) linearized using XbaI and AscI restriction enzymes (both sites are located after the NOS terminator of VP4 expression cassette). Ligation of cohesive ends produced by AvrII and XbaI destroyed the original restriction sites producing a temporary acceptor vector with the same unique XbaI and AscI restriction enzyme sites at the end of the NOS terminator of the second expression cassettes (from left to right T-DNA). NSP4 (construct number 1706; Figure 11D, SEQ ID NO: 42), VP6 (construct number 1713; Figure 8D, SEQ ID NO: 28) and VP2 (construct number 1710; Figure 7F, SEQ ID NO: 23) expressed

under CPMV-HT expression system were then inserted sequentially in the resulting temporary acceptor vector using the same digestion strategy to give the final VP4/VP7/NSP4/VP6/VP2 construct. The resulting construct was given number 2441. A representation of plasmid 2441 is presented in Figure 21.

5 **Example 2 Co-expression of NSP4 increases VP4 and VP4 incorporation into RLPs**

[00298] The rotavirus VP2, VP4, VP6 and VP7 structural antigens were transiently co-expressed in *Nicotiana benthamiana* plants in the presence or absence of a NSP4 expression construct using agroinfiltration as described in example 1. Crude protein extracts from RLP producing plants contain large amounts of host protein as shown by the banding pattern in Coomassie-stained SDS-PAGE (Figure 2B, load).

10 Rotavirus-like particles can be separated from plant proteins by ultracentrifugation on a iodixanol density gradient. After centrifugation, analysis of the fractions from iodixanol density gradient showed that the RLPs migrated to the 35% iodixanol fraction (F2 and F3 in Figure 2B) while the majority of the host proteins remained in the 25-30% iodixanol fractions (F4-F10 in Figure 2B). RLPs from plants co-expressing rotavirus structural antigens were purified on iodixanol density gradients and the analysis of the RLP containing fractions (F2 and F3) showed that RLPs can be produced efficiently, irrespectively of the number of gene per construct as shown in figure 3A with single, dual and quadruple gene constructs. The results obtained also showed that the co-expression of NSP4 reduced RLP expression (compare fractions under -NSP4 and +NSP4 in figure 3A). Note that equal volumes of each fraction 15 were loaded on the gel to compare RLP content per volume.

[00299] RLP-containing fraction 2 from the same experiments were analyzed by 20 western blot to evaluate the impact of NSP4 co-expression on VP4 and VP7 incorporation. For that comparison, equal amounts of RLPS were loaded on the gel. The western blot results obtained showed stronger signals for VP4 and VP7 on the RLPs produced in the presence of NSP4 (Figure 3B, compare lanes under -NSP4 and +NSP4). These results clearly indicate that the co-expression of NSP4 increased VP4 25 and VP7 incorporation on the surface of the RLPs.

[00300] The genes encoding the four rotavirus antigens and the non-structural protein NSP4 were cloned into CPMV-HT and CPMV160 for comparison of expression. Co-expression studies followed by extraction and purification by ultracentrifugation in iodixanol density gradient showed that both expression 5 efficiently produced RLPs, as demonstrated by the amount of VP6 in fractions 2 and 3 of the gradient (Figure 4A), and the amount of VP4 and VP7 in fraction 2 from the same treatments (Figure 4B). This study also showed that, when using the CPMV-HT system for expression of the rotavirus proteins, single gene constructs produced as much RLPs as dual gene constructs (Figure 4A, left panel vs middle panel) and 10 resulted in similar coverage with the surface antigens, VP4 and VP7 (Figure 4B, left panel vs middle panel).

[00301] A quintuple gene construct (comprising 5 genes on the same plasmid) has been evaluated for the co-expression of the four structural antigens with NSP4. As 15 shown in figure 5, the use of quintuple gene construct resulted in similar RLP production level as with the use of a quadruple gene construct with the NSP4 gene on a separate plasmid (Figure 5, top panel), as well as comparable levels of VP4 and VP7 incorporation (Figure 5, lower panel).

Agrobacterium transformation

[00302] All plasmids were used to transform *Agrobacterium tumefaciens* (AGL1; 20 ATCC, Manassas, VA 20108, USA) by electroporation (Mattanovich et al., 1989, Nucleic Acid Res. 17:6747) alternatively, heat shock using CaCl₂-prepared competent cells (XU et al., 2008, Plant Methods 4) may be used. The integrity of the plasmids in the *A. tumefaciens* strains created was confirmed by restriction mapping.

Preparation of plant biomass, inoculum, agroinfiltration, and harvesting

[00303] *Nicotiana benthamiana* plants were grown from seeds in flats filled with a 25 commercial peat moss substrate. The plants were allowed to grow in the greenhouse under a 16/8 photoperiod and a temperature regime of 25°C day/20°C night. Three weeks after seeding, individual plantlets were picked out, transplanted in pots and left to grow in the greenhouse for three additional weeks under the same environmental 30 conditions.

[00304] Agrobacteria transfected with each construct were grown in a LB medium from vegetal origin and supplemented with 10 mM 2-(N-morpholino)ethanesulfonic acid (MES) and 50 µg/ml kanamycin pH5.6 until they reached an OD600 between 0.6 and 2.5. Agrobacterium suspensions were mixed to reach appropriate ratio for each construct and brought to 2.5X OD600 with infiltration medium (10 mM MgCl₂ and 10 mM MES pH 5.6). *A. tumefaciens* suspensions were stored overnight at 4°C. On the day of infiltration, culture batches were diluted with infiltration medium and allowed to warm before use. Whole plants of *N. benthamiana* were placed upside down in the bacterial suspension in an air-tight stainless steel tank under a vacuum of 20-40 Torr for 2-min. Following infiltration, plants were returned to the greenhouse for a 9 day incubation period until harvest. Harvested biomass was kept frozen (-80°C) until use for purification of particles.

Extraction and screening by ultracentrifugation of rotavirus-like particles

[00305] Proteins were extracted from frozen biomass by mechanical extraction in a blender with 2 volumes of extraction buffer (TNC: 10 mM Tris pH 7.4, 140 mM NaCl, 10 mM CaCl₂). The slurry was filtered through a large pore nylon filter to remove large debris and centrifuged 5000 g for 5 min at 4°C. The supernatant was collected and centrifuged again at 5000 g for 30 min (4°C) to remove additional debris. The supernatant is then loaded on a discontinuous iodixanol density gradient.

[00306] Analytical density gradient centrifugation was performed as follows. 38 ml tubes containing discontinuous iodixanol density gradient in TNC buffer (1.2 ml at 45%, 2 ml at 35%, 5 ml at 30% and 5 ml at 25% of iodixanol) were prepared and overlaid with 25 ml of the extracts containing the rotavirus-like particles. The gradients were centrifuged at 120 000 g for 4 hours (4°C). After centrifugation, 1 ml fractions were collected from the bottom to the top and fractions 2 and 3 (corresponding to 35% iodixanol) were analysed by SDS-PAGE combined to protein staining or Western blot.

SDS-PAGE and immunoblotting

[00307] Protein concentrations were determined by the BCA protein assay (Pierce Biochemicals, Rockport, IL). Proteins were separated by SDS-PAGE under reducing

conditions using Criterion™ TGX Stain-Free™ precast gels (Bio-Rad Laboratories, Hercules, CA) and proteins were visualized with Gel Doc™ EZ imaging system (Bio-Rad Laboratories, Hercules, CA).

[00308] For immunoblotting, electrophoresed proteins were electrotransferred onto polyvinylene difluoride (PVDF) membranes (Roche Diagnostics Corporation, Indianapolis, IN). Prior to immunoblotting, the membranes were blocked with 5% skim milk and 0.1% Tween-20 in Tris-buffered saline (TBS-T) for 16-18h at 4°C.

[00309] Immunoblotting was performed by incubation with a suitable antibody (Table 4) in 2% skim milk in TBS-Tween 20 0.1%. Secondary antibodies used for chemiluminescence detection were as indicated in Table 4, diluted as indicated in 2% skim milk in TBS-Tween 20 0.1%. Immunoreactive complexes were detected by chemiluminescence using luminol as the substrate (Roche Diagnostics Corporation, Indianapolis, IN).

[00310] Table 4: Electrophoresis conditions, antibodies, and dilutions for immunoblotting of rotavirus antigens.

Rotavirus antigen	Electrophoresis condition	Primary antibody	Dilution	Secondary antibody	Dilution
VP4	Reducing	Rabbit serum from immunized Rabbit with recombinant VP4 (in house)	1:30 000	Goat anti-rabbit (JIR 111-035-144)	1:10 000
VP7	Reducing	Rabbit serum from immunized Rabbit with recombinant VP7 (in house)	1:50 000	Goat anti-rabbit (JIR 111-035-144)	1:10 000

[00311] All citations are hereby incorporated by reference.

[00312] The present invention has been described with regard to one or more embodiments. However, it will be apparent to persons skilled in the art that a number of variations and modifications can be made without departing from the scope of the invention as defined in the claims.

WHAT IS CLAIMED IS:

1. A method of producing a rotavirus like particle (RLP) in a host or host cell comprising:

5 a) providing a host or host cell comprising one or more nucleic acid comprising

10 a first nucleotide sequence encoding a first rotavirus protein, a second nucleotide sequence encoding a second rotavirus protein and a third nucleotide sequence encoding a third rotavirus protein, the first, second and third nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and

15 the first nucleotide sequence encoding rotavirus protein NSP4, the second nucleotide sequence encoding rotavirus protein VP6, and the third nucleotide sequence encoding one of rotavirus protein VP7 or VP4;

20 b) incubating the host or host cell under conditions that permit the expression of the one or more nucleic acid, so that each of NSP4, VP6 and VP7 or VP4 are expressed, thereby producing the RLP.

25 2. The method of claim 1, wherein the one or more nucleic acid further comprises a fourth nucleotide sequence encoding a fourth rotavirus protein, the first, second, third, and fourth nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and

25 the first nucleotide sequence encoding rotavirus protein NSP4, the second nucleotide sequence encoding rotavirus protein VP6, and the third and fourth nucleotide sequence encoding rotavirus protein VP2, VP4 or VP7 and wherein each of NSP4, VP6 and two of VP2, VP4 and VP7 are expressed from the one or more nucleic acid.

3. The method of claim 2, wherein the one or more nucleic acid further comprises a fifth nucleotide sequence encoding a fifth rotavirus protein, the first, second,

third, fourth and fifth nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and

the first, second, third, fourth and fifth nucleotide sequence encoding one of rotavirus protein VP2, VP4, VP6, VP7 or NSP4 and wherein each of VP2, VP4, VP6, VP7 and NSP4 are expressed from the one or more nucleic acid.

5. The method of claim 3, wherein the one or more nucleic acid comprises one nucleic acid comprising the first, second, third, fourth and fifth nucleotide sequence encoding the first, second, third, fourth and fifth rotavirus protein.
10. The method of claim 3, wherein the one or more nucleic acid comprises two nucleic acids, a first nucleic acid comprising the first nucleotide sequence encoding the first rotavirus protein, and a second nucleic acid comprising the second, third, fourth and fifth nucleotide sequence encoding the second, third, fourth and fifth rotavirus protein.
15. The method of claim 3, wherein the one or more nucleic acid comprises two nucleic acids, a first nucleic acid comprising the first and second nucleotide sequence encoding the first and second rotavirus protein, and a second nucleic acid comprising the third, fourth and fifth nucleotide sequence encoding the third, fourth and fifth rotavirus protein.
20. The method of claim 3, wherein the one or more nucleic acid comprises three nucleic acids, a first nucleic acid comprising the first and second nucleotide sequence encoding the first and second rotavirus protein, a second nucleic acid comprising the third and fourth nucleotide sequence encoding the third and fourth rotavirus protein, and a third nucleic acid comprising the fifth nucleotide sequence encoding the fifth rotavirus protein.
25. The method of claim 3, wherein the one or more nucleic acid comprises three nucleic acids, a first nucleic acid comprising the first nucleotide sequence encoding the first rotavirus protein, a second nucleic acid comprising the second nucleotide sequence encoding the second rotavirus protein, and a third nucleic acid comprising the third, fourth and fifth nucleotide sequence encoding the third, fourth and fifth rotavirus protein.

9. The method of claim 3, wherein the one or more nucleic acid comprises four nucleic acids, a first nucleic acid comprising the first nucleotide sequence encoding the first rotavirus protein, a second nucleic acid comprising the second nucleotide sequence encoding the second rotavirus protein, a third nucleic acid comprising the third nucleotide sequence encoding the third rotavirus protein, and a fourth nucleic acid comprising the fourth and fifth nucleotide sequence encoding the fourth and fifth rotavirus protein.
5
10. The method of claim 3, wherein the one or more nucleic acid comprises five nucleic acids, a first nucleic acid comprising the first nucleotide sequence encoding the first rotavirus protein, a second nucleic acid comprising the second nucleotide sequence encoding the second rotavirus protein, a third nucleic acid comprising the third nucleotide sequence encoding the third rotavirus protein, a fourth nucleic acid comprising the fourth nucleotide sequence encoding the fourth rotavirus protein, and a fifth nucleic acid comprising the fifth nucleotide sequence encoding the fifth rotavirus protein.
10
15. The method of claim 1, wherein the host or host cell comprises insect cells, mammalian cells, plant, portion of a plant or plant cells.
12. The method of claim 11, wherein the host or host cell consist of a plant, portion of a plant or plant cells.
20. 13. The method of claim 12, wherein the plant is *Nicotiana benthamiana*.
14. The method of claim 1, wherein the one or more nucleotide sequence is operatively linked to one or more expression enhancer.
15. The method of claim 14, wherein the expression enhancer is selected from the group consisting of CPMV HT, CPMV 160, CPMV 160+ and CPMV HT+.
25. 16. The method of any one of claims 1, 2 or 3, further comprising the steps of:
 - c) harvesting the host or host cell, and
 - d) purifying the RLPs from the host or host cell, wherein the RLPs range in size from 70-100 nm.

17. A method of producing a rotavirus like particle (RLP) in a host or host cell comprising:

5 a) introducing into the host or host cell one or more nucleic acid comprising a first nucleotide sequence encoding a first rotavirus protein, a second nucleotide sequence encoding a second rotavirus protein and a third nucleotide sequence encoding a third rotavirus protein, the first, second and third nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and

10 the first nucleotide sequence encoding rotavirus protein NSP4, the second nucleotide sequence encoding rotavirus protein VP6, and the third nucleotide sequence encoding one of rotavirus protein VP7 or VP4;

15 b) incubating the host or host cell under conditions that permit the expression of the one or more nucleic acid so that each of NSP4, VP6 and VP7 or VP4 are expressed, thereby producing the RLP.

18. The method of claim 17, wherein the one or more nucleic acid further comprises a fourth nucleotide sequence encoding a fourth rotavirus protein, the first, second, third, and fourth nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and

20 the first nucleotide sequence encoding rotavirus protein NSP4, the second nucleotide sequence encoding rotavirus protein VP6, and the third and fourth nucleotide sequence encoding of rotavirus protein VP2, VP4 or VP7 and wherein each of NSP4, VP6 and two of VP2, VP4 and VP7 are expressed from the one or more nucleic acid.

25 19. The method of claim 18, wherein the one or more nucleic acid further comprises a fifth nucleotide sequence encoding a fifth rotavirus protein, the first, second, third, fourth and fifth nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and

the first, second, third, fourth and fifth nucleotide sequence encoding one of rotavirus protein VP2, VP4, VP6, VP7 or NSP4 and wherein each of VP2, VP4, VP6, VP7 and NSP4 are expressed from the one or more nucleic acid.

20. The method of claim 19, wherein in the step of introducing (step a), the one or 5 more nucleic acid comprises two nucleic acids:

i) a first nucleic acid comprising a first nucleotide sequence encoding a first rotavirus protein, and a second nucleic acid comprising a second, third, fourth and fifth nucleotide sequence encoding a second, third, fourth and fifth rotavirus protein; or

10 ii) a first nucleic acid comprising a first and second nucleotide sequence encoding a first and second rotavirus protein, and a second nucleic acid comprising a third, fourth and fifth nucleotide sequence encoding a third, fourth and fifth rotavirus protein, and

15 wherein the ratio of an amount of the first nucleic acid relative to the amount of the second nucleic acid that is introduced into the host or host cell being between 1:0.8 and 1:2.

21. The method of claim 20, wherein the first rotavirus protein is NSP4, and the second, third, fourth and fifth rotavirus proteins are VP2, VP4, VP6 and VP7.

22. The method of claim 20, wherein the ratio is 1:1.

20 23. The method of claim 19, wherein in the step of introducing (step a), the one or more nucleic acid comprises three nucleic acids:

25 i) a first nucleic acid comprising the first and the second nucleotide sequence encoding the first and the second rotavirus protein, a second nucleic acid comprising the third and fourth nucleotide sequence encoding the third and the fourth rotavirus protein, and a third nucleic acid comprising the fifth nucleotide sequence encoding the fifth rotavirus protein, or

ii) the first nucleic acid comprising the first nucleotide sequence encoding the first rotavirus protein, the second nucleic acid comprising the second nucleotide

sequence encoding the second rotavirus protein, and the third nucleic acid comprising the third, fourth and fifth nucleotide sequence encoding the third, fourth and fifth rotavirus protein,

5 wherein the ratio of an amount of the first nucleic acid relative to the amount of the second nucleic acid and to the amount of the third nucleic acid that is introduced into the host or host cell is 1:1:1.

10

15

20

25

30

24. The method of claim 19, wherein in the step of introducing (step a), the one or more nucleic acid comprises four nucleic acids, a first nucleic acid comprising the first nucleotide sequence encoding the first rotavirus protein, a second nucleic acid comprising the second nucleotide sequence encoding the second rotavirus protein, a third nucleic acid comprising the third nucleotide sequence encoding the third rotavirus protein, and a fourth nucleic acid comprising the fourth and the fifth nucleotide sequence encoding the fourth and fifth rotavirus protein, wherein the ratio of an amount of the first nucleic acid relative to the amount of the second nucleic acid, to the amount of the third nucleic acid and to the amount of the fourth nucleic acid that is introduced into the host or host cell is 1:1:1:1.
25. The method of claim 19, wherein in the step of introducing (step a), the one or more nucleic acid comprises five nucleic acids, a first nucleic acid comprising the first nucleotide sequence encoding the first rotavirus protein, a second nucleic acid comprising the second nucleotide sequence encoding the second rotavirus protein, a third nucleic acid comprising the third nucleotide sequence encoding the third rotavirus protein, a fourth nucleic acid comprising the fourth nucleotide sequence encoding the fourth rotavirus protein, and a fifth nucleic acid comprising the fifth nucleotide sequence encoding the fifth rotavirus protein, and the ratio of an amount of the first nucleic acid relative to the amount of the second nucleic acid, to the amount of the third nucleic acid, to the amount of the fourth nucleic acid and to the amount of the fifth nucleic acid that is introduced into the host or host cell is 1:1:1:1:1.
26. An RLP produced by the method of claim 3 or 19, wherein the RLP is a triple layered RLP comprising rotavirus protein, the rotavirus protein consisting of VP2, VP4, VP6 and VP7.

27. A composition comprising an effective dose of the RLP of claim 26 for inducing an immune response in a subject, and a pharmaceutically acceptable carrier.
28. A method of inducing immunity to a rotavirus infection in a subject, comprising administering the composition of claim 27 to the subject.
- 5 29. The method of claim 28, wherein the composition is administered to a subject orally, intradermally, intranasally, intramuscularly, intraperitoneally, intravenously, or subcutaneously.
30. A plant matter comprising an RLP produced by the method of claim 1, 2 or 3.
31. A plant matter comprising an RLP produced by the method of claim 17, 18 or 19.
- 10 32. A method of increasing incorporation of VP4, VP7, or both VP4 and VP7 in a rotavirus like particle (RLP) comprising:
 - a) providing a host or host cell comprising one or more nucleic acid comprising a first nucleotide sequence encoding a first rotavirus protein, a second nucleotide sequence encoding a second rotavirus protein and a third nucleotide sequence encoding a third rotavirus protein, the first, second and third nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and
15 the first nucleotide sequence encoding rotavirus protein NSP4, the second nucleotide sequence encoding rotavirus protein VP6, and the third nucleotide sequence encoding one of rotavirus protein VP7 or VP4;
 - 20 b) incubating the host or host cell under conditions that permit the expression of the one or more nucleic acid, so that each of NSP4, VP6 and VP7 or VP4 are expressed, thereby producing the RLP with enhanced levels of VP4, VP7, or both VP4 and VP7 when compared to the level of VP4 or VP7 produced by a second host or host cell that expresses the one or more nucleic acid that does not comprise NSP4, under the same conditions.

33. A method of increasing incorporation of VP4, VP7, or both VP4 and VP7 in a rotavirus like particle (RLP) comprising:

a) introducing into a host or host cell one or more nucleic acid comprising a first nucleotide sequence encoding a first rotavirus protein, a second nucleotide sequence encoding a second rotavirus protein and a third nucleotide sequence encoding a third rotavirus protein, the first, second and third nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and

5 the first nucleotide sequence encoding rotavirus protein NSP4, the second nucleotide sequence encoding rotavirus protein VP6, and the third nucleotide sequence encoding one of rotavirus protein VP7 or VP4;

10 b) incubating the host or host cell under conditions that permit the expression of the one or more nucleic acid, so that each of NSP4, VP6 and VP7 or VP4 are expressed, thereby producing the RLP with enhanced levels of VP4, VP7, or both VP4 and VP7 when compared to the level of VP4 or VP7 produced by a second host or host cell that expresses the one or more nucleic acid that does not comprise NSP4, under the same conditions.

15

34. The method of claim 32 or 33, wherein the one or more nucleic acid further comprises a fourth nucleotide sequence encoding a fourth rotavirus protein, the first, second, third, and fourth nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and

20 the first nucleotide sequence encoding rotavirus protein NSP4, the second nucleotide sequence encoding rotavirus protein VP6, and the third and fourth nucleotide sequence encoding rotavirus protein VP2, VP4 or VP7 and wherein each of NSP4, VP6 and two of VP2, VP4 and VP7 are expressed from the one or more nucleic acid.

25

35. The method of claim 32 or 33, wherein the one or more nucleic acid further comprises a fifth nucleotide sequence encoding a fifth rotavirus protein, the first,

second, third, fourth and fifth nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and

the first, second, third, fourth and fifth nucleotide sequence encoding one of rotavirus protein VP2, VP4, VP6, VP7 or NSP4 and wherein each of VP2, VP4, VP6, VP7 and NSP4 are expressed from the one or more nucleic acid.

5

36. The method of claim 32, 33, 34 or 35, further comprising the steps of:

- c) harvesting host or host cell, and
- d) purifying the RLPs from the host or host cell, wherein the RLPs range in size from 70-100 nm.

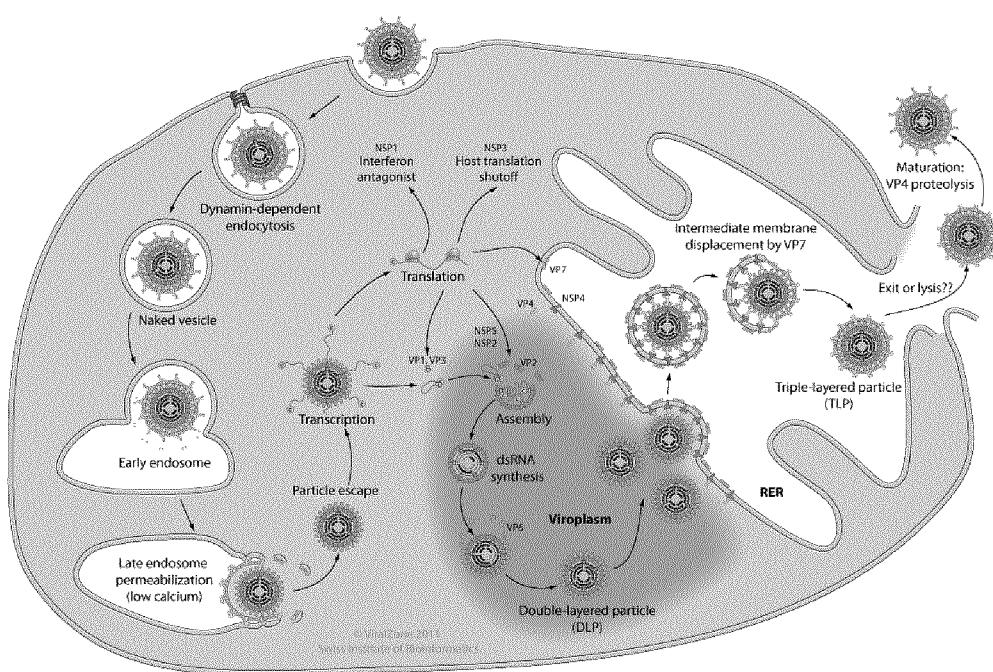
10

37. Use of NSP4 for increasing incorporation of VP4, VP7, or both VP4 and VP7 on the surface of a rotavirus like particle (RLP) produced in insect cells, mammalian cells, plant, portion of a plant or plant cells.

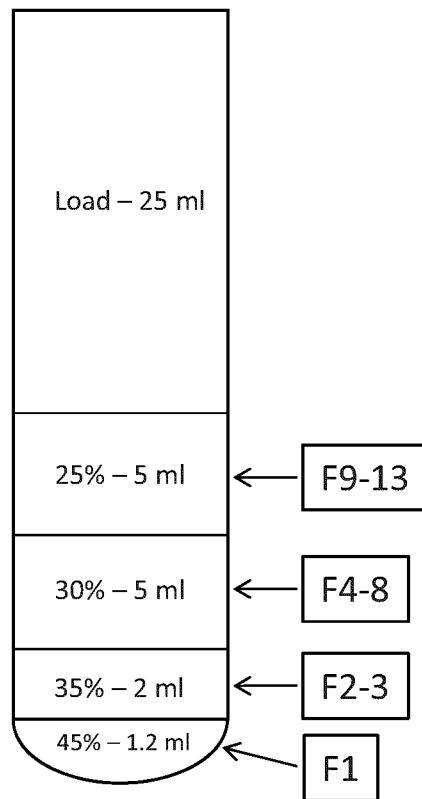
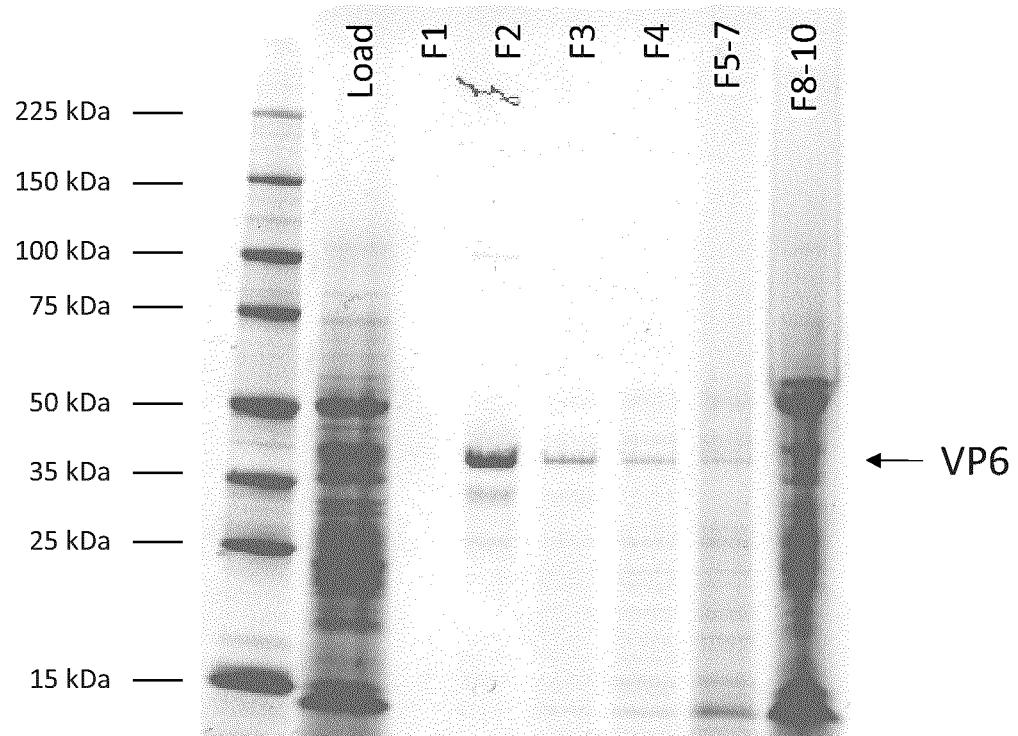
38. A method of increasing incorporation of VP4, VP7, or both VP4 and VP7 in a rotavirus like particle (RLP) comprising:

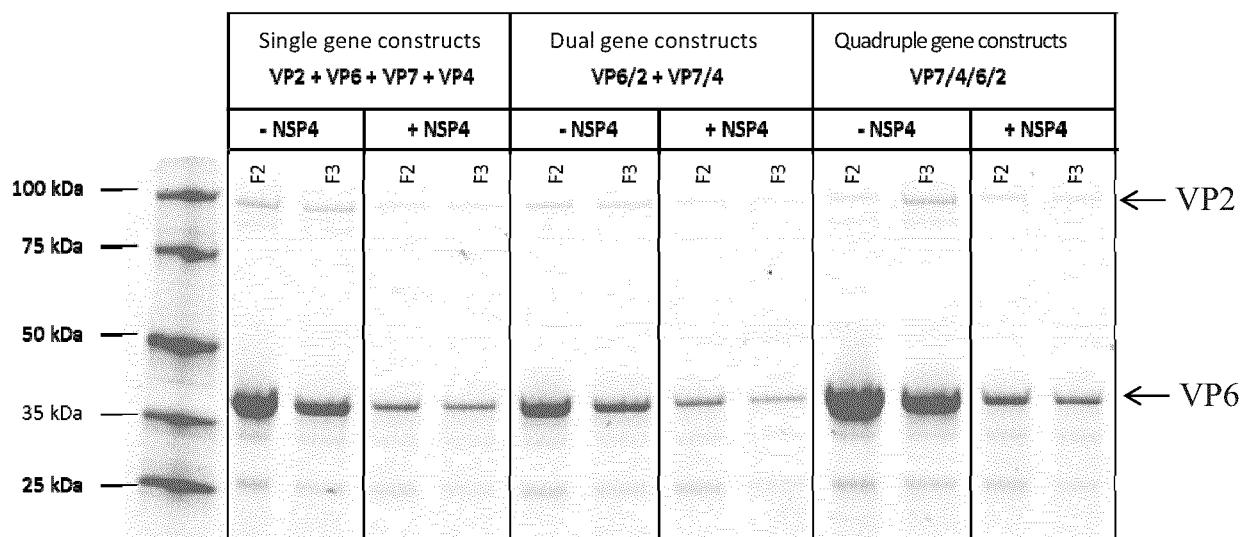
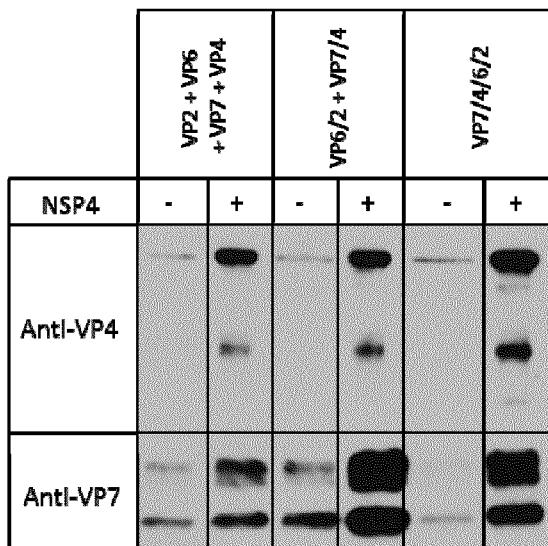
15

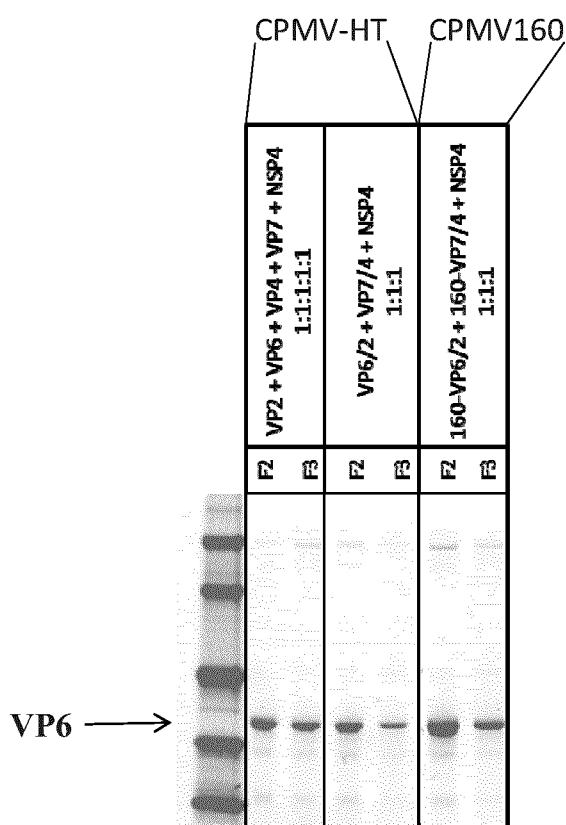
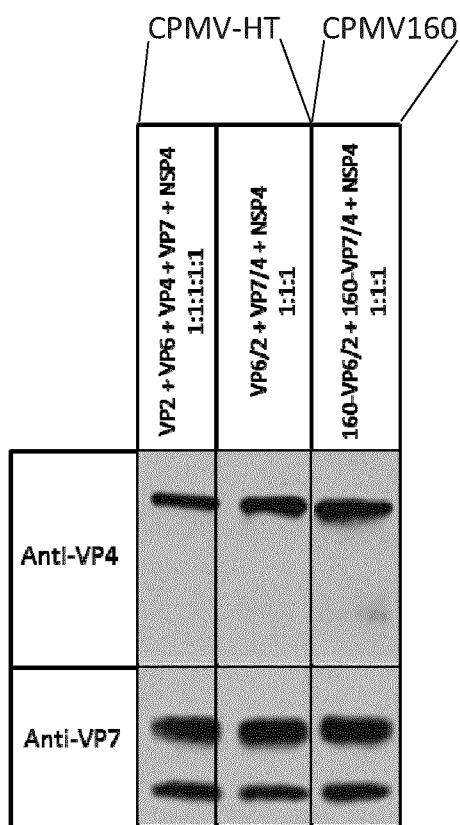
- a) providing a host or host cell comprising one or more nucleic acid comprising a first nucleotide sequence encoding a first rotavirus protein, a second nucleotide sequence encoding a second rotavirus protein, a third nucleotide sequence encoding a third rotavirus protein and a fourth nucleotide sequence encoding a fourth rotavirus protein; the first, second, third and fourth nucleotide sequence being operatively linked to one or more regulatory region active in the host or host cell; and

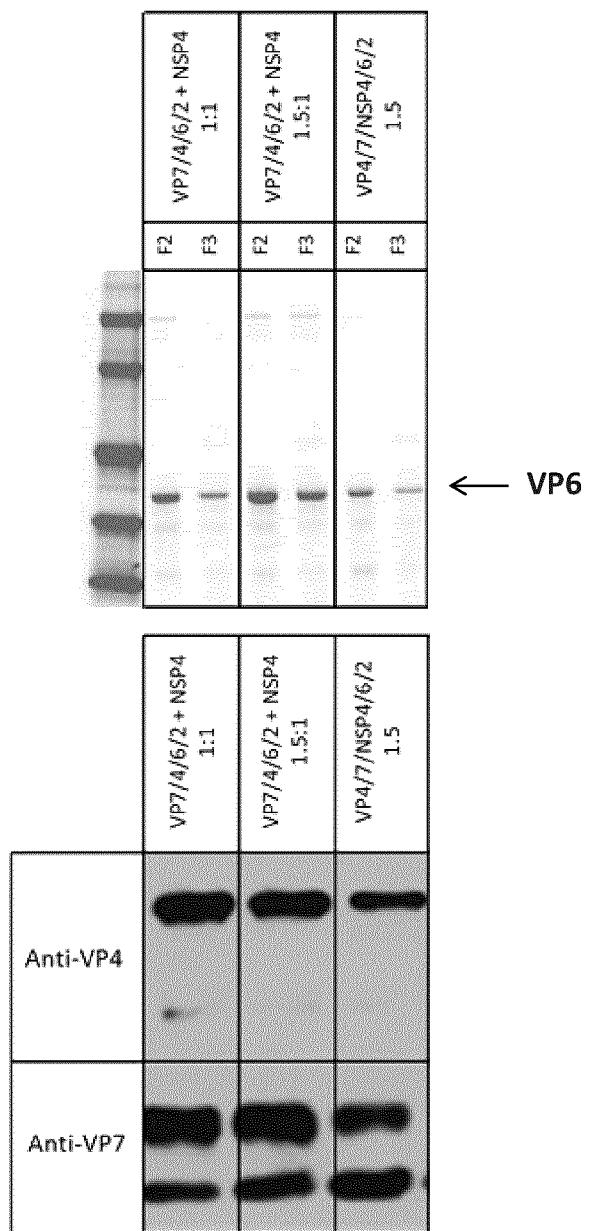

20

the first, second, third and fourth nucleotide sequence encoding one of rotavirus protein VP7, VP4, NSP4 and VP2 or VP6;



25



- b) incubating the host or host cell under conditions that permit the expression of the one or more nucleic acid, so that each of the VP7, VP4, NSP4 and VP2 or VP6 and are expressed, thereby producing the RLP with enhanced levels of VP4, VP7, or both VP4 and VP7 when compared to the level of VP4 or VP7 produced



by a second host or host cell that expresses the one or more nucleic acid that does not comprise NSP4, under the same conditions.


Figure 1.

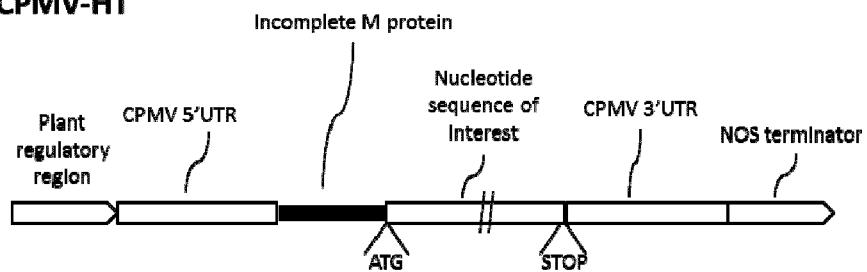
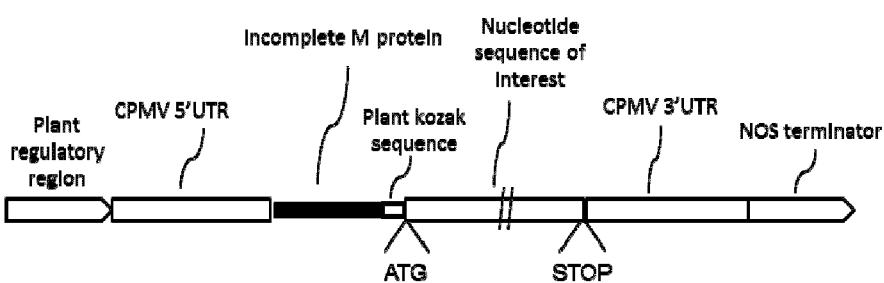
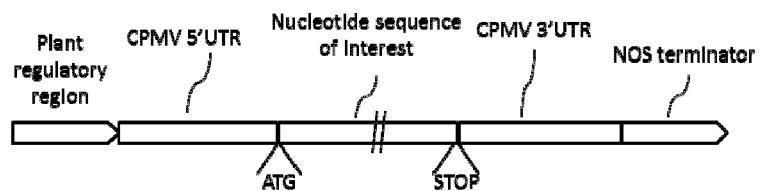
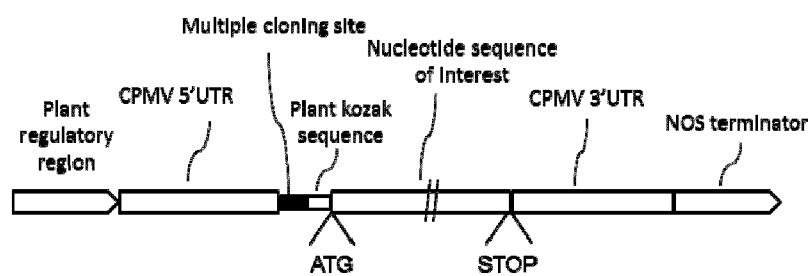




2/32

Figure 2A**Figure 2B**

Figure 3A**Figure 3B**

Figure 4A**Figure 4B**

Figure 5

Figure 6**A) CPMV-HT****B) CPMV-HT+****C) Construct comprising CPMV160****D) Construct comprising CPMV160+**

1. 2X35S/CPMV-HT/ RVA(WA) VP2(opt)/ NOS (Construct number 1710)**Figure 7A**, SEQ ID NO: 19

IF-WA_VP2(opt).s1+3c

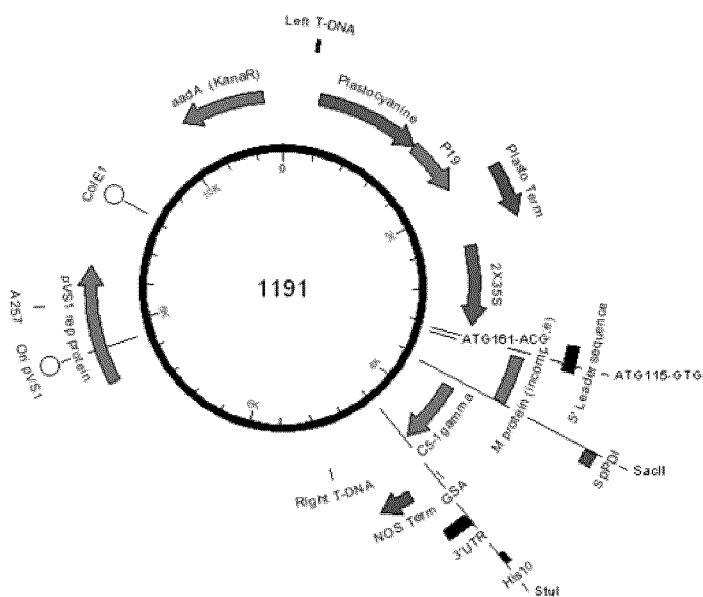
AAATTGTCGGGCCATGGCATACCGGAAGAGAGGGAGCAAAGCGCGAA

Figure 7B, SEQ ID NO: 20

IF-WA_VP2(opt).s1-4r

ACTAAAGAAAATAGGCCTTAAAGCTCGTCATTATCGCATATTGTCGA

Figure 7C, SEQ ID NO: 21


Optimized coding sequence of Rotavirus A VP2 from strain WA

ATGGCATACCGGAAGAGAGGGAGCAAAGCGCGAAAACCTGCCGCAACAGAACGAGAGACTGCAAGAAAAAGAGAT
AGAGAAAGATGTCGACGTAACAATGGAAAACAAGAATAACAATAGGAAACAACAGCTGTCGACAAAGTTCTGTCC
CAGAAGGAGGAATTATCACTGACGCCAGGACGATATTAAATTGCCGGAGAAATAAGAAGAGCTGCAAAGAA
GAATCTAAACAGCTGCTGAAATTCTGAAAACAAAAGAACGACCATCAGAAAGAGATTCAATATGAAATTTCGAAAA
AACAAATACCTACATTTGAGTCCAAGAAAGATCCTCAAGAAGCTGAGACATAAGACGGAGCAGGCAAAAAAA
CAGATGAAACTCTTCGATTTGAGCCAAACAGCTCCCTATATCGCGCCAATGGCGAGAAGGAGCTACGCAA
CCGGTGGTACTGGAAGTTGAAAAAAGACACCCCTGCCAGATGGAGATTATGACGTCCGGAGATTTCCTCAATCTCT
ATGATCAGATCCTCATCGAAATGCCGACTATCTGCTCTCAAGGACATGCCGTGGAGAACAAAAATAGCAGAGA
GCCGGCAAAGTTGCGACTCTGAGACTGCAATATTGTGATGCCATCTCAGGATGAGGAGACCGAGGGAGTC
GTCCGTAGATTCTGCTGATATCGGCAACAGGTCAGGCTGATCGTAACATTGCAATTACCCCTCATCCTCAC
CCTATTGATCATGCAATTCAATGAGTATTCTAACCAACAGTTGGAGCCGCTGAACAATGAGATAATCTCAAT
TACATACCAGAGAGGATAAGGAATGACGTGAAATTACATCCTGAACATGGATATGAATCTGCCATCTACAGCCAGGT
ATATCAGGCCAAACTTGTGCAAGGATAGACTGAAATCTCACGATAATTGAGTCCCTGTGGGATACCATCACAAACAT
CCAACATCTGCCAGGTCGCTCCGATTGAAAGGAGAACGGAGCTGGTCCACCGAACAGACATCCAG
AAAATGAGCCAGGACCTGCACTGGAGGCCCTACTATTAGCGAGACACAGTTTAGCCGGATTAACAGTC
AGGCTGCAATGATTGTTCAAGACCCCTCATAGCCGCCATGCTGCTCAAAGAACCATGCTTTGGACTTGTGACCA
CGAACTATATGAGCCTAATCTCGGAATGTTGACTTACAGTGATTCCCAACGATATGTTCTCCGGGAGTCAG
TGGCTGTGAGCTGGCGATCATCAACACCATCGTGTATCCAGCATTGGGAATGCAGAGAATGCAATTACCGGAATGG
CGACCCCTCAGACACCCCTCCAGATCGCAGAACAGCAGCAGATCAGAATTCCAGGTGGCAACTGGCTCCATT
ACAATAACAGATTAGGCAAGTTGATTGAGTTGAACTCAGACTCTGAAACGACAATACGGAATGGACA
GGTCATCAACCAGCTGATGGAAGCATTGATGCAACTCAGCAGACAGCAGTCCCCACGATGCTGTGGATTACAAAC
GGAGCATCCAACGGGGCATTGCTCTCCAATAGGCTGGGGCAGCTGCACTTAACCCACTGGCTCCCTAT
AACTACGAGACGCTAATGGCTGTGACCATGAAACATGCAACGACGGTCAAACCCCTGACAACGAGTTGAGC
TCACCTCTGTGACTTCGTTGTATGTTAACACAACCGTGATTCCGTCCCCACAGACACTGTTCCACTACTA
CAACATCAACGTGAATTCCACTCCAATTATAATGAGCGGATCAACGACGCCGTGCCATAATTACCGCAGCAAATA
GGCTGAATCTTATCAGAAAAAAATGAAGTCCATAGTGGAGACTTCTGAAACGGCTCCAGATTTCGACGTACCA
CGAGTCGCTGACGACCAAATGTACAGGCTGGGGATGCCCTCGGCTTACCGTTGAACGGAGACGGCTTGACA
TATTCAACTTGTGATGAAATGGAGCAGATCGAACCGCCTCTGATAAGATTGCTCAGGGGTTATCATCGCA
TACCGAGATATGCACTGGAACCGCAGAGATGTACGGATATGTTAATTGACGGAATCTGATGGCTACCGC

AAATTAACCTGGAGGAACCTATGCGCACCGGTGATTACGGACAAATTACGAACATGCTCTAACAAATCAACCGTTC
 GCCCTGTGGGTGCATTGCCCTCGTTACGGACTCATCCGTGATCAGTCTAACGCCAAGCTCGACGCAACCGTCTTC
 GCTCAGATAGTGAAGCTCAGGAAAGTTGACACACTGAAGCCCATACTGTACAAAATAACTCGGATTCCAATGACTT
 TTACCTTGCCAACTACGACTGGATCCCCACAAGTACAACAACTAAGGTCTACAAACAGGTGCCACAACCATTGACTT
 TAGAGCCAGCATGCACATGCTGACTTCAACCTTACGTTACCGTCTACTCTGACCTACTGTGACATTGTTAGCGGAC
 ACGGTAGAGCCATTAACGCAGTCGATTGACAATATGCGAATAATGAACGAGCTTAA

Figure 7D

Schematic representation of construct 1191. SacII and StuI restriction enzyme sites used for plasmid linearization are annotated on the representation.

Figure 7E, SEQ ID NO: 22

Construct 1191 from left to right t-DNA borders (underlined). 2X35S/CPMV-HT/NOS with Plastocyanine-P19-Plastocyanine silencing inhibitor expression cassette

TGGCAGGATATTTGGGTAAACAAATTGACGCTTAGACAACCTAACACACATTGCGGACGTTTAAATGTACTGAATTAAACG
 CCGAACCCGGGCTGGTATTTATATGTTGCAAATAACTCAAAACCATAAAGTTAAAGTTAGCAAGTGTGACATTTTACTT
 GAACAAAAATATTCACTACTAGTTATAATCATTATAACATTAGAGTAAGAAATGGATGATAAGAACAGAGTAGTGA
 TATTTGACAACAATTGTTGCAACATTGAGAAAATTGTTGTTCTCTTTATTGGTCAAAACAAATAGAGAGAGAAAAAG
 GAAGAGGGAGAATAAAACATAATGTGAGTATGAGAGAGAAAGTTGACAAAAGTTGACAAAATAGTTGACAAATATCATT
 GAGGAATTGACAAAAGCTACACAAATAAGGGTTAATTGCTGAAATAAGGATGACGCATTAGAGAGATGTACCTAGAG
 AATTTTGGCAAGTCATTAAGAAAGATAATTATTTAAATTAAAGTTGAGTCATTGATTTGATTAAACATGTGATTATTAAT
 GAATTGATGAAAGAGTTGGATTAAAGTTGATTAGTAATTGAAATTGTTGTCATTTAATTGACATTGATTTCTTATATA
 TTGCCCCATAGAGTCAGTTAACTCATTTATATTCTAGATCAAATAAGAGAAATAACGGTATTTAATCCCTCAAAAAAAA
 AACGGTATATTCTAAAGCCACGTTAGGAGGATAACAGGATCCCGTAGGAGGATAACATCCAATCCAACATCAC
 AACAACTCTGATGAGATAACCCACTTAAGGCCACGCATCTGTCACATCTACATTCTAAATCACACATTCTCCACACATCTG

AGCCACACAAAACCAATCCACATCTTATCACCCATTCTATAAAAATCACACTTGTGAGTCTACACTTGATTCCTCAAACAC
ATACAAAGAGAAGAGACTAATTAATTAATCATCTGAGAGAAAATGGAACGAGCTACAGGAAACGACGCTAGGGAAAC
AAGCTAACAGTGAACGTTGGATGGAGGATCAGGAGGTACCACTTCTCCCTCAAACCTCCTGACGAAAGTCCGAGTTGGACTGA
GTGGCGGCTACATAACGATGAGACGAATTCAAGATAATCCCTGGTTCAAGGAAAGCTGGGTTCGGGAAAGTTGTA
TTAAGAGATATCTAGATAACGACAGGACGGAAGCTTCACTGCACAGAGTCTGGATCTGGACGGGAGATTGGTTAACATG
CAGCATCTGATTTCTGGTTGACAGATCGATGTACCTATAGTATTGCTTGGAGGAGTTAGTACCGTTCTGGAGGG
TCGCGAACTCTCAGCATCTGTGAGATGGCAATTGGCTAAAGCAAGAACGCTACAGCTGCCCAATCGAAGTGGAAAGTA
ATGTATAAGAGGATGCCCTGAAGGTACTCAAACCTCGAAAAGAAAGCAGTAAGTAAAATGCTTCTCGTCTCCTATTATA
ATATGGTTGTTATTGTTAATTTGTTCTGTAGAAGAGCTTAATTAATCGTTGTTATGAAACTATTTGTTGAGATGAAACTG
GTGTAATGTAATTCTACATAAGTGGAGTCAAGAATCAGATGTTCCATAACTAACGACATGAAGACCTGCCCGTACA
ATTGTTTATTTGAAACAACAAATTGAAACATCTTGCACAACTTATAAGTGGTTAATAGCTCAAATATGGTCAAGTTC
AATAGATTAATAATGAAATATCAGTTATCGAAATTCTAACATCAACTAACGTTAACACTAATTTATATCATCCCTT
GATAAATGATAGTACACCAATTAGGAAGGAGCATGCTGCCCTAGGAGATTGCTGTTCCGCCCTAGTTGCAAGCTGCTCAG
CGTGTAGCCAATACGCAAACCGCCTCTCCCGCGCTGGAAATTACTAGCGCGTGTGACAAGCTGCTGATGCCGTCAACATGG
TGGAGCACGACACACTGTACTCCAAAATATCAAAGATAACGTCAGAAGACCAAAGGGCAATTGAGACTTTCAACAAAG
GGTAATATCGGAAACCTCTGGATTCCATTGCCAGCTATGTCACCTTATTGTAAGATACTGGAAAGGAAGGTGGCTCCT
ACAAATGCCATCTGGATAAAAGGAAGGCCATGTTGAAGATGCTGCCAGTGGTCCCAAAGATGGACCCCCACCCAC
GAGGAGCATGTTGAAAAGAAAGACGTTCAACCACGTCTCAAAGCAAGTGGATTGATGTGATAACATGGTGGAGCACAC
ACTTGTCTACTCCAAAATATCAAAGATAACGTCAGAAGACCAAAGGGCAATTGAGACTTTCAACAAAGGTAAATACCGGA
AACCTCTCGGATTCCATTGCCAGCTATGTCACCTTATTGTAAGATACTGGAAAGGAAGGTGGCTCCTACAAATGCCATCA
TTGCGATAAGGAAAGGCCATGTTGAAGATGCCCTGCGCACGTGGATTGATGTGATCTCCACTGACGTAAGGGATGACGACAATCC
CACTATCTCGCAAGACCCCTCTATATAAGGAAGTTCTTGTGAGGATTAAAATCTTAAGGTTGATAAAAG
CGAACGTTGGGAAACCGAACCAAACCTCTTCAAACCTCTCATCTCTTAAAGCAAACCTCTCTTGTGTTGCGACA
GCGATCTCAACGTTGTCAGATCGTCTCGGCCACAGTACAACGTTCTTCACTGAAGCGAAATCAAAGATCTTGTGACA
CGTAGTGCAGCGCCTAAATAACGTTACTGTCCTATTGTCGGTGTGGCTTGGAAAAGAAAGCTTGTGAGGCTG
GTTAGCCCCATACATTACTGTTAGATTCTGTCAGTTGGGGTCAATATCTACTCTGTCAGGTTGAGGTTGCT
GTACTCTTCTCTCTCTGCTGTTGAGGTTCTATAAGAAACTAGTATTCTTGTGAAACAGAGTTCCGTTGCT
GGAGAAAAGATTGTTAAGCTCTGTTGAGGTTCTTCTGCTGAGGTTCTTGTGAGGTTCTTGTGCT
GTTTCTCTCTGTTGAGGTTCTTCTGCTGAGGTTCTTGTGAGGTTCTTGTGAGGTTCTTGTGCT
CCCTGGATCTGCTGCCAAACTAACCTCATGGTACCCCTGGGATGCTGGTCAGGGTATTCCCTGAGCCAGTGACAGTGACCT
GGAACCTGGATCCCTGTCAGCGGTGTGACACCTTCCAGTGTCTGACCTACACTGAGCAGTCAGTGACT
GTCCCCCTCAGCACCTGGCCAGCGAGACCGTCACCTGCAACGTTGCCACCCGGCAGCAGCACCAAGGTGACAAGAAAATTG
TGCCCCAGGGATTGTTGAGGTTGAGGTTCTGCTGAGGTTCTTGTGAGGTTCTTGTGAGGTTCTTGTGAGGTTCTTGTGAGGTT
GTGCTCACCATTACTCTGACTCTAAAGGTCACGTTGAGGTTCTGAGGTTCTTGTGAGGTTCTTGTGAGGTTCTTGTGAGGTT
TGTAGATGATGTTGAGGTTGACACAGCTCAGACGCAACCCGGGAGGAGCAGTTCAACAGCAGTCAGTGACT
CCCACATGCAACGAGACTGGCTAACGGCAAGGAGGATGCTCACCATACCATACCATACCATACCATACCAT
TTCTTAGTTGAATTACTGTTACTGTTGAGGTTCTGAGGTTCTTGTGAGGTTCTTGTGAGGTTCTTGTGAGGTTCTTGTGAGGTT
ATTTAATTCTTGAGGTTCTGAGGTTCTGAGGTTCTTGTGAGGTTCTTGTGAGGTTCTTGTGAGGTTCTTGTGAGGTTCTTGTGAGGTT
AAAAAGACCGGAAATTGAGGTTCTGAGGTTCTGAGGTTCTTGTGAGGTTCTTGTGAGGTTCTTGTGAGGTTCTTGTGAGGTTCTTGTGAGGTT
TTGCGGTCTGAGGTTCTGAGGTTCTGAGGTTCTTGTGAGGTTCTTGTGAGGTTCTTGTGAGGTTCTTGTGAGGTTCTTGTGAGGTTCTTGTGAGGTT
GAGATGGGTTTATGATTAGAGTCCGCAATTATAACGCGATAGAAAACAAATAGCGCGAAACTAGGATAAA
TTATCGCGCGGGTGTCTATGTTACTAGAGTCTAGAGCTCAAGCTGGCGGCCAGTGACTAGTGGACTGGCCGT
TTTACAACGTCGTGACTGGAAAACCTGGCTTACCCAACTTAATGCCCTGAGCACATCCCCCTTGCAGCTGGCGTA
GCGAAGAGGCCGACCGATGCCCTTCCAACAGTGCAGCCTGAATGGCAATGCTAGAGCAGCTGAGCTGGGATCAGAT
TGTGTTCCGCCCTGAGTTAAACTACGTTGAGGATATTGGGGTAAACCTAAGGATAATTGGGGTAAACCTAAGGAAAGAGCGTTA

Figure 7F, SEQ ID NO: 23

Expression cassette number 1710 from 2X35S promoter to NOS terminator. VP2(opt) from Rotavirus A WA strain is underlined.

GTCAACATGGTGGAGCAGCACACTTGTCTACTCCAAAAATATCAAAGATACAGTCTCAGAAGACCAAGGGCAATTGAGACTT
 TTCAACAAAGGGTAATATCCGAAACCTCCTCGGATTCCATTGCCAGCTATCTGTCACTTATTGTGAAGATAGTGGAAAAGGAA
 GGTGGCTCTACAAATGCCATATTGCGATAAAGGAAAGGCCATGTTGAAGATGCCCTGCCACAGTGGTCCAAGATGGAC
 CCCCACCCACGAGGAGCATGTTGAAAAAGAAGACGTTCAACCACGTCTCAAAGCAAGTGGATTGATGTGATAACATGGTGG
 AGCACGACACACTTGTCTACTCCAAAAATATCAAAGATACAGTCTCAGAAGACCAAGGGCAATTGAGACTTCAACAAAGGGT
 AATATCGGAAACCTCCTCGGATTCCATTGCCAGCTATCTGTCACTTATTGTGAAGATAGTGGAAAAGGAAGGTGGCTCTACA
 AATGCCATATTGCGATAAAGGAAAGGCCATGTTGAAGATGCCCTGCCACAGTGGTCCAAGATGGACCCCCACCCACGAG
 GAGCATGTTGAAAAAGAAGACGTTCAACCACGTCTCAAAGCAAGTGGATTGATGTGATACTCCACTGACGTAAGGGATGAC
 GCACAATCCCACATCCTTCGCAAGACCCCTCCTATATAAGGAAGTTCAATTGAGGAGGTATTAAGAATCTTAAAGCAA
 GATAAAAGCGAACGTTGGGGAAACCCGAACCAAACCTCTCAAACAGCTCTTAAACTCTCTCATCTCTTAAAGCAA
 TTGCGTGGCGATCTTCAACGTTGTCAGATGTCGCTCGGACCAGTACAACGTTCTTCACTGAAAGCGAAATCAAAGATCTT
 TGTGGACAGTAGTGCAGGCGCATTAAATAACGTGACTTGTCTATTCTTGTGGTGTGGTCTGGGAAAAGAAAAGCTGCTGG
 AGGCTGCTGTTCAAGCCCCATACATTACTGTTACGTTCTGCTGACTTCGGGGGTGCAATATCTACTCTGCTGACGAGGTA
 TTGTTGCTGTAATTCTTCTTCTTCTGATTGGTTCTATAAGAAATCTGTTGAAACAGAGTTTCCGTGGTT
 TTCGAACCTGGAGAAAGATTGTTAAGCTCTGTATATTGTCGAAACAGGAGACTGCAAGAAAAGGAGGAGCAAA
GCGCGAAACCTCGCGCAACAGAACGAGAGACTGCAAGAAAAAGAGATAGAGAAAAGATGTCGACGTAACAATGGAAAACAAGA
ATAACAATAGGAAACAACAGCTGCGACAAAGTTCTGCTCAGAGGAGGAAATTATCACTGACGCCAGGACGATATTAAGAAT
TGCCGAGAAATAAGAAGAGCTGAAAGAAGATCTAAACAGCTCGAAATTCTGAAAACAAAAGAAGACCATCAGAAAGA
GATTCAATATGAAATTGCAAAACAAATACCTACATTGAGTCAAAGAAAAGTATCTCAAGAAGCTGAAAGACATAAGACCGG
AGCAGGCAAAAAACAGATGAAACTCTTCGCAATTGAGCCAAACAGCTCCCTATATCGGCCAATGGCGAGAAGGAGCT
ACGCAACCGGTGGTACTGGAAGTTGAAAAAGACACCCCTGCAAGATGGAGATTGACGTCGGAGTATTCTCAATCTCTAT
GATCAGATCCTCATCGAAATGCCGACTATGTCCTCAAGGACATGGCGTGGAGAACAAAATAGCAGAGACGCCGCAA
GTTGTCGACTCTGAGACTGCAATTGTCGATGCCATTCCAGGATGAGGAGACCGAGGGAGTCGTCGTAGATTGATCGT
ATATGCGCAACAGGTCCAGGCTGATCGTAACATTGCAATTACCCCTCCATCTTCAACCTATTGATCATGATTGAGTATT
TTCTTAACCACCACTGGTGGAGCCGCTGAAACATGAGATAATTCTCAATTACGAGAGGAGATAAGGAATGACGTGAATT
CATCCTGAACATGGATATGAACTGCAATTACGAGGATATCAGGCCAAACTGTTGAGGAGATAAGGAATGACGTGAATT
ATTTGAGTCCCTGGGGATACCATCACAAACATCCAACTACATTCTGGCCAGGTGGTCTCCGATTGAGGAGAGCTG
GTCTCCACCGAAGCACAGATCCAGAAAATGAGCCAGGACCTGCACTGGAGGGCCCTACTATTCAAGAGCGAGACAGTTT
CCGGGATTAAACAGTCAGGCTGCCATTGTTCAAGACCCCTATGCCCATGCTGTCCTCAAAGAACCATGTCITGGACTT
GTGACCACTGAGACTATGAGCTAATCTCGGAATGTGGCTACTACAGTGAATTCCACGATATGTCCTCCGGAGTCACTAGT
GGCCTGTGAGCTGGCGATCATCAACACCATGTTGATCCAGCATTGCAAGAGAATGCACTGCCATTGAGGAGACCCCTCAG
ACACCCCTCAGATGCGAGAACAGCAGATCCAGAAATTCCAGGTGGCAACTGGCTCCATTAAACAATAACAGATTGAGGCA
AGTTGTGATTGATGGAGTTCTGAATCAGACTCTGAACGACAATACGGAATGGACAGGTGATCAACCGACTGATGAAAGCATG
ATGCAACTCAGCAGACGACGAGTCCCTACGATGCCATTGAGGATACAAACGGAGCATCCAAACGGGGCATTGTCCTCTCAA
GCTGGGGCAGCTGTGACTTAACCGACTGGTCTCTATAACTACGAGACGCTAATGGCTGTGACCATGAAACATGCA
GTGCAACACCTGACAACACTGAGAAGTTGCACTTGTGACTTCGCTTGTATGTTAATTGGTAACACAACCGTATTCCGT
CCACAGACACTGTCCTACTACAAACATCAACGTGAAATTCCACTCCAAATTATAATGAGCGGATCACGACGCCGTC
CCATATTACCGCAGAAATAGGCTGAATCTTATCAGAAAAAAATGAAGTCCATAGTGGAAAGACTTCTGAAACGGCTCAGATT
TACCAAGTGCCTGACGCCAAATGTACAGGCTGAGGGATGCCCTCGCTTACCCGGTGAACGGAGACGGCTGACATATT
CAACTTGATCCTGATGAATATGGAGCAGATCGAACCGCTCTGATAAGATTGCTCAGGGGTTATCATGCAACCGAGATATG
CAGCTGGAACCGCAGGAGATGTCGGATATGTTAATTGACCGGAATCTGATGGCTACCGCAAATTAACTTGGAGGAAC
TGCGCACCGGTGATTACGGACAAATTACGAACATGCTCAACATCAACCGTTGCCCTGTGGGTGATTGCCCTCGTACG
GACTCATCCGTGATCAGTCTAACTGCCAAGCTGACGCCAGCGTCTCGCTAGATAGTGAAGCTCAGGAAAGTTGACACACTGA
AGCCCATACTGTACAAAATACTGGATTCCAACTGACTTTACCTTGTCGAAACTACGACTGGATCCCCACAAGTACAAC

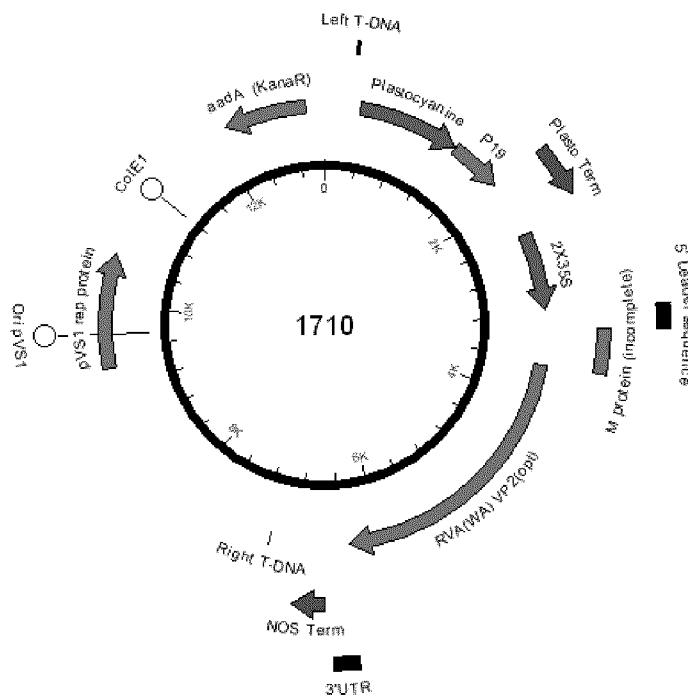

GTCTACAAACAGGTGCCACAACCATTGACTTAGAGCCAGCATGCACATGCTGACTTCAACCTTACGTTACCGTCACTCTGAC
 CTACTGTCATTGTTAGCGGACACGGTAGAGCCCATTACCGCAGTCGACATTGACAATATGCAATAATGAACGAGCTTAAAG
 GCCTATTTCTTAGTTGAATTACTGTTATTCCGTGTGCAATTCTATGTTGGTGGAGCGGTTCTGTGCTCAGAGTGTGTTATT
 TATGTAATTAAATTCTTGTGAGCTCTGTTAGCAGGTGCTCCCTCAGCAAGGACACAAAAAGATTAAATTAAATTAAAAAAA
 AAAAAAAAAGACCGGAAATCGATATCAAGCTATCGACCTGAGATCGTCAAACATTGGCAAAAGTTCTTAAGATTGA
 ATCCGTTGCCGGCTTGCATGATTATCATATAATTCTGTTGAATTACGTTAACATGTAATAACATGATGACGT
 TATTATGAGATGGGTTTATGATTAGTCCGCAATTACATTAAACCGATAGAAAACAAATAGCGCAGAAACTAG
 GATAAATTATCGCGCGGTGTCACTATGTTAGAT

Figure 7G, SEQ ID NO: 24

Amino acid sequence of VP2 from Rotavirus A WA strain

MAYRKRGAKRENLPQQNERLQEKEIEKDVDVTMENKNNNRKQQQLSDKVLSQLKEEITDAQDDIKIAGEIKKSSKEESKQLLEILKTKE
 QKEIQYEILQKTIPTFESKESILKKLDERIPREQAKKQMKLFRIFEPKQLPIYRANGEKELRNRWYWLKKDTLPGDYDVREYFLNLYDQILIE
 MPDYLLKDMAVENKNSRDAKGVDVSETANICDAIFQDEETEGVRRFIADMRQQVQADRNIVNYPISLHPIDHAFNEYFLNHQLVEP
 LNNEIFNYIPIERIRNDVNYILNMDMNLPLSTARYIRPNLQQDRNLNLDNFESLWDTITTSNYILARSVVPLKEKELVSTEAQIQKMSQDL
 QLEALTIQSETQFLAGINSQAANDCFKTLIAAMLSQRTMSLDFVTNNYMSLISGMWLLTVIPNDMFLRESLVACELAIINTIVPAFGMQ
 RMHYRNGDPQTPFOIAEQQIQNFQVANWLHFINNNRFRQVVIDGVLNQTLNDNIRNGQVINQLMEALMQLSRQQFPTMPVVDYKRS
 IQRGILLSNRLGQLVDLTRLVSYNTELMACTMMNMQHVQLTTEKLQLTSVSLCMLIGNTTIPSPQTLFHYYNINVNFHSNYNERIN
 DAVAIITAANRLNLYQKKMKSIVEDFLKRLQIFDVPRVPDDQMYRLRDRRLLPVERRRLDIFNLILMNMEQIERASDKIAQGVIIAYRDM
 QLERDEMYGYVNIARNLNDGYQQINLEELMRTGDYQQTINMLLNNQPVALVGLPFTDSSVLSIAKLDATVFAQIVKLRKVDTLKPIY
 KINSDSNDFYLVANYDWIPTSTTKVYKQVQPQPDFRASMHMLTSNLFTVYSDLLSFVSADTVEPINAVAFDNMRIMNEL

Figure 7H Schematic representation of construct number 1710

2. 2X35S/CPMV-HT/RVA(WA) VP6(opt)/NOS (Construct number 1713)

Figure 8A, SEQ ID NO: 25

IF-WA_VP6(opt).s1+3c

AAATTGTCGGGCCATGGAGGTCTTATAGTCTCTCCAAAACGCTGA

Figure 8B, SEQ ID NO: 26

IF-WA_VP6(opt).s1-4r

ACTAAAGAAAATAGGCCTACTTGATCACACATACTCCGGATAGAGGCCACA

Figure 8C, SEQ ID NO:27

Optimized coding sequence of Rotavirus A VP6 from strain WA

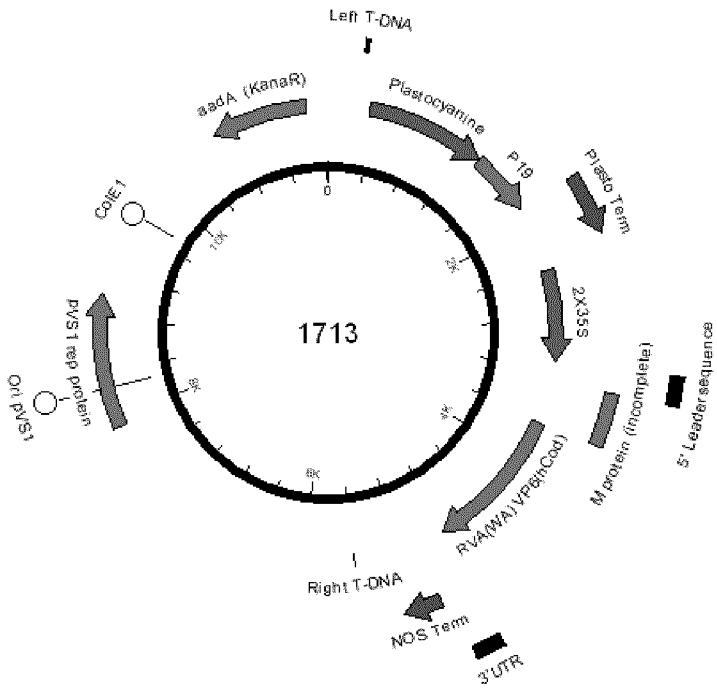
ATGGAGGTCTTATAGTCTCTCCAAAACGCTGAAGGACGCTAGGGACAAGATCGTGGAGGGTACCTTATAGCAATGTCAGCG
ACCTAACAGCAGTTAACAAATGATCGTTACAATGAATGGAATGTTCAAACGCTGGCGTATTGTAATCTGCCGTGAGG
AACTGGACATTGATTCGGCGCTGGCAGACTCTCTTAATCTGATGCAAATTATGAGAAAACGCCAGAACGATTATCGA
GTACTTTATCGATTCATTGATAACGTTGTGGATGAGATGGCCGAGTCACAACGGAACGGAGTTGCTCCACAGTCCGAG
GCCCTCGGAAACTCGCCGGCATTAAAGCTGATTCAGCTTAAATTGCAAGCTTAAACCTCCGAATATATAGAGAACTGGAACGTTGAGAA
TCGTCAGAGAGAACCGGCTCGTGTCCATAAACCTAAATATCTTCGATAGCGCCTATTCAACCTGAATAGGAGTCAGCCCAT
GCACGACAACCTCATGGTACAATGTTGCTGAATGCGGGAGTGAATACAGTCGCGGGTTGATTACTCTGTGCCATTAAAT
GCACCCGAAACATCCAGCAGTTCGAACATATCGCAACTAACGAGGGCTCTCACGACCCGACAATTACACTCTGCCGACG
CCGAGCGCTTCCTCTTCCCCGCTAACACTCAGCTGATGGCGCCACCACTGGTCTCAACCTGTTATATTGCGCCCTAACAA
ACGTAGAGGTGGAGTTCTTAAACGGACAGATCATCAATACCTACCAAGCCAGGTTGCGACGATTATTGCAAGAAATTGAC
GCTATCAGGCTGCTTCAACTGATGAGGCCCCAAATATGACTCCGCTGTGAACGCTTGTGGCAGGCTCAGCCTTCCAG
CACCACGCCACCGTGGCTGACTTCAATAGAGAGCGCGCTGCAATCAGTGGCTGTGGCAGCAGACGAGACGCTGCTG
GCAAAACGTTACCGCCGTGCGGCAAGAGTATGCCATCCCAGTAGGGCTGTGGTACCCAGTGAACTGGACTGAACAAATTAA
CTAACTATAGCCATCCAGAGAACACAATTGCAAGCGGGTCTCACTGTGGCTCTATCCGGAGTATGTTGATCAAGTAG

Figure 8D, SEQ ID NO: 28

Expression cassette number 1713 from 2X35S promoter to NOS terminator. VP6(opt) from Rotavirus A WA strain is underlined.

GTCAACATGGTGGAGCAGCACACTTGTCTACTCCAAAATCAAAGATACAGTCTAGAAGACCAAGGGCAATTGAGACTT
TTCAACAAAGGGATAATCCGGAAACCTCTCGGATTCCATTGCCAGCTATCTGTCACCTTATGTGAAGATAGTGGAAAAGGAA
GGTGGCTCTACAAATGCCATATTGCGATAAAGGAAAGGCCATCGTGAAGATGCCAGCTATCTGTCACCTTATGTGAAGATAGTGGAAAAGGAA
CCCCACCCACGGAGGAGCATCGTGGAAAAAGAAGACGTTCAACACACGTCTCAAAGCAAGTGGATTGATGTGATAACATGGTGG
AGCAGCACACACTTGTCTACTCCAAAATCAAAGATACAGTCTAGAAGACCAAGGGCAATTGAGACTTTCAACAAAGGGT
AATATCGGAAACCTCTCGGATTCCATTGCCAGCTATCTGTCACCTTATGTGAAGATAGTGGAAAAGGAAGGTGGCTCTACA
AATGCCATATTGCGATAAAGGAAAGGCCATCGTGAAGATGCCCTGCGACAGTGGTCCAAAGATGGACCCCCACCCACGAG
GAGCATCGTGGAAAAAGAAGACGTTCAACACACGTCTCAAAGCAAGTGGATTGATGTGATACTCCACTGACGTAAGGGATGAC
GCACAATCCCACATCTTCGCAAGACCCCTCTATATAAGGAAGTCATTCTATTGGAGAGGTATTAAGGTTAAATCTTAATAGGTTT
GATAAAAGCGAACGTGGGAAACCGAACCAACCTCTCTAAACTCTCTCATCTCTTAAAGCAAACCTCTCTGTCTTC
TTGCGTGGAGCGATCTCAACGTTGTCAGATCGTGTCTCGGCACCGATACAACGTTTCTTCACTGAAAGCGAAATCAAAGATCTTT
TGTGGACAGTAGTGCAGGCGCATTAAATAACGTGACTTGCTCTATTGCGGTGTGGTCTGGAAAAGAAGCTGCTGG
AGGCTGCTGTTGACGGGCGCATTAAATAACGTGACTTGCTCTATTGCGGTGTGGTCTGGAAAAGAAGCTGCTGG

TTGTTGCCGTACTCTTCTTCTTGTGATTGGTCTATAAGAAATCTAGTATTTCTTGAAACAGAGTTTCCGTGGTT
TCGAATTGGAGAAAGATTGTTAAGCTCTGTATATTCTGCCAATTGCGGGCCCATGGAGGTCTTATAGTCTCCAAAAA
CGCTGAAGGAGCCTAGGGACAAGATCGTGGAGGGTACACTTATAGCAATGTCAGCGACCTAATACAGCAGTTAATCAAATGAT
CGTTACAATGAATGGAATGATTCAAAATGGCGGTATTGGAATCTGCCGTGAGGAACGGACATTGATTCGGCTGCTG
GGCACGACTCTCTTAACTCGATGCAAATTATGAGAAAACGCCAGAACGATTATCGAGTACTTTATCGATTTCATTGATAACGTT
TGTATGGATGAGATGGCCGCGAGTCACAAACGGAACGGAGTGCTCCACAGTCGAGGCCCTCGGAAACTCGCCGGCTTAAAG
TTCAAGCGTATTAATTGACAACCTCCGAATATATAGAGAACTGGAACTTGAGAATCGACAGAGAACCGGCTCGTGT
CCATAAAACCTAATATCTTCCGTATAGCGCTCATTACCCCTGAATAGGAGTCAGCCATGACGACAACCTATGGGTACAATGT
GGCTGAATGCAGGGAGTGAAAATACAGGTGCGGGGTTGATTACTCCTGCCCCATTGACCCGAAACATCCAGCAGTTGCA
ACATATCGTCAACTAACGACGGGCTCAGCAGCCGACAATTACACTCCTGCCCCAGCAGCGCTTCTCCTTCCCCGCTAA
TCAACTCAGCTGATGGGCCACCACTGGTTCTAACCCCTGTTATTGCGCTAACAAACGTTAGAGGTGGAGTTCTTAAACG
GACAGATCATCAATACCTACCAAGCAGGTTGGCAGCATTGCAAGAAATTTCGACGCTATCAGGCTGCTTCAACTGATG
AGGCCCCCAATATGACTCCCGCTGTGAACGCTTGTGCTCAGGCTCAGCCTTCCAGCACACGCCACCGTCGGCTGACTCTT
CGAATAGAGCGCGGTCTCGAATCAGTGCTGGCAGACGCCAACGAGACGCTGCTGGCAAACGTTACCGCCGTGCGGCAAGA
GTATGCCATCCAGTAGGGCTGTGTTTCCACCCGGCATGAACGGACTGAACAAATTACTATAGCCATCCAGAGAACAGACA
ACTTGAGCGGGTCTCACTGTGGCTCTATCGGAGTATGTTGATCAAGTAGAGGCTATTTCTTAGTTGAATTACTGTTAT
TCGGTGTGCAATTCTATGTTGGTAGCGGTTCTGTGCTCAGAGTGTGTTATTGTAATTAAATTCTTGAGCTCTGTT
TTAGCAGGTCGTCCTCAGCAAGGACACAAAAGATTAAATTATTAAGGAGACCCGGAAATTGATATCA
AAGCTTATCGACCTGCAGATCGTCAAACATTGGCAATAAGTTCTAAGATTGAATCTGTTGCCGTCTGCGATGATTATCA
TATAATTCTGTTGAATTACGTTAACGATGTAATAATTACATGTAATGCACTGACGTTATTGAGATGGTTTATGATTAGAG
TCCCGCAATTACATTAATACCGTAGAAAACAAATATAGCGCAGAACTAGGATAAATTATCGCGCAGGTGTCATCTATG
TTACTAGAT


Figure 8E, SEQ ID NO: 29

Amino acid sequence of VP6 from Rotavirus A WA strain

MEVLYSLSKTLKDARDKIVEGTLYSNVDLILQQFNQMIVTMNGNDFQTGGIGNLPVRNWTDFGLLGTLLNLDANYVENARTIIEYFID
 FIDNVCMDEMARESQRNGVAPQSEALRKLAGIKFKRINFDNSSEYIENWNLQNRRQRTGFVFKPNIFPYSASFTLNRSPMHDNLM
 GTMWLNAGSEIQLVAGFDYSCAINAPANIQQFEEHVQLRRAALTATILPDAERFSFPRVINSADGATTWFFNPVILRPNNVEFLLNG
 QINTYQARFGTIIARNFDAIRLLFQLMRPPNMTPAVNALFPQAQPFQHHATVGLTRIESAVCESVLADANETLLANVTAVRQEYAI
 GPVFPPGMNWTELITNYSPSREDNLQRVFTVASIRSMLIK

Figure 8F

Schematic representation of construct number 1713

3. 2X35S/CPMV-HT/ RVA(Rtx) VP4(opt)/ NOS (Construct number 1730)

Figure 9A, SEQ ID NO: 30

IF-Rtx_VP4(opt).s1+3c

AAATTGTCGGGCCATGGCTAGCCTGATCTACAGACAACCTTGACCAATTG

Figure 9B, SEQ ID NO: 31

IF-Rtx_VP4(opt).s1-4r

ACTAAAGAAAATAGGCCTTCAGAGTTACATTGCAGGATTAATTGCTCAATCCTA

Figure 9C, SEQ ID NO: 32

Optimized coding sequence of Rotavirus A VP4 from strain RVA/Vaccine/USA/Rotarix-A41CB052A/1988/G1P1A[8]

ATGGCTAGGCTGATCTACAGACAACTCTTGACCAATTATTCGAGATCTTCATGACGAAATCGAGCAGATTGGGTCGAGAGA
GACCCAGAACGTGACCATCAACCCCTGGACCTTTCGTCAGACCCGCTATGCCCTGTGAATTGGGATCACGGGAAATCAACGAC

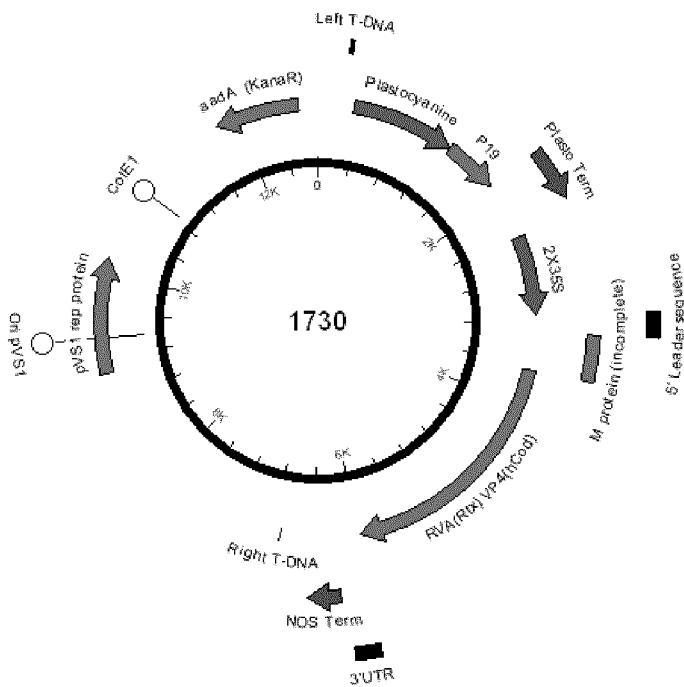
AGTACGACCGTCGAACCCATTCTGGACGGGCCATACCAACCCACCTCACCCCACCTAATGATTATGGATTTAACACTCC
 AACACAAACGGAGTGGTCTACGAGTCCACTAATAACTCGATTGGACGCCGTTGAGCCATCGAGCCACACGTCAATCCTGT
 CGATGCCAGTATATGATATTGGCGAGTCCAAACAGTTAACGTTCAATGACAGCAACAAATGGAAGTTCTGGAGATGTT
 GCAGCTCTCTAGAACGAAATTCTATAATAGACGGACCCCTACCTCGATACAGACTCGTGGTATTTAAGTACGGCGCAGG
 GTGTGGACATTCACGGTGAAACCCCTCGAGCAACCACTGACTCCAGTAGCACTGCAAACCTGAACAATATCTATTACCATCA
 CAGCGAACATTCTACATAATCCAAGATCTCAGGAAAGTAAGTGAACGAATATCAACAAACGGACTCCCCCAATTCAAACAC
 GGAACGTGGTGCCTCTCCACTCAGTTCTGGTCTATCCAGTATAAGAGAGCACAAGTGAATGAGGACATTGTGAGCAAGAC
 TAGCCTTGGAAAGAAATGCACTAACAGAGACATTATCAGGTTAAAGTGGAACTCTATCGTAAGATGGGGCTG
 GGGTACAAATGGTCAAGAAATCTCATATAAAGCCCAACTATCAGTATAACTACTTGAGAGACGGCGAGCAGGTAAACGCCACA
 CAACATGCTCTGTCAACGGCGTTAAACTTACGTTACAACCGAGGCTTCCCTCCACCGACTCGTATCAGCCGTATGAAGTC
 ATCAAGGAAATTCTTATGTGACGTAGATTACTGGGATGATAGCAAAGCGTCCGCAACATGGTGTATGTTAGGAGCTGGCTG
 CTAATCTCAATTCTGTGAAGTGTACTGGTGGATCATATTATTCCTAATCCGTGGGGCTTGGCAGTCATGAATGGGGGCA
 GTCTCCCTCATTTGCTGGCGTGACGTTGAGCACTCAGTTACCGATTCTCGTGAACCTCTACGGGTTACCTGCCGCAATCAAACACGGCAAT
 CTGTCAGGAGCCCCATTAGCATTCTCGTACAAGAACTGTCAACCTCTACGGGTTACCTGCCGCAATCAAACACGGCAAT
 GAATACTATGAAATTGGGGCGCTCTTGTATAAGTCTGGTACCAACTAATGACGACTATCAGACACCCATCATGAACAGCGT
 GACTGTAGACAGGACCTGGAAAGACAACCTACAGATCTGGGAAGAATTCAATTCTCAGTCAGGAGATTGAATGGCCAA
 TTGATAGATCTGCCCTACTGCCCTCGATATGTTAGTGTCTCGGATCAAATCAACTATAGATCTGACAAAGAGCATGGCT
 ACTTCTGTGATGAAAGAAGTTCAGGAAATCAAACCTGCCAGAGCATATCAGAAATGACGAACACTCTGAGTGAATGCA
 CAGCGTACGCAACGTTCCATTGGCGAATCTCAGGCCATCAGCAACTGGACAAACGTGTCAACGACGTCAACGTGAC
 CAAACTCCTGAAACGATATTCTACCCAGACGTCAACGATCAGTAAGAAACTCCGCTGAAAGAAATGATCACCGAGACTGAGGGA
 ATGTCTTCGACGACATTCCGCCCGTGTAAAAACAAATCGATATGTAACGATCGGCAAGAACACTCTGCCGGATAT
 CGTAACCGAAGCCTCGAAAGTTATCCCTAAAGCGCAGCTACAGAATATTGAAAGATGACGAGGTATGGAGATCAACACAGAA
 GGGAAAGTCTCGCTTAAAGTACACACCTTGACGAGGTTCCGTTGACGTCATAAAGTTGAGCTGACAGATAGTCC
 AGTGAATTCTGCCATTGACTTAAAGACTTGAAGAACCTGACGACAACATGGAATAACCGGACCGAAGCGTTGAACCTCA
 TTAAGTCCAATCCAATATGTTGCCATTAAACCAGAACATCATAAGAAATAGGATTGAGCAATTATCCTGCAAT
 GTAAACTCTGA

Figure 9D, SEQ ID NO: 33

Expression cassette number 1730 from 2X35S promoter to NOS terminator. VP4(opt) from Rotavirus A Rotarix strain is underlined.

GTCAACATGGTGGAGCAGCACACTTGTCTACTCCAAAATCAAAGATACAGTCTAGAAGACCAAGGGCAATTGAGACTT
 TTCAACAAAGGGTAATCCGAAACCTCTCGGATTCCATTGCCAGCTATCTGCACTTTATTGTGAAGATAGTGGAAAAGGAA
 GGTGGCTCTACAAATGCCATCTCGGATAAAGGAAAGGCCATCGTGAAGATGCCCTCTGCCGACAGTGGCCAAAGATGGAC
 CCCCACCCAGGAGCATCGGAAAAAGAAGACGTTCAACACGTCTCAAAGCAAGTGGATTGATGTGATAACATGGG
 AGCAGCACACACTTGTACTCCAAAATCAAAGATACAGTCTCAGAACGACCAAGGGCAATTGAGACTTTCAACAAAGGGT
 AATATCGGAAACCTCTCGGATTCCATTGCCAGCTATCTGCACTTTATTGTGAAGATAGTGGAAAAGGAAGGTGGCTCTACA
 AATGCCATATTGCGATAAAGGAAAGGCCATCGTGAAGATGCCCTCTGCCGACAGTGGCCAAAGATGGACCCCCACCGAG
 GAGCATCGGAAAAAGAAGACGTTCAACACGTCTCAAAGCAAGTGGATTGATGTGATACTCCACTGACGTAAGGGATGAC
 GCACAATCCACTATCTCGCAAGACCTCTCTATAAGAAGTTATTGAGGTTAAAGCAAACCTCTCTGTCTTAAAGCAAACCTCTCTGTCTTC
 GATAAAAGCGAACGTGGGAAACCGAACAAACCTCTCTAAACTCTCTCATCTCTTAAAGCAAACCTCTCTGTCTTC
 TTGCGTGGCGATCTCAACGTTGACGATCGTCTCGGCCAGTACAACGTTCTTACTGAAAGCGAAATCAAAGATCTCT
 TGTGGACACGTAGTGCCTGCCATTAAACGTTGACTTGTCTATTGTCGCTGTGGTCTGGAAAAGAAAAGCTTGTGG
 AGGCTGCTGTCAGCCCCATACATTACTGTTACGATTCTGCTGACTTCGGGGGTGCAATATCTCTACTCTGCTTGTGAGGAGTA
 TTGTTGCTGTACTCTTCTCTCTGATTGGTCTATAAGAAATCTGAAACAGAGTTTCCGTT
 TTGCGAATTGAGAAAGATTGTAAGCTCTGTATATTCTGCCAAATTGTCGGGCCATTGGCTAGCTGATCTACAGACAACCT
TGACCAATTCTGTTGATCTCATGACAAATCGAGCAGATTGGTCCAGAACGACAGTACGACCGTCGAACCCATTCTGGACG
ACCTTTGCTCAGACCCGCTATGCCCTGTGAATTGGATCACGGAGAAATCAACGACAGTACGACCGTCGAACCCATTCTGGACG
GGCCATACCAACCCACCACCTCACCCACCTAATGATTGGATTTAATCAACTCAAACAAACGGAGTGGTCAACGAGTCCA
CTAATAACTCCGATTGGACCGCCGTTGAGCCATCGAGCCACACGTCAATCCTGTCATGCCAGTATGATATTGGCGAG

TCCAAACAGTTAACGTTCCAATGACAGCAACAAATGGAAGTTCTGGAGATGTTCGCAGCTCCTCTAGAACGAATTCTATAAT
 AGACGGACCTTACCTCCGATACAGACTCGGGTATTTAAGTACGGCCGGCAGGGTGTGGACATTACCGGTAAACCCCTC
 GAGCAACCACTGACTCCAGTAGCACTGCAAACATATACTATTACCATCCACAGCGAATTCTACATAATCCAAAGATCTC
 AGGAAAGTAAGTGTAAACGAATATATCAACAACGGACTCCCCCAATTAGAATACCGAACGTGGTGCCTCTCCACTCAGTTCT
 CGGTCTATCCAGTATAAGAGAGCACAAGTGAATGAGGACATTATGTGAGGAAGACTAGCCTTGGAAAGAAATGCACTACAACA
 GAGACATTATCATCCGTTAAAGTTGGAACTCTACGTGAAGATGGCGGCCCTGGGTACAAATGGTCAGAAATCTCATATAA
 AGCCGCCAACATCATGATAACTACTTGAGAGACGGCAGCAGTAACCGCCACACAACATGCTGTCAACGGCGTAATAAC
 TTAGCTACAACGGAGGCTCTTCCCACCGACTCGGTATCAGCGGTATGAAGTCATCAAGGAAATTCTTATGTGTACGTAGA
 TTACTGGGATGATGCAAAGCGTTCCGCAACATGGTGTATGTTAGGAGCCTGGCTGTAATCTCAATTCTGTGAAGTGTACTGGT
 GGATCATATTCTCAATTCCCGGGGGCTGGCAGTCATGAATGGCGGGGAGCTCCCTTACTGTCGACGAGCCCCATTAGCATTCT
 GAGCACTCAGTTACCGATTCTGTCTGAACCTCGAGGTTCCGTTTCCCTTACTGTCGACGAGCCCCATTAGCATTCT
 GCGTACAAGAACTGTCAACCTACGGGTTACCTGCCGAATCCAAACACGGCAATGAATACTATGAAATTTCGGGGCGCTTCT
 CTTTGATAAGTCTGGTACCAACTAATGACGACTATCAGACACCCATCATGAACACGGTGAAGTGTGAGACAGGACCTGAAAGACA
 ACTTACAGATCTGGGAGAATTCAATTCTCAGTCAGGAGATTGCAATGCCCAATTGATAGATCTGCCCTACTGCCCTCG
 ATATGTTAGTATGTTCTCCGGCATCAAATCAACTATAGATCTGACAAAGAGCATGGCTACTTCTGTGATGAAAGAAGTTCAGGAA
 TCAAAAATTGCCACGAGCATATCAGAAATGACGAACTCTGAGTGATGCGACATCATCAGCGTACGGCAACGTTCCATTGGTC
 GAATCTCAGCGCCATCAGCAACTGGACAAACGTGTCAACGAGCTGACCAACTCCTGACGATATTCTACCCAGA
 CGTCAACGATCAGTAAGAAAACCTCCGTTGAAAGAAATGATCACCCAGACTGAGGGAAATGTCGACGACATTCCGGCGCGT
 GCTAAAACAAAATCGATATGTTACTCAGATCGGAAGAACACTCTGCCGATATCGTAACCGAAGCCTCGAAAAGTTATCC
 CTAAGCGAGCTACAGAAATATTGAAAGATGACGAGGTATGGAGATCAACACAGAAGGGAAAGTTCTCGCTTATAAGATCACAC
 CTTTGACGAGGTTCCGTTGACGTCATAAGTTGACAGCTCGTACAGATAGTCCAGTGATTTCTGCATCATGACTTAAAGA
 CTTTGAAAGAACCTGAACGACAACATGGAATAACACGGACCGAACGCGTTGAAACCTCATTAAGTCCAATCCAATATGTCGCAAT
 TTCATTAACCGAGAACATCAAATCATAAGAAATAGGATTGAGCAATTATCTGCAATGAAACTCTGAAGGCTTATTTCTTAGT
 TTGAATTACTGTTATTCGGTGTGCAATTCTATGTTGGTGAGCGGTTTCTGTGCTCAGAGTGTGTTATTTATGTAATTAAATT
 CTTTGTGAGCTCTGTTAGCAGGTCGTCCTCAGCAAGGACACAAAAAGATTTAATTAAAAAAAAGAC
 CGGGAAATCGATATCAAGCTTATCGACCTGCAGATCGTCAAACATTGGCAATAAGTTCTTAAGATTGAAATCTGCGTC
 TTGCGATGATTATCATATAATTCTGTAATTACGTTAAGCATGTAATAATTACATGTAATGATGACGTTATTTGAGATGG
 TTTTATGATTAGAGTCCCGCAATTATACATTAAACCGCATAGAAAACAAATAGCGCAGAACACTAGGATAAATTACGCGC
 GCGGTGTATCTATGTTACTAGAT


Figure 9E, SEQ ID NO: 34

Amino acid sequence of VP4 from Rotavirus A Rotarix strain

MASLIYRQLLNSYSVLDHDEIEQIGSEKTQNVТИNPGPFAQTRYAPVNWDHGEINDSTTVEPILDGPYQPTTFPPNDYWILINSNTNG
 VVYESTNNSDFWTAVVAIEPHVNPNVDRQYMFGEKSFQFNVSNDNSNKWFLEMFRSSSQNEYNRRTLTSRTLGVIFKYGRVWTFH
 GETPRATTDSSTANLNNSISIHISEFYIIPRSQESKCKNEYINNGLPIQNTRNVVPLPLSSRSIQYKRAQVNEDIIIVSKTSLWKE
 MQYNRDIIIRFKFGNSIVKMGGLGYKWSEISYKAANYQYNYLRLGEQVTAHTCSVNGVNNSFSYNGGFLPTDFGISRYEV
 IKENSYVVVDYWDDSKA
 FRNMVYVRSLAANLNSVKCTGGSYFSIPVGAWPVMNGGAVSLHFAGVTLSTQFTDFVSLNSLRFRFSLTVDEPPFSILR
 RTVNLYGLP
 AANPNNGNEYYEISGRFSLISLVPTNDDYQTPIMNSVTRQDLERQLDLREFENSLSQEIAMQLIDLALLPLDMF
 MSFSGIKSTIDLTK
 MATSVMKKFRSKLATSISEMTNSLDAASSASRNVSI
 RNSL
 SAISNWTNVSNDVS
 VTN
 SLD
 N
 DIST
 QT
 ST
 IS
 KK
 RL
 K
 E
 M
 I
 T
 Q
 TEG
 GMS
 F
 D
 D
 I
 S
 A
 A
 V
 L
 K
 T
 K
 D
 M
 S
 T
 Q
 I
 G
 K
 N
 T
 L
 P
 D
 I
 V
 T
 E
 A
 S
 E
 K
 F
 I
 P
 K
 R
 S
 Y
 R
 I
 L
 K
 D
 M
 E
 V
 M
 E
 I
 N
 T
 E
 G
 K
 F
 F
 A
 Y
 K
 I
 N
 T
 F
 D
 E
 V
 P
 F
 D
 V
 N
 K
 F
 A
 E
 L
 V
 T
 D
 S
 P
 V
 I
 S
 A
 I
 I
 D
 F
 K
 T
 L
 K
 NL
 ND
 NY
 G
 I
 T
 R
 E
 A
 L
 N
 L
 I
 K
 S
 N
 P
 N
 M
 L
 R
 N
 F
 I
 Q
 N
 N
 P
 I
 R
 N
 R
 I
 E
 Q
 L
 I
 Q
 C
 K
 L

Figure 9F

Schematic representation of construct number 1730

4. 2X35S/CPMV-HT/RVA(Rtx) VP7(Opt)/NOS (Construct number 1734)**Figure 10A**, SEQ ID NO: 35

IF-TrSP+Rtx_VP7(opt).s1+3c

AAATTGTCGGGCCATGGATTATATTATCTATCGTAGCCTCCTCATCTA

Figure 10B, SEQ ID NO: 36

IF-Rtx_VP7(opt).s1-4r

ACTAAAGAAAATAGGCCTCTAACACGCGATAATAGAAGGCTGCTGAGTCAGGGAA

Figure 10C, SEQ ID NO: 37

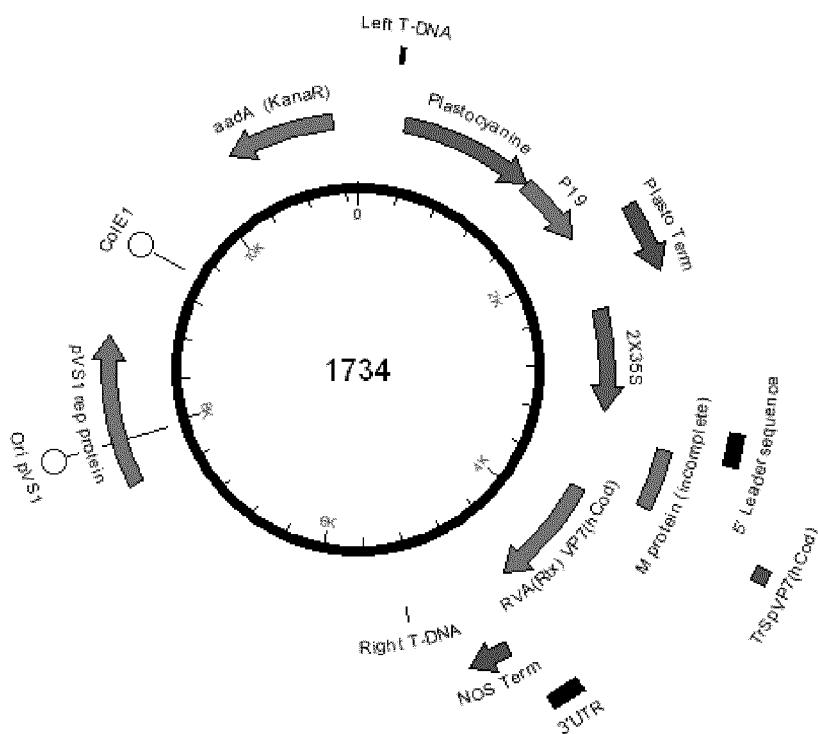
Optimized coding sequence of Rotavirus A VP7 from strain RVA/Vaccine/USA/Rotarix-A41CB052A/1988/G1P1A[8]

ATGTACGGCATCGAGTATAACAACAATTAACTTCTGATTCCATCATTCTGTTAACTACATCCTAACTGGCGTGACCAAGAATT
TGGATTATATTATCTATCGTAGCCTCCTCATCTACGTGGCCCTTTGCCCCGACCAAGGGCCAGAACTATGGCCTGAACCTACCAA
TCACCGGTTCAATGGATACCGTTACGCTAATTCCACTCAAGAGGGGATATTCTGACAAGTACCCGTGCCCCGTTATTCAACAG
AAGCCTCTACCCAGATCAATGATGGGGAGTGGAAAGGATAGTCTCTCACAGATGTTCTAACCAAGGGTGGCCACCGGTTCGT
CTACTTCAAGGAATACTCTAGTATTGTCGACTTCTCAGTTGACCCCCAGCTTATTGCGACTACAACCTGGTACTTATGAAATACGA
CCAGAACCTGGAGCTGGATATGTCGAGCTGGCTGACCTGATCCTAACAGTGGCTGTGCAACCCCATGGACATCACATTATATT
ACTACCAGCAGTCTGGAGAACAAAGTGGATCAGTATGGGCTAACGGTGAAGGTGTGCCCCCTGAACACCCAAAT
GCTGGGCATTGGTTGTCAAGACAACAAATGTGGATTGTTGAAATGGTAGCCAAAAGCAGAGACTGGCTATAGTGGACGTAGTC
GATGGGATTAACCACAAGATCAATGACTACCACCACTGTACCATCAGAAACTGTAAGGCTCGGCCCCGGAGAACGTCG
CCGTGATCCAGGTGGGGGGAGCAATGTGCTGACATTACTGCCACCCATACACCAATCCACAGACGGAACGGATGATGAGAG
TCAACTGGAAGAAATGGTGGCAGGTCTTATACCATTTGGAACATTAACCAAGATTGTGCAAGTCACTGAGTAAACGGTCAG
ATCCCTGAACCTGACCTTCTATTATCGCGTTAG

Figure 10D, SEQ ID NO: 38

Expression cassette number 1734 from 2X35S promoter to NOS terminator. VP7 from Rotavirus A vaccine USA/Rotarix-A41CB052A/1988/G1P1A[8] strain is underlined.

GTCAACATGGTGGAGCACGACACACTTGTCTACTCCAAAATATCAAAGATACAGTCTAGAAGACCAAAGGGCAATTGAGACT
TTCAACAAAGGTAATATCCGAAACCTCCTCGGATTCATTGCCAGCTATGTCACTTATTGTGAAGATAGCTGGAAAAGGAA
GGTGGCTCTACAAATGCCATCATTGCGATAAGGAAAGGCCATCGTGAAGATGCCTGCCAGCTGGTCCCAAAGATGGAC
CCCCACCCAGGAGGAGCATCGTGGAAAAAGAACGCTTCAACCAGCTTCAAAGCAAGTGGATTGTGATAACATGGGG
AGCACGACACACTTGTCTACTCCAAAATATCAAAGATACAGTCTAGAAGACCAAAGGGCAATTGAGACTTTCAACAAAGGGT
AAATCCGAAACCTCCTCGGATTCATTGCCAGCTATGTCACTTATTGTGAAGATAGTGGAAAAGGAAGGTGGCTCTAC
AATGCCATCATTGCGATAAGGAAAGGCCATCGTGAAGATGCCTGCCAGCTGGTCCCAAAGATGGACCCCCACCCAGAG
GAGCATCGTGGAAAAGAACGCTTCAACCAGCTTCAAAGCAAGTGGATTGTGATACTCTCACTGACGTAAGGGATGAC
GCACAATCCCACATCTTCGAAGACCCCTCTATATAAGGAAGTTCACTTGGAGAGGTATAAAATCTTAATAGGTTT
GATAAAAGCGAACGTGGGAAACCGAACCAAACCTCTTAAACTCTCTCATCTCTTAAAGCAAACCTCTCTTGTCTTCT
TTGCGTGAAGCGATCTCAACGTTGTCAGATCGTCTCGCACCGATACAACGTTTCTTCACTGAAGCGAAATCAAAGATCTT
TGTGGACACGTTGCGGCCATTAAATAACGTGACTTGTCTATTCTGCGGTGTTCTGGAAAAGAAAGCTTGTCTGG
AGGTGCTGTTGACCCCCATACATTACTGTTACGTTCTGACTTCCGGCGGGTCAATATCTACTTGTCTGACGAGGTA
TTGTTGCTGTACTCTTCTCTTGTGTTGATTGGTCTATAAGAAATCTAGTATTCTTGAACAGAGTTCCGTTGTT
TTCGAACTTGAGAAAGATTGTTAACGCTGTATATTCTGCCAATTGTCGGGCCATGGATTATATTATCTATCGTAGCTCC
TCATCTACGTGGCCCTTGTGCCCTGACCCAGGGCCAGAACATGGCTGAACCTACCAATCAGGTTCAATGGATACCGTTACG
CTAATTCCACTAACAGAGGGGATTTCTGACAAGTACCCGTGCTGTATTATCCAAACAGAACGCTTACCCAGATCAATGATGGG
GAGTGGAAAGGATAGTCTCACAGATGTTCTAACCAAGGGCTGGCCACCGTCTACTCAAGGAATACTCTAGTATTGT
CGACTTCTACGTTGACCCCCAGTTATGCGACTAACACCTGGTACTTATGAAATACGACCAAGACCTGGAGCTGGATATGTCG
AGCTGGCTGACCTGATCTCAATGAGTGGCTGTGCAACCCATGGACATCACATTACTACCGAGCTGGAGAATCCAAC
AAGTGGATCAGTGGGCTAACGTTGACCGTGAAGGTGTTCCCTGAACCCAAATGTCGGGATTGGTTGTAGACAAC
ATGTGGATTGTTGAAATGGTAGCCAAAACGAGAACGCTGGTATAGTGGACGTTGAGCTGGATTAAACCAAGATCAATCT
GACTACCACCACTGTACCATCAGAAACTGTAAAAAGCTGGCCCCGGAGAACGTCGGTGTGATCCAGGGGGGGAGCAA
TGTGCTGACATTACTGCCGACCCATCCACCAATCCACAGACGGAAACGGATGATGAGCTAACGAAAGAATGGGGCAGGT
CTTGTACCATGTTGACTACATTAAACGATGTTGCAAGTGTGAGTAAACGGTCCAGATCCCTGAACCTCAGCAGCTTCTATT
TGGCTTAAAGGGCTATTCTTGTGAATTACTGTTATTGCGTGTGCAATTCTATGTTGAGCGGTTTGTGCTCAG
AGTGTGTTATTGTAAATTAAATTCTTGTGAGCTCGTGTGAGCTGGTGTGAGCTGGCTTGTGAGCTGGGAGCAA
TTATTAAAAAAAGACCGGGAAATCGATATCAAGCTTACGACCTGAGCTGAGTAAACGTTCAACATTTGCAATAAGT
TCTTAAGATGAACTCTGTTGCCGTCTGCGATGATTATCATATAATTCTGTTGAAATTACGTTAACGATGTAATAACATGTA
ATGCATGACGTTTATGAGATGGGTTTATGATTAGAGTCCCGAATTATACATTAAACGCGATAGAAAACAAAATAGC
GCGAAACTAGGATAAAATTATCGCGCCGGTGTCTATGTTACTAGAT


Figure 10E, SEQ ID NO: 39

Amino acid sequence of TrSp-VP7 from Rotavirus A vaccine USA/Rotarix-A41CB052A/1988/G1P1A[8] strain

MDYIYRSLLIYVALFALTRAQNYGLNLPIGSMMDTVANSTQEGIFLTSTLCLYYPTEASTQINDGEWKDSLSQLMFLTKGWPPTGSVYFKE
YSSIVDFSVDPQLYCDYNLVLMKYDQNLELDMSLADLILNEWLCNPMIDLYYYQQSGESNKWISMGSCTVKVCPNLTQMLGIGCQ
TTNVDSFEMVAENEKLAIVDVVDGGINHKINLTTTCTIRNCKLGPRENVAVIQVGGSNVLIDADPTTNPQTERMMLRVNWKWWQ
VFYTIVDYINQIVQVMSKRSRSLNSAAFYYRV

Figure 10F

Schematic representation of construct number 1734

5. 2X35S/CPMV-HT/RVA(WA) NSP4/NOS (Construct number 1706)

Figure 11A, SEQ ID NO: 40

IF-WA_NSP4.s1+3c

AAATTGTCGGGCCATGGATAAGCTGCCGACCTCAACTACACATTGAGTG

Figure 11B, SEQ ID NO: 41

IF-WA_NSP4.s1-4r

ACTAAAGAAAATAGGCCTTCACATGGATGCAGTCACCTCTGACGGTCATATGGA

Figure 11C, SEQ ID NO : 42

Coding sequence of Rotavirus A NSP4 from strain WA

```

ATGGATAAGCTTGCACCTCAACTACACATTGAGTGAATCACTCAATGAATGACACATTGCATTCTATAATTCAAGATCCTGGA
ATGGCGTATTTCTATATATTGCATCTGTTCAACAGTTTGTTCACATTACATAAAGCTCAATTCCAACCATGAAAATAGCATTGA
AAACATCAAATGTTCATATAAAGTGAATTAAATATTGTATAGTCAGCATTAATAACTCTTAAAATTGGCTGGATATAAGAGC
AGGTTACTACAAAAGACGAAATTGAGCAACAGATGGACAGAATTGTGAAGAGATGAGACGTCAGCTGGAGATGATTGATAAAC
TAACTACTCGTGAATTGAACAGGTTGAATTGCTTAAACGTATACATGACAACCTGATAACTAGACCAAGTTGACGTTAGATATG
TCGAAGGAATTCAATCAGAAAACATCAAACGCTAGATGAATGGAGAGTGGAAAAAATCCATATGAACCGTCAGAAGTGA
GCATCCATGTGA

```

Figure 11D, SEQ ID NO: 43

Expression cassette number 1706 from 2X35S promoter to NOS terminator. NSP4 from Rotavirus A WA strain is underlined.

```

GTCAACATGGTGGAGCAGCACACTGTCTACTCCAAAATCAAAGATACAGTCTCAGAAGACCAAGGGCAATTGAGACTT
TTCAACAAAGGGTAATCCGAAACCTCCTCGGATTCCATTGCCAGCTATCTGCACTTATTGTGAAGATAGTGGAAAAGGAA
```

GGTGGCTCTACAAATGCCATATTGCGATAAAGGAAAGGCCATCGTTGAAGATGCCCTGCGACAGTGGTCCAAAGATGGAC

CCCCACCCACGAGGAGCATCGTGGAAAAAGAAGACGTTCAACACGTCTCAAAGCAAGTGGATTGATGTGATAACATGGTGG

AGCAGCACACACTGTCTACTCCAAAATCAAAGATACAGTCTCAGAAGACCAAGGGCAATTGAGACTTCAACAAAGGGT

AATATCCGAAACCTCCTCGGATTCCATTGCCAGCTATCTGCACTTATTGTGAAGATAGTGGAAAAGGAAAGGTGGCTCTACA

AATGCCATCATTGCGATAAAGGAAAGGCCATCGTTGAAGATGCCCTGCGACAGTGGTCCAAAGATGGACCCCCACCGAG

GAGCATCGGAAAAAGAAGACGTTCAACACGTCTCAAAGCAAGTGGATTGATGTGATACTCCACTGACGTAAGGGATGAC

GCACAATCCACTATCCTCGCAAGACCCCTCCTATAAAGGAAGTTCAATTGAGGTATTTAAAGCAAACTTCTCTGTCTTC

GATAAAAGCGAACGTGGGGAAACCCGAACCAACCTCTCTAAACTCTCTCATCTCTTAAAGCAAACTTCTCTGTCTTC

TTGCGTAGCGATCTCAACGTTGTCAGATCGTCTCGGCACCAGTACAACGTTTCTTCACTGAACGAAATCAAAGATCTTT

TGTGGACAGTAGTGCGGGCCATTAATAACGTGACTTGTCTATTCTTGTGGTGTGGCTTGGGAAAAGAAAGCTTGTGG

AGGCTGCTGTTCAGGCCCATACATTACTGTTACGATTCTGCTGACTTCGGGGTGCAATACTCTACTCTGCTGACGAGGT

TTGTTGCTGACTTCTTCTCTGTGATTGGTCTATAAGAAACTAGTATTTCTTGAACAGAGTTCCGTGGTT

TTCGAACTTGGAGAAAGATTGTTAAGCTCTGTATATTCTGCCAAATTGTCGGGCCATGGATAAGCTGCGACCTCAACTACA

CATTGAGTGAATCACTCAATGAATGACACATTGCAATTCTATAATTCAAGATCCTGGAATGGCGTATTTCTATATTGCACTGT

TCTAACAGTTGTCACATTACATAAAGCTCAATTCCAACCATGAAATAGCATTGAAACACATCAAATGTCATAAAAGTGA

TAAATTTGATAGTCAGCATTAATACTCTTAAAATTGGCTGGATATAAGAGCAGGTTACTACAAAGACGAATTGAGC

AACAGATGGACAGAATTGTAAGAGATGAGACGTCAGCTGGAGATGATTGATAAAACTACTCGTGAATTGAACAGGTG

AATTGCTTAAACGTATACATGACAACCTGATAACTAGACCAAGTTGACGTTAGATATGTCGAAGGAATTCAATCAGAAAACATC

AAAACGCTAGATGAATGGGAGAGTGGAAAAAATCCATATGAACCGTCAGAAGTGACTGCATCCATGTGAAGGCCTATTTCTTTA

GTTTGAATTACTGTTATCGGTGTCATTCTATGTTGGTGAGCGGTTTGTGCTCAGAGTGTGTTATTTATGTAATTAA

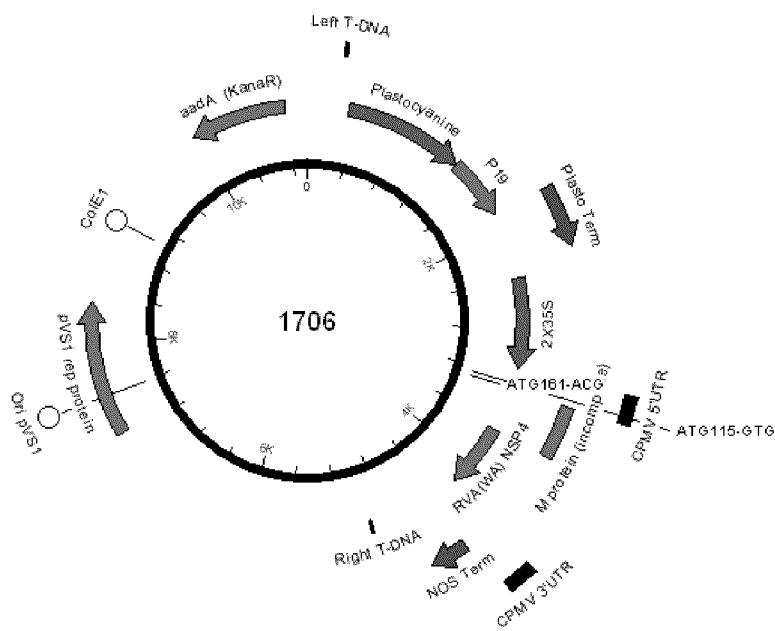
TTCTTGTGAGCTCTGTTAGCAGGTGTCCCCTCAGCAAGGACACAAAAGATTTAATTTTAATTTAAAAAAAAAG

ACCGGAATTGCAATCAAGCTTACGACCTGCAGATCGTCAAACATTGCAATAAAAGTTCTTAAGATTGAATCTGTTGCG

GTCTTGCGATGATTATCATATAATTCTGTTGAATTACGTTAAGCATGTAATAATTACATGTAATGCATGACGTTATTTATGAGAT

GGGTTTATGATTAGAGTCCCGCAATTATACATTAAACGCGATAGAAAACAAAATAGCGCGCAAACCTAGGATAAAATTATCG

CGCGCGGTGTCATCTGTTACTAGAT

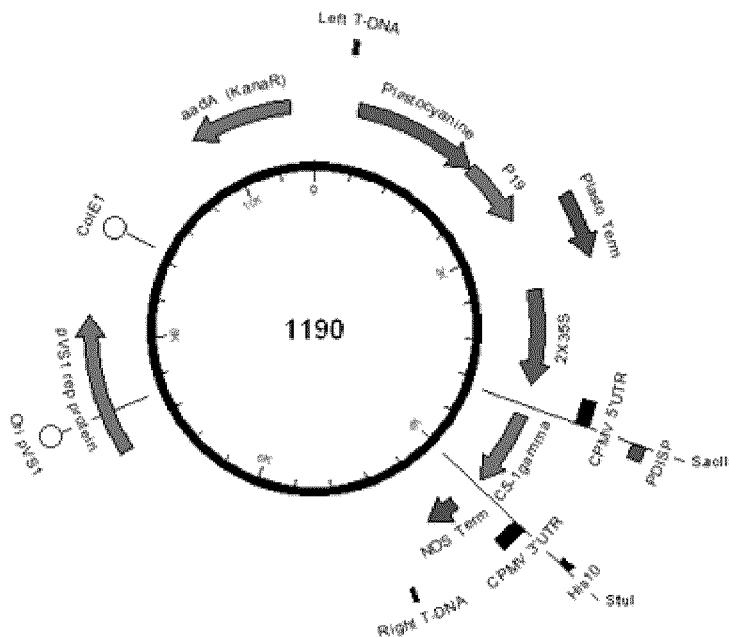

Figure 11E, SEQ ID NO: 44

Amino acid sequence of NSP4 from Rotavirus A WA strain

MDKLADLNYTLSVITSMNDTLHSIIQDPGMAYFLIASVLTFLHKASIPTMKIALKTSKCSYKVKYCIVTIINTLLLAGYKEQVTTKDEI
EQQMDRIVKEMRRQLEMIDKLTTREIEQVELLKRIHDNLTRPVVIDMSKEFNQKNIKTLDEWESEGKNPYEPSEVTASM

Figure 11F

Schematic representation of construct number 1706


6. 2X35S/CPMV-160/ RVA(WA) VP2(opt)/ NOS (Construct number 1108)**Figure 12A**, SEQ ID NO: 45

IF(C160)-WA_VP2(opt).c

TCGTGCTTCGGCACCAAGTACAATGGCATACCGGAAGAGAGGGAGCAAAGCGCGAA

Figure 12B

Schematic representation of construct 1190. SacI and StuI restriction enzyme sites used for plasmid linearization are annotated on the representation.

Figure 12C, SEQ ID NO: 46

Construct 1190 from left to right t-DNA borders (underlined). 2X35S/CPMV-160/NOS with Plastocyanine-P19-Plastocyanine silencing inhibitor expression cassette

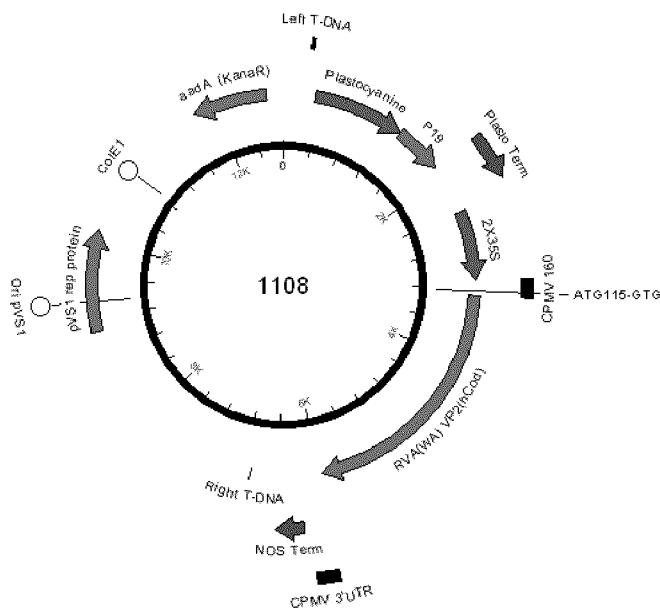
```

TGGCAGGATATTGTTGTAACAAATTGACGCTAGACAACCTAATAACACACATTGCGGACGTTTAATGTACTGAATTAAACG
CCGAATCCCGGGCTGGTATTTATGTTCAAATACTCAAAACCATAAAAGTTAACGTGACTGTGTACATTTTACTT
GAACAAAATATTCCACTACTGTTATAAACATTAAACATTAGAGTAAAGAAATATGGATGATAAGAACAGAGTAGTGA
TATTTTGACAACAATTGTTGCAACATTGAGAAAATTGTTGTTCTCTTTATTGGTCAAAACAATAGAGAGAGAAAAAG
GAAGAGGGAGAATAAAACATAATGTGAGTGTAGAGAGAAAGTTGACAAAAGTTGACAAAATAGTTGACAAATATCATT
GAGGAATTGACAAAAGCTACACAAATAAGGTTAATTGCTGAAATAAAATAGGATGACGCTAGAGAGATGTACCTAGAG
AATTTTGGCAAGTCATTAAAAGAAATAAAATTATTTAAAATTAAGTTGAGTCATTGATTAAACATGTGATTATTAAT
GAATTGATGAAAGAGTTGGATTAAAGTTGATTAGTAATTAGAATTGTCATTGATTTGACATTGATCTTCTTATA
TTGCCCATAGAGTCAGTTACTTATTTTATTTTATAGATCAAATAAGAGAAATAACGGTATTTAATCCCTCAAAAAAA
AACGGTATTTTACTAAAAATCTAAGCCACGTAGGAGGATAACAGGATCCCGTAGGAGGATAACATCCAACCAATCAC
AACAACTCTGATGAGATAACCCACTTAAAGCCACGCATCTGGCACATCTACATTCTAAATCACACATTCTCCACACATCTG
AGCCACACAAAACCAATCCACATCTTATCACCCATTCTATAAAACACTTGTGAGTCACACTTGATTCCCTCAAACAC
ATACAAAGAGAAGAGACTAATTAAATTAAATCATCTGAGAGAAAATGGAACGAGCTACAGGAAACGACGCTAGGGAA
AAGCTAACAGTGAACGTTGGATGGAGGATCAGGAGGTACACTTCTCCCTCAAACCTCCTGACGAAAGTCCGAGTTGGACTGA
GTGGCGGCTACATACGATGAGACGAATTGCAATCAAGATAATCCCTGGTTCAAGGAAAGCTGGGGTTCGGGAAAGTTGTA
TTAAGAGATATCTCAGATACGACAGGACGGAAGCTTCACTGCACAGAGTCCTGGATCTGGACGGAGATTGGTTAACTATG

```

CAGCATCTGATTTTCGGTTCGACCAGATCGGATGTACCTATAGTATTGGTCTGAGGAGTTAGTACCGTTCTGGAGGG
 TCGCGAACTCTCAGCATCTGTGAGATGGCAATTGGCTAAGCAAGAACGCTACAGCTGCCCAATCGAAGTGAAAGTA
 ATGTATCAAGAGGATGCCCTGAAGGTAAGCTCAAACCTCGAAAAAGAAAGCGAGTAAGTAAATGCTTCTGTCTCTATTATA
 ATATGGTTGTTATTGTTAATTGTTCTGTAGAAGAGCTTAATTAACTGTTGTTATGAAATACTATTGTATGAGATGAACGTG
 GTGTAATGTAATTCTACATAAGTGGAGTCAGAACATCAGAACATGTTCTCCATAACTAACAGACATGAAGACCTGCCGTACA
 ATTGTTCTATTGAAACAACAAATTGAAACATCTTGCACAACTTATAAGTGGTAATAGCTAAATATGGTCAAGTTC
 AATAGATTAATAATGGAAATATCAGTTATCGAACATTAAACAACTAACGTTAACTAATTAACTAATTATATCATCCCTT
 GATAAATGATAGTACACCAATTAGGAAGGAGCATGCTGCCAGTAGGAGATTGCTGTTCCGCCCTCAGTTGAAAGCTGCTAGC
 CGTAGCCAATCGAAACCGCCTCTCCCGCGCTGGAAATTACTAGCGCTGTCGACAAGCTGCTGATGCCGTAAACATGG
 TGGAGCACGACACACTGTCTACTCCAAAATATCAAAGATACTGCTCAGAACAGGAAAGGGCAATTGAGACTTTCAACAAAG
 GGTAATATCGGAAACCTCCTGGATTCCATTGCCAGCTATGTCACTTATTGTAAGATAGTGGAAAGGAAGGTGGCTCCT
 ACAAAATGCCATCATTGCGATAAAAGGAAAGGCCATGTTGAAGATGCCCTGCGACAGTGGTCCAAAGATGGACCCCCACCCAC
 GAGGAGCATGTTGAAAAAGAACGCTTCAACCACGCTTCAAAGCAAGTGGATTGATGTGATAACATGGTGGAGCACGACAC
 ACTTGCTACTCCAAAATATCAAAGATACTGCTCAGAACAGGAAAGGGCAATTGAGACTTTCAACAAAGGGTAATATCGG
 AACCTCTGGATTCCATTGCCAGCTATGTCACTTATTGTAAGATAGTGGAAAGGAAGGTGGCTCCTACAAATGCCATCA
 TTGCGATAAGGAAAGGCCATGTTGAAGATGCCCTGCGACAGTGGTCCAAAGATGGACCCCCACCCAGGAGGACATG
 GGAAAAAGAACGCTTCAACACACGCTTCAAAGCAAGTGGATTGATGTGATATCCACTGACGTAAGGGATGACGACAATCC
 CACTATCCTCGCAAGACCCCTCCTATATAAGGAAGTTATTGAGAGGTATTAATAGGTTGATAAAAG
 CGAACGTTGGGAAACCGAACCAACCTCTTAAACTCTCTCATCTCTTAAAGCAAACCTCTCTTGTGTTCTTGTGA
 GCGATCTCAACGTTGTCAGATCGTCTCGCACCGCGGATGGCGAAAACGTTGCGATTTCGGTTATTGTTCTTGT
 GTTGGTCTCTCAGATCTCGCTGCAAGGCTCTCAGGCCAAACGACACCCCATGTCATCCACTGGCCCTGGATCTG
 CCCAAACTAACCTGGTACCGTGGACCTGGGATGCCGGTCAAGGGTATTCCCTGAGCCAGTGACAGTGCACCTGGAACTCTGGATCC
 CTGTCAGCGGTGTCACACCTCCAGCTGCTGCGACTCTGAGCAGCTGACTGTCACCTCTGAGCAGCTGACTGTC
 TGGCCAGCGAGACCGTACCTGCAACGTTGCCACCCGGCAGCAGCACCAAGGGTGGACAAGAAAATTG
 GGTTGTAAGCCTGCAATGTCAGTCCCAGAAAGTATCATGTCCTCATCTCCCCAAAGCCAAGGGATGTC
 CACCTACT
 CTGACTCTAAGGTACGTGTTGTTGAGACATCAGCAAGGATGATCCCAGGTCCAGTCACTGGTTGAGATGATGTGG
 AGGTGACACAGCTCAGCGAACCCGGGAGGAGCAGTCAACAGCACTTCCGTCAGTCACTGACCTCCATCATG
 GGACTGGCTCAATGCAAGGAGCGATGCTCAGCATCAGCATCAGCATCAGCATCAGCATCAGCATCAGCAT
 TTACTGTTATTGGTGTGATTGTCAGTGGTGAATTGTCAGTCAATTAACATGTCAGTCACTGTCAGTGGT
 AGCTCTGTTAGCTGAGCTGCTCCCTCAGCAAGGACACAAAAGATTAAATTAAAAAGGGAA
 TTGATATCAAGCTTATCGCAGATCGTCAAACATTGCAATTAAAGTTCTTAAGATTGAACTCTGCGCTTGC
 TGATTATCATATAATTCTGTTGAATTGTCAGTCAATTAACATGTCAGTCAATTAACATGTCAGTCACTG
 GATTAGAGTCCCGCAATTATACATTAATACGCGATAGAAAACAAAATAGCGCGCAAACTAGGATAAAATT
 ATCGCGCGGGTG
 TCATCTATGTTACTAGATCTCTAGCTCAAGCTGGCGGCCACGTGACTAGTGGCACTGGCGTCTGGT
 CTGGGGAAACCCCTGGCTTACCAACTTAATCGCTGCAAGCACATCCCCCTTCGCGCAGTGGCGTAATAG
 CGAAGAGGGCCGCA
 CCGATGCCCTCCAAAGTGTGCAAGCCTGAATGGCAATGCTAGAGCAGCTGAGCTGGATCAGATTG
 CGTCTTCCGCC
 CAGTTAAACTACAGTGTGACAGGATATTGGGGTAAACCTAAGGAGAGCGTTA

Figure 12D, SEQ ID NO: 47


Expression cassette number 1108 from 2X35S promoter to NOS terminator. VP2(opt) from Rotavirus A WA strain is underlined.

GTCAACATGGGGAGCAGCACACTGTCTACTCCAAAATATCAAAGATACTGCTCAGAACAGGAAATTGAGACTT
 TTCAACAAAGGGTAATCCGGAAACCTCTCGGATTCCATTGCCAGCTATCTGTCATTATTGTAAGATAGTGGAAAAGGAA
 GGTGGCTCTACAAATGCCATCTGCGATAAGGAAAGGCCATGTTGAAGATGCCCTGCGACAGTGGTCCAAAGATGGAC
 CCCACCCACGAGGAGCATGTTGAAAAAGAACGCTTCAACACGCTTCAAAGCAAGTGGATTGATGTGATAACATGGTG
 AGCAGCACACTGTCTACTCCAAAATATCAAAGATACTGCTCAGAACAGGAAATTGAGACTTTCAACAAAGGGT
 AATATCGGAAACCTCTCGGATTCCATTGCCAGCTATGTCACTTATTGTAAGATAGTGGAAAAGGAAGGTGGCTCCTACA
 AATGCCATCTGCGATAAGGAAAGGCCATGTTGAAGATGCCCTGCGACAGTGGTCCAAAGATGGACCCCCACCGAG
 GAGCATGTTGAAAAAGAACGTTCAACACGCTTCAAAGCAAGTGGATTGATGTGATACTCCACTGACGTAAGGGATGAC

Figure 12E

Schematic representation of construct number 1108

7. 2X35S/CPMV-160/RVA(WA) VP6(opt)/NOS (Construct number 1128)**Figure 13A**, SEQ ID NO: 48

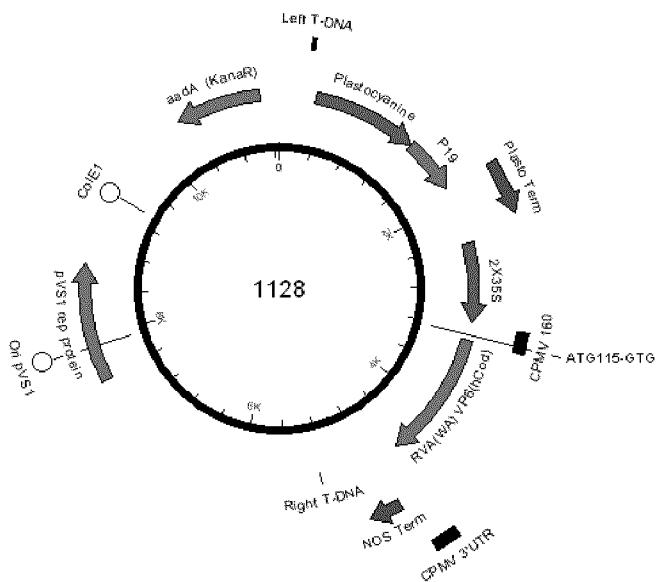
IF(C160)-WA_VP6(opt).c

TCGTGCTTCGGCACCAAGTACAATGGAGGTCTTATAGTCTCTCCAAAACGCTGA

Figure 13B, SEQ ID NO: 49

Expression cassette number 1128 from 2X35S promoter to NOS terminator. VP6(opt) from Rotavirus A WA strain is underlined.

```


GTCAACATGGTGGAGCAGCACACACTTGCTACTCCAAAATCAAAGATACTGTCAGAAGACCAAGGGCAATTGAGACTT
TTCAACAAAGGGATAATCCGAAACCTCTCGGATTCCATTGCCAGCTATCTGCACTTATTGTGAAGATACTGGAAAAGGAA
GGTGGCTCTACAAATGCCATTGCGATAAAGGAAAGGCCATCGTTGAAGATGCCCTGCCGACAGTGGTCCAAAGATGGAC
CCCCACCCACGAGGAGCATCGTGAAAAAGAAGACGTTCAACACGTCTCAAAGCAAGTGGATTGATGTGATAACATGGGG
AGCACGACACACTTGCTACTCCAAAATCAAAGATACTGTCAGAAGACCAAGGGCAATTGAGACTTTCAACAAAGGGT
AATATCCGAAACCTCTCGGATTCCATTGCCAGCTATCTGCACTTATTGTGAAGATACTGGAAAAGGAAGGTGGCTCTACA
AATGCCATCATTGCGATAAAGGAAAGGCCATCGTTGAAGATGCCCTGCCGACAGTGGTCCAAAGATGGACCCCCACCGAG
GAGCATCGGAAAAAGAAGACGTTCAACACGTCTCAAAGCAAGTGGATTGATGTGATACTCCACTGACGTAAGGGATGAC
GCACAATCCACTATCTCGCAAGACCCCTCCTATATAAGGAAGTTCATTGAGAGGTATAAAATCTTAATAGGTTT
GATAAAAGCGAACGTGGGGAAACCGAACCAACCTTCTAAACTCTCTCATCTCTAAAGCAAACCTCTCTGTCTTC

```

TTGCGTGAGCGATCTTCAACGTTGTCAGATCGTGCTTCGGCACCACTACAATGGAGGTCTTATAGTCTCTCCAAAAGCTGAAG
GACGCTAGGGACAAGATCGTGGAGGGTACACTTATAGCAATGTCAGCGACCTAATACAGCAGTTAATCAAATGATCGTTACAA
TGAATGGGAATGATTCCAAACTGGCGGTATTGGTAATCTGCCGTGAGGAACCTGGACATTGATTCGGCCTGCTGGCAGCAG
TCTCCTTAATCTCGATGCAAATTATGTAGAAAACGCCAGAACGATTATCGAGTACTTTATCGATTTCATTGATAACGTTGTATGGA
TGAGATGGCCCGCGAGTCACAACCGAACGGAGTTGCTCCACAGTCCGAGGCCCTCGGAAACTCGCCGGCATTAAAGTCAAGCGT
ATTAATTTCGACAACCTCCGAATATATAGAGAACTTGAACCTGCGAATCTCGACAGAGAACGGCTCGTGTCCATAAAACC
TAATATCTTCCGTATAGCGCCTCATTACCCGAAATTAGGAGTCAGCCCATGACGACAACCTCATGGTACAATGTGGCTGAATG
CGGGGAGTGAATAACAGGTGCCGGGTTGATTACTCTGTGCCATTAAATGCCGCAAAACATCCAGCAGTCAACATATCGT
GCAACTAACGACGGGCTCTCACGACCGCACAATTACACTCTGCCGACGCCAGCGCTTCTCCCTCCCGCTAATCAACTCAG
CTGATGGGCCACCACTGGTTCTCAACCCGTTATATTGCCCTAACACGCTAGAGGTGGAGTTCTTAAACGGACAGATC
ATCAATACCTACCAAGCCAGGTCCGGACGATTATTGAAAGAAATTGACGCTATCAGGCTGCTTCAACTGATGAGGCCCCC
CAATATGACTCCGCTGTGAACGCTTGTCCGAGGCTCAGCCTTCAGCACCAGCACCCTGCGCTGACTCTCGAATAGA
GAGCGCGGTCTCGGAATCACTGCTGGCAGACGCCAACGAGACGCTGCTGGCAACCGTTACGCCGTGCGGCAAGAGTATGCCAT
CCCAGTAGGGCCTGTGTTCCACCCGGCATGAACTGAACTAATTACTAACTATAGCCATCCAGAGAAAGACAACCTGCAGC
GGGTCTTCACTGTGCCCTCATCCGGAGTATGTTGATCAAGTAGAGGCTATTCTTAGTTGAATTACTGTTATTGGTGTG
ATTTCTATGTTGGTGAAGCGGTTCTGTGTCAGAGTGTATTATGTAATTAAATTCTTGAGGCTCTGTTAGCAGGT
CGTCCCTCAGCAAGGACACAAAAAGATTAAATTAAATTAAAAAAAAGACCGGGATTGATATCAAGCTTATCG
ACCTGAGATCGTCAACACATTGGCAATAAAGTTCTTAAGATTGAATCCTGTTGCCGCTTGCATGATTATCATATAATTCT
GTTGAATTACGTTAACGATGTAATAATTACATGTAATGCATGACGTTATTGAGATGGTTTATGATTAGAGTCCGCAATT
ATACATTAAATACGCGATAGAAAACAAAATAGCGCGCAACTAGGATAAATTATCGCGCGCGGTGTCATCATGTTACTAGAT

Figure 13C

Schematic representation of construct number 1128

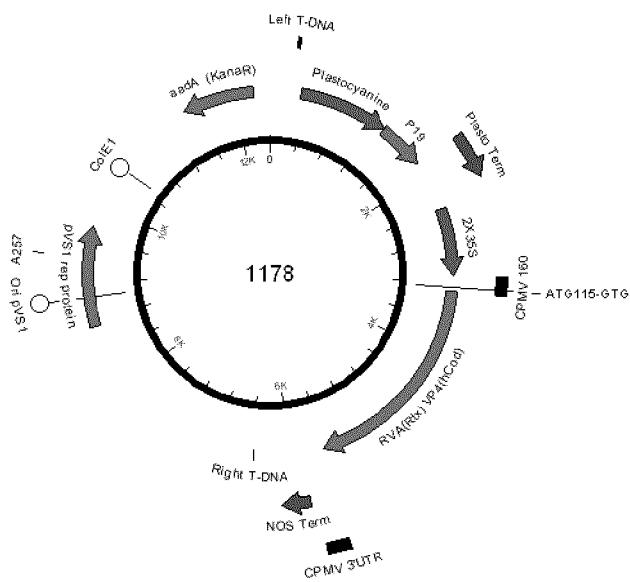
8. 2X35S/CPMV-160/ RVA(Rtx) VP4(opt)/ NOS (Construct number 1178)

Figure 14A, SEQ ID NO: 50

IF(C160)-Rtx_VP4(opt).c

TCGTGCTTCGGCACCAGACTACAATGGCTAGCCTGATCTACAGACAACTCTGACCAATT

Figure 14B, SEQ ID NO: 51


Expression cassette number 1178 from 2X35S promoter to NOS terminator. VP4(opt) from Rotavirus A Rotarix strain is underlined.

GTCAACATGGTGGAGCAGCACACTTGTCTACTCCAAAATATCAAAGATACTCTCAGAAGACCAAGGGCAATTGAGACTT
 TTCAACAAAGGGTAATATCCGAACCCTCTCGGATTCCATTGCCAGCTATCTGCACTTTATTGTGAAGATAGTGGAAAAGGAA
 GGTGGCTCTACAAAGCCATATTGCGATAAAGGAAAGGCCCATCGTGAAGATGCCCTGCGACAGTGGTCCAAAGATGGAC
 CCCCACCCACGAGGAGCATGTGGAAAAAGACGCTCAACCACGTCTAAAGCAAGTGGATTGATGTGATAACATGGTGG
 AGCAGCACACACTTGTCTACTCCAAAATATCAAAGATACTCTCAGAAGACCAAGGGCAATTGAGACTTTCAACAAAGGGT
 AATATCGGAAACCTCTCGGATTCCATTGCCAGCTATCTGCACTTTATTGTGAAGATAGTGGAAAAGGAAAGGTGGCTCTACA
 AATGCCATCATTGCGATAAAGGAAAGGCCCATCGTGAAGATGCCCTGCGACAGTGGTCCAAAGATGGACCCCCACGAG
 GAGCATCGGAAAAAGAGACGCTCAACCACGTCTCAAAGCAAGTGGATTGATGTGATACTCCACTGACGTAAGGGATGAC
 GCACAATCCACTATCTCGCAAGACCCCTCTCTATAAGGAAGTTCATTTCATTGGAGAGGTATTAAATCTTAAGGTTT
 GATAAAAGCGACTGGGGAAACCCGAACAAACCTTCTAAACCTCTCATCTCTAAAGCAAACTTCTCTGTCTTC
 TTGCGTAGCGATCTCAAGTTGTCAGATCGTCCGGACCGTACATGGCTAGCCTGATACAGACACTCTGTACCAAT
TCATATTCTGGATCTCATGACGAATCGACGATGGGTCCGGAAGACCCAGACGTCGGACCACCTTGAC
TCAGACCCGTATCCCTGGAATTGGATCGGAAGACCGACACTCCGGACCCATCTGGACGGCCATAC
CAACCCACCCCTTCACCCACCTTAATGATTTGGATTTACTAACCTCCAAACCGAGGTGGCTACAGTCCCACTAAA
ACTCCGATTTGGACCCGGCGGTGTAGCCATCGACCGTCAACTGTCGATCCCGAGTATATGATTCGCGAGTCCAAAC
GTTTACGTTTCCAAATGACGCAAAATGGAGTTCTGGAGATGTTCAGCTCCCTCTCGACAAAC
CCCTACCTCCGTACACGACTCGGGATTTTAAGTCCGGGCCAGGGGTGGACTTTCACGGGTGACCAC
ACTCGTCCCGAGTTGGAAACCTCCAAACCTCCTAATGGATACGGGTGGCTCCACTCCACGGATTC
AAAGGTGACAATATCAACACGGACCTCCAAACCTCCTAATGGATACGGGTGGCTCCACTCCACGGATTC
CCAGTAAAAGAGACCAAGGTGAATGGACATTTGTGAAGACTACCCTTGGAAAGAAATCGAGTACAAACAGAC
ATATCACCGGTTAAGTTTGGAAACCTCATCGTGAAGATGGCCGGCTGGGTACAAATCTCAATAAAGCCGG
AAACATCAGTTAACTCTGGAGAGACGGCGAGCGAGGTTAACCCGGCCACAAACATGTCAACGGCGTTAAACTTAG
CAACGGAGGGCTCCCTCCACCCACCTGGATCAGGCCGGATGAAGTCATCAAGGGAAATTTGTGTACGTAGTTACGG
ATGTATCAAGCGGTCCGGCAACATGGGTATTTAGGGACCCGTGGCTGTCAATCTGTGAAGGTGTACGGGTGGAT
ATTTTCCAATCCGGTTGGGGCTGGCCAGTCATGAATGGCCGGCAGTCTCCCTCCATTTGTCGGTACGGGTGGAC
GTTTACCGATTTCGGTCTGTGAACCCCTGGGGATTTCCCTCCATGTCGACGGCCCCACTTCGGTACAAAG
AAACGTCAACCCCTACGGGGTTACCTCCGGCGGAATCCAAACACGGCAATGAAAACTTCCGGCCCTCCTTGTGTAA
GTCTGGGTACAAACTAATGACGACATCAGAACCCATCAGAACCGGTGACTGTCAAGGGACCTGGAAAGACAACTACAG
TCGTCCGGAAAGATCATTCTGTCAGTCGAGGAATTGGCCAATTGTGAAGATTTCCCTCCACTCCCTCCGTATTTAG
TAGTTTCTCCGGCAATCAAAACATAGGTATCTGTGAAAAGACGTGGCTACTCCGTATGTGAAGAAATCAAAACTTGT
CCACGGAGCAATCAAAATGACGAAACCTCTGTGAGTATCGACGTATCAACGGCCGTAAATTCAG
CCCATCAGTCAACCCGGACAAACGTGTCCAAACGCGTCAACGTGAACCCATCCGTCAACGGATTC
CAGTAAAGAAACCTCCGTGAAAAGAAATGTACCCAGACGTGGATGTCCGTGAACCCGTAAAC
AAAAATCGATATGTCTACGTCGCAAGAAACCTCTGTGAGTATCGACGTGGATTCCCAAATCCAAACCCGTCAAG
CTACAGAAATTTGAAAAGATGACGAGGTATCCGGATTCGTGAACCCGTAAACCCGTAAATTTGAAGAA
GTTCCGGACGTCAAAATGAAGGTCCGGACGTCAGTGAAGATGTCCGTGATTCTGTCCATTTGTGATTGAAGAA
CCTGAACACATGAAAACACGGACCCGAAGCGGTGAACCCGTATTAAGGTCAATCCAAATGTCCGTCAAAACCCGT
AGAAACAAACCAATCAAAAGAAATAGGGATGAGACCATCAGTAAACCTGTGAAGGGCCATTTCTCCTTGTGAATTC

TGTTATTGGTGTGCACTTCTATGTTGGTAGCGGTTCTGCTCAGAGTGTGTTATTTATGTAATTAACTTCTTGAGC
TCCTGTTAGCAGGTGCTCCCTCAGCAAGGACACAAAAAGATTTATTTTATTTAAAAAAAAGACCGGGAAATCG
ATATCAAGCTTATGACCTGCAAGATCGTCAAACATTGGCAATAAAGTTCTTAAGATTGAATCTGTTGCCGGTCTGCGATGAT
TATCATATAATTCTGTTGAATTACGTTAACGATGTAATAATTACATGTAATGCATGACGTTATTATGAGATGGGTTTATGATT
AGAGTCCCGCAATTATACCTTAATACGCGATAGAAAACAAATATAGCGCGCAAACTAGGATAAAATTATCGCGCGCGGTGTCAT
CTATGTTACTAGAT

Figure 14C

Schematic representation of construct number 1178

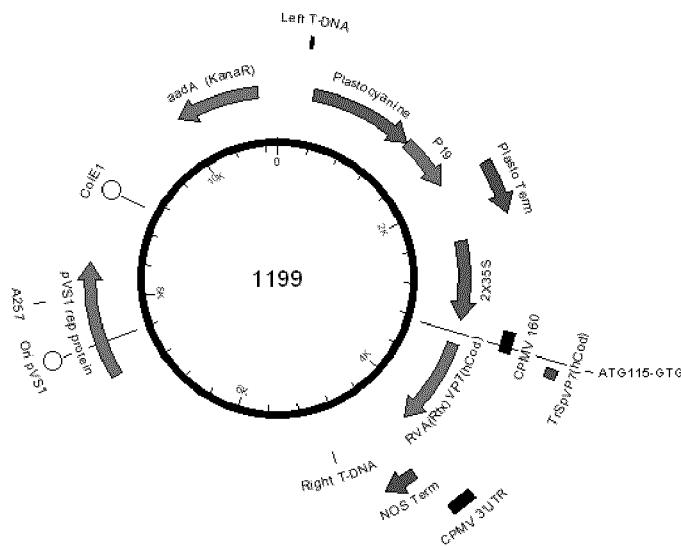
9. 2X35S/CPMV-160/TrSp-RVA(Rtx) VP7(Opt)/NOS (Construct number 1199)

Figure 15A, SEQ ID NO: 52

IF(C160)-TrSP+Rtx VP7(opt).c

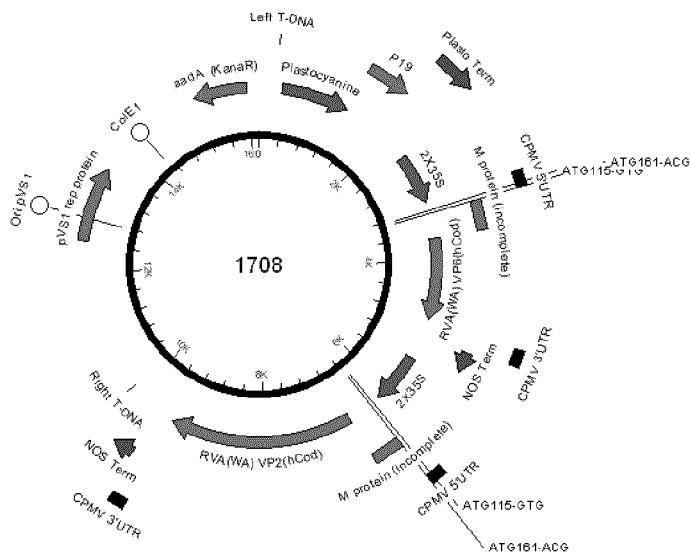
TCGTGCTTCGGCACCAAGTACAATGGATTATATTATCTATCGTAGCCTCCTCATCTA

Figure 15B, SEQ ID NO: 53


Expression cassette number 1199 from 2X35S promoter to NOS terminator. VP7 from Rotavirus A vaccine USA/Rotarix-A41CB052A/1988/G1P1A[8] strain is underlined.

GTCAACATGGTGGAGCACGACACACTTGTCTACTCCAAAAATATCAAAGATACAGTCTCAGAAAGCCAAGGGCAATTGAGACT
TTCAACAAAGGTAATATCCGAAACCTCCTCGGATTCATTGCCAGCTATCTGCACTTATTGTGAAGATAGTGGAAAAGGA
GGTGGCTCTACAAATGCCATCATTGCGATAAAGGAAAGGCCATCGTTGAAGATGCCCTGCGCACAGTGGTCCCAAAGATGGAC
CCCCACCCACGAGGAGCATGTGGAAAAAGAAGACGTTCAACCCACGTCTCAAAGCAAGTGGATTGTGATAACATGGGG

AGCACCGACACACTTGTCTACTCCAAAATATCAAAGATAACAGTCTAGAAGACCAAGGGCAATTGAGACTTTCAACAAAGGGT
 AATATCCGAAACCTCTCGGATTCCATTGCCAGTATCTGCACTTATTGTGAAGATAAGTGGAAAGGAAGGTGGCTCTACA
 AATGCCATCATTGCGATAAAGGAAAGGCCATCGTGAAGATGCCCTGCCGACAGTGGTCCAAAGATGGACCCCCACCGAG
 GAGCATCGTGGAAAAAGAAGACGTTCAACACAGTCTCAAGCAAGTGGATTGATGTGATACTCCACTGACGTAAGGGATGAC
 GCACAATCCCACATCCTCGCAAGACCCCTCTATATAAGGAAGTTCATTTCATTGGAGAGGTATTAAAATCTTAATAGGTTT
 GATAAAAGCGAACGTGGGGAAACCGAACCAACCTCTAAACTCTCTCATCTCTAAAGCAACTCTCTCTGTCTTC
 TTGCGTGAGCGATCTCAACGTTCAAGATCGTCTCAGATCGTCTCGGCCAGTACAATGGATTATATTCTATCGTAGCCTCTATCTAG
TGGCCCTTTGCCCTGACCAGGGCCCAGAACATGGCTGAACTTACCAATACCGGTTCAATGGGATACGTTACGCTAATTCCA
CTCAAGAGGGGATATTCTGACAAGTACCCGTGCTGTATTATCCAACAGAACGCTCTACCCAGATCAATGATGGGAGTGGAA
GGATAGTCTCACAGATGTTCAACCAAGGGCTGGCCACCGGTTCTACTCAAGGAATACTCTAGTATTGTCGACTTCTC
AGTTGACCCCCAGCTTATTGCAACTAACCTGGTACTTATGAAATACGACAGAACCTGGAGCTGGATATGTCGAGCTGGCTG
ACCTGATCCTCAATGAGTGGCTGCAACCCATGGACATCACATTATATTACTACCAAGCAGTCTGGAGAATCCAACAAGTGGATC
AGTATGGGCTCAAGTTGCACCGTGAAGGTGTGCTCTGAACACCCAAATGCTGGCATTGGTTGTAGACAACATAATGTTGATT
CGTTGAAATGGTAGCCGAAACGAGAAGACTGGCTATAGTGGACGTAGTCATGGGATTAACCACAAGATCAACTGACTACCAC
CACTTGACCATCAGAAACTGTAAAAAGCTGGCCCCGGAGAACGTCGCCGTGATCCAGGTGGGGGGAGCAATGTCG
CATTACTGCGACCCTACCAACAGACCGAACGGATGATGAGAGTCAGTGGAAAGAAATGGTGCAGGTCTTATACC
ATTGTTGAACTACATTAACCAGATTGCAAGTCATGAGTAACGGTCCAGATCCCTGAACTCAGCAGCCTTATTATCGCTTA
GAGGCCTATTCTTGTGAATTACTGTTATTGCGTGTGCAATTCTATGTTGGTGGAGCGGTTCTGTGCTCAGAGTGTGTT
 ATTTATGTAATTAAATTCTTGTGAGCTCTGTTAGCAGGTGTCCTTCAGCAAGGACACAAAAGATTAAATTAAATTAAAAA
 AAAAAAAAGACCGGGATTGATATCAAGCTTATCGACCTGCAGTCAGTCAACATTGGCAATAAGTTCTTAAGAT
 TGAATCTGTTGCGGTCTGCGATGATTATCATATAATTCTGTTGAATTACGTTAAGCATGTAATAACATGTAATGCA
 CGTTATTATGAGATGGGTTTATGATTAGAGTCCGCAATTATACATTAATACGCGATAGAAAACAAATAGCGCGAAC
 TAGGATAAATTATCGCGCGGTGTCATCTGTTACTAGAT


Figure 15C

Schematic representation of construct number 1199

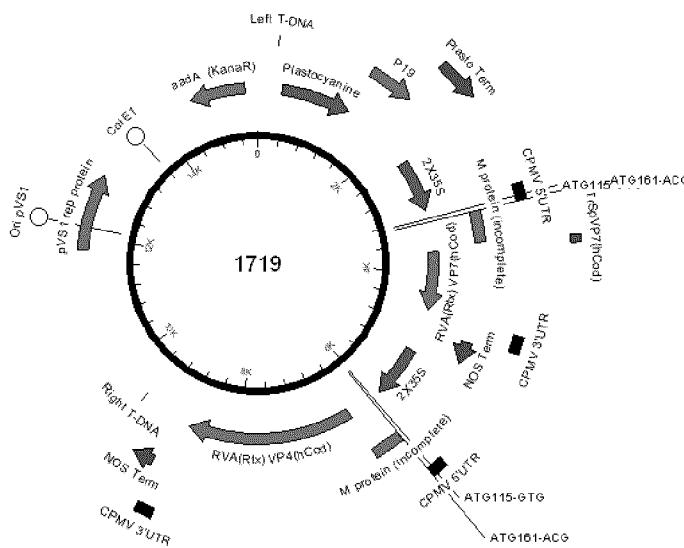

10. Double gene construct for the expression of VP6 and VP2 under CPMV-HT expression cassette (construct number 1708)

Figure 16 Schematic representation of construct number 1708

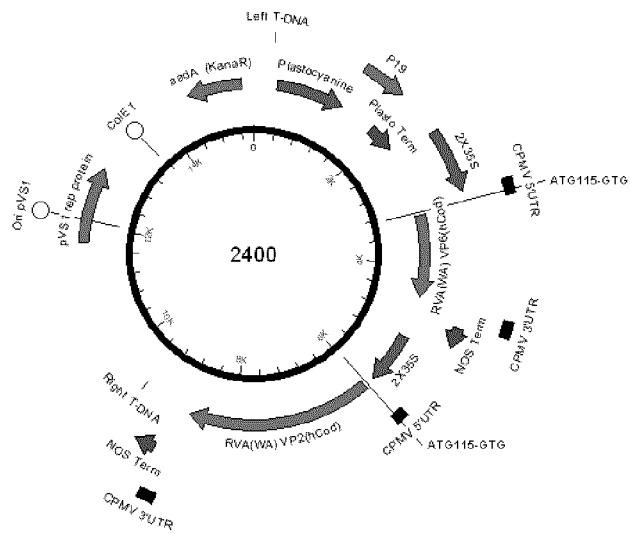

11. Double gene construct for the expression of VP7 and VP4 under CPMV-HT expression cassette (construct number 1719)

Figure 17 Schematic representation of construct number 1719

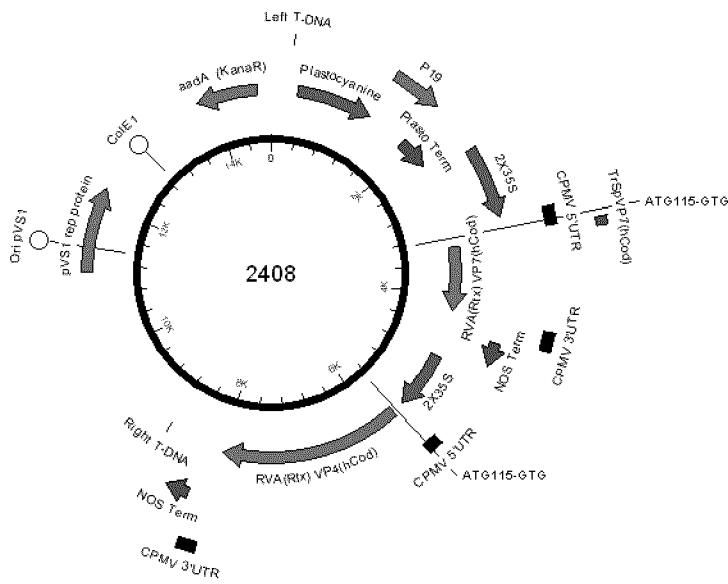

12. Double gene construct for the expression of VP6 and VP2 under CPMV-160 expression cassette (construct number 2400)

Figure 18 Schematic representation of construct number 2400

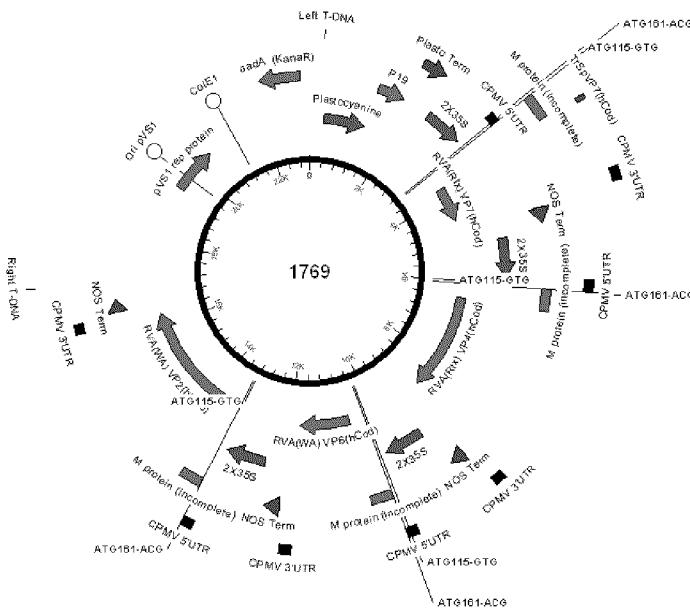

13. Double gene construct for the expression of VP7 and VP4 under CPMV-160 expression cassette (construct number 2408)

Figure 19 Schematic representation of construct number 2408

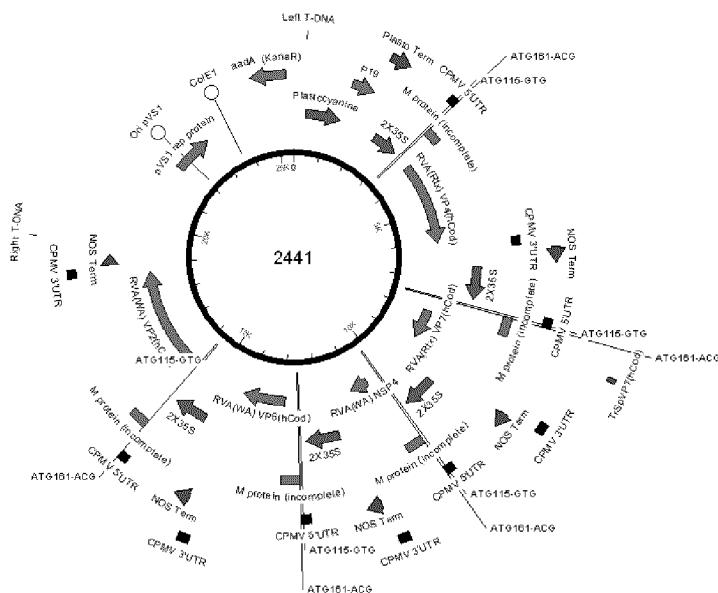

14. Quadruple gene construct for the expression of VP7, VP4, VP6 and VP2 under CPMV-HT expression cassette (construct number 1769)

Figure 20 Schematic representation of construct number 1769

15. Quintuple gene construct for the expression of VP4, VP7, NSP4, VP6 and VP2 under CPMV-HT expression cassette (construct number 2441)

Figure 21 Schematic representation of construct number 2441

INTERNATIONAL SEARCH REPORT

International application No.
PCT/CA2016/050043

A. CLASSIFICATION OF SUBJECT MATTER

IPC: *C12N 7/04* (2006.01), *A01H 5/00* (2006.01), *C12N 15/46* (2006.01), *C12N 15/82* (2006.01),
C12N 15/86 (2006.01), *C12N 7/01* (2006.01), *C12N 7/02* (2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C12N 7/04 (2006.01), *A01H 5/00* (2006.01), *C12N 15/46* (2006.01), *C12N 15/82* (2006.01),
C12N 15/86 (2006.01), *C12N 7/01* (2006.01), *C12N 7/02* (2006.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database(s) consulted during the international search (name of database(s) and, where practicable, search terms used)

Databases: PubMed, Canadian Patent Database, Questel Orbit

Keywords: RLP, NSP4, VP2, VP6, VP7, VP4, rotavirus, *Nicotiana benthamiana*, plant, vaccine, non-structural

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO2013166609 A1 (D'AOUST ET AL.) 14 November 2013 (14-11-2013) the whole document	1-38
A	US20050186219 A1 (LANGRIDGE ET AL.) 25 August 2005 (25-08-2005) the whole document	1-38

Further documents are listed in the continuation of Box C.

See patent family annex.

* “A” “E” “L” “O” “P”	Special categories of cited documents: document defining the general state of the art which is not considered to be of particular relevance earlier application or patent but published on or after the international filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed	“T” “X” “Y” “&”	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family
--------------------------------------	--	--------------------------	--

Date of the actual completion of the international search
03 March 2016 (03-03-2016)

Date of mailing of the international search report
14 April 2016 (14-04-2016)

Name and mailing address of the ISA/CA
Canadian Intellectual Property Office
Place du Portage I, C114 - 1st Floor, Box PCT
50 Victoria Street
Gatineau, Quebec K1A 0C9
Facsimile No.: 819-953-2476

Authorized officer

Keely Ingrey (819) 639-7697

INTERNATIONAL SEARCH REPORT

International application No.
PCT/CA2016/050043

Box No. I Nucleotide and/or amino acid sequence(s) (Continuation of item 1.c of the first sheet)

1. With regard to any nucleotide and/or amino acid sequence disclosed in the international application, the international search was carried out on the basis of a sequence listing:

- forming part of the international application as filed:
 - in the form of an Annex C/ST.25 text file.
 - on paper or in the form of an image file.
- furnished together with the international application under PCT Rule 13ter.1(a) for the purposes of international search only in the form of an Annex C/ST.25 text file.
- furnished subsequent to the international filing date for the purposes of international search only:
 - in the form of an Annex C/ST.25 text file (Rule 13ter.1(a)).
 - on paper or in the form of an image file (Rule 13ter.1(b) and Administrative Instructions, Section 713).

2. In addition, in the case that more than one version or copy of a sequence listing has been filed or furnished, the required statements that the information in the subsequent or additional copies is identical to that in the application as filed or does not go beyond the application as filed, as appropriate, were furnished.

3. Additional comments:

INTERNATIONAL SEARCH REPORT

International application No.
PCT/CA2016/050043

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of the first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claim Nos.: 28 and 29
because they relate to subject matter not required to be searched by this Authority, namely:
Claim 28 and 29 are directed to a method for treatment of the human or animal body by surgery or therapy, which the International Searching Authority is not required to examine under **Rule 67.1 (iv) of the PCT**. Moreover, this Authority has established a written opinion based on the alleged use of a composition comprising an effective dose of the RLP as defined in instant claim 26 for inducing immunity to a rotavirus infection in a subject.
2. Claim Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claim Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claim Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT
Information on patent family members

International application No.
PCT/CA2016/050043

Patent Document Cited in Search Report	Publication Date	Patent Family Member(s)	Publication Date
WO2013166609A	14 November 2013 (14-11-2013)	WO2013166609A1 AU201325849A1 CA2872803A1 CN104284978A EA201492014A1 EP2847324A1 EP2847324A4 HK1206059A1 JP2015517304A KR20150013713A MX2014013671A PH12014502373A1 SG11201406996VA TW201346028A US2015216961A1	14 November 2013 (14-11-2013) 13 November 2014 (13-11-2014) 14 November 2013 (14-11-2013) 14 January 2015 (14-01-2015) 27 February 2015 (27-02-2015) 18 March 2015 (18-03-2015) 23 March 2016 (23-03-2016) 31 December 2015 (31-12-2015) 22 June 2015 (22-06-2015) 05 February 2015 (05-02-2015) 07 May 2015 (07-05-2015) 12 January 2015 (12-01-2015) 27 November 2014 (27-11-2014) 16 November 2013 (16-11-2013) 06 August 2015 (06-08-2015)
US2005186219A1	25 August 2005 (25-08-2005)	US2005186219A1 AT319822T AU750623B2 AU1072499A AU3459201A AU2001234592B2 AU3757499A CA2326373A1 CA2326373C CA2398462A1 DE69930249D1 DE69930249T2 EP1076694A1 EP1076694A4 EP1076694B1 EP1254156A1 EP1254156A4 US2002055618A1 US6777546B2 US2006277635A1 US7422747B2 US2003021803A1 US2003165543A1 US2005044588A1 US2005241024A1 US2009081256A1 WO0155169A1 WO9918225A1 WO9954452A1	25 August 2005 (25-08-2005) 15 March 2006 (15-03-2006) 25 July 2002 (25-07-2002) 27 April 1999 (27-04-1999) 07 August 2001 (07-08-2001) 29 January 2004 (29-01-2004) 08 November 1999 (08-11-1999) 28 October 1999 (28-10-1999) 29 June 2010 (29-06-2010) 02 August 2001 (02-08-2001) 04 May 2006 (04-05-2006) 07 December 2006 (07-12-2006) 21 February 2001 (21-02-2001) 10 April 2002 (10-04-2002) 08 March 2006 (08-03-2006) 06 November 2002 (06-11-2002) 21 May 2003 (21-05-2003) 09 May 2002 (09-05-2002) 17 August 2004 (17-08-2004) 07 December 2006 (07-12-2006) 09 September 2008 (09-09-2008) 30 January 2003 (30-01-2003) 04 September 2003 (04-09-2003) 24 February 2005 (24-02-2005) 27 October 2005 (27-10-2005) 26 March 2009 (26-03-2009) 02 August 2001 (02-08-2001) 15 April 1999 (15-04-1999) 28 October 1999 (28-10-1999)

pctca2016050043-seq1. txt
SEQUENCE LISTING

<110> Medicago Inc.
<120> ROTAVIRUS LIKE PARTICLE PRODUCTION IN PLANTS
<130> V87566W0 revised
<150> US 62/106, 941
<151> 2015-01-15
<160> 53
<170> PatentIn version 3.5
<210> 1
<211> 160
<212> DNA
<213> Artificial sequence
<220>
<223> Expression enhancer CPMVX
<400> 1
tattaaaatc ttaataggtt ttgataaaaag cgaacgtggg gaaacccgaa ccaaaccttc 60
ttcttaaactc tctctcatct ctcttaaagc aaacttctct ctgtctttc ttgcgtgagc 120
gatcttcaac gttgtcagat cgtgcttcgg caccagtaca 160

<210> 2
<211> 5
<212> DNA
<213> Artificial sequence
<220>
<223> Plant kozak sequence

<220>
<221> misc_feature
<222> (4)..(4)
<223> A or C
<400> 2
caana 5

<210> 3
<211> 5
<212> DNA
<213> Artificial Sequence
<220>
<223> Dicots kozak sequence

pctca2016050043-seql.txt

<220>
<221> misc_feature
<222> (4)..(4)
<223> A or C

<400> 3
aaana

5

<210> 4
<211> 5
<212> DNA
<213> Artificial Sequence

<220>
<223> Arabidopsis kozak sequence

<220>
<221> misc_feature
<222> (3)..(3)
<223> A or G

<220>
<221> misc_feature
<222> (4)..(4)
<223> A or C

<400> 4
aanna

5

<210> 5
<211> 5
<212> DNA
<213> Artificial sequence

<220>
<223> Plant kozak Sequence

<400> 5
agaaa

5

<210> 6
<211> 5
<212> DNA
<213> Artificial sequence

<220>
<223> Plant kozak Sequence

<400> 6
agaca

5

pctca2016050043-seql.txt

<210> 7
<211> 5
<212> DNA
<213> Artificial Sequence

<220>
<223> Plant kozak sequence

<400> 7
aggaa 5

<210> 8
<211> 5
<212> DNA
<213> Artificial Sequence

<220>
<223> Plant kozak sequence

<400> 8
aaaaa 5

<210> 9
<211> 5
<212> DNA
<213> Artificial Sequence

<220>
<223> Plant kozak sequence

<400> 9
aaaca 5

<210> 10
<211> 5
<212> DNA
<213> Artificial Sequence

<220>
<223> Plant kozak sequence

<400> 10
aagca 5

<210> 11
<211> 5
<212> DNA
<213> Artificial Sequence

pctca2016050043-seql.txt

<223> Plant kozak sequence

<400> 11

aagaa

5

<210> 12

<211> 6

<212> DNA

<213> Artificial Sequence

<220>

<223> Plant kozak sequence

<400> 12

aaagaa

6

<210> 13

<211> 6

<212> DNA

<213> Artificial Sequence

<220>

<223> Plant kozak sequence

<400> 13

aaagaa

6

<210> 14

<211> 6

<212> DNA

<213> Artificial Sequence

<220>

<223> Consensus sequence

<220>

<221> misc_feature

<222> (1)..(1)

<223> A or absent

<220>

<221> misc_feature

<222> (3)..(4)

<223> A or G

<220>

<221> misc_feature

<222> (5)..(5)

<223> A or C

<400> 14

nanwna

6

pctca2016050043-seql.txt

<210> 15
<211> 517
<212> DNA
<213> Artificial Sequence

<220>
<223> CPMV HT expression enhancer

<400> 15
tattaaaatc ttaataggtt ttgataaaaag cgaacgtggg gaaacccgaa ccaaaccttc 60
ttcttaaactc tctctcatct ctcttaaagc aaacttctct ctgtctttc ttgcgtgagc
gatcttcaac gttgtcagat cgtgcttcgg caccagtaca acgtttctt tcactgaagc 120
gaaatcaaag atctcttgtt ggacacgttag tgccggccca ttaaataacg tgtacttgc
ctattcttgtt cggtgtggtc ttggaaaag aaagcttgct ggaggctgct gttcagcccc 180
atacattact tgttacgatt ctgctgactt tcggcgggtg caatatctct acttctgctt
gacgaggtat tggtgcctgt acttcttct tcttcttctt gctgattggc tctataagaa 240
atctagtttatt ttctttgaaa cagagtttc ccgtgggg cgaacttgaa gaaagattgt
taagcttctg tatattctgc ccaaatttgtt cgggcccc 300
360
420
480
517

<210> 16
<211> 534
<212> DNA
<213> Artificial sequence

<220>
<223> CPMV HT plus with a plant kozak consensus sequence

<220>
<221> misc_feature
<222> (1)..(1)
<223> A or absent

<220>
<221> misc_feature
<222> (3)..(4)
<223> A or G

<220>
<221> misc_feature
<222> (5)..(5)
<223> A or C

<220>
<221> misc_feature

pctca2016050043-seql.txt

<222> (529).. (529)
<223> n is a, c, g, or t

<220>

<221> misc_feature

<222> (531).. (533)

<223> n is a, c, g, or t

<400> 16

tattaaaatc ttaataggtt ttgataaaaag cgaacgtggg gaaacccgaa ccaaaccttc	60
ttcttaaactc tctctcatct ctcttaaagc aaacttctct ctgtctttc ttgcgtgagc	120
gatcttcaac gttgtcagat cgtgcttcgg caccagtaca acgttttctt tcactgaagc	180
gaaatcaaag atctcttgtt ggacacgtag tgcggcgcca ttaaataacg tgtacttgc	240
ctattttgtt cggtgtggc ttggaaaag aaagcttgct ggaggctgct gttcagcccc	300
atacattact ttttacgatt ctgctgactt tcggcggtt caatatctct acttctgctt	360
gacgaggtat ttttgcctgtt acttctttct tcttcttctt gctgattgggt tctataagaa	420
atcttagtatt ttctttgaaa cagagtttc ccgtggggg cgaacttgaa gaaagattgt	480
taagcttctg tatattctgc ccaaattttt tcggcgccaa taccgcggna nnna	534

<210> 17

<211> 511

<212> DNA

<213> Artificial Sequence

<220>

<223> CPMV HT plus 511

<400> 17

tattaaaatc ttaataggtt ttgataaaaag cgaacgtggg gaaacccgaa ccaaaccttc	60
ttcttaaactc tctctcatct ctcttaaagc aaacttctct ctgtctttc ttgcgtgagc	120
gatcttcaac gttgtcagat cgtgcttcgg caccagtaca acgttttctt tcactgaagc	180
gaaatcaaag atctcttgtt ggacacgtag tgcggcgcca ttaaataacg tgtacttgc	240
ctattttgtt cggtgtggc ttggaaaag aaagcttgct ggaggctgct gttcagcccc	300
atacattact ttttacgatt ctgctgactt tcggcggtt caatatctct acttctgctt	360
gacgaggtat ttttgcctgtt acttctttct tcttcttctt gctgattgggt tctataagaa	420
atcttagtatt ttctttgaaa cagagtttc ccgtggggg cgaacttgaa gaaagattgt	480
taagcttctg tatattctgc ccaaattttt tcggcgccaa taccgcggna a	511

pctca2016050043-seq1.txt

<210> 18

<211> 534

<212> DNA

<213> Artificial Sequence

<220>

<223> CPMV HT plus WT 115

<400> 18

tattaaaatc ttaataggtt ttgataaaaag cgaacgtggg gaaacccgaa ccaaaccttc 60

ttcttaaactc tctctcatct ctcttaaagc aaacttctct ctgtctttc ttgcatgagc 120

gatcttcaac gttgtcagat cgtgcttcgg caccagtaca acgttttctt tcactgaagc 180

gaaatcaaag atctcttgtt ggacacgtag tgcggcgcca ttaaataaactg tgtacttgc 240

ctattcttgtt cggtgtggc ttggggaaaag aaagcttgct ggaggctgct gttcagcccc 300

atacattact tgttacgatt ctgctgactt tcggcggtt caatatctct acttctgctt 360

gacgaggtat tgttgcctgt acttctttct tcttcttctt gctgattggg tctataagaa 420

atcttagtatt ttctttgaaa cagagtttc ccgtgggaaa cgaacttgaa gaaagattgt 480

taagcttctg tatattctgc ccaaatttgt tcgggccccaa taccgcggag aaaa 534

<210> 19

<211> 48

<212> DNA

<213> Artificial Sequence

<220>

<223> IF WA VP2 opt s1 plus 3c

<400> 19

aaatttgcg ggcccatggc ataccgaaag agaggagcaa agcgcgaa 48

<210> 20

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> IF WA VP2 opt s1 to 4r

<400> 20

actaaagaaa ataggccttt aaagctcggtt cattattcgc atattgtcga 50

<210> 21

<211> 2673

<212> DNA

<213> Artificial Sequence

pctca2016050043-seql.txt

<220>

<223> Optimized coding sequence of Rotavirus A VP2 from strain WA

<400> 21

atggcatacc	ggaagagagg	agcaaagcgc	gaaaacctgc	cgcaacagaa	cgagagactg	60
caagaaaaag	agatagagaa	agatgtcgac	gtaacaatgg	aaaacaagaa	taacaatagg	120
aaacaacagc	tgtccgacaa	agttctgtcc	cagaaggagg	aaattatcac	tgacgcccag	180
gacgatatta	aaattgccgg	agaaataaag	aagagctcga	aagaagaatc	taaacagctg	240
ctcgaaattc	tgaaaacaaa	agaagaccat	cagaaagaga	ttcaatatga	aattttgcaa	300
aaaacaatac	ctacatttga	gtccaaagaa	agtatcctca	agaagcttga	agacataaga	360
ccggagcagg	caaaaaaaca	gatgaaactc	tttcgcattt	tcgagccaaa	acagctccct	420
atatatcgcg	ccaatggcga	gaaggagcta	cgcaaccggt	ggtactggaa	gttgaaaaaa	480
gacaccctgc	cagatggaga	ttatgacgtc	cgggagttt	tcctcaatct	ctatgatcag	540
atcctcatcg	aatgcccga	ctatctgctc	ctcaaggaca	tggccgtgga	gaacaaaaat	600
agcagagacg	ccggcaaagt	tgtcgactct	gagactgcca	atatttgtga	tgccatcttc	660
caggatgagg	agaccgaggg	agtcgtccgt	agattcatcg	ctgatatgcg	gcaacaggc	720
caggctgatc	gtaacattgt	caattaccct	tccatccttc	accatttga	tcatgcattc	780
aatagagtatt	ttcttaacca	ccagttggtg	gagccgctga	acaatgagat	aatcttaat	840
tacataccag	agaggataag	gaatgacgtg	aattacatcc	tgaacatgga	tatgaatctg	900
ccatctacag	ccaggtatat	cagccaaac	ttgttgcagg	atagactgaa	tcttcacgat	960
aattttgagt	ccctgtggaa	taccatcaca	acatccaact	acattctggc	caggtccgtc	1020
gttcccgatt	tgaaggagaa	ggagctggc	tccaccgaag	cacagatcca	gaaaatgagc	1080
caggacctgc	agctggaggc	cctcactatt	cagagcgaga	cacagtttt	agccggatt	1140
aacagtcagg	ctgccaatga	ttgttcaag	accctcatag	ccgccatgct	gtctcaaaga	1200
accatgtctt	tggactttgt	gaccacgaac	tatatgagcc	taatctccgg	aatgtggcta	1260
cttacagtga	ttcccaacga	tatgttcctc	cgggagtcac	tagtggcctg	tgagctggcg	1320
atcatcaaca	ccatcgtgt	tccagcattc	ggaatgcaga	gaatgcatta	ccggaatggc	1380
gaccctcaga	cacccttcca	gatgcagaa	cagcagatcc	agaatttcca	ggtggcgaac	1440
tggctccatt	ttattaacaa	taacagattc	aggcaagttg	tgattgatgg	agttctgaat	1500
cagactctga	acgacaatat	acggaatgga	caggtcatca	accagctgat	ggaagcattg	1560

pctca2016050043-seql.txt

atgcaactca	gcagacagca	gttccccacg	atgcctgtgg	attacaaacg	gagcatccaa	1620
cggggcattc	tgcttctctc	caataggctg	gggcagcttg	tcgacttaac	ccgactggtc	1680
tcctataact	acgagacgct	aatggcttgt	gtgaccatga	acatgcagca	cgtcaaacc	1740
ctgacaactg	agaagttgca	gctcacttct	tgacttcgc	tttgtatgtt	aattgtaac	1800
acaaccgtga	ttccgtcccc	acagacactg	ttccactact	acaacatcaa	cgtgaatttc	1860
cactccaatt	ataatgagcg	gatcaacgac	gccgtcgcca	taattaccgc	agcaaatagg	1920
ctgaatcttt	atcagaaaaaa	aatgaagtcc	atagtggaag	actttctgaa	acggctccag	1980
attttcgacg	taccacgagt	gcctgacgac	caaatgtaca	ggctgaggga	tcgccttcgg	2040
ctcttacccg	ttgaacggag	acggcttgac	atattcaact	tgatcctgat	gaatatggag	2100
cagatcgaac	gcgcttctga	taagattgct	cagggggtta	tcatgcata	ccgagatatg	2160
cagctggaac	gchgacgagat	gtacggat	gttaatattg	cacggaatct	tgatggctac	2220
cagcaaatta	acttggagga	actcatgcgc	accggtgatt	acggacaaat	tacgaacatg	2280
cttctcaaca	atcaaccgt	tgcccttgtg	ggtgcattgc	cctcggtac	ggactcatcc	2340
gtgatcagtc	taatcgccaa	gctcgacgca	accgtctcg	ctcagatagt	gaagctcagg	2400
aaagttgaca	cactgaagcc	catactgtac	aaaataaact	cggattccaa	tgactttac	2460
cttgggccca	actacgactg	gatccccaca	agtacaacta	aggctacaa	acaggtgcca	2520
caaccattcg	actttagagc	cagcatgcac	atgctgactt	ctaaccctac	gttaccgtc	2580
tactctgacc	tactgtcatt	tgttcagcg	gacacggtag	agccattaa	cgcagtcgca	2640
ttcgacaata	tgcgaataat	gaacgagctt	taa			2673

<210> 22
 <211> 4903
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Construct 1191

<400> 22	tggcaggata	tattgtggtg	taaacaatt	gacgcttaga	caacttaata	acacattgcg	60
	gacgaaaa	atgtactgaa	ttaacgccga	atcccggtc	ggtatattta	tatgttgtca	120
	aataactcaa	aaaccataaa	agtttaagtt	agcaagtgtg	tacattttta	cttgaacaaa	180
	aatattcacc	tactactgtt	ataaaatcatt	attaaacatt	agagtaaaga	aatatggatg	240

pctca2016050043-seql.txt

ataagaacaa gagtagtgat atttgacaa caatttgtt gcaacattt agaaaatttt	300
gttggttctct ctttcattt gtcaaaaaca atagagagag aaaaaggaag agggagaata	360
aaaacataat gtgagtgatga gagagaaagt tgtacaaaag ttgtacaaa atagttgtac	420
aaatatcatt gaggaattt acaaaagcta cacaataag ggttaattgc tgtaaataaa	480
taaggatgac gcatttagaga gatgtaccat tagagaattt ttggcaagtc attaaaaaga	540
aagaataaat tattttaaa attaaaagtt gagtcattt attaaacatg tgattattta	600
atgaattgat gaaagagttt gattaaagtt gtattagtaa ttagaattt gtgtcaaatt	660
taatttgaca tttgatctt tcctatata tgcggccatag agtcagttaa ctcattttta	720
tatccatag atcaaataag agaaataacg gtatattaat ccctccaaaa aaaaaaaaacg	780
gtatatttac taaaaaatct aagccacgta ggaggataac aggtccccg taggaggata	840
acatccaaatc caaccaatca caacaatcct gatgagataa cccactttaa gcccacgcatt	900
ctgtggcaca tctacattt ctaaatcaca cattttcca cacatctgag ccacacaaaa	960
accaatccac atcttatca cccattctat aaaaaatcac actttgttag tctacacttt	1020
gattcccttc aaacacatac aaagagaaga gactaattaa ttaattaatc atttgagag	1080
aaaatggaac gagctataca agggaaacgac gctagggaaac aagctaacag tgaacgttgg	1140
gatggaggat caggaggtac cacttctccc ttcaaacttc ctgacgaaag tccgagttgg	1200
actgagtggc ggctacataa cgatgagacg aattcgaatc aagataatcc cttgggttc	1260
aaggaaagct ggggttcgg gaaagttgtt tttaagagat atctcagata cgacaggacg	1320
gaagcttcac tgcacagagt cttggatct tggacggag attcggttaa ctatcgac	1380
tctcgatttt tcggttcga ccagatcgga tgtacctata gtattcggtt tcgaggagtt	1440
agtatcaccg tttctggagg gtcgcgaact cttcagcatc tctgtgagat ggcaattcgg	1500
tctaagcaag aactgctaca gcttgccccca atcgaagtgg aaagtaatgt atcaagagga	1560
tgccctgaag gtactcaaac cttcgaaaaa gaaagcgagt aagttaaaat gttttcggt	1620
ctcctattta taatatggtt tgttattgtt aattttgttc ttgtagaaga gcttaattaa	1680
tcgttgttgt tatgaaatac tatttgatg agatgaactg gtgtatgtt attcattttac	1740
ataagtggag tcagaatcag aatgtttcct ccataactaa ctagacatga agacctgccc	1800
cgtacaatttgcgttattt gaacaactaa aattgaacat ctttgccac aactttataa	1860
gtggtaata tagctcaa atatggtaa gttcaataga ttaataatgg aaatatcagt	1920

pctca2016050043-seql.txt

tatcgaaatt	cattaacaat	caacttaacg	ttattaacta	ctaattttat	atcatccct	1980
ttgataaatg	atagtacacc	aattaggaag	gagcatgctc	gcctaggaga	ttgtcgttc	2040
ccgccttcag	tttgcagact	gctctagccg	tgtagccat	acgcaaaccg	cctctcccg	2100
cgcgttggaa	attactagcg	cgtgtcgaca	agcttgcatt	ccggtaaca	tggtgagca	2160
cgacacactt	gtctactcca	aaaatatcaa	agatacagtc	tcagaagacc	aaaggcaat	2220
tgagactttt	caacaaaggg	taatatccgg	aaacctcctc	ggattccatt	gcccagctat	2280
ctgtcacttt	attgtgaaga	tagtgaaaa	ggaagggtggc	tcctacaat	gccatcattg	2340
cgataaagga	aaggccatcg	ttgaagatgc	ctctgcccac	agtggtccc	aagatggacc	2400
cccacccacg	aggagcatcg	tggaaaaaga	agacgttcca	accacgttct	caaagcaagt	2460
ggattgatgt	gataacatgg	tggagcacga	cacactgtc	tactccaaaa	atataaaga	2520
tacagtctca	gaagacaaaa	ggcaattga	gactttcaa	caaaggtaa	tatccggaaa	2580
cctcctcgga	ttccattgcc	cagctatctg	tcactttatt	gtgaagatag	tggaaaagga	2640
aggtggctcc	tacaaatgcc	atcattgcga	taaaggaaag	gccatcggt	aagatgcctc	2700
tgccgacagt	ggtcccaaag	atggaccccc	acccacgagg	agcatcggt	aaaaagaaga	2760
cgttccaacc	acgttcaa	agcaagtgg	ttgatgtgat	atctccactg	acgttaaggga	2820
tgacgcacaa	tcccactatc	cttcgcaaga	cccttcctct	atataaggaa	gttcatttca	2880
tttggagagg	tattaaaatc	ttaataggtt	ttgataaaag	cgaacgtgg	gaaacccgaa	2940
ccaaaccttc	ttctaaactc	tctctcatct	ctcttaaagc	aaacttctct	cttgcgtttc	3000
ttgcgtgagc	gatcttcaac	gttgcagat	cgtgctcgg	caccagtaca	acgtttctt	3060
tcactgaagc	gaaatcaaag	atctttgt	ggacacgtag	tgcggcgcca	ttaaataacg	3120
tgtacttgc	ctattctgt	cgggtggc	ttggaaaaag	aaagcttgct	ggaggctgct	3180
gttcagcccc	atacattact	tgttacgatt	ctgctgactt	tgcgggggt	caatatctct	3240
acttctgctt	gacgaggtat	tgtgcctgt	acttcttct	tcttcttct	gctgattgg	3300
tctataagaa	atcttagtatt	ttcttgaaa	cagagtttc	ccgtggttt	cgaacttgga	3360
gaaagattgt	taagcttctg	tatattctgc	ccaaatttg	cggcccgcg	gatggcgaaa	3420
aacgttgcga	tttcggctt	attgtttct	cttcttggt	tggcccttc	tcaagatctc	3480
gcctgcaggc	tcctcagcca	aaacgacacc	cccatctgtc	tatccactgg	cccctggatc	3540
tgctgccccaa	actaactcca	tggtgaccct	gggatgcctg	gtcaaggcgt	atttccctga	3600

pctca2016050043-seql.txt

gccagtgaca	gtgacctgga	actctggatc	cctgtccagc	ggtgtgcaca	ccttcccagc	3660
tgtcctgcag	tctgacctct	acactctgag	cagctcagtg	actgtcccct	ccagcacctg	3720
gcccagcgag	accgtcacct	gcaacgttgc	ccacccggcc	agcagcacca	aggtggacaa	3780
gaaaattgtg	cccagggatt	gtggttgtaa	gccttgcata	tgtacagtcc	cagaagtatc	3840
atctgtcttc	atcttccccc	caaagccaa	ggatgtgctc	accattactc	tgactcctaa	3900
ggtcacgtgt	gttgtggtag	acatcagcaa	ggatgatccc	gaggtccagt	tcagctggtt	3960
tgttagatgat	gtggaggtgc	acacagctca	gacgcaaccc	cgggaggagc	agttcaacag	4020
cactttccgc	tcagtcagtg	aacttccat	catgcaccag	gactggctca	atggcaagga	4080
gcgatcgctc	accatcacca	tcaccatcac	catcaccatt	aaaggcctat	tttctttagt	4140
ttgaatttac	tgttattcgg	tgtcatttc	tatgttggt	gagcggttt	ctgtgctcag	4200
agtgtgtta	tttatgtaa	tttaatttct	ttgtgagctc	ctgttagca	ggtcgtccct	4260
tcagcaagga	cacaaaaaga	tttaatttt	attaaaaaaaaa	aaaaaaaaaa	agaccggaa	4320
ttcgatatac	agcttatcga	cctgcagatc	gttcaaacat	ttggcaataa	agtttcttaa	4380
gattgaatcc	tgtgcccgt	cttgcgatga	ttatcatata	atttctgttg	aattacgtta	4440
agcatgtaat	aattaacatg	taatgcata	cgttatttat	gagatgggtt	tttatgatta	4500
gagccccgca	attatacatt	taatacgcga	tagaaaacaa	aatatagcgc	gcaaactagg	4560
ataaaattatc	gcgcgcggtg	tcatctatgt	tactagatct	ctagagtctc	aagcttggcg	4620
cgcacgtg	actagtggca	ctggccgtcg	ttttacaacg	tcgtgactgg	gaaaaccctg	4680
cggttaccca	acttaatcgc	cttgcagcac	atccccctt	cgcagctgg	cgtaatagcg	4740
aagaggcccg	caccgatcgc	cttcccaac	agttgcgcag	cctgaatggc	gaatgctaga	4800
gcagctttag	cttggatcag	attgtcgtt	ccgccttca	gtttaaacta	tcagtgttt	4860
acaggatata	ttggcgggta	aacctaaagag	aaaagagcgt	tta		4903

<210> 23
 <211> 4413
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Expression cassette number 1710

<400> 23
 gtcaacatgg tggagcacga cacacttgatc tactccaaaa atatcaaaga tacagtctca

60

pctca2016050043-seql.txt

gaagacccaaa	ggccaattga	gactttcaa	caaaggtaa	tatccggaaa	cctcctcgga	120
ttccattgcc	cagctatctg	tcactttatt	gtgaagatag	tggaaaagga	aggtggctcc	180
tacaaatgcc	atcattgcga	taaaggaaag	gccatcggt	aagatgcctc	tgccgacagt	240
ggtcccaaag	atggacccccc	acccacgagg	agcatcggt	aaaaagaaga	cgttccaacc	300
acgtcttcaa	agcaagtgg	ttgatgtgat	aacatggtg	agcacgacac	acttgtctac	360
tccaaaata	tcaaagatac	agtctcagaa	gaccaaaggg	caattgagac	ttttcaacaa	420
aggtaat	ccggaaacct	cctcgattc	cattgcccag	ctatctgtca	ctttattgt	480
aagatagtgg	aaaaggaagg	tggctcctac	aatgccatc	attgcgataa	aggaaaggcc	540
atcggtgaag	atgcctctgc	cgacagtgg	cccaaagatg	gaccccccacc	cacgaggagc	600
atcggtgaaa	aagaagacgt	tccaaccacg	tcttcaaagc	aagtggattg	atgtgatatc	660
tccactgacg	taagggatga	cgcacaatcc	cactatcctt	cgcaagaccc	ttcctctata	720
taaggaagtt	catttcattt	ggagaggtat	taaaatctta	ataggtttt	ataaaagcga	780
acgtgggaa	acccgaacca	aaccccttc	taaactctct	ctcatctctc	ttaaagcaaa	840
cttctctctt	gtcttcttg	cgtgagcgat	cttcaacgat	gtcagatcgt	gcttcggcac	900
cagtacaacg	tttcttca	ctgaagcgaa	atcaaagatc	tctttgtgga	cacgtagtgc	960
ggcgccatta	aataacgtgt	acttgccta	ttcttgcgg	tgtggtcttg	ggaaaagaaa	1020
gcttgctgga	ggctgctgtt	cagccccata	cattacttgt	tacgattctg	ctgactttcg	1080
gcgggtgcaa	tatctctact	tctgcttgac	gaggtattgt	tgcctgtact	tctttcttct	1140
tcttcctgct	gattggttct	ataagaaatc	tagtatttc	ttgaaacag	agtttcccg	1200
tggtttcga	acttggagaa	agattgttaa	gcttctgtat	attctgccc	aatttgcgg	1260
gcccatggca	taccggaaga	gaggagcaaa	gchgcaaaac	ctgcccac	agaacgagag	1320
actgcaagaa	aaagagatag	agaaagatgt	cgacgtaaca	atggaaaaca	agaataacaa	1380
taggaaacaa	cagctgtccg	acaaagttct	gtcccagaag	gaggaaatta	tcactgacgc	1440
ccaggacgat	attaaaattt	ccggagaaat	aaagaagagc	tcgaaagaag	aatctaaaca	1500
gctgctgaa	attctgaaaa	caaaagaaga	ccatcagaaa	gagattcaat	atgaaatttt	1560
gcaaaaaaca	atacctacat	ttgagtccaa	agaaagtatc	ctcaagaagc	ttgaagacat	1620
aagaccggag	caggcaaaaa	aacagatgaa	actcttcgc	atttcgagc	caaaacagct	1680
ccctatatat	cgcgccaatg	gcgagaagga	gctacgcaac	cgtggtaact	ggaagttgaa	1740

pctca2016050043-seql.txt

aaaagacacc	ctgccagatg	gagattatga	cgtccggag	tatttcctca	atctctatga	1800
tcagatcctc	atcgaaatgc	cggactatct	gctcctcaag	gacatggccg	tggagaacaa	1860
aaatagcaga	gacgccggca	aagttgtcga	ctctgagact	gccaatattt	gtgatgccat	1920
cttccaggat	gaggagaccg	agggagtcgt	ccgttagattc	atcgctgata	tgcggcaaca	1980
ggtccaggct	gatcgtaaca	ttgtcaatta	cccttccatc	cttcacccta	ttgatcatgc	2040
attcaatgag	tatttctta	accaccagtt	ggtggagccg	ctgaacaatg	agataatctt	2100
caattacata	ccagagagga	taaggaatga	cgtgaattac	atcctgaaca	tggatatgaa	2160
tctgccatct	acagccaggt	atatcaggcc	aaacttgg	caggatagac	tgaatcttca	2220
cgataatttt	gagtcctgt	gggataccat	cacaacatcc	aactacattc	tggccaggtc	2280
cgtcgcccc	gatttgaagg	agaaggagct	ggtctccacc	gaagcacaga	tccagaaaat	2340
gagccaggac	ctgcagctgg	agggcctcac	tattcagagc	gagacacagt	ttttagccgg	2400
gattaacagt	caggctgcca	atgattgtt	caagaccctc	atagccgcca	tgctgtctca	2460
aagaaccatg	tctttggact	tttgaccac	gaactatatg	agcctaattct	ccggaatgtg	2520
gctacttaca	gtgattccca	acgatatgtt	cctccggag	tcactagtgg	cctgtgagct	2580
ggcgatcatc	aacaccatcg	tgtatccagc	attcggaatg	cagagaatgc	attaccggaa	2640
tggcgaccct	cagacaccct	tccagatcgc	agaacagcag	atccagaatt	tccaggtggc	2700
gaactggctc	cattttatta	acaataacag	attcaggcaa	gttgtgattt	atggagttct	2760
gaatcagact	ctgaacgaca	atatacgaa	tggacaggc	atcaaccagc	tgtatgaa	2820
attgatgcaa	ctcagcagac	agcagttccc	cacgatgcct	gtggattaca	aacggagcat	2880
ccaacggggc	attctgcttc	tctccaaatag	gctggggcag	cttgcgact	taacccgact	2940
ggtctcctat	aactacgaga	cgctaattggc	ttgtgtgacc	atgaacatgc	agcacgtgca	3000
aaccctgaca	actgagaagt	tgcagctcac	ttctgtgact	tcgctttgt	tgttaattgg	3060
taacacaacc	gtgattccgt	ccccacagac	actgttccac	tactacaaca	tcaacgtgaa	3120
tttccactcc	aattataatg	agcggatcaa	cgacgccgtc	gccataatta	ccgcagcaaa	3180
taggctgaat	ctttatcaga	aaaaaatgaa	gtccatagt	gaagactttc	tgaacggct	3240
ccagattttc	gacgtaccac	gagtgcctga	cgaccaaattg	tacaggctga	gggatgcct	3300
tcggctctta	cccggtgaac	ggagacggct	tgacatattc	aacttgatcc	tgtatgaat	3360
ggagcagatc	gaacgcgc	ctgataagat	tgctcagggg	gttatcatcg	cataccgaga	3420

pctca2016050043-seql.txt

tatgcagctg	gaacgcgacg	agatgtacgg	atatgttaat	attgcacggaa	atcttgatgg	3480
ctaccagcaa	attaacttgg	aggaactcat	gcmcaccggt	gattacggac	aaattacgaa	3540
catgcttctc	aacaatcaac	cggttgcct	tgtgggtgca	ttgcccttcg	ttacggactc	3600
atccgtgatc	agtctaattcg	ccaagctcg	cgcaaccg	ttcgctcaga	tagtgaagct	3660
cagggaaagtt	gacacactga	agcccatact	gtacaaaata	aactcggatt	ccaatgactt	3720
ttacccctgt	gccaaactacg	actggatccc	cacaagtaca	actaaggct	acaaacaggt	3780
gccacaacca	ttcgacttta	gagccagcat	gcacatgct	acttctaacc	ttacgttac	3840
cgtctactct	gacctactgt	catttggttc	agcggacacg	gttagagccca	ttaacgcagt	3900
cgcattcgac	aatatgcgaa	taatgaacga	gctttaaagg	cctattttct	ttagttgaa	3960
tttactgtta	ttcggtgtgc	atttctatgt	ttggtgagcg	gttttctgt	ctcagagtgt	4020
gtttatTTTA	tgttaattaa	tttctttgt	agctcctgtt	tagcaggtcg	tcccttcagc	4080
aaggacacaa	aaagatttta	attttattaa	aaaaaaaaaa	aaaaaaagacc	ggaaattcga	4140
tatcaagctt	atcgacctgc	agatcggtca	aacattggc	aataaagttt	cttaagattg	4200
aatcctgtt	ccggcgttgc	gatgattatc	atataatttc	tgttgaatta	cgttaagcat	4260
gtaataatta	acatgtaatg	catgacgtt	tttatgagat	gggttttat	gattagagtc	4320
ccgcaattat	acatttaata	cgcgatagaa	aacaaaatat	agcgcgcaaa	ctaggataaa	4380
ttatcgcg	cgggtcatc	tatgttacta	gat			4413

<210> 24
 <211> 890
 <212> PRT
 <213> Rotavirus

<400> 24

Met Ala Tyr Arg Lys Arg Gly Ala Lys Arg Glu Asn Leu Pro Gln Gln
 1 5 10 15

Asn Glu Arg Leu Gln Glu Lys Glu Ile Glu Lys Asp Val Asp Val Thr
 20 25 30

Met Glu Asn Lys Asn Asn Asn Arg Lys Gln Gln Leu Ser Asp Lys Val
 35 40 45

Leu Ser Gln Lys Glu Glu Ile Ile Thr Asp Ala Gln Asp Asp Ile Lys
 第 15 页

pctca2016050043-seql.txt

50 55 60

Ile Ala Gly Glu Ile Lys Lys Ser Ser Lys Glu Glu Ser Lys Gln Leu
65 70 75 80

Leu Glu Ile Leu Lys Thr Lys Glu Asp His Gln Lys Glu Ile Gln Tyr
85 90 95

Glu Ile Leu Gln Lys Thr Ile Pro Thr Phe Glu Ser Lys Glu Ser Ile
100 105 110

Leu Lys Lys Leu Glu Asp Ile Arg Pro Glu Gln Ala Lys Lys Gln Met
115 120 125

Lys Leu Phe Arg Ile Phe Glu Pro Lys Gln Leu Pro Ile Tyr Arg Ala
130 135 140

Asn Gly Glu Lys Glu Leu Arg Asn Arg Trp Tyr Trp Lys Leu Lys Lys
145 150 155 160

Asp Thr Leu Pro Asp Gly Asp Tyr Asp Val Arg Glu Tyr Phe Leu Asn
165 170 175

Leu Tyr Asp Gln Ile Leu Ile Glu Met Pro Asp Tyr Leu Leu Leu Lys
180 185 190

Asp Met Ala Val Glu Asn Lys Asn Ser Arg Asp Ala Gly Lys Val Val
195 200 205

Asp Ser Glu Thr Ala Asn Ile Cys Asp Ala Ile Phe Gln Asp Glu Glu
210 215 220

Thr Glu Gly Val Val Arg Arg Phe Ile Ala Asp Met Arg Gln Gln Val
225 230 235 240

Gln Ala Asp Arg Asn Ile Val Asn Tyr Pro Ser Ile Leu His Pro Ile
245 250 255

Asp His Ala Phe Asn Glu Tyr Phe Leu Asn His Gln Leu Val Glu Pro
260 265 270

Leu Asn Asn Glu Ile Ile Phe Asn Tyr Ile Pro Glu Arg Ile Arg Asn
第 16 页

275

280

285

Asp Val Asn Tyr Ile Leu Asn Met Asp Met Asn Leu Pro Ser Thr Ala
 290 295 300

Arg Tyr Ile Arg Pro Asn Leu Leu Gln Asp Arg Leu Asn Leu His Asp
 305 310 315 320

Asn Phe Glu Ser Leu Trp Asp Thr Ile Thr Thr Ser Asn Tyr Ile Leu
 325 330 335

Ala Arg Ser Val Val Pro Asp Leu Lys Glu Lys Glu Leu Val Ser Thr
 340 345 350

Glu Ala Gln Ile Gln Lys Met Ser Gln Asp Leu Gln Leu Glu Ala Leu
 355 360 365

Thr Ile Gln Ser Glu Thr Gln Phe Leu Ala Gly Ile Asn Ser Gln Ala
 370 375 380

Ala Asn Asp Cys Phe Lys Thr Leu Ile Ala Ala Met Leu Ser Gln Arg
 385 390 395 400

Thr Met Ser Leu Asp Phe Val Thr Thr Asn Tyr Met Ser Leu Ile Ser
 405 410 415

Gly Met Trp Leu Leu Thr Val Ile Pro Asn Asp Met Phe Leu Arg Glu
 420 425 430

Ser Leu Val Ala Cys Glu Leu Ala Ile Ile Asn Thr Ile Val Tyr Pro
 435 440 445

Ala Phe Gly Met Gln Arg Met His Tyr Arg Asn Gly Asp Pro Gln Thr
 450 455 460

Pro Phe Gln Ile Ala Glu Gln Gln Ile Gln Asn Phe Gln Val Ala Asn
 465 470 475 480

Trp Leu His Phe Ile Asn Asn Arg Phe Arg Gln Val Val Ile Asp
 485 490 495

Gly Val Leu Asn Gln Thr Leu Asn Asp Asn Ile Arg Asn Gly Gln Val
 第 17 页

500

505

510

Ile Asn Gln Leu Met Glu Ala Leu Met Gln Leu Ser Arg Gln Gln Phe
 515 520 525

Pro Thr Met Pro Val Asp Tyr Lys Arg Ser Ile Gln Arg Gly Ile Leu
 530 535 540

Leu Leu Ser Asn Arg Leu Gly Gln Leu Val Asp Leu Thr Arg Leu Val
 545 550 555 560

Ser Tyr Asn Tyr Glu Thr Leu Met Ala Cys Val Thr Met Asn Met Gln
 565 570 575

His Val Gln Thr Leu Thr Glu Lys Leu Gln Leu Thr Ser Val Thr
 580 585 590

Ser Leu Cys Met Leu Ile Gly Asn Thr Thr Val Ile Pro Ser Pro Gln
 595 600 605

Thr Leu Phe His Tyr Tyr Asn Ile Asn Val Asn Phe His Ser Asn Tyr
 610 615 620

Asn Glu Arg Ile Asn Asp Ala Val Ala Ile Ile Thr Ala Ala Asn Arg
 625 630 635 640

Leu Asn Leu Tyr Gln Lys Lys Met Lys Ser Ile Val Glu Asp Phe Leu
 645 650 655

Lys Arg Leu Gln Ile Phe Asp Val Pro Arg Val Pro Asp Asp Gln Met
 660 665 670

Tyr Arg Leu Arg Asp Arg Leu Arg Leu Leu Pro Val Glu Arg Arg Arg
 675 680 685

Leu Asp Ile Phe Asn Leu Ile Leu Met Asn Met Glu Gln Ile Glu Arg
 690 695 700

Ala Ser Asp Lys Ile Ala Gln Gly Val Ile Ile Ala Tyr Arg Asp Met
 705 710 715 720

Gln Leu Glu Arg Asp Glu Met Tyr Gly Tyr Val Asn Ile Ala Arg Asn
 第 18 页

725

730

735

Leu Asp Gly Tyr Gln Gln Ile Asn Leu Glu Glu Leu Met Arg Thr Gly
 740 745 750

Asp Tyr Gly Gln Ile Thr Asn Met Leu Leu Asn Asn Gln Pro Val Ala
 755 760 765

Leu Val Gly Ala Leu Pro Phe Val Thr Asp Ser Ser Val Ile Ser Leu
 770 775 780

Ile Ala Lys Leu Asp Ala Thr Val Phe Ala Gln Ile Val Lys Leu Arg
 785 790 795 800

Lys Val Asp Thr Leu Lys Pro Ile Leu Tyr Lys Ile Asn Ser Asp Ser
 805 810 815

Asn Asp Phe Tyr Leu Val Ala Asn Tyr Asp Trp Ile Pro Thr Ser Thr
 820 825 830

Thr Lys Val Tyr Lys Gln Val Pro Gln Pro Phe Asp Phe Arg Ala Ser
 835 840 845

Met His Met Leu Thr Ser Asn Leu Thr Phe Thr Val Tyr Ser Asp Leu
 850 855 860

Leu Ser Phe Val Ser Ala Asp Thr Val Glu Pro Ile Asn Ala Val Ala
 865 870 875 880

Phe Asp Asn Met Arg Ile Met Asn Glu Leu
 885 890

<210> 25

<211> 49

<212> DNA

<213> Artificial Sequence

<220>

<223> IF WA VP6 opt s1 plus 3c

<400> 25

aaatttgcg ggcccatgga ggtccttat agtctctcca aaacgctga

49

<210> 26

pctca2016050043-seq1.txt

<211> 52
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> IF WA VP6 opt s1 to 4r

 <400> 26
 actaaagaaa ataggcctct acttgatcaa cataactccgg atagaggcca ca 52

 <210> 27
 <211> 1194
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Optimized coding sequence of Rotavirus A VP6 from strain WA

 <400> 27
 atggagggtcc tttatagtct ctccaaaacg ctgaaggacg cttagggacaa gatcgtggag 60
 ggtacacttt atagcaatgt cagcgaccta atacagcagt ttaatcaaat gatcgttaca 120
 atgaatggga atgatttcca aactggcggt attggtaatc tgcccgtag gaaactggaca 180
 ttcgatttcg gcctgctggg cacgactctc cttaatctcg atgcaaattt tgtagaaaac 240
 gccagaacga ttatcgagta ctatcgat ttcattgata acgttgtat ggatgagatg 300
 gcccgcgagt cacaacggaa cggagttgt ccacagtccg aggccttcg gaaactcgcc 360
 ggcattaaatgt tcaagcgat taatttcgac aactcctccg aatatataga gaactggaac 420
 ttgcagaatc gtcgacagag aaccggcttc gtgttccata aacctaataat ctgtccgtat 480
 agcgcctcat tcaccctgaa taggagtcag cccatgcacg acaacctcat gggtacaatg 540
 tggctgaatg cggggagtga aatacaggc gccgggttcg attactcctg tgccattaaat 600
 gcacccgcaa acatccagca gttcgaacat atcgtcaac taagacggc tctcacgacc 660
 gcgacaattt cactcctgcc cgacgcccgg cgcttcctt ttccccgcgt aatcaactca 720
 gctgatggcg ccaccactt gttttcaac cctgttatat tgcccccataa caacgttagag 780
 gtggagtttc tcttaaacgg acagatcatc aatacctacc aagccaggtt cggcacgatt 840
 attgcaagaa atttcgacgc tatcaggctg ctcttccaac tggatgaggcc ccccaatatg 900
 actcccgctg tgaacgctt gttccgcag gctcagccctt tccagcacca cgccaccgtc 960
 ggcttgactc ttcgaataga gagcgccgtc tgcaatcag tgctggcaga cgccaaacgag 1020
 acgctgctgg caaacgttac cgccgtgcgg caagagtatg ccatcccagt agggcctgtg 1080

pctca2016050043-seql.txt

tttccacccg	gcatgaactg	gactgaacta	attactaact	atagcccatc	cagagaagac	1140
aacttgcagc	gggtcttcac	tgtggctct	atccggagta	tgttgcataa	gtag	1194
<210> 28						
<211> 2934						
<212> DNA						
<213> Artificial Sequence						
<220>						
<223> Expression cassette number 1713						
<400> 28						
gtcaacatgg	tggagcacga	cacacttgc	tactccaaaa	atatcaaaga	tacagtctca	60
gaagacccaaa	ggcaattga	gactttcaa	caaaggtaa	tatccggaaa	cctcctcgga	120
ttccattgcc	cagctatctg	tcactttatt	gtgaagatag	tggaaaagga	aggtggctcc	180
tacaaatgcc	atcattgcga	taaaggaaag	gccatcggt	aagatgcctc	tgccgacagt	240
gtcccaaaag	atggaccccc	acccacgagg	agcatcggt	aaaaagaaga	cgttccaacc	300
acgtttcaa	agcaagtgg	ttgatgtgat	aacatggtg	agcacgacac	acttgtctac	360
tccaaaaata	tcaaagatac	agtctcagaa	gaccaaaggg	caattgagac	tttcaacaa	420
aggtaatat	ccgaaacct	cctcgattc	cattgcccag	ctatctgtca	ctttattgtg	480
aagatagtgg	aaaaggaagg	tggctctac	aaatgccatc	attgcataa	aggaaaggcc	540
atcggtgaag	atgcctctgc	cgacagtgg	cccaaagatg	gaccccccacc	cacgaggagc	600
atcggtgaaa	aagaagacgt	tccaaccacg	tcttcaaagc	aagtggattg	atgtgatatac	660
tccactgacg	taagggatga	cgcacaatcc	cactatcctt	cgcaagaccc	ttcctctata	720
taaggaagtt	catttcattt	ggagaggtat	taaaatctta	ataggttttg	ataaaagcga	780
acgtgggaa	acccgaacca	aaccccttc	taaactctct	ctcatctctc	ttaaagcaaa	840
cttctctctt	gtctttctt	cgtgagcgat	cttcaacgtt	gtcagatcgt	gcttcggcac	900
cagtacaacg	ttttcttca	ctgaagcgaa	atcaaagatc	tctttgtgga	cacgtgtgc	960
ggcgccatta	aataacgtgt	acttgccta	ttcttgcgg	tgtggtctt	ggaaaagaaa	1020
gcttgctgga	ggctgctgtt	cagcccaata	cattacttgt	tacgattctg	ctgactttcg	1080
gcgggtgcaa	tatctctact	tctgcttgac	gaggtattgt	tgcctgtact	tctttcttct	1140
tcttcttgct	gattggttct	ataagaaatc	tagtattttc	tttgaacag	agtttcccg	1200
tggtttcga	acttggagaa	agattgttaa	gcttctgtat	attctgcccc	aatttgcgg	1260

pctca2016050043-seql.txt

gccccatggag	gtccttata	gtctctccaa	aacgctgaag	gacgctaggg	acaagatcgt	1320
ggagggtaca	ctttatagca	atgtcagcga	cctaatacag	cagtttaatc	aatgatcgt	1380
tacaatgaat	ggaatgatt	tccaaactgg	cgttattgg	aatctgccc	tgaggaactg	1440
gacattcgat	ttcggcctgc	tggcacgac	tctccttaat	ctcgatgcaa	attatgtaga	1500
aaacgccaga	acgattatcg	agtactttat	cgatttcatt	gataacgttt	gtatggatga	1560
gatggcccgc	gagtcacaac	ggaacggagt	tgctccacag	tccgaggccc	ttcggaaact	1620
cgcggcatt	aagttcaagc	gtattaattt	cgacaactcc	tccgaatata	tagagaactg	1680
gaacttgcag	aatcgctgac	agagaaccgg	cttcgtgttc	cataaaccta	atatcttcc	1740
gtatagcgcc	tcattcaccc	tgaataggag	tcagccatg	cacgacaacc	tcatgggtac	1800
aatgtggctg	aatgcgggga	gtgaaataca	ggtcgccggg	ttcgattact	cctgtgccat	1860
taatgcaccc	gcaaacatcc	agcagttcga	acatatcgtg	caactaagac	ggctctcac	1920
gaccgcgaca	attacactcc	tgcccgacgc	cgagcgcttc	tccttcccc	gcgtaatcaa	1980
ctcagctgat	ggcgccacca	cttggttctt	caaccctgtt	atattgcgcc	ctaacaacgt	2040
agaggtggag	tttctcttaa	acggacagat	catcaatacc	taccaagcca	ggttcggcac	2100
gattattgca	agaaatttcg	acgctatcag	gctgcttcc	caactgatga	ggccccccaa	2160
tatgactccc	gctgtgaacg	cttggttcc	gcaggctcag	ccttccagc	accacgccac	2220
cgtcggcttg	actcttcgaa	tagagagcgc	ggtctcgaa	tcagtgctgg	cagacgccaa	2280
cgagacgctg	ctggcaaacg	ttaccgcccgt	gcggcaagag	tatgccatcc	cagtagggcc	2340
tgtgtttcca	cccgccatga	actggactga	actaattact	aactatagcc	catccagaga	2400
agacaacttg	cagcgggtct	tcactgtggc	ctctatccgg	agtatgttg	tcaagtagag	2460
gcctatttc	tttagtttga	atttactgtt	attcgggttg	catttctatg	tttggtgagc	2520
ggtttctgt	gctcagagt	tgtttatttt	atgtaattt	atttcttgc	gagctcctgt	2580
ttagcaggtc	gtcccttcag	caaggacaca	aaaagattt	aattttatta	aaaaaaaaaa	2640
aaaaaaaaagac	cggaaattcg	atatacgct	tatcgacctg	cagatcggtc	aaacatttgg	2700
caataaaagtt	tcttaagatt	gaatcctgtt	gccggcttg	cgatgattat	catataattt	2760
ctgttgaatt	acgtaagca	tgtaataatt	aacatgtat	gcatgacgtt	atttatgaga	2820
tgggtttta	tgatttaggt	cccgcaatta	tacatttaat	acgcatgat	aaacaaaata	2880
tagcgcgcaa	actaggataa	attatcgccg	gcgggtgtcat	ctatgttact	agat	2934

pctca2016050043-seq1.txt

<210> 29
<211> 397
<212> PRT
<213> Rotavirus

<400> 29

Met Glu Val Leu Tyr Ser Leu Ser Lys Thr Leu Lys Asp Ala Arg Asp
1 5 10 15

Lys Ile Val Glu Gly Thr Leu Tyr Ser Asn Val Ser Asp Leu Ile Gln
20 25 30

Gln Phe Asn Gln Met Ile Val Thr Met Asn Gly Asn Asp Phe Gln Thr
35 40 45

Gly Gly Ile Gly Asn Leu Pro Val Arg Asn Trp Thr Phe Asp Phe Gly
50 55 60

Leu Leu Gly Thr Thr Leu Leu Asn Leu Asp Ala Asn Tyr Val Glu Asn
65 70 75 80

Ala Arg Thr Ile Ile Glu Tyr Phe Ile Asp Phe Ile Asp Asn Val Cys
85 90 95

Met Asp Glu Met Ala Arg Glu Ser Gln Arg Asn Gly Val Ala Pro Gln
100 105 110

Ser Glu Ala Leu Arg Lys Leu Ala Gly Ile Lys Phe Lys Arg Ile Asn
115 120 125

Phe Asp Asn Ser Ser Glu Tyr Ile Glu Asn Trp Asn Leu Gln Asn Arg
130 135 140

Arg Gln Arg Thr Gly Phe Val Phe His Lys Pro Asn Ile Phe Pro Tyr
145 150 155 160

Ser Ala Ser Phe Thr Leu Asn Arg Ser Gln Pro Met His Asp Asn Leu
165 170 175

Met Gly Thr Met Trp Leu Asn Ala Gly Ser Glu Ile Gln Val Ala Gly
180 185 190

pctca2016050043-seql.txt

Phe Asp Tyr Ser Cys Ala Ile Asn Ala Pro Ala Asn Ile Gln Gln Phe
195 200 205

Glu His Ile Val Gln Leu Arg Arg Ala Leu Thr Thr Ala Thr Ile Thr
210 215 220

Leu Leu Pro Asp Ala Glu Arg Phe Ser Phe Pro Arg Val Ile Asn Ser
225 230 235 240

Ala Asp Gly Ala Thr Thr Trp Phe Phe Asn Pro Val Ile Leu Arg Pro
245 250 255

Asn Asn Val Glu Val Glu Phe Leu Leu Asn Gly Gln Ile Ile Asn Thr
260 265 270

Tyr Gln Ala Arg Phe Gly Thr Ile Ile Ala Arg Asn Phe Asp Ala Ile
275 280 285

Arg Leu Leu Phe Gln Leu Met Arg Pro Pro Asn Met Thr Pro Ala Val
290 295 300

Asn Ala Leu Phe Pro Gln Ala Gln Pro Phe Gln His His Ala Thr Val
305 310 315 320

Gly Leu Thr Leu Arg Ile Glu Ser Ala Val Cys Glu Ser Val Leu Ala
325 330 335

Asp Ala Asn Glu Thr Leu Leu Ala Asn Val Thr Ala Val Arg Gln Glu
340 345 350

Tyr Ala Ile Pro Val Gly Pro Val Phe Pro Pro Gly Met Asn Trp Thr
355 360 365

Glu Leu Ile Thr Asn Tyr Ser Pro Ser Arg Glu Asp Asn Leu Gln Arg
370 375 380

Val Phe Thr Val Ala Ser Ile Arg Ser Met Leu Ile Lys
385 390 395

<210> 30

<211> 53

<212> DNA

<213> Artificial Sequence

pctca2016050043-seql.txt

<220>
 <223> IF Rtx VP4 opt s1 plus 3c

<400> 30
 aaatttgtcg gcccatggc tagcctgatc tacagacaac tctgaccaa ttc 53

<210> 31
 <211> 55
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> IF Rtx VP4 opt s1 to 4r

<400> 31
 actaaagaaa ataggccttc agagttaca ttgcaggatt aattgctcaa tccta 55

<210> 32
 <211> 2328
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Optimized coding sequence of Rotavirus A VP4

<400> 32
 atggctagcc tcatctacag acaactcttg accaattcat attctgtgga tcttcatgac 60
 gaaatcgagc agattgggtc cgagaagacc cagaacgtga ccatcaaccc tggaccttt 120
 gctcagaccc gctatgcccc tgtgaattgg gatcacggag aaatcaacga cagtacgacc 180
 gtcgaaccca ttctggacgg gccataccaa cccaccaccc tcacccacc taatgattat 240
 tggattttaa tcaactccaa cacaacgga gtggctacg agtccactaa taactccgat 300
 ttttggaccc cggtttagc catcgagcc cacgtcaatc ctgtcgatcg ccagtatatg 360
 atattcgccg agtccaaaca gtttaacggtt tccaatgaca gcaacaaatg gaagttctg 420
 gagatgttgc gcagctccctc tcagaacgaa ttctataata gacggaccct taccccgat 480
 acacgactcg tgggtatccc taagtacggc ggcagggtgt ggacattca cggtaaaacc 540
 cctcgagcaa ccactgactc cagtagcact gcaaacctga acaatataatc tattaccatc 600
 cacagcgaat tctacataat cccaaatct cagggaaatgtc agtgcacgtc atatataac 660
 aacggactcc ccccaattca gaatacacgg aacgtggc ctctccact cagttctcg 720
 tctatccagt ataagagagc acaagtgaat gaggacatta ttgtgagcaa gactgcctt 780
 tggaaaagaaa tgcagtacaa cagagacatt atcatccgt ttaagttgg gaactctatc 840

pctca2016050043-seql.txt

gtgaagatgg	gcggcctggg	gtacaaatgg	tcagaaatct	catataaagc	cgcactat	900
cagtataact	acttgagaga	cggcgagcag	gtaaccgccc	acacaacatg	ctctgtcaac	960
ggcgtaata	actttagcta	caacggaggc	ttccttcca	ccgacttcgg	tatcagccgg	1020
tatgaagtca	tcaaggaaaa	ttcttatgtg	tacgttagatt	actggatga	tagcaaagcg	1080
ttccgcaaca	tggtgtatgt	taggacctg	gctgctaattc	tcaattctgt	gaagtgtact	1140
ggtggatcat	attatttctc	aattcccggt	ggggcttggc	cagtcatgaa	tggcggggca	1200
gtctccctcc	attttgctgg	cgtgacgttgc	agcactcagt	ttaccgattt	cgtgtctctg	1260
aactccctga	ggttcccggtt	ttcccttact	gtcgacgagc	ccccatttcag	cattctgcgt	1320
acaagaactg	tcaacactcta	cgggttacct	gccgcgaatc	caaacaacgg	caatgaatac	1380
tatgaaattt	cgggcccgtt	ctcttgata	agtctggta	caactaatga	cgactatcag	1440
acacccatca	tgaacacggt	gactgtcaga	caggacctgg	aaagacaact	tacagatctg	1500
cgggaagaat	tcaattctct	cagtcaggag	attgcaatgg	cccaatttgat	agatcttgcc	1560
ctactgcctc	tcgatatatgtt	tagtatgttc	tccggcatca	aatcaactat	agatctgaca	1620
aagagcatgg	ctacttctgt	gatgaagaag	ttcagggaaat	caaaacttgc	cacgagcata	1680
tcagaaatga	cgaactctct	gagtgtatgc	gcatcatcag	cgtcacgcaa	cgtttccatt	1740
cggtcgaatc	tcagcgccat	cagcaactgg	acaaacgtgt	ccaaacgacgt	cagcaacgtg	1800
accaactcct	tgaacgatat	ttcttacccag	acgtcaacga	ttagtaagaa	actccgcttg	1860
aaagaaaatga	tcacccagac	tgagggaaatg	tcttcgacg	acatttccgc	cggcgtgcta	1920
aaaaccaaaa	tcgatatatgtc	tactcagatc	ggcaagaaca	ctctgccgga	tatcgttaacc	1980
gaaggcctccg	aaaagtttat	ccctaagcgc	agctacagaa	tattgaaaga	tgacgaggtc	2040
atggagatca	acacagaagg	gaagttcttc	gcttataaga	tcaacacctt	tgacgaggtt	2100
ccgtttgacg	tcaataagtt	tgcagagctc	gtgacagata	gtccagtgtat	ttctgccatc	2160
attgacttta	agactttgaa	gaacctgaac	gacaactatg	gaataaacacg	gaccgaagcg	2220
ttgaacctca	ttaagtccaa	tcccaatatg	ttgcgcattt	tcattaacca	gaacaatcca	2280
atcataagaa	ataggattga	gcaattaatc	ctgcaatgt	aactctga		2328

<210> 33
 <211> 4068
 <212> DNA
 <213> Artificial Sequence

pctca2016050043-seql.txt

<220>

<223> Expression cassette number 1730

<400> 33

gtcaacatgg	tggagcacga	cacacttgtc	tactccaaaa	atatcaaaga	tacagtctca	60
gaagacaaaa	gggcaattga	gactttcaa	caaaggtaa	tatccggaaa	cctcctcgga	120
ttccattgcc	cagctatctg	tcactttatt	gtgaagatag	tggaaaagga	aggtggctcc	180
tacaaatgcc	atcattgcga	taaaggaaag	gccatcggt	aagatgcctc	tgccgacagt	240
ggtcccaaag	atggaccccc	acccacgagg	agcatcggt	aaaaagaaga	cgttccaacc	300
acgtcttcaa	agcaagtgg	ttgatgtgat	aacatgggt	agcacgacac	acttgtctac	360
tccaaaaata	tcaaagatac	agtctcagaa	gaccaaagg	caattgagac	tttcaacaa	420
aggtaatat	ccggaaacct	cctcgattc	cattgcccag	ctatctgtca	ctttattgtg	480
aagatagtgg	aaaaggaagg	tggctctac	aatgccatc	attgcataa	aggaaaggcc	540
atcggtgaag	atgcctctgc	cgacagtgg	cccaaagatg	gaccccccacc	cacgaggagc	600
atcggtggaa	aagaagacgt	tccaaccacg	tcttcaaagc	aagtggattt	atgtgatatc	660
tccactgacg	taagggatga	cgcacaatcc	cactatcctt	cgcaagaccc	ttcctctata	720
taaggaagtt	catttcattt	ggagaggtat	taaaatctta	ataggtttt	ataaaagcga	780
acgtgggaa	acccgaacca	aaccttcttc	taaactctct	ctcatctctc	ttaaagcaaa	840
cttctctctt	gtctttctt	cgtgagcgat	cttcaacgtt	gtcagatcgt	gcttcggcac	900
cagtacaacg	ttttcttca	ctgaagcgaa	atcaaagatc	tctttgtgga	cacgtgtgc	960
ggcgcattt	aataacgtgt	acttgccta	ttcttgcgg	tgtggcttt	ggaaaagaaaa	1020
gcttgctgga	ggctgctgtt	cagcccccata	cattacttgt	tacgattctg	ctgactttcg	1080
gcgggtgcaa	tatctctact	tctgcttgac	gaggtattgt	tgcctgtact	tctttttct	1140
tcttcttgct	gattggttct	ataagaaatc	tagtatttc	ttgaaacag	agttttcccg	1200
tggttttcga	acttggagaa	agattgttaa	gcttctgtat	attctgcccc	aatttgcgg	1260
gcccatggct	agcctgatct	acagacaact	cttgaccaat	tcatattctg	tggatcttca	1320
tgacgaaatc	gagcagattt	ggtccgagaa	gacccagaac	gtgaccatca	accctggacc	1380
ttttgctcag	acccgctatg	cccctgtgaa	ttgggatcac	ggagaaatca	acgacagttac	1440
gaccgtcgaa	cccattctgg	acgggccata	ccaaccacc	accttcaccc	cacctaata	1500
ttattggatt	ttaatcaact	ccaacacaaa	cggagtggtc	tacgagtcca	ctaataactc	1560

pctca2016050043-seql.txt

cgattttgg accgccgtt tagccatcg gccacacgtc aatcctgtcg atcgccagta	1620
tatgatattc ggcgagttca aacagttaa cgtttccaaat gacagcaaca aatggaagtt	1680
tctggagatg tttcgagct cctctcagaa cgaattctat aatagacgga cccttacctc	1740
cgatacacga ctcgtggta ttttaagta cggcggcagg gtgtggacat ttcacggta	1800
aaccctcga gcaaccactg actccagtag cactgcaaac ctgaacaata tatctattac	1860
catccacagc gaattctaca taatccaaag atctcagga agtaagtgt aacaaatata	1920
caacaacgga ctcccccaa ttcagaatac acggaacgtg gtgcctctcc cactcagttc	1980
tcggctatc cagtataaga gaggcacaagt gaatgaggac attattgtga gcaagactag	2040
cctttggaaa gaaatgcagt acaacagaga cattatcatc cggttaagt ttggaaactc	2100
tatcgtgaag atggcggcc tgggtacaa atggcagaa atctcatata aagccgcaa	2160
ctatcagtt aactacttga gagacggcga gcaggtaacc gcccacacaa catgctctgt	2220
caacggcgtt aataacttta gctacaacgg aggcttcctt cccaccgact tcggtatcag	2280
ccggtatgaa gtcataagg aaaattctta tgtgtacgt aattactggg atgatagcaa	2340
agcggtccgc aacatggtgt atgttaggag cctggctgct aatctcaatt ctgtgaagtg	2400
tactggtgaa tcatattatt tctcaattcc cgtggggct tggccagtca tgaatggcgg	2460
ggcagtcctcc ctccattttg ctggcgtgac gttgagcact cagttaccg atttcgtgtc	2520
tctgaactcc ctgaggttcc ggtttccct tactgtcgac gagccccat tcagcattct	2580
gcgtacaaga actgtcaacc tctacgggtt acctgcccgc aatccaaaca acggcaatga	2640
atactatgaa atttcgggcc gtttctttt gataagtctg gtaccaacta atgacgacta	2700
tcagacaccc atcatgaaca gcgtgactgt cagacaggac ctggaaagac aacttacaga	2760
tctgcggaa gaattcaatt ctctcagtca ggagattgca atggcccaat tgatagatct	2820
tgcctactg cctctcgata tgttagtat gttctccggc atcaaataa ctatagatct	2880
gacaaagagc atggctactt ctgtgatgaa gaagttcagg aatcaaaaac ttgccacgag	2940
catatcagaa atgacgaact ctctgagtga tgcagcatca tcagcgtcac gcaacgttc	3000
cattcggtcg aatctcagcg ccatcagcaa ctggacaaac gtgtccaaac acgtcagcaa	3060
cgtgaccaac tccttgaacg atatttctac ccagacgtca acgatcagta agaaactccg	3120
cttggaaagaa atgatcaccc agactgaggg aatgtcttc gacgacattt ccggcccggt	3180
gctaaaaacc aaaatcgata tgtctactca gatcggaag aacactctgc cgatatcgt	3240

pctca2016050043-seql.txt

aaccgaagcc	tccgaaaagt	ttatccctaa	gcmcagctac	agaatattga	aagatgacga	3300
ggtcatggag	atcaacacag	aaggaaagt	cttcgcttat	aagatcaaca	ccttgacga	3360
ggttccgttt	gacgtcaata	agttgcaga	gctcgtgaca	gatagtccag	tgatttctgc	3420
catcattgac	tttaagactt	tgaagaacct	gaacgacaac	tatggaataa	cacggaccga	3480
agcggtgaac	ctcatthaagt	ccaatccaa	tatgttgcgc	aatttcatta	accagaacaa	3540
tccaatcata	agaaatagga	ttgagcaatt	aatcctgcaa	tgtaaactct	gaaggcctat	3600
tttctttagt	ttgaatttac	tgttattcgg	tgtgcatttc	tatgtttgg	gagcggttt	3660
ctgtgctcag	agtgtgtta	tttatgtaa	tttaatttct	tttgagctc	ctgttagca	3720
ggtcgtccct	tcagcaagga	cacaaaaaga	tttaatttt	attaaaaaaaaa	aaaaaaaaaa	3780
agaccggaa	ttcgatata	agcttatacga	cctgcagatc	gttcaaacat	ttggcaataa	3840
agtttcttaa	gattgaatcc	tgttgcgg	cttgcgatga	ttatcatata	atttctgttg	3900
aattacgtta	agcatgtaat	aattaacatg	taatgcata	cgttatttt	gagatgggtt	3960
tttatgatta	gagtcccgca	attatacatt	taatacgcga	tagaaaacaa	aatatagcgc	4020
gcaaactagg	ataaatttac	gcgcgcgg	tcatctatgt	tactagat		4068

<210> 34

<211> 775

<212> PRT

<213> Artificial Sequence

<220>

<223> Amino acid sequence of VP4 from Rotavirus A Rotarix strain

<400> 34

Met	Ala	Ser	Leu	Ile	Tyr	Arg	Gln	Leu	Leu	Thr	Asn	Ser	Tyr	Ser	Val
1			5					10					15		

Asp	Leu	His	Asp	Glu	Ile	Glu	Gln	Ile	Gly	Ser	Glu	Lys	Thr	Gln	Asn
			20					25				30			

Val	Thr	Ile	Asn	Pro	Gly	Pro	Phe	Ala	Gln	Thr	Arg	Tyr	Ala	Pro	Val
			35					40				45			

Asn	Trp	Asp	His	Gly	Glu	Ile	Asn	Asp	Ser	Thr	Thr	Val	Glu	Pro	Ile
						50		55				60			

pctca2016050043-seq1.txt

Leu Asp Gly Pro Tyr Gln Pro Thr Thr Phe Thr Pro Pro Asn Asp Tyr
65 70 75 80

Trp Ile Leu Ile Asn Ser Asn Thr Asn Gly Val Val Tyr Glu Ser Thr
85 90 95

Asn Asn Ser Asp Phe Trp Thr Ala Val Val Ala Ile Glu Pro His Val
100 105 110

Asn Pro Val Asp Arg Gln Tyr Met Ile Phe Gly Glu Ser Lys Gln Phe
115 120 125

Asn Val Ser Asn Asp Ser Asn Lys Trp Lys Phe Leu Glu Met Phe Arg
130 135 140

Ser Ser Ser Gln Asn Glu Phe Tyr Asn Arg Arg Thr Leu Thr Ser Asp
145 150 155 160

Thr Arg Leu Val Gly Ile Phe Lys Tyr Gly Gly Arg Val Trp Thr Phe
165 170 175

His Gly Glu Thr Pro Arg Ala Thr Thr Asp Ser Ser Ser Thr Ala Asn
180 185 190

Leu Asn Asn Ile Ser Ile Thr Ile His Ser Glu Phe Tyr Ile Ile Pro
195 200 205

Arg Ser Gln Glu Ser Lys Cys Asn Glu Tyr Ile Asn Asn Gly Leu Pro
210 215 220

Pro Ile Gln Asn Thr Arg Asn Val Val Pro Leu Pro Leu Ser Ser Arg
225 230 235 240

Ser Ile Gln Tyr Lys Arg Ala Gln Val Asn Glu Asp Ile Ile Val Ser
245 250 255

Lys Thr Ser Leu Trp Lys Glu Met Gln Tyr Asn Arg Asp Ile Ile Ile
260 265 270

Arg Phe Lys Phe Gly Asn Ser Ile Val Lys Met Gly Gly Leu Gly Tyr
275 280 285

pctca2016050043-seq1.txt

Lys Trp Ser Glu Ile Ser Tyr Lys Ala Ala Asn Tyr Gln Tyr Asn Tyr
290 295 300

Leu Arg Asp Gly Glu Gln Val Thr Ala His Thr Thr Cys Ser Val Asn
305 310 315 320

Gly Val Asn Asn Phe Ser Tyr Asn Gly Gly Phe Leu Pro Thr Asp Phe
325 330 335

Gly Ile Ser Arg Tyr Glu Val Ile Lys Glu Asn Ser Tyr Val Tyr Val
340 345 350

Asp Tyr Trp Asp Asp Ser Lys Ala Phe Arg Asn Met Val Tyr Val Arg
355 360 365

Ser Leu Ala Ala Asn Leu Asn Ser Val Lys Cys Thr Gly Gly Ser Tyr
370 375 380

Tyr Phe Ser Ile Pro Val Gly Ala Trp Pro Val Met Asn Gly Gly Ala
385 390 395 400

Val Ser Leu His Phe Ala Gly Val Thr Leu Ser Thr Gln Phe Thr Asp
405 410 415

Phe Val Ser Leu Asn Ser Leu Arg Phe Arg Phe Ser Leu Thr Val Asp
420 425 430

Glu Pro Pro Phe Ser Ile Leu Arg Thr Arg Thr Val Asn Leu Tyr Gly
435 440 445

Leu Pro Ala Ala Asn Pro Asn Asn Gly Asn Glu Tyr Tyr Glu Ile Ser
450 455 460

Gly Arg Phe Ser Leu Ile Ser Leu Val Pro Thr Asn Asp Asp Tyr Gln
465 470 475 480

Thr Pro Ile Met Asn Ser Val Thr Val Arg Gln Asp Leu Glu Arg Gln
485 490 495

Leu Thr Asp Leu Arg Glu Glu Phe Asn Ser Leu Ser Gln Glu Ile Ala
500 505 510

pctca2016050043-seql.txt

Met Ala Gln Leu Ile Asp Leu Ala Leu Leu Pro Leu Asp Met Phe Ser
515 520 525

Met Phe Ser Gly Ile Lys Ser Thr Ile Asp Leu Thr Lys Ser Met Ala
530 535 540

Thr Ser Val Met Lys Lys Phe Arg Lys Ser Lys Leu Ala Thr Ser Ile
545 550 555 560

Ser Glu Met Thr Asn Ser Leu Ser Asp Ala Ala Ser Ser Ala Ser Arg
565 570 575

Asn Val Ser Ile Arg Ser Asn Leu Ser Ala Ile Ser Asn Trp Thr Asn
580 585 590

Val Ser Asn Asp Val Ser Asn Val Thr Asn Ser Leu Asn Asp Ile Ser
595 600 605

Thr Gln Thr Ser Thr Ile Ser Lys Lys Leu Arg Leu Lys Glu Met Ile
610 615 620

Thr Gln Thr Glu Gly Met Ser Phe Asp Asp Ile Ser Ala Ala Val Leu
625 630 635 640

Lys Thr Lys Ile Asp Met Ser Thr Gln Ile Gly Lys Asn Thr Leu Pro
645 650 655

Asp Ile Val Thr Glu Ala Ser Glu Lys Phe Ile Pro Lys Arg Ser Tyr
660 665 670

Arg Ile Leu Lys Asp Asp Glu Val Met Glu Ile Asn Thr Glu Gly Lys
675 680 685

Phe Phe Ala Tyr Lys Ile Asn Thr Phe Asp Glu Val Pro Phe Asp Val
690 695 700

Asn Lys Phe Ala Glu Leu Val Thr Asp Ser Pro Val Ile Ser Ala Ile
705 710 715 720

Ile Asp Phe Lys Thr Leu Lys Asn Leu Asn Asp Asn Tyr Gly Ile Thr
725 730 735

pctca2016050043-seql.txt

Arg Thr Glu Ala Leu Asn Leu Ile Lys Ser Asn Pro Asn Met Leu Arg
740 745 750

Asn Phe Ile Asn Gln Asn Asn Pro Ile Ile Arg Asn Arg Ile Glu Gln
755 760 765

Leu Ile Leu Gln Cys Lys Leu
770 775

<210> 35
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> IF TrSP plus Rtx VP7j opt s1 plus 3c

<400> 35
aaatttgcg ggcccatgga ttatattatc tatcgtagcc tcctcatcta 50

<210> 36
<211> 54
<212> DNA
<213> Artificial Sequence

<220>
<223> IF Rtx VP7 opt s1 to 4r

<400> 36
actaaagaaa ataggcctct aaacgcgata atagaaggct gctgagttca ggaa 54

<210> 37
<211> 981
<212> DNA
<213> Artificial Sequence

<220>
<223> Optimized coding sequence of Rotavirus A VP7

<400> 37
atgtacggca tcgagttatac aacaatttta attttcctga tttccatcat tctgttaaac 60
tacatcctta agtccgtac cagaattatg gattatatta tctatcgtag cctcctcatc
tacgtggccc ttttgcct gaccagggcc cagaactatg gcctgaactt accaatcacc 120
ggttcaatgg ataccgtta cgctaattcc actcaagagg ggatatttct gacaagtacc
ctgtgcctgt attatccaac agaaggctct acccagatca atgatgggaa gtggaaggat
agtctctcac agatgttctt aaccaaggc tggcccaccg gttccgtcta cttcaaggaa 180
240
300
360

pctca2016050043-seq1.txt

tactctagta ttgtcgactt ctcagttgac ccccagctt attgcgacta caacctggta	420
cttatgaaat acgaccagaa cctggagctg gatatgtccg agctggctga cctgatcctc	480
aatgagtggc tgtgcaaccc catggacatc acattatatt actaccagca gtctggagaa	540
tccaaacaagt ggatcagttat gggctcaagt tgcaccgtga aggtgtgtcc cttgaacacc	600
caaattgctgg gcattggttg tcagacaact aatgtggatt cgtttgaat ggtagccgaa	660
aacgagaagc tggctatagt ggacgtagtc gatgggatta accacaagat caatctgact	720
accaccactt gtaccatcatcg aaactgtaaa aagctcgcc cccgggagaa cgtcggcgtg	780
atccaggtgg gggggagcaa tgtgctcgac attactgccc accctaccac caatccacag	840
acggaacgga tcatgagagt caactggaag aaatggtggc aggtcttttta taccattgtg	900
gactacatta accagattgt gcaagtcatg agtaaacggt ccagatccct gaactcagca	960
gccttctatt atcgcgttta g	981

<210> 38
<211> 2634
<212> DNA
<213> Artificial Sequence

<220>
<223> Expression cassette number 1734

<400> 38 gtcaacatgg tggagcacga cacacttgtc tactccaaaa atatcaaaga tacagtctca	60
gaagacccaaa gggcaattga gactttcaa caaaggtaa tatccggaaa ctcctcgga	120
ttccattgcc cagctatctg tcactttatt gtgaagatag tgaaaagga aggtggctcc	180
tacaaatgcc atcattgcga taaaggaaag gccatcggt aagatgcctc tgccgacagt	240
ggtcccaaag atggaccccc acccacgagg agcatcggt aaaaagaaga cgttccaacc	300
acgtcttcaa agcaagtggg ttgatgtgat aacatgggtt agcacgacac acttgcgtac	360
tccaaaaata tcaaagatac agtctcgaa gaccaaggaa caattgagac tttcaacaa	420
aggtaatat ccggaaacct ctcggattc cattgcccag ctatctgtca ctttattgtg	480
aagatagtgg aaaaggaagg tggctcctac aaatgccatc attgcgataa aggaaaggcc	540
atcggtgaag atgcctctgc cgacagtggt cccaaagatg gaccccccacc cacgaggagc	600
atcggtggaa aagaagacgt tccaaccacg tcttcaaagc aagtggattt atgtgatatc	660
tccactgacg taagggatga cgccacaatcc cactatcctt cgcaagaccc ttccctata	720

pctca2016050043-seql.txt

taaggaagtt catttcattt ggagaggtat taaaatctta ataggtttg ataaaagcga 780
acgtgggaa acccgaacca aaccccttc taaactctct ctcatctc taaaagcaaa 840
cttctctctt gtcttcttg cgtgagcgat cttcaacgtt gtcagatcgt gcttcggcac 900
cagtaacaacg ttttcttca ctgaagcgaa atcaaagatc tctttgtgga cacgtatgc 960
ggcgccatta aataacgtgt acttgccta ttcttgcgg tgtggcttg ggaaaagaaaa 1020
gcttgctgga ggctgctgtt cagccccata cattacttgt tacgattctg ctgactttcg 1080
gcgggtgcaa tatctctact tctgcttgac gaggtattgt tgcctgtact tctttcttct 1140
tcttcttgct gattggttct ataagaatc tagtattttc tttgaaacag agtttcccg 1200
tggtttcga acttggagaa agattgttaa gcttctgtat attctgccc aatttgcgg 1260
gccccatggat tatattatct atcgttagcct cctcatctac gtggccctt ttgccctgac 1320
cagggcccg aactatggcc tgaacttacc aatcaccggc tcaatggata ccgtttacgc 1380
taattccact caagagggga tatttctgac aagtaccctg tgcctgtatt atccaacaga 1440
agcctctacc cagatcaatg atggggagtg gaaggatagt ctctcacaga tggccttaac 1500
caagggctgg cccaccgggtt ccgtctactt caaggaatac tctagtttgc tcgacttctc 1560
agttgacccc cagcttattt ggcgactacaa cctgggtactt atgaaatacg accagaacct 1620
ggagctggat atgtccgagc tggctgaccc gatcctcaat gagttggctgt gcaaccccat 1680
ggacatcaca ttatattact accagcagtc tggagaatcc aacaagtggc tcaagtatggg 1740
ctcaagttgc accgtgaagg tgtgtccctt gaacacccaa atgctggca ttgggttgtca 1800
gacaactaat gtggattcgt ttgaaatggc agccgaaaac gagaagctgg ctatagtgg 1860
cgtagtcgtat gggattaacc acaagatcaa tctgactacc accacttgc ccatcagaaaa 1920
ctgtaaaaag ctcggccccc gggagaacgt cgccgtgatc caggtggggg ggagcaatgt 1980
gctcgacatt actgccgacc ctaccaccaa tccacagacg gaacggatga tgagagtcaa 2040
ctggaagaaa tggtggcagg tctttatac cattgtggac tacattaacc agattgtgc 2100
agtcatgagt aaacggtcca gatccctgaa ctcagcagcc ttcttattatc gcgtttagag 2160
gcctattttc tttagtttgc atttactgtt attcggtgtc catttctatg tttgggtgagc 2220
ggttttctgt gctcagatgt tggatattt atgtaattt aatttttgtt gagctcctgt 2280
tttagcaggc gtccttcag caaggacaca aaaagattt aattttatta aaaaaaaaaaa 2340
aaaaaaaaagac cggaattcg atatcaagct tatcgaccc cagatcggtc aaacatttgg 2400

pctca2016050043-seq1.txt

caataaagtt tcttaagatt gaatcctgtt gccggcttg cgtgattat catataattt	2460
ctgttgaatt acgttaagca tgtaataatt aacatgtaat gcatgacgtt atttatgaga	2520
tgggtttta tgatttagt ccccaatta tacatttaat acgcgataga aaacaaaata	2580
tagcgcgcaa actaggataa attatcgac gcgggtgtcat ctatgttact agat	2634

<210> 39
<211> 297
<212> PRT
<213> Artificial sequence

<220>
<223> Amino acid sequence of TrSp-VP7

<400> 39

Met Asp Tyr Ile Ile Tyr Arg Ser Leu Leu Ile Tyr Val Ala Leu Phe			
1	5	10	15

Ala Leu Thr Arg Ala Gln Asn Tyr Gly Leu Asn Leu Pro Ile Thr Gly			
20	25	30	

Ser Met Asp Thr Val Tyr Ala Asn Ser Thr Gln Glu Gly Ile Phe Leu			
35	40	45	

Thr Ser Thr Leu Cys Leu Tyr Tyr Pro Thr Glu Ala Ser Thr Gln Ile			
50	55	60	

Asn Asp Gly Glu Trp Lys Asp Ser Leu Ser Gln Met Phe Leu Thr Lys			
65	70	75	80

Gly Trp Pro Thr Gly Ser Val Tyr Phe Lys Glu Tyr Ser Ser Ile Val			
85	90	95	

Asp Phe Ser Val Asp Pro Gln Leu Tyr Cys Asp Tyr Asn Leu Val Leu			
100	105	110	

Met Lys Tyr Asp Gln Asn Leu Glu Leu Asp Met Ser Glu Leu Ala Asp			
115	120	125	

Leu Ile Leu Asn Glu Trp Leu Cys Asn Pro Met Asp Ile Thr Leu Tyr			
130	135	140	

pctca2016050043-seq1.txt

Tyr Tyr Gln Gln Ser Gly Glu Ser Asn Lys Trp Ile Ser Met Gly Ser
145 150 155 160

Ser Cys Thr Val Lys Val Cys Pro Leu Asn Thr Gln Met Leu Gly Ile
165 170 175

Gly Cys Gln Thr Thr Asn Val Asp Ser Phe Glu Met Val Ala Glu Asn
180 185 190

Glu Lys Leu Ala Ile Val Asp Val Val Asp Gly Ile Asn His Lys Ile
195 200 205

Asn Leu Thr Thr Thr Cys Thr Ile Arg Asn Cys Lys Lys Leu Gly
210 215 220

Pro Arg Glu Asn Val Ala Val Ile Gln Val Gly Gly Ser Asn Val Leu
225 230 235 240

Asp Ile Thr Ala Asp Pro Thr Thr Asn Pro Gln Thr Glu Arg Met Met
245 250 255

Arg Val Asn Trp Lys Lys Trp Trp Gln Val Phe Tyr Thr Ile Val Asp
260 265 270

Tyr Ile Asn Gln Ile Val Gln Val Met Ser Lys Arg Ser Arg Ser Leu
275 280 285

Asn Ser Ala Ala Phe Tyr Tyr Arg Val
290 295

<210> 40

<211> 52

<212> DNA

<213> Artificial Sequence

<220>

<223> IF WA NSP4 S1 plus 3C

<400> 40

aaatttgtcg ggcccatgga taagcttgcc gacctcaact acacatttag tg

52

<210> 41

<211> 55

<212> DNA

<213> Artificial Sequence

pctca2016050043-seql.txt

<220>

<223> IF WA NSP4 S1 to 4r

<400> 41

actaaagaaa ataggccttc acatggatgc agtcacttct gacggttcat atgga 55

<210> 42

<211> 528

<212> DNA

<213> Artificial Sequence

<220>

<223> Coding sequence of Rotavirus A NSP4 from strain WA

<400> 42

atggataagc ttgccgacct caactacaca ttgagtgtaa tcacttcaat gaatgacaca 60

ttgcattcta taattcaaga tcctggaatg gcgtatttc tatatattgc atctgttcta 120

acagtttgt tcacattaca taaagcttca attccaacca tggaaatagc attgaaaaca 180

tcaaaatgtt catataaagt gattaaatat tgtatagtca cgatcattaa tactcttta 240

aaattggctg gatataaaga gcaggttact acaaaagacg aaattgagca acagatggac 300

agaattgtga aagagatgag acgtcagctg gagatgattg ataaactaac tactcgtgaa 360

attgaacagg ttgaattgct taaacgtata catgacaacc tgataactag accagttgac 420

gttatagata tgtcgaagga attcaatcag aaaaacatca aaacgctaga tgaatggag 480

agtggaaaaa atccatatga accgtcagaa gtgactgcat ccatgtga 528

<210> 43

<211> 2268

<212> DNA

<213> Artificial Sequence

<220>

<223> Expression cassette number 1706

<400> 43

gtcaacatgg tggagcacga cacacttgtc tactccaaaa atatcaaaga tacagtctca 60

gaagaccaaa gggcaattga gactttcaa caaaggtaa tatccggaaa cctcctcgga 120

ttccattgcc cagctatctg tcactttatt gtgaagatag tggaaaagga aggtggctcc 180

tacaaatgcc atcattgcga taaaggaaag gccatcggt aagatgcctc tgccgacagt 240

ggtcccaaag atggaccccc acccacgagg agcatcggt aaaaagaaga cgttccaacc 300

acgtcttcaa agcaagtgga ttgatgtgat aacatggtg agcacgacac acttgtctac 360

pctca2016050043-seql.txt

tccaaaaata tcaaagatac agtctcagaa gaccaaaggg caattgagac tttcaacaa	420
agggttaatat ccggaaacct cctcgattc cattgcccag ctatctgtca ctttattgtg	480
aagatagtgg aaaaggaagg tggctcctac aaatgccatc attgcataa aggaaaggcc	540
atcggtgaag atgcctctgc cgacagtggt cccaaagatg gaccccccacc cacgaggagc	600
atcggtggaa aagaagacgt tccaaccacg tcttcaaagc aagtggattt atgtgatatac	660
tccactgacg taagggatga cgacacaatcc cactatcctt cgcaagaccc ttcctctata	720
taaggaagtt catttcattt ggagaggtat taaaatctta ataggtttt ataaaagcga	780
acgtgggaa acccgaacca aaccccttc taaactctct ctcatctctc ttaaagcaaa	840
cttcctcttt gtcttcctt cgtgagcgat cttcaacgtt gtcagatcgt gcttcggcac	900
cagtacaacg tttcttca ctgaagcgaa atcaaagatc tcttgcgaa cacgtatgc	960
ggccgcattt aataacgtgt acttgccta ttcttgcgg tgggtcttgg gaaaaagaaaa	1020
gcttgctgga ggctgctgtt cagcccccata cattacttgt tacgattctg ctgactttcg	1080
gcgggtgcaa tatctctact tctgcttgac gaggtattgt tgcctgtact tcttcttct	1140
tcttcttgct gattggttct ataagaaatc tagtattttc ttgaaacag agtttcccg	1200
tggtttcga acttggagaa agattgttaa gcttctgtat attctgcccc aatttgcgg	1260
gcccatggat aagcttgcgg acctcaacta cacattgagt gtaatcactt caatgaatga	1320
cacattgcat tctataattt aagatcctgg aatggcgat tttctatata ttgcacatgt	1380
tctaacagtt ttgttcacat tacataaagc ttcaattcca accatgaaaa tagcattgaa	1440
aacatcaaaa tgttcatata aagtgattaa atattgtata gtcacgatca ttaatactct	1500
tttaaaattt gctggatata aagagcagg tttttttttt gacgaaattt agcaacagat	1560
ggacagaatt gtgaaagaga tgagacgtca gctggagatg attgataaac taactactcg	1620
tgaaatttggaa caggttgaat tgcttaaacg tatacatgac aacctgataa ctagaccagt	1680
tgacgttata gatatgtcga aggaattcaa tcagaaaaac atcaaaacgc tagatgaatg	1740
ggagagtggaa aaaaatccat atgaaccgtc agaagtgact gcatccatgt gaaggcctat	1800
tttcttttagt ttgaatttac ttttattcgg tttttttttt gatgtttttt gagcgggtttt	1860
ctgtgctcag agtgtgttta ttttatgtaa tttaatttct ttgtgagctc ctgttttagca	1920
ggtcgtccct tcagcaagga cacaaaaaaga tttaattttt attaaaaaaa aaaaaaaaaa	1980
agaccggaa ttcgatatac agcttatacga cctgcagatc gttcaaacat ttggcaataa	2040

pctca2016050043-seql.txt

agtttcttaa	gattgaatcc	tgttgccggt	cttgcgatga	ttatcatata	atttctgttg	2100
aattacgtta	agcatgtaat	aattaacatg	taatgcattga	cgttattttat	gagatgggtt	2160
tttatgatta	gagtcccgca	attatacatt	taatacgcga	tagaaaacaa	aatatagcgc	2220
gcaaactagg	ataaattatc	gcgcgcgtg	tcatctatgt	tactagat		2268

<210> 44
<211> 175
<212> PRT
<213> Rotavirus

<400> 44

Met	Asp	Lys	Leu	Ala	Asp	Leu	Asn	Tyr	Thr	Leu	Ser	Val	Ile	Thr	Ser	
1									10					15		

Met	Asn	Asp	Thr	Leu	His	Ser	Ile	Ile	Gln	Asp	Pro	Gly	Met	Ala	Tyr
	20							25					30		

Phe	Leu	Tyr	Ile	Ala	Ser	Val	Leu	Thr	Val	Leu	Phe	Thr	Leu	His	Lys
	35						40					45			

Ala	Ser	Ile	Pro	Thr	Met	Lys	Ile	Ala	Leu	Lys	Thr	Ser	Lys	Cys	Ser
	50				55				60						

Tyr	Lys	Val	Ile	Lys	Tyr	Cys	Ile	Val	Thr	Ile	Ile	Asn	Thr	Leu	Leu
	65				70				75			80			

Lys	Leu	Ala	Gly	Tyr	Lys	Glu	Gln	Val	Thr	Thr	Lys	Asp	Glu	Ile	Glu
	85							90				95			

Gln	Gln	Met	Asp	Arg	Ile	Val	Lys	Glu	Met	Arg	Arg	Gln	Leu	Glu	Met
		100				105						110			

Ile	Asp	Lys	Leu	Thr	Thr	Arg	Glu	Ile	Glu	Gln	Val	Glu	Leu	Leu	Lys
	115					120					125				

Arg	Ile	His	Asp	Asn	Leu	Ile	Thr	Arg	Pro	Val	Asp	Val	Ile	Asp	Met
	130					135				140					

Ser	Lys	Glu	Phe	Asn	Gln	Lys	Asn	Ile	Lys	Thr	Leu	Asp	Glu	Trp	Glu
	145				150				155			160			

pctca2016050043-seql.txt

Ser Gly Lys Asn Pro Tyr Glu Pro Ser Glu Val Thr Ala Ser Met
165 170 175

<210> 45

<211> 54

<212> DNA

<213> Artificial Sequence

<220>

<223> IF C160 WA VP2 opt c

<400> 45

tcgtgcttcg gcaccagtac aatggcatac cggaagagag gagcaaagcg cgaa 54

<210> 46

<211> 4540

<212> DNA

<213> Artificial sequence

<220>

<223> Construct 1190

<400> 46

tggcaggata tattgtggtg taaacaaatt gacgcttaga caacttaata acacattgcg 60

gacgtttta atgtactgaa ttaacgcccga atcccggtct ggtatattta tatgttgtca 120

aataactcaa aaaccataaaa agttaagtt agcaagtgtg tacattttta cttgaacaaa 180

aatattcacc tactactgtt ataaatcatt attaaacatt agagtaaaga aatatggatg 240

ataagaacaa gagtagtgat atttgacaa caatttgtt gcaacatttg agaaaatttt 300

gttgttctct ctttcattt gtcaaaaaca atagagagag aaaaaggaag agggagaata 360

aaaacataat gtgagtgatga gagagaaagt tgtacaaaag ttgtaccaaa atagttgtac 420

aaatatcatt gaggaatttgc acaaaagcta cacaataag ggttaattgc tgtaaataaa 480

taaggatgac gcatttagaga gatgtaccat tagagaattt ttggcaagtc attaaaaaga 540

aagaataaat tattttaaa attaaaagtt gagtcatttgc attaaacatg tgattattta 600

atgaattgtt gaaagagttt gattaaagtt gtatttagtaa tttagaatttgc gtgtcaaatt 660

taatttgaca tttgatctt tcctatataat tgccccatag agtcagttaa ctcattttta 720

tatttcatag atcaaataag agaaataacg gtatattaat ccctccaaaa aaaaaaaaacg 780

gtatatttc taaaaaatct aagccacgtt ggaggataac aggtccccgg taggaggata 840

acatccaatc caaccaatca caacaatcct gatgagataa cccactttaa gcccacgcat 900

pctca2016050043-seql.txt	
ctgtggcaca	960
tctacattat	
ctaaatcaca	
cattctcca	
cacatctgag	
ccacacaaaa	
accaatccac	1020
atcttatca	
cccattctat	
aaaaaatcac	
actttgtgag	
tctacacttt	
gattcccttc	1080
aaacacatac	
aaagagaaga	
gactaattaa	
ttaattaatc	
atcttgagag	
aaaatggaac	1140
gagctataca	
aggaaacgac	
gctagggAAC	
aagctaacag	
tgaacgttgg	
gatggaggat	1200
caggaggtac	
cacttctccc	
ttcaaacttc	
ctgacgaaag	
tccgagttgg	
actgagtggc	1260
ggctacataa	
cgatgagacg	
aattcgaatc	
aagataatcc	
ccttggttcc	
aaggaaagct	1320
ggggtttcgg	
gaaagttgta	
tttaagagat	
atctcagata	
cgacaggacg	
gaagcttcac	1380
tgcacagagt	
ccttggatct	
tggacgggag	
attcggttaa	
ctatgcagca	
tctcgatttt	1440
tcggtttcga	
ccagatcgga	
tgtacctata	
gtattcggtt	
tcgaggagtt	
agtatcaccg	1500
tttctggagg	
gtcgcgaact	
cttcagcatc	
tctgtgagat	
ggcaattcgg	
tctaagcaag	1560
aactgctaca	
gcttgcccc	
atcgaagtgg	
aaagtaatgt	
atcaagagga	
tgccctgaag	1620
gtactcaaac	
cttcgaaaaa	
gaaagcgagt	
aagttaaaat	
gcttcttcgt	
ctcctattta	1680
taatatggtt	
tgttattgtt	
aattttgttc	
ttttagaaga	
gcttaattaa	
tcgttgttgt	1740
tatgaaatac	
tatttgtatg	
agatgaactg	
gtgtaatgta	
attcatttac	
ataagtggag	1800
tcagaatcag	
aattttcct	
ccataactaa	
ctagacatga	
agacctgccc	
cgtacaattt	1860
tcttatattt	
gaacaactaa	
aattgaacat	
ctttgccac	
aactttataa	
gtggtaata	1920
tagctcaa	
atatggtcaa	
gttcaataga	
ttaataatgg	
aaatatcagt	
tatgaaatt	1980
cattaacaat	
caacttaacg	
ttattaacta	
ctaattttat	
atcatccct	
ttgataaaatg	2040
atagtacacc	
aatttaggaag	
gagcatgctc	
gcctaggaga	
ttgtcgtttc	
ccgccttcag	2100
tttgcagact	
gctctagccg	
tgtagccat	
acgcaaaccg	
cctctcccg	
cgcgttggga	2160
attactagcg	
cgtgtcgaca	
agcttgcatt	
ccggtaacaaca	
tggtgagca	
cgacacactt	2220
gtctactcca	
aaaatatcaa	
agatacagtc	
tcagaagacc	
aaaggcaat	
tgagactttt	2280
caacaaaggg	
taatatccgg	
aaacctcctc	
ggattccatt	
gcccgactat	
ctgtcacttt	2340
attgtgaaga	
tagtgaaaaa	
ggaagggtggc	
tcctacaaat	
gccatcattt	
cgataaaagga	2400
aaggccatcg	
ttgaagatgc	
ctctgccgac	
agtggtccca	
aagatggacc	
cccacccacg	2460
aggagcatcg	
tggaaaaaga	
agacgttcca	
accacgttcc	
caaagcaagt	
ggattgtgt	2520
gataacatgg	
tggagcacga	
cacacttgc	
tactccaaaa	
atatcaaaga	
tacagtctca	2580
gaagaccaaa	
ggccaattga	
gactttcaa	
caaaggtaa	
tatccggaaa	

pctca2016050043-seql.txt						
cctcctcgga	ttccattgcc	cagctatctg	tcactttatt	gtgaagatag	tggaaaagga	2640
aggtgtgctcc	tacaaatgcc	atcattgcga	taaaggaaag	gccatcggtt	aagatgcctc	2700
tgccgacagt	ggtcccaaag	atggacccccc	acccacgagg	agcatcggtt	aaaaagaaga	2760
cgttccaacc	acgtctcaa	agcaagtgga	ttgatgttat	atctccactg	acgtaaggga	2820
tgacgcacaa	tcccactatc	cttcgcaaga	cccttcctct	atataaggaa	gttcatttca	2880
tttggagagg	tattaaaatc	ttaataggtt	ttgataaaaag	cgaacgtggg	gaaacccgaa	2940
ccaaaccccttc	ttctaaactc	tctctcatct	ctcttaaagc	aaacttctct	cttgcgtttc	3000
ttgcgtgagc	gatcttcaac	gttgcagat	cgtgcttcgg	caccgcggat	ggcgaaaaac	3060
tttgcgattt	tcggcttatt	gtttctctt	cttgcgttgg	ttccttcata	gatcttcgccc	3120
tgcaggctcc	tcagccaaaa	cgacacccccc	atctgtctat	ccactggccc	ctggatctgc	3180
tgcccaaact	aactccatgg	tgaccctggg	atgcctggc	aagggttatt	tccctgagcc	3240
agtgcacagt	acctggaaact	ctggatccct	gtccagcggt	gtgcacaccc	tcccagctgt	3300
cctgcagtct	gacctctaca	ctctgagcag	ctcagtgact	gtccccctcca	gcacctggcc	3360
cagcgagacc	gtcacctgca	acgttgcaca	cccggccagc	agcaccaagg	tggacaagaa	3420
aatttgtgccc	agggattgtt	gttgtaagcc	ttgcataatgt	acagtcccag	aagtatcatc	3480
tgtcttcata	ttccccccaa	agcccaagga	tgtgctcacc	attactctga	ctcctaaggt	3540
cacgtgtgtt	gtggtagaca	tcagcaagga	tgcgttgc	gtccagttca	gctgggttgc	3600
agatgatgt	gaggtgcaca	cagctcagac	gcaaccccg	gaggagcgt	tcaacagcac	3660
tttccgctca	gtcagtgaac	ttcccatcat	gcaccaggac	tggctcaatg	gcaaggagcg	3720
atcgctcacc	atcaccatca	ccatcaccat	caccattaaa	ggcctatttt	ctttagtttgc	3780
aatttactgt	tattcggtt	gcatttctat	gtttgggttt	cggtttctgt	tgctcagagt	3840
gtgtttat	tatgtat	aatttcttttgc	tgcgttgc	tttagcaggt	cgtcccttca	3900
gcaaggacac	aaaaagat	taattttatt	aaaaaaaaaa	aaaaaaaaaga	ccggaaattc	3960
gatatacg	ttatcgacct	gcagatcggtt	caaacatttgc	gcaataaaat	ttcttaagat	4020
tgaatcctgt	tgccggctt	gcgttgcata	tcatataatt	tgcgttgc	tacgttgc	4080
atgtataat	taacatgtaa	tgcgttgcgt	tatgtatgc	atgggtttttt	atgattagag	4140
tcccgcaatt	atacattaa	tacgttgcgt	aaaacaaaat	atagcgcgc	aactaggata	4200
aattatcg	cgccgtgtca	tctatgttac	tagatctca	gagtctcaag	cttggcgcgc	4260

pctca2016050043-seql.txt

ccacgtgact	agtggcactg	gccgtcg	ttacaacgtcg	tgactggaa	aaccctggcg	4320				
ttacccaact	taatgc	gcac	ccc	ttcgc	cagctggcgt	aatagcgaag	4380			
aggcccgcac	cgatgc	ccct	tcc	caacagt	tgcg	cagc	aatggcgaa	tgctagagca	4440	
gctttagctt	ggatc	agatt	gtcg	tttccc	gcctt	cagtt	taaactatca	gtgttgaca	4500	
ggatataattg	gcggg	taaac	cta	agagaaa	agagc	gttta			4540	
<210>	47									
<211>	4056									
<212>	DNA									
<213>	Artificial Sequence									
<220>										
<223>	Expression cassette number 1108									
<400>	47									
gtcaacatgg	tggagcacga	cacacttgc	tactccaaa	atataaaga	ta	ca	gtctca		60	
gaagaccaaa	gggcaattga	gactttcaa	caaaggtaa	tatccgaaa	cctc	c	tcgga		120	
ttccattgcc	cagctatctg	tcactttatt	gtgaagatag	tggaaaagga	agg	tg	ggtcc		180	
tacaaatgcc	atcattgcga	taaaggaaag	gccatcg	ttg	aagatgc	c	tc	tgccgacagt	240	
ggtcccaaag	atggaccccc	acccacgagg	agcatcg	ttgg	aaaaaga	aga	cg	ttccaacc	300	
acgtcttcaa	agcaagtgg	ttgatgtgat	aacatgg	ttgg	agc	acg	ac	acttgtctac	360	
tccaaaata	tcaaagatac	agtctcagaa	gacca	aaagg	caatt	gagac		ttttcaacaa	420	
aggtaat	ccggaaacct	cctcgattc	cattgcccag	ctatctgtca	ctttattgt				480	
aagatagtgg	aaaaggaagg	tggccctac	aaatgccatc	attgc	gataa	agg	aaagg	cc	540	
atcg	ttgaag	atgc	ctcg	cgac	agtgg	ccc	aaaa	acc	600	
atcg	ttggaaa	aaga	agacgt	tcc	accacg	tct	tttca	aggat	660	
tccactgacg	taaggatga	cgc	cacaatcc	cactatc	ctt	cgca	aaagg	accc	720	
taaggaagtt	cattcattt	gg	agaggat	taaaatctt	atagg	ttt	ttt	ataaaagcga	780	
acgtgggaa	acccgaacca	acc	tttc	taaactct	ctc	atc	ttaa	agcaaa	840	
cttctctt	gtcttctt	gt	cg	tgagcgat	ctt	caacgtt	gtc	agatcgt	900	
cagtacaatg	gcataccg	ga	agagg	aaagc	cgaa	aa	cc	tttt	960	
gagactgcaa	aaaaaagaga	tag	agaaa	tg	tcgac	gt	aca	atggaaa	1020	
caataggaaa	caacagctgt	ccg	aca	aaagt	tct	gtccc	agg	aggaaa	1080	

pctca2016050043-seql.txt

cgcccaggac	gatattaaaa	ttgccggaga	aataaagaag	agctcgaaag	aagaatctaa	1140
acagctgctc	gaaattctga	aaacaaaaga	agaccatcg	aaagagattc	aatatgaaat	1200
tttgcaaaaa	acaataccct	catttgagtc	caaagaaaagt	atcctaaga	agcttgaaga	1260
cataagaccg	gagcaggcaa	aaaaacagat	gaaactctt	cgcatttcg	agccaaaaca	1320
gctccctata	tatcgccca	atggcgagaa	ggagctacgc	aaccgggtgg	actggaagtt	1380
aaaaaaaagac	accctgcccag	atggagatta	tgacgtccgg	gagtatttcc	tcaatctcta	1440
tgatcagatc	ctcatcgaaa	tgccggacta	tctgctccctc	aaggacatgg	ccgtggagaa	1500
caaaaatagc	agagacgccc	gcaaagttgt	cgactctgag	actgccaata	tttgtatgc	1560
catcttccag	gatgaggaga	ccgagggagt	cgtccgtaga	ttcatcgctg	atatgcggca	1620
acaggtccag	gctgatcgta	acattgtcaa	ttacccttcc	atccttcacc	ctattgatca	1680
tgcattcaat	gagtatttcc	ttaaccacca	gttgggtggag	ccgctgaaca	atgagataat	1740
cttcaattac	ataccagaga	ggataaggaa	tgacgtgaat	tacatcctga	acatggatat	1800
aatctgcca	tctacagcca	ggtatatcag	gccaaacttg	ttcaggata	gactgaatct	1860
tcacgataat	tttgagtccc	tgtggatac	catcacaaca	tccaactaca	ttctggccag	1920
gtccgtcggt	cccgatttga	aggagaagga	gctggctcc	accgaagcac	agatccagaa	1980
aatgagccag	gacctgcagc	tggaggccct	cactattcag	agcgagacac	agtttttagc	2040
cgggatttaac	agtcaggctg	ccaatgattt	tttcaagacc	ctcatagccg	ccatgctgtc	2100
tcaaagaacc	atgtcttgg	actttgtgac	cacgaactat	atgagcctaa	tctccggaat	2160
gtggctactt	acagtgattt	ccaacgatat	gttcctccgg	gagtcactag	tggcctgtga	2220
gctggcgatc	atcaacacca	tcgtgtatcc	agcattcgga	atgcagagaa	tgcattaccg	2280
aatggcgac	cctcagacac	ccttccagat	cgcagaacag	cagatccaga	atttccaggt	2340
ggcgaactgg	ctccatttta	ttaacaataa	cagattcagg	caagttgtga	ttgatggagt	2400
tctgaatcag	actctgaacg	acaatatacg	gaatggacag	gtcatcaacc	agctgatgga	2460
agcattgatg	caactcagca	gacagcagtt	ccccacgatg	cctgtggatt	acaaacggag	2520
catccaacgg	ggcattctgc	ttctctccaa	taggctgggg	cagttgtcg	acttaaccgg	2580
actggctcc	tataactacg	agacgctaatt	ggcttggttg	accatgaaca	tgcagcacgt	2640
gcaaaccctg	acaactgaga	agttgcagct	cacttctgtg	acttcgcttt	gtatgttaat	2700
tggtaacaca	accgtgattt	cgtccccaca	gacactgttc	cactactaca	acatcaacgt	2760

pctca2016050043-seql.txt

gaatttccac	tccaattata	atgagcggat	caacgacgcc	gtgccataa	ttaccgcagc	2820
aaataggctg	aatctttatc	agaaaaaaat	gaagtccata	gtggaagact	ttctgaaacg	2880
gctccagatt	ttcgacgtac	cacgagtgcc	tgacgaccaa	atgtacaggc	tgagggatcg	2940
ccttcggctc	ttaccggtt	aacggagacg	gcttgacata	ttcaacttga	tcctgatgaa	3000
tatggagcag	atcgaacgcg	cttctgataa	gattgctcag	ggggttatca	tcgcataccg	3060
agatatgcag	ctggaacgcg	acgagatgta	cggatatgtt	aatattgcac	ggaatcttga	3120
tggctaccag	caaattaact	tggaggaact	catgcgcacc	ggtgattacg	gacaattac	3180
gaacatgctt	ctcaacaatc	aaccggtgc	ccttgggt	gcattgcct	tcgttacgga	3240
ctcatccgtg	atcagtctaa	tcgccaagct	cgacgcaacc	gtttcgctc	agatagtgaa	3300
gctcagggaaa	gttgacacac	tgaagccat	actgtacaaa	ataaactcgg	attccaatga	3360
cttttacatt	gtggccaact	acgactggat	ccccacaagt	acaactaagg	tctacaaaca	3420
gggccacaa	ccattcgact	ttagagccag	catgcacatg	ctgacttcta	acttacgtt	3480
tacgtctac	tctgacccatc	tgcatttgt	ttcagggac	acggtagagc	ccattaacgc	3540
agtcgcattc	gacaatatgc	gaataatgaa	cgagcttaa	aggcctattt	tcttagttt	3600
gaatttactg	ttattcggtg	tgcatttcta	tgtttggta	gcgggtttct	gtgctcagag	3660
tgtgtttatt	ttatgttaatt	taatttcttt	gtgagctcct	gtttagcagg	tcgtcccttc	3720
agcaaggaca	caaaaagatt	ttaattttat	taaaaaaaaaa	aaaaaaaaag	accgggaatt	3780
cgatatcaag	cttacgacc	tgcagatcgt	tcaaacattt	ggcaataaag	tttcttaaga	3840
ttgaatcctg	ttgccggtct	tgcgatgatt	atcatataat	ttctgttga	ttacgtaag	3900
catgttaataa	ttaacatgta	atgcatgacg	ttatttatga	gatgggtttt	tatgattaga	3960
gtcccgcaat	tatacattta	atacgcgata	gaaaacaaaaa	tatagcgcgc	aaactaggat	4020
aaattatcgc	gcgcggtg	tc atctatgtta	ctagat			4056

<210> 48
 <211> 55
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> IF C160 WA VP6 opt c

<400> 48
 tcgtgcttcg gcaccagtac aatggaggc ctttatagtc tctccaaaac gctga 55

pctca2016050043-seql.txt

<210> 49
<211> 2577
<212> DNA
<213> Artificial Sequence

<220>
<223> Expression cassette number 1128

<400> 49
gtcaacatgg tggagcacga cacacttgtc tactccaaaa atatcaaaga tacagtctca 60
gaagaccaaa gggcaattga gactttcaa caaaggtaa tatccggaaa ctcctcgga 120
ttccattgcc cagctatctg tcactttatt gtgaagatag tgaaaagga aggtggctcc 180
tacaaatgcc atcattgcga taaaggaaag gccatcggt aagatgcctc tgccgacagt 240
ggtcccaaag atggaccccc acccacgagg agcatcggtt aaaaagaaga cgttccaacc 300
acgtcttcaa agcaagtgg a ttgatgtgat aacatggtgg agcacgacac acttgtctac 360
tccaaaaata tcaaagatac agtctcagaa gaccaaggaa caattgagac ttttcaacaa 420
aggtaatat ccggaaacct cctcgattt cattgcccag ctatctgtca ctttattgtg 480
aagatagtgg aaaaggaagg tggctctac aaatgccatc attgcgataa aggaaaggcc 540
atcggttgaag atgcctctgc cgacagtggt cccaaagatg gaccccccacc cacgaggagc 600
atcggtgaaa aagaagacgt tccaaccacg tcttcaaagc aagtggattt atgtgatatc 660
tccactgacg taagggatga cgcacaatcc cactatcctt cgcaagaccc ttcctctata 720
taaggaagtt catttcattt ggagaggtat taaaatctta ataggttttgc ataaaagcga 780
acgtggggaa acccgaacca aaccccttc taaactctt ctcattcttc tttaagcaaa 840
cttctctttt gtctttttt cgtgagcgat cttcaacgtt gtcagatgt gcttcggcac 900
cagtacaatg gaggtcctt atagtctctc caaaacgctg aaggacgcta gggacaagat 960
cgtggagggt acactttata gcaatgtcag cgacctaata cagcagttt atcaaatgt 1020
cgttacaatg aatggaaatg atttccaaac tggcggtatt ggtaatctgc ccgtgaggaa 1080
ctggacattc gatttcggcc tgctggcac gactctcattt aatctcgatg caaattatgt 1140
agaaaaacgcc agaacgatata tcgagttactt tatcgatttc attgataacg tttgtatgga 1200
tgagatggcc cgcgagtcac aacggAACGG agttgctcca cagtcggagg cccttcggaa 1260
actcgccggc attaagttca agcgattaa ttgcacaac tcctccgaat atatagagaa 1320
ctggaacttg cagaatcgac gacagagaac cggcttcgtt ttccataaaac ctaatatctt 1380

pctca2016050043-seql.txt

tccgtatagc	gcctcattca	ccctgaatag	gagtcagccc	atgcacgaca	acctcatggg	1440
tacaatgtgg	ctgaatgcgg	ggagtgaaat	acaggtcgcc	gggttcgatt	actcctgtgc	1500
cattaatgca	cccgcaaaca	tccagcagtt	cgaacatatac	gtcaactaa	gacgggctct	1560
cacgaccgcg	acaattacac	tcctgcccga	cgccgagcgc	tttccttgc	cccgctaat	1620
caactcagct	gatggcgcca	ccacttggtt	cttcaaccct	gttatattgc	gccctaaca	1680
cgttagaggc	gagttctct	taaacggaca	gatcatcaat	acctaccaag	ccaggttcgg	1740
cacgattatt	gcaagaaatt	tcgacgctat	caggctgctc	ttccaactga	tgaggcccc	1800
caatatgact	cccgctgtga	acgcttggtt	tccgcaggct	cagccttcc	agcaccacgc	1860
cacgctcggc	ttgactttc	gaatagagag	cgcggctgc	gaatcagtgc	tggcagacgc	1920
caacgagacg	ctgctggcaa	acgttaccgc	cgtgcggcaa	gagtatgcca	tcccagtagg	1980
gcctgtgttt	ccacccggca	tgaactggac	tgaactaatt	actaactata	gcccatccag	2040
agaagacaac	ttgcagcggg	tcttcactgt	ggcctctatc	cggagtatgt	tgatcaagta	2100
gaggectatt	ttcttagtt	tgaatttact	gttattcggt	gtcattttct	atgtttggtg	2160
agcggtttc	tgtgctcaga	gtgtgttat	tttatgtaat	ttaatttctt	tgtgagctcc	2220
tgttagcag	gtcgtccctt	cagcaaggac	acaaaaagat	ttaatttta	ttaaaaaaaa	2280
aaaaaaaaaa	gaccggaaat	tcgatatcaa	gcttatcgac	ctgcagatcg	ttcaaacatt	2340
tggcaataaa	gtttcttaag	attgaatcct	gttgcggc	ttgcgatgat	tatcatataa	2400
tttctgtta	attacgttaa	gcatgtaata	attaacatgt	aatgcgtac	gttattttatg	2460
agatgggttt	ttatgattag	agtcccgcaa	ttatacattt	aatacgcgt	agaaaacaaa	2520
atatacgcg	caaactagga	taaattatcg	cgcgcgtgt	catctatgtt	actagat	2577

<210> 50
 <211> 59
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> IF C160 Rtx VP4 opt c

<400> 50
 tcgtcttcg gcaccagtac aatggctagc ctgatctaca gacaactctt gaccaattc 59

<210> 51
 <211> 3711
 <212> DNA

pctca2016050043-seql.txt

<213> Artificial Sequence

<220>

<223> Expression cassette number 1178

<400> 51

gtcaacatgg	tggagcacga	cacacttgtc	tactccaaaa	atatcaaaga	tacagtctca	60
gaagaccaaa	gggcaattga	gactttcaa	caaaggtaa	tatccggaaa	cctcctcgga	120
ttccattgcc	cagctatctg	tcactttatt	gtgaagatag	tggaaaagga	aggtggctcc	180
tacaaatgcc	atcattgcga	taaaggaaag	gccatcggt	aagatgcctc	tgccgacagt	240
ggtcccaaag	atggaccccc	acccacgagg	agcatcggt	aaaaagaaga	cgttccaacc	300
acgtcttcaa	agcaagtgg	ttgatgtgat	aacatggtg	agcacgacac	acttgtctac	360
tccaaaaata	tcaaagatac	agtctcagaa	gaccaaaggg	caattgagac	ttttcaacaa	420
aggtaatat	ccggaaacct	cctcgattc	cattgcccag	ctatctgtca	ctttattgt	480
aagatagtgg	aaaaggaagg	tggctcctac	aatgccatc	attgcgataa	aggaaaggcc	540
atcggtgaag	atgcctctgc	cgacagtgg	cccaaagatg	gaccccccacc	cacgaggagc	600
atcggtgaaa	aagaagacgt	tccaaccacg	tcttcaaagc	aagtggattg	atgtgatatc	660
tccactgacg	taagggatga	cgcacaatcc	cactatcctt	cgcaagaccc	ttcctctata	720
taaggaagtt	catttcattt	ggagaggtat	taaaatctta	ataggtttg	ataaaagcga	780
acgtgggaa	acccgaacca	aaccccttc	taaactctct	ctcatctctc	ttaaagcaaa	840
cttctctctt	gtcttcctt	cgtagcgt	cttcaacgtt	gtcagatcgt	gcttcggcac	900
cagtacaatg	gcttagcctga	tctacagaca	actcttgacc	aattcatatt	ctgtggatct	960
tcatgacgaa	atcgagcaga	ttgggtccga	gaagacccag	aacgtgacca	tcaaccctgg	1020
acctttgct	cagacccgct	atgcccctgt	gaattggat	cacggagaaa	tcaacgacag	1080
tacgaccgtc	gaacccattc	tggacgggcc	ataccaaccc	accaccttca	ccccaccta	1140
tgattattgg	atttaatca	actccaacac	aaacggagt	gtctacgagt	ccactaataa	1200
ctccgatttt	tggaccggcc	ttgttagccat	cgagccacac	gtcaatcctg	tcgatcgcca	1260
gtatatgata	ttcggcgagt	ccaaacagtt	taacgttcc	aatgacagca	acaaatggaa	1320
gtttctggag	atgtttcgca	gctcctctca	gaacgaattc	tataatagac	ggacccttac	1380
ctccgataca	cgactcggt	gtattttaa	gtacggggc	agggtgtgga	catttcacgg	1440
tgaaacccct	cgagcaacca	ctgactccag	tagcactgca	aacctgaaca	atatatctat	1500

pctca2016050043-seql.txt	
taccatccac	1560
agcgaattct	
acataatccc	
aagatcttag	
gaaagtaagt	
gtaacgaata	
tatcaacaac	1620
ggactcccc	
caattcagaa	
tacacggaac	
gtggtgcc	
tccactcag	
ttctcggtct	1680
atccagtata	
agagagcaca	
agtgaatgag	
gacattattt	
tgagcaagac	
tagccttgg	1740
aaagaaatgc	
agtacaacag	
agacattatc	
atccggttt	
agtttggaa	
ctctatcgt	1800
aagatggcg	
gcctgggta	
caaattgtca	
gaaatctcat	
ataaagccgc	
caactatcag	1860
tataactact	
tgagagacgg	
cgagcaggta	
accgcccaca	
caacatgctc	
tgtcaacggc	1920
gttaataact	
ttagctacaa	
cggaggcttc	
cttcccaccc	
acttcggtat	
cagccgtat	1980
gaagtcatca	
aggaaaattc	
ttatgtgtac	
gtagattact	
ggatgatgat	
caaagcggtc	2040
cgcaacatgg	
tgtatgttag	
gagcctggct	
gctaattctca	
attctgtgaa	
gtgtactggt	2100
ggatcatatt	
atttctcaat	
tcccgtggg	
gcttggccag	
tcatgaatgg	
cggggcagtc	2160
tccctccatt	
ttgctggcgt	
gacggtgagc	
actcagttt	
ccgatttcgt	
gtctctgaac	2220
tccctgaggt	
tccggttt	
ccttactgtc	
gacgagcccc	
cattcagcat	
tctcggtaca	2280
agaactgtca	
acctctacgg	
gttacctgcc	
gcaaatccaa	
acaacggcaa	
tgaatactat	2340
gaaatttcgg	
gccgcttctc	
tttgataagt	
ctggtagccaa	
ctaattgacga	
ctatcagaca	2400
cccatcatga	
acagcgtgac	
tgtcagacag	
gacctggaaa	
gacaacttac	
agatctgcgg	2460
gaagaattca	
attctctcag	
tcaggagatt	
gcaatggccc	
aattgataga	
tcttgcccta	2520
ctgcctctcg	
atatgtttag	
tatgttctcc	
ggcatcaa	
caactataga	
tctgacaaag	2580
agcatggcta	
cttctgtgat	
gaagaagttc	
aggaaatcaa	
aacttgccac	
gagcatatca	2640
gaaatgacga	
actctctgag	
tgatgcagca	
tcatcagcgt	
cacgcaacgt	
ttccattcgg	2700
tcgaatctca	
gcgccatcag	
caactggaca	
aacgtgtcca	
acgacgtcag	
caacgtgacc	2760
aactccttga	
acgatatttc	
tacccagacg	
tcaacgatca	
gtaagaaact	
ccgcttgaaa	2820
gaaatgatca	
cccagactga	
ggaaatgtct	
ttcgacgaca	
tttccgcccgc	
cgtgctaaaa	2880
acccaaatcg	
atatgtctac	
tcagatcgcc	
aagaacactc	
tgccggat	
cgttaaccgaa	2940
gcctccgaaa	
agtttatccc	
taagcgcagc	
tacagaatat	
tgaaagatga	
cgaggtcatg	3000
gagatcaaca	
cagaaggaa	
gttctcgct	
tataagatca	
acaccttga	
cgaggttccg	3060
tttgacgtca	
ataagttgc	
agagctcgt	
acagatagtc	
cagtgattt	
tgccatcatt	3120
gacttaaga	
cttgaagaa	
cctgaacgac	
aactatggaa	
taacacggac	
cgaagcggt	3180
aacctcatta	
agtccaatcc	
caatatgtt	
cgcaatttca	
ttaaccagaa	

		pctca2016050043-seql.txt				
caatccaatc	ataagaataa	ggattgagca	attaatcctg	caatgtaaac	tctgaaggcc	3240
tatttcttt	agtttgaatt	tactgttatt	cggtgtgcat	ttctatgttt	ggtgagcggt	3300
tttctgtgct	cagagtgtgt	ttatttatg	taatttaatt	tctttgttag	ctcctgttta	3360
gcaggtcgtc	ccttcagcaa	ggacacaaaaa	agatttaat	tttattaaaaa	aaaaaaaaaa	3420
aaaagaccgg	gaattcgata	tcaagcttat	cgacctgcag	atcgttcaaa	catttggcaa	3480
taaagtttct	taagattgaa	tcctgttgcc	ggtcttgcga	tgattatcat	ataatttctg	3540
ttgaattacg	ttaagcatgt	aataattaac	atgtaatgca	tgacgttatt	tatgagatgg	3600
tttttatga	ttagagtccc	gcaattatac	attnaatacg	cgatagaaaaa	caaaatatacg	3660
cgcgcaaact	aggataaatt	atcgcgcg	gtgtcatcta	tgttactaga	t	3711
<210>	52					
<211>	56					
<212>	DNA					
<213>	Artificial Sequence					
<220>						
<223>	IF C160 TrSP plus Rtx VP7 opt c					
<400>	52					
tcgtgcttcg	gcaccagtac	aatggattat	attatctatc	gtgcctcct	catcta	56
<210>	53					
<211>	2277					
<212>	DNA					
<213>	Artificial Sequence					
<220>						
<223>	Expression cassette number 1199					
<400>	53					
gtcaacatgg	tggagcacga	cacacttgc	tactccaaaa	atataaaga	tacagtctca	60
gaagacaaaa	gggcaattga	gactttcaa	caaaggtaa	tatccggaaa	cctcctcgga	120
ttccattgcc	cagctatctg	tcactttatt	gtgaagatag	tggaaaagga	aggtggctcc	180
tacaaatgcc	atcattgcga	taaaggaaag	gccatcggt	aagatgcctc	tgccgacagt	240
ggtcccaaag	atggaccccc	accacgagg	agcatcggt	aaaaagaaga	cgttccaacc	300
acgtcttcaa	agcaagtgg	ttgatgtgat	aacatggtg	agcacgacac	acttgtctac	360
tccaaaaata	tcaaagatac	agtctcagaa	gaccaaagg	caattgagac	ttttcaacaa	420
aggtaatat	ccggaaacct	cctcgattc	cattgcccag	ctatctgtca	ctttattgtg	480

pctca2016050043-seql.txt	
aagatagtgg	540
aaaaggaagg	
tggctcctac	
aatgccatc	
attgcataa	
aggaaaggcc	
atcggtgaag	600
atgcctctgc	
cgacagtgg	
cccaaagatg	
gaccccccacc	
cacgaggagc	
atcggtgaaa	660
aagaagacgt	
tccaaccacg	
tcttcaaagc	
aagtggattt	
atgtgatatac	
tccactgacg	720
taagggatga	
cgcacaatcc	
cactatcctt	
cgcaagaccc	
ttcctctata	
taaggaagtt	780
catttcattt	
ggagaggtat	
taaaatctta	
ataggtttt	
ataaaagcga	
acgtggggaa	840
acccgaacca	
aaccttcttc	
taaactctct	
ctcatctctc	
ttaaagcaaa	
cttctctctt	900
gtctttcttg	
cgtgagcgat	
cttcaacgtt	
gtcagatcgt	
gcttcggcac	
cagtacaatg	960
gattatatta	
tctatctgt	
cctcctcatc	
tacgtggccc	
tttttgcctt	
gaccagggcc	1020
cagaactatg	
gcctgaactt	
accaatcacc	
ggttcaatgg	
ataccgttta	
cgctaattcc	1080
actcaagagg	
ggtatattct	
gacaagtacc	
ctgtgcctgt	
attatccaac	
agaaggcctct	1140
acccagatca	
atgatgggaa	
gtggaaggat	
agtctctcac	
agatgttcct	
aaccaaggc	1200
tggcccaccc	
gttccgtcta	
cttcaaggaa	
tactctagta	
ttgtcgactt	
ctcagttgac	1260
ccccagcttt	
attgcgacta	
caacctggta	
cttatgaaat	
acgaccagaa	
cctggagctg	1320
gatatgtccg	
agctggctga	
cctgatcctc	
aatgagtgcc	
tgtcaacacc	
catggacatc	1380
acattatatt	
actaccagca	
gtctggagaa	
tccaacaagt	
ggtcgttat	
ggcgtcaagt	1440
tgcaccgtga	
aggtgtgtcc	
cttgaacacc	
caaattgctgg	
gcattgggtt	
tcagacaact	1500
aatgtggatt	
cgtttgcata	
ggttagccaa	
aacgagaaggc	
tggctatagt	
ggacgtagtc	1560
gatgggat	
accacaagat	
caatctgact	
accaccactt	
gtaccatcag	
aaactgtaaa	1620
aagctcgccc	
cccgggagaa	
cgtcgccgt	
atccaggtgg	
gggggagcaa	
tgtgctcgac	1680
attactgccc	
accctaccac	
caatccacag	
acggaacgg	
tgtgagagat	
caactggaa	1740
aaatggtggc	
aggctttta	
taccatgt	
gactacatta	
accagattgt	
gcaagtcatg	1800
agtaaacgg	
ccagatccct	
gaactcagca	
gccttctatt	
atcgcttta	
gaggcctatt	1860
ttcttttagtt	
tgaatttact	
gttattcggt	
gtcattttct	
atgtttggtg	
agcggtttc	1920
tgtgctcaga	
gtgtgttat	
tttatgtaat	
ttaatttctt	
tgtgagctcc	
tgttttagcag	1980
gtcgccctt	
cagcaaggac	
acaaaaagat	
ttaatttta	
ttaaaaaaaaaa	
aaaaaaa	2040
gaccggaa	
tgcataatcaa	
gcttatcgac	
ctgcagatcg	
ttcaaacatt	
tggcaataaa	2100
gtttcttaag	
attgaatct	
gttgcggc	
ttgcgtatgt	
tatcatataa	
tttctgttga	2160
attacgtttaa	
gcatgtataa	
attaacatgt	
aatgcgtatc	
gttattttat	

pctca2016050043-seql.txt
agatgggttt ttatgattag agtcccgcaa ttatacattt aatacgcgat agaaaacaaa 2220
atatacgcg caaactagga taaattatcg cgcgcggtgt catctatgtt actagat 2277

摘要

提供在植物中产生轮状病毒样颗粒(RLP)的方法。该方法包括在宿主或宿主细胞(例如植物、植物的一部分或植物细胞)内表达一种或多种核酸,所述一种或多种核酸包含与第一核苷酸序列、第二核苷酸序列和第三核苷酸序列可操作地(operatively)连接的一种或多种调控区,所述调控区在宿主或宿主细胞中是有活性的(active)。第一核苷酸序列编码第一轮状病毒蛋白,第二核苷酸序列编码第二轮状病毒蛋白,以及第三核苷酸序列编码第三轮状病毒蛋白。第一核苷酸序列、第二核苷酸序列和第三核苷酸序列编码轮状病毒蛋白 NSP4、VP2 或 VP6,以及 VP4 或 VP7。在允许核酸表达的条件下孵育宿主或宿主细胞,使得 NSP4、VP2 或 VP6,以及 VP4 或 VP7 都被表达,从而产生 RLP。还提供了包含 RLP 的宿主,包含 RLP 的组合物和使用该组合物的方法。