wo 2015/167777 A1 | I 0N OO OO 000 0 R

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/167777 Al

5 November 2015 (05.11.2015) WIPO I PCT

(51

eay)

(22)

(25)
(26)
(30)

1

(72

International Patent Classification:
GO6F 9/38 (2006.01)
International Application Number:
PCT/US2015/025362

International Filing Date:

10 April 2015 (10.04.2015)
Filing Language: English
Publication Language: English
Priority Data:
14/268,215 2 May 2014 (02.05.2014) Us

Applicant: QUALCOMM INCORPORATED [US/US];
ATTN: International IP Administration, 5775 Morehouse
Drive, San Diego, California 92121-1714 (US).

Inventors: GRUBER, Andrew Evan; 5775 Morehouse
Drive, San Diego, California 92121-1714 (US). CHEN,
Lin; 5775 Morehouse Drive, San Diego, California 92121-
1714 (US). DU, Yun; 5775 Morehouse Drive, San Diego,
California 92121-1714 (US). BOURD, Alexei Vladi-

(74

(8D

(84)

mirovich; 5775 Morehouse Drive, San Diego, California
92121-1714 (US).

Agent: EVANS, Matthew J.; Shumaker & Sieffert, P.A.,
1625 Radio Drive, Suite 300, Woodbury, Minnesota 55125
(US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,

[Continued on next page]

(54) Title: TECHNIQUES FOR SERIALIZED EXECUTION IN A SIMD PROCESSING SYSTEM

»| <cETONE® |f100

INSTRUCTION

A4
DETERMINE
ACTIVE
THREADS

102

\-\

103

A

peacTivATE |10
THREAD

FIG. 4

112
ACTIVE NO ¥
THREADS RETURN
REMAINING?
SELECT ONE f1°4
ACTIVE
THREAD
SELEGTED PERFORM f1os
THREAD? SERIAL
) OPERATION

(57) Abstract: A SIMD processor may be configured to de-
termine one or more active threads from a plurality of
threads, select one active thread from the one or more active
threads, and perform a divergent operation on the selected
active thread. The divergent operation may be a serial opera-
tion.

WO 2015/16777:7 A1 WK 00T 0 0O O

TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,DE, 0, applicant’s entitlement to claim the priority of
DK, EE, ES, F1, FR, GB, GR, HR, HU, IE, IS, IT, LT, the earlier application (Rule 4.17(iii))

LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE,

SL SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, Published:

GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

— with international search report (Art. 21(3))
Declarations under Rule 4.17:

— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

WO 2015/167777 PCT/US2015/025362

1

TECHNIQUES FOR SERIALIZED EXECUTION
IN A SIMD PROCESSING SYSTEM

TECHNICAL FIELD
[0001] The disclosure relates to multi-threaded processing and, more particularly, to
techniques for serialized execution in a single instruction multiple data (SIMD)

processing system.

BACKGROUND
[0002] A single instruction, multiple data (SIMD) processing system is a class of
parallel computing systems that includes multiple processing elements which execute
the same instruction on multiple pieces of data. A SIMD system may be a standalone
computer or a sub-system of a computing system. For example, one or more SIMD
execution units may be used in a graphics processing unit (GPU) to implement a
programmable shading unit that supports programmable shading.
[0003] A SIMD processing system allows multiple threads of execution for a program
to execute synchronously on the multiple processing elements in a parallel manner,
thereby increasing the throughput for programs where the same set of operations needs
to be performed on multiple pieces of data. In some situations it may be desirable to
perform one or more threads in serial. For instance, in a situation where the output of
one thread is needed as an input for one or more other threads. Executing serial

operations on a SIMD can be resource intensive and inefficient.

SUMMARY

[0004] This disclosure describes techniques for performing a serialized operation in a
SIMD processing system. In examples of the disclosure, a hardware-executed
instruction is proposed that selects one thread of a plurality of active threads to execute
a serial instruction. The instruction may select a thread without checking thread IDs or
using instructions to lock a shared variable. As such, serial operations may be
performed quickly and efficiently, with minimal impact to system resources.

[0005] In one example of the disclosure, a multi-threaded processor configured to
perform divergent operations comprises a control unit configured to determine one or
more active threads from a plurality of threads, and to select one active thread from the

one or more active threads, and a plurality of processing elements, wherein one

WO 2015/167777 PCT/US2015/025362

2
processing element of the plurality of processing elements associated with the selected
active thread is configured to perform a divergent operation.
[0006] In another example of the disclosure, an apparatus configured to perform
divergent operations on a multi-threaded processor comprises means for determining
one or more active threads from a plurality of threads, means for selecting one active
thread from the one or more active threads, and means for performing a divergent
operation on the selected active thread.
[0007] In another example of the disclosure, an apparatus configured to perform
divergent operations comprises a multi-threaded processor comprising a control unit
configured to determine one or more active threads from a plurality of threads, and to
select one active thread from the one or more active threads, and a plurality of
processing elements, wherein one processing element of the plurality of processing
elements associated with the selected active thread is configured to perform a divergent
operation.
[0008] In another example of the disclosure, a method of performing divergent
operations on a multi-threaded processor comprises determining one or more active
threads from a plurality of threads, selecting one active thread from the one or more
active threads, and performing a divergent operation on the selected active thread.
[0009] The details of one or more examples of the disclosure are set forth in the
accompanying drawings and the description below. Other features, objects, and
advantages of the disclosure will be apparent from the description and drawings, and

from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0010] FIG. 1 is a block diagram illustrating a device that may be configured to
implement the techniques of this disclosure.

[0011] FIG. 2 is a block diagram illustrating an example graphics processing unit
(GPU) that may be used to implement the techniques of this disclosure.

[0012] FIG. 3 is a block diagram illustrating the control unit in the example GPU of
FIG. 2 in greater detail.

[0013] FIG. 4 is a flow diagram showing the serialized operation techniques of this

disclosure.

WO 2015/167777 PCT/US2015/025362

3
[0014] FIG. 5 is a flowchart illustrating an example method of the techniques of this

disclosure.

DETAILED DESCRIPTION

[0015] This disclosure describes techniques for performing serial operations in a SIMD
processing system (e.g., a GPU). Conventional techniques for performing serial
operations in SIMD processing systems can be resource intensive and inefficient. This
disclosure proposes an instruction (e.g., executed by hardware in a SIMD processor)
that selects one active thread of a plurality of active threads to perform the serial
operation, without looping over all inactive threads. This may lead to more efficient
serial operation in a SIMD processing system.

[0016] FIG. 1 is a block diagram illustrating an example device that may implement the
techniques of this disclosure for serialized execution in a SIMD processing system.
FIG. 1 illustrates device 10 that includes GPU 12, system memory 14, and processor 16,
which may be a central processing unit (CPU). Examples of device 10 include, but are
not limited to, video devices such as media players, set-top boxes, wireless handsets
such as mobile telephones, personal digital assistants (PDAs), desktop computers,
laptop computers, gaming consoles, video conferencing units, tablet computing devices,
and the like. Device 10 may include components in addition to those illustrated in FIG.
L.

[0017] System memory 14 may be considered as the memory for device 10. System
memory 14 may comprise one or more computer-readable storage media. Examples of
system memory 14 include, but are not limited to, a random access memory (RAM), an
electrically erasable programmable read-only memory (EEPROM), flash memory, or
any other medium that can be used to carry or store desired program code in the form of
instructions and/or data structures and that can be accessed by a computer or a
processor.

[0018] In some aspects, system memory 14 may include instructions that cause
processor 16 and/or GPU 12 to perform the functions ascribed to processor 16 and GPU
12 in this disclosure. Accordingly, system memory 14 may be a computer-readable
storage medium having instructions stored thereon that, when executed, cause one or

more processors (¢.g., processor 16 and GPU 12) to perform various functions.

WO 2015/167777 PCT/US2015/025362

4
[0019] System memory 14 may, in some examples, be considered as a non-transitory
storage medium. The term “non-transitory” may indicate that the storage medium is not
embodied in a carrier wave or a propagated signal. However, the term “non-transitory”
should not be interpreted to mean that system memory 14 is non-movable or that its
contents are static. As one example, system memory 14 may be removed from device
10, and moved to another device. As another example, memory, substantially similar to
system memory 14, may be inserted into device 10. In certain examples, a non-
transitory storage medium may store data that can, over time, change (e.g., in RAM).
[0020] In some examples, such as examples where device 10 is a wireless handset
communication device, processor 16 and GPU 12 may be formed in an integrated circuit
(IC). For example, the IC may be considered as a processing chip within a chip
package. In some examples, processor 16 and GPU 12 may be housed in different
integrated circuits (i.c., different chip packages) such as examples where device 10 is a
desktop or laptop computer. However, it may be possible that processor 16 and GPU 12
are housed in different integrated circuits in examples where device 10 is a wireless
handset communication device.
[0021] Examples of processor 16 and GPU 12 include, but are not limited to, a digital
signal processor (DSP), general purpose microprocessor, application specific integrated
circuit (ASIC), field programmable logic array (FPGA), or other equivalent integrated
or discrete logic circuitry. In some examples, GPU 12 may be specialized hardware that
includes integrated and/or discrete logic circuitry that provides GPU 12 with massive
parallel processing capabilities suitable for graphics processing. In some instances,
GPU 12 may also include general purpose processing capabilities, and may be referred
to as a general purpose GPU (GPGPU) when implementing general purpose processing
tasks (i.e., non-graphics related tasks).
[0022] Processor 16 may execute various types of applications. Examples of the
applications include web browsers, e-mail applications, spreadsheets, video games, or
other applications that generate viewable objects for display. Instructions for execution
of the one or more applications may be stored within system memory 14. Processor 16
may transmit graphics data of the viewable objects to GPU 12 for further processing.
[0023] For instance, processor 16 may offload processing tasks to GPU 12, such as
tasks that require massive parallel operations. As one example, graphics processing
requires massive parallel operations, and processor 16 may offload such graphics

processing tasks to GPU 12. Processor 16 may communicate with GPU 12 in

WO 2015/167777 PCT/US2015/025362

5
accordance with a particular application processing interface (API). Examples of such
APIs include the DirectX®™ API by Microsoft®, the OpenGL® API by the Khronos
group, and the OpenCL"™API; however, aspects of this disclosure are not limited to the
DirectX, the OpenGL, or the OpenCL APIs, and may be extended to other types of
APIs. Moreover, the techniques described in this disclosure are not required to function
in accordance with an API, and processor 16 and GPU 12 may utilize any technique for
communication.
[0024] To perform graphics operations, GPU 12 may implement a graphics processing
pipeline. The graphics processing pipeline includes performing functions as defined by
software or firmware executing on GPU 12 and performing functions by fixed-function
units that are hardwired to perform very specific functions. The software or firmware
executing on the GPU 12 may be referred to as shader programs (or simply shaders),
and the shader programs may execute on one or more shader cores of GPU 12. Shader
programs provide users with functional flexibility because a user can design the shader
program to perform desired tasks in any conceivable manner. The fixed-function units,
however, are hardwired for the manner in which the fixed-function units perform tasks.
Accordingly, the fixed-function units may not provide much functional flexibility.
[0025] For example, processor 16 may execute an application, such as a video game,
and processor 16 may generate graphics data as part of the execution. Processor 16 may
output the graphics data for processing by GPU 12. GPU 12 may then process the
graphics data in the graphics pipeline. In some examples, to process the graphic data,
GPU 12 may need to execute one or more shader programs. For example, the
application executing on processor 16 may cause processor 16 to instruct GPU 12 to
retrieve a shader program from system memory 14 and instruct GPU 12 to execute the
shader program.
[0026] Device 10 may also optionally include display 60, user interface 62, and
transceiver module 64. Device 10 may include additional modules or units not shown
in FIG. 1 for purposes of clarity. For example, device 10 may include a speaker and a
microphone, neither of which are shown in FIG. 1, to effectuate telephonic
communications in examples where device 10 is a mobile wireless telephone.
Furthermore, the various modules and units shown in device 10 may not be necessary in
every example of device 10. For example, user interface 62 and display 60 may be

external to device 10 in examples where device 10 is a desktop computer. As another

WO 2015/167777 PCT/US2015/025362

6
example, user interface 62 may be part of display 60 in examples where display 60 is a
touch-sensitive or presence-sensitive display of a mobile device.
[0027] Examples of user interface 62 include, but are not limited to, a trackball, a
mouse, a keyboard, and other types of input devices. User interface 62 may also be a
touch screen and may be incorporated as a part of display 60. Transceiver module 64
may include circuitry to allow wireless or wired communication between device 10 and
another device or a network. Transceiver module 64 may include modulators,
demodulators, amplifiers and other such circuitry for wired or wireless communication.
Display 60 may comprise a liquid crystal display (LCD), a cathode ray tube (CRT)
display, a plasma display, a touch-sensitive display, a presence-sensitive display, or
another type of display device.
[0028] As will be explained in more detail below, in accordance with the techniques of
the disclosure, GPU 12 may be configured to perform a method of performing divergent
operations on a multi-threaded processor. GPU 12 may be configured to determine one
or more active threads from a plurality of threads, select one active thread from the one
or more active threads, and perform a divergent operation on the selected active thread.
[0029] FIG. 2 is a block diagram illustrating an example configuration of GPU 12 that
may be used to implement the techniques for serial processing of this disclosure. GPU
12 is configured to execute instructions for a program in a parallel manner. GPU 12
includes a control unit 72, processing elements 74A—74D (collectively “processing
clements 74”), an instruction store 76, a data store 78, and communication paths 80, 82,
84, 86A—-86D. Communication paths 86A—-86D may be referred to collectively as
“communication paths 86.” In some examples, GPU 12 may be configured as a single-
instruction, multiple-data (SIMD) processing system that is configured to execute a
plurality of threads of execution for a program using processing elements 74. In such a
SIMD system, processing elements 74 may together process a single instruction at a
time with respect to different data items. The program may retire after all of the threads
associated with the program complete execution.
[0030] Control unit 72 is configured to control GPU 12 to execute instructions for a
program stored in instruction store 76. For each instruction of the program, control unit
72 may retrieve the instruction from instruction store 76 via communication path 80,
and process the instruction. In some examples, control unit 72 may process the
instruction by causing an operation associated with the instruction to execute on one or

more of processing elements 74. For example, the instruction retrieved by control unit

WO 2015/167777 PCT/US2015/025362

7
72 may be an arithmetic instruction that instructs GPU 12 to perform an arithmetic
operation with respect to data items specified by the instruction, and control unit 72 may
cause one or more of processing elements 74 to perform the arithmetic operation on the
specified data items. In further examples, control unit 72 may process the instruction
without causing an operation to be performed on processing elements 74.
[0031] Control unit 72 may cause an operation to be performed on one or more of
processing elements 74 by providing an instruction to processing elements 74 via
communication path 82. The instruction may specify the operation to be performed by
processing elements 74. The instruction provided to the one or more of processing
elements 74 may be the same as or different than the instruction retrieved from
instruction store 76. In some examples, control unit 72 may cause the operation to be
performed on a particular subset of processing element 74 (including by a single
processing element) by one or both of activating a particular subset of processing
elements 74 upon which the operation should be performed and deactivating another
subset of processing elements 74 upon which the operation should not be performed.
Control unit 72 may activate and/or deactivate processing elements 74 by providing
respective activation and/or deactivation signals to each of processing elements 74 via
communication path 82. In some examples, control unit 72 may activate and/or
deactivate processing elements 74 by providing activation and/or deactivation signals to
processing elements 74 in conjunction with providing an instruction to processing
elements 74. In further examples, control unit 72 may activate and/or deactivate
processing elements 74 prior to providing an instruction to processing elements 74.
[0032] Control unit 72 may execute a plurality of threads of execution for a program
using processing elements 74. A plurality of threads to be executed in parallel is
sometimes called a wave. Each of processing elements 74 may be configured to process
instructions of the program for a respective thread of the plurality of threads. For
example, control unit 72 may assign ecach thread of execution to an individual one of
processing elements 74 for processing. The threads of execution for the program may
execute the same set of instructions with respect to different data items in a set of data
items. For example, processing element 74A may execute a first thread of execution for
a program stored in instruction store 76 with respect to a first subset of data items in a
plurality of data items, and processing element 74B may execute a second thread of
execution for the program stored in instruction store 76 with respect to a second subset

of data items in the plurality of data items. The first thread of execution may include

WO 2015/167777 PCT/US2015/025362

8
the same instructions as the second thread of execution, but the first subset of data items
may be different than the second subset of data items.
[0033] In some examples, control unit 72 may activate and deactivate individual threads
in the plurality of threads of execution. When control unit 72 deactivates a thread,
control unit 72 may also deactivate and/or disable the processing element 74A—74D that
is assigned to execute the thread. Such deactivated threads may be referred to as
inactive threads. Similarly, when control unit 72 activates a thread, control unit 72 may
also activate the processing element 74A—-74D that is assigned to execute the thread.
Such activated threads may be referred to as active threads. As will be explained in
more detail below, control unit 72 may be configured to select an activate thread to
execute a divergent operation (e.g., a serial operation), without needing to consider
other active or inactive threads.
[0034] As used herein, an active thread may refer to a thread that is activated, and an
inactive thread may refer to a thread that is deactivated. For a plurality of threads
executing on GPU 12 during a given processing cycle, each of the active threads may be
configured to process an instruction of the program identified by a global program
counter register for the plurality threads during the processing cycle. For example,
control unit 72 may activate processing elements 74 that are assigned to active threads
in order to configure such processing elements 74 to process the instruction of the
program during the processing cycle. On the other hand, for a plurality of threads
executing on GPU 12 during a given processing cycle, each of the inactive threads may
be configured to not process the instruction of the program during the processing cycle.
For example, control unit 72 may deactivate processing clements 74 that are assigned to
inactive threads to configure such processing elements 74 to not process the instruction
of the program during the processing cycle.
[0035] In some examples, a processing cycle may refer to the time interval between
successive loads of the program counter. For example, a processing cycle may refer to
the time between when the program counter is loaded with a first value and when the
program counter is loaded with a second value. The first and second values may be the
same or different values. In examples where the program counter is loaded in an
asynchronous manner due to resume check techniques, such asynchronous loads may
not, in some examples, serve to differentiate processing cycles. In other words, in such

examples, a processing cycle may refer to the time interval between successive

WO 2015/167777 PCT/US2015/025362

9
synchronous loads of the program counter. A synchronous load of the program counter
may, in some examples, refer to a load that is trigged by a clock signal.
[0036] Sometime prior to the retrieval of the next instruction, control unit 72 determines
a next instruction to be processed by GPU 12. The manner in which control unit 72
determines the next instruction to be processed is different depending on whether the
instruction previously retrieved by GPU 12 is a control flow instruction. If the
instruction previously retrieved by GPU 12 is not a control flow instruction, then control
unit 72 may determine that the next instruction to be processed by GPU 12 corresponds
to a next sequential instruction stored in instruction store 76. For example, instruction
store 76 may store the instructions for a program in an ordered sequence, and the next
sequential instruction may be an instruction that occurs immediately after the previously
retrieved instruction.
[0037] If the instruction previously retrieved by GPU 12 is a control flow instruction,
then control unit 72 may determine the next instruction to be processed by GPU 12
based on information specified in the control flow instruction. For example, the control
flow instruction may be an unconditional control flow instruction, ¢.g., an unconditional
branch instruction or a jump instruction, in which case control unit 72 may determine
the next instruction to be processed by GPU 12 is a target instruction identified by the
control flow instruction. As another example, the control flow instruction may be a
conditional control flow instruction, ¢.g., a conditional branch instruction, in which case
control unit 72 may select one of a target instruction identified by the control flow
instruction or a next sequential instruction stored in instruction store 76 as the next
instruction to process from instruction store 76.
[0038] As used herein, a control flow instruction may refer to an instruction that
includes information that identifies a target instruction in instruction store 76. For
example, the control flow instruction may include a target value indicative of a target
program counter value for the control flow instruction. The target program counter
value may be indicative of a target address for the target instruction. The target
instruction may, in some examples, be different than the next sequential instruction
stored in instruction store 76. High-level program code may include control flow
statements such as, e.g., if, switch, do, for, while, continue, break, and goto statements.
A compiler may translate the high-level control flow statements into low-level, e.g.,

machine-level, control flow instructions. An instruction that is not a control flow

WO 2015/167777 PCT/US2015/025362

10
instruction may be referred to herein as a sequential instruction. For example, a
sequential instruction may not include information that identifies a target instruction.
[0039] For control flow instructions, the information that identifies the target instruction
may be a value indicative of a target instruction stored in instruction store 76. In some
examples, the value indicative of the target instruction in instruction store 76 may be a
value indicative of the instruction address of the target instruction in instruction store
76. The value indicative of the instruction address of the target instruction may, in some
cases, be the address of the target instruction in instruction store 76. The value
indicative of the instruction address of the target instruction may, in additional cases, be
a value used to calculate the address of the target instruction. In further examples, the
value indicative of the instruction address of the target instruction may be a value
indicative of a target program counter value that corresponds to the target instruction.
The value indicative of the target program counter value may, in some cases, be the
target program counter value that corresponds to the target instruction. The value
indicative of the target program counter value may, in additional cases, be a value used
to calculate the target program counter value. The target program counter value that
corresponds to the target instruction may, in some examples, be equal to the address of
the target instruction.
[0040] A control flow instruction may be a forward control flow instruction or a
backward control flow instruction. A forward control flow instruction may be a control
flow instruction where the target instruction occurs after the control flow instruction in
the ordered sequence of instructions stored in instruction store 76. A backward control
flow instruction may be a control flow instruction where the target instruction occurs
prior to the next sequential instruction in the ordered sequence of instructions stored in
instruction store 76. The next sequential instruction may occur immediately after the
control flow instruction in the ordered sequence of instructions.
[0041] A control flow instruction may be a conditional control flow instruction or an
unconditional control flow instruction. A conditional control flow instruction includes
information that specifies a condition for jumping to the target instruction associated
with the control flow instruction. When processing a conditional control flow
instruction, if control unit 72 determines that the condition is satisfied, then control unit
72 may determine that the next instruction to be processed is the target instruction. On
the other hand, if control unit 72 determines that the condition is not satisfied, then

control unit 72 may determine that the next instruction to be processed is the next

WO 2015/167777 PCT/US2015/025362

11
sequential instruction stored in instruction store 76. An unconditional control flow
instruction does not include information that specifies a condition for jumping to the
target instruction associated with the control flow instruction. When processing an
unconditional control flow instruction, control unit 72 may unconditionally determine
that the next instruction to process is the target instruction identified by the control flow
instruction. In other words, the determination in such a case is not conditioned upon
any condition specified in the unconditional control flow instruction. As used herein, a
condition control flow instruction may be referred to herein as a branch instruction
unless the branch instruction is otherwise designated as an unconditional branch
instruction. Also, an unconditional control flow instruction may be referred to herein as
a jump instruction.
[0042] A conditional branch instruction may include conditions that are specified with
respect to one or more data item values. For example, one type of condition may be a
comparison condition that compares a first data item value to a second data item value
for each active thread executing in GPU 12. Comparing the data item values may
include, e.g., determining whether the first data item value is greater than, less than, not
greater than, not less than, equal to, or not equal to the second data item value. Another
type of condition may be a zero check condition that determines whether a data item
value for each active thread executing on GPU 12 is equal to or not equal to zero.
Because cach of processing elements 74 operates on different data items, the result of
evaluating the condition may be different for each active thread executing on GPU 12.
[0043] If cither all of the active threads executing on GPU 12 satisfy the branch
condition or all of the active threads executing on GPU 12 do not satisfy the branch
condition, then a uniform branching condition occurs and the branching divergence for
the threads is said to be uniform. On the other hand, if at least one of the active threads
executing on GPU 12 satisfies the branch condition and at least one of the active threads
executing on GPU 12 does not satisfy the branch condition, then a divergent branching
condition occurs and the branching divergence for the threads is said to be divergent.
[0044] One example of a divergent operation is a serial operation. A serial operation (or
series of serial operations) is an operation where the output of one thread (e.g., from the
serial operation) is needed as the input for one or more other threads. That is other
threads may not continue to process in parallel into the output of one or more other
threads is completed. In this sense, threads in a SIMD device may perform in serial for

a period of time.

WO 2015/167777 PCT/US2015/025362

12
[0045] Typically, the threads executing on GPU 12 may execute the same instruction in
a lockstep fashion. In other words, each of processing elements 74 may together
execute the same instruction for all active threads during a processing cycle. However,
when a divergent branch condition occurs, the threads that satisfy that branch condition
may be scheduled to execute next instructions that are different than the next
instructions scheduled to be executed by the threads that do not satisfy the branch
condition. As discussed above, one such divergent branch condition may be a serial
operation.
[0046] Control unit 72 is communicatively coupled to instruction store 76 via
communication path 800, to processing elements 74 via communication path 82, and to
data store 78 via communication path 84. Control unit 72 may use communication path
800 to send read instructions to instruction store 76. A read instruction may specify an
instruction address in instruction store 76 from which an instruction should be retrieved.
Control unit 72 may receive one or more program instructions from instruction store 76
in response to sending the read instruction. Control unit 72 may use communication
path 82 to provide instructions to processing elements 74, and in some examples, to
receive data from processing elements 74, e.g., the result of a comparison instruction for
evaluating a branch condition. In some examples, control unit 72 may use
communication path 84 to retrieve data items values from data store 78, e.g., to
determine a branch condition. Although FIG. 2 illustrates GPU 12 as including a
communication path 84, in other examples, GPU 12 may not include a communication
path 84.
[0047] Each of processing elements 74 may be configured to process instructions for
the program stored in instruction store 76. In some examples, each of processing
clements 74 may be configured to perform the same set of operations. For example,
cach of processing elements 74 may implement the same instruction set architecture
(ISA). In additional examples, each of processing elements 74 may be an arithmetic
logic unit (ALU). In further examples, GPU 12 may be configured as a vector
processor, and each of processing elements 74 may be a processing element within the
vector processor. In additional examples, GPU 12 may be a SIMD execution unit, and
cach of processing elements 74 may be a SIMD processing element within the SIMD
execution unit.
[0048] The operations performed by processing elements 74 may include arithmetic

operations, logic operations, comparison operations, etc. Arithmetic operations may

WO 2015/167777 PCT/US2015/025362

13
include operations such as, e.g., an addition operation, a subtraction operation, a
multiplication operation, a division operation, etc. The arithmetic operations may also
include, e.g., integer arithmetic operations and/or floating-point arithmetic operations.
The logic operations may include operations, such as, e.g., a bit-wise AND operation, a
bit-wise OR operation, a bit-wise XOR operation, etc. The comparison operations may
include operations, such as, e.g., a greater than operation, a less than operation, an equal
to zero operation, a not equal to zero operation, etc. The greater than and less than
operations may determine whether a first data item is greater than or less than a second
data item. The equal to zero and not equal to zero operations may determine whether a
data item is equal to zero or not equal to zero. The operands used for the operations
may be stored in registers contained in data store 78.
[0049] Each of processing elements 74 may be configured to perform an operation in
response to receiving an instruction from control unit 72 via communication path 82. In
some examples, each of processing elements 74 may be configured to be activated
and/or deactivated independently of the other processing elements 74. In such
examples, each of processing elements 74 may be configured to perform an operation in
response to receiving an instruction from control unit 72 when the respective processing
element 74A—74D is activated, and to not perform the operation in response to receiving
the instruction from control unit 72 when the respective processing element 74A—74D is
deactivated, i.e., not activated.
[0050] Each of processing elements 14A—14D may be communicatively coupled to data
store 78 via a respective communication path 86A—-86D. Processing elements 74 may
be configured to retrieve data from data store 78 and store data to data store 78 via
communication paths 86. The data retrieved from data store 18 may, in some examples,
be operands for the operations performed by processing elements 74. The data stored to
data store 78 may, in some examples, be the result of an operation performed by
processing elements 74.
[0051] Instruction store 76 is configured to store a program for execution by GPU 12.
The program may be stored as a sequence of instructions. In some examples, each
instruction may be addressed by a unique instruction address value. In such examples,
instruction address values for later instructions in the sequence of instructions are
greater than instruction address values for earlier instructions in the sequence of
instructions. The program instructions, in some examples, may be machine-level

instructions. That is, in such examples, the instructions may be in a format that

WO 2015/167777 PCT/US2015/025362

14
corresponds to the ISA of GPU 12. Instruction store 76 is configured to receive a read
instruction from control unit 72 via communication path 80. The read instruction may
specify an instruction address from which an instruction should be retrieved. In
response to receiving the read instruction, instruction store 76 may provide an
instruction corresponding to the instruction address specified in the read instruction to
control unit 72 via communication path 80.

[0052] Instruction store 76 may be any type of memory, cache or combination thereof.
When instruction store 76 is a cache, instruction store 76 may cache a program that is
stored in a program memory external to GPU 12. Although instruction store 76 is
illustrated as being within GPU 12, in other examples, instruction store 76 may be
external to GPU 12.

[0053] Data store 78 is configured to store data items used by processing elements 74.
In some examples, data store 78 may comprise a plurality of registers, each register
being configured to store a respective data item within a plurality of data items operated
on GPU 12. Data store 78 may be coupled to one or more communication paths (not
shown) that are configured to transfer data between the registers in data store 78 and a
memory or cache (not shown).

[0054] Although FIG. 2 illustrates a single data store 78 for storing data used by
processing elements 74, in other examples, GPU 12 may include separate, dedicated
data stores for each of processing elements 74. GPU 12 illustrates four processing
clements 74 for exemplary purposes. In other examples, GPU 12 may have many more
processing elements in the same or a different configuration.

[0055] FIG. 3 is a block diagram illustrating control unit 72 in the example GPU 12 of
FIG. 2 in greater detail. Control unit 72 includes a program counter 88, a fetch module
90, a decode module 92 and a control flow module 94. Control flow module 94 may be
alternatively referred to herein as a control flow unit.

[0056] Program counter 288 is configured to store a program counter value. In some
examples, program counter 88 may be a hardware register, such as, ¢.g., a program
counter register. The program counter value may be indicative of an instruction stored
in instruction store 76. The program counter value may, in some cases, be equal to the
instruction address of the instruction stored in instruction store 76. In additional cases,
the program counter value may be used to compute the instruction address of the
instruction stored in instruction store 76. For example, the program counter value may

be added to an offset value to generate the instruction address. Program counter 88 may

WO 2015/167777 PCT/US2015/025362

15
be referred to herein as a “global program counter” or a “global program counter
register” because program counter 88 may be used as a single program counter for all of
processing elements 74.
[0057] Fetch module 90 is configured to fetch, e.g., retrieve, an instruction from control
unit 72 based on the program counter value stored in program counter 88. For example,
fetch module 90 may fetch an instruction from an instruction address identified by the
program counter value stored in program counter 88. Fetch module 90 may provide the
fetched instruction to decode module 92 for further processing.
[0058] Decode module 92 is configured to decode the instruction received from fetch
module 90. Decoding the instruction may involve determining whether the instruction
is a type of instruction that can be processed by processing elements 74. If the
instruction is a type of instruction that can be processed by processing elements 74,
decode module 92 may cause the instruction to execute on one or more of processing
elements 74. In some examples, decode module 92 may cause the instruction to execute
on all of processing elements 74. In other examples, decode module 92 may cause the
instruction to execute on less than all of processing elements 74. Causing the
instruction to execute on one or more of processing elements 74 may, in some cases,
include issuing the instruction to one or more of processing elements 74 for execution.
For example, fetch module 90 may fetch a sequential instruction identified by program
counter 88, and issue the sequential instruction to all processing elements 74 that
correspond to active threads for processing. If the instruction is not the type of
instruction that can be processed by processing elements 74, then control unit 72 may
process the instruction without issuing the instruction to any of processing elements 74
for processing. For example, the instruction may be a control flow instruction of the
type that does not require processing by processing elements 74, in which case control
unit 72 may process the instruction without issuing the instruction any of processing
clements 74.
[0059] In cither case, decode module 92 may forward control information to control
flow module 94 for further processing. In some examples, the control information may
be the instruction itself. In further examples, the control information may include
information, such as, ¢.g., information indicative of whether the instruction is a control
flow instruction or a sequential instruction; if the instruction is a control flow
instruction, information indicative of whether the instruction is a branch instruction or a

jump instruction; if the instruction is a branch or jump instruction, information

WO 2015/167777 PCT/US2015/025362

16
indicative of whether the branch or jump instruction is a forward or backward branch or
jump instruction, and if the instruction is a branch instruction, information specifying
the branch condition.
[0060] Instructions that are of a type that can be processed by processing elements 74
may include arithmetic instructions and logic instructions. An arithmetic instruction
may refer to an instruction that instructs processing elements 74 to perform an
arithmetic operation, and a logic instruction may refer to an instruction that instructs
processing elements 74 to perform a logic operation. In some examples, a control flow
instruction may be an instruction that can be processed by processing elements 74, e.g.,
the control flow instruction may include a branch condition that is evaluated by
processing elements 74. Instructions that are not of a type that can be processed by
processing elements 74 may include control flow instructions where the branch
condition is evaluated by control unit 72 and/or control flow instructions that do not
have a branch condition.
[0061] Control flow module 94 may determine a program counter value associated with
a next instruction to be processed by control unit 72, and load the program counter value
into program counter 88. If the previously fetched instruction is a sequential
instruction, then control flow module 94 may select a program counter value that is
indicative of a next sequential instruction stored in instruction store 76 to load into
program counter 88. If the previously fetched instruction is a control flow instruction,
then control flow module 94 may utilize resume counter techniques.
[0062] Control flow module 94 may store a resume counter value for each thread
executing on GPU 12. For example, the number of resume counter values stored in
control flow module 94 may be equal to the number of processing elements 74
contained GPU 12. For each resume counter value, if the thread corresponding to the
respective resume counter value is inactive, then the resume counter value may be
indicative of a program counter value at which the inactive thread should be activated or
reactivated. Otherwise, if the thread corresponding to the respective resume counter
value is active, then the resume counter value may be, in some examples, setto a
maximum value, i.¢., a value that is the largest value that can be represented in the
storage slot or register for the resume counter.
[0063] Control flow module 94 may store an active flag for each thread executing on
GPU 12. For example, the number of active flags stored in control flow module 94 may

be equal to the number of processing elements 74 contained in GPU 12. Each active

WO 2015/167777 PCT/US2015/025362

17
flag may indicate whether or not the thread associated with the active flag is active or
inactive. In some examples, the active flag may be a single bit that is set to indicate that
the thread associated with the active flag is active, and reset to indicate that the thread
associated with the active flag is inactive.
[0064] In some examples, control flow module 94 may also store a program state. For
example, a first program state may indicate that all threads are active, a second program
state may indicate that at least on thread is active and at least one thread is inactive and
a third program state may indicate that all threads are inactive. The program state may
be used in such examples, to select a program counter value to load into program
counter §8.
[0065] Control flow module 94 may be configured, in some examples, to activate and
deactivate one or more of processing elements 74 via communication path 82. In
additional examples, control flow module 94 may instruct decode module 92 to activate
and deactivate particular processing elements 74. In further examples, control flow
module 94 may receive the results of a comparison instruction from one or more of
processing elements 74 via communication path 82. The results of the comparison
instruction in some examples may be used to evaluate a branch condition. In yet further
examples, control flow module 94 may retrieve one or more data items from data store
78, via communication path 84, for purposes of evaluating a branch condition.
[0066] As discussed above, within a parallel machine (e.g., a SIMD processing system),
there is often the need for performing divergent operations, such as a serialized
operation(s). For example, GPU 12 may be instructed to perform a "prefix sum,' where
the input to a given thread(s) executing on processing elements 74 is dependent on the
output of another thread executing on processing elements 74.
[0067] One conventional approach to performing serialized operations on a SIMD
processing system involves using atomic native instructions whereby all threads would
compete to perform a lock on a shared variable (i.e., so only one of processing elements
74 has access to the variable at a certain time). However, the use atomic instructions
and locks can be inefficient, as they are a limited resource and typically require a long
latency for execution.
[0068] Another approach for performing a serial operation involves generating unique
value for each thread (e.g., a thread id). GPU 12, through control unit 72, would then
be configured to loop through all threads, selecting only a single thread (by Thread ID)

WO 2015/167777 PCT/US2015/025362

18
for each iteration of the loop. Example pseudocode for such an operation is shown

below:

For (1=0;1) // 1 may represent the total number of threads in a wave

{ if (thread id ==1) {perform serialized operation} }

[0069] The above approach requires additional testing and test variables, as well forcing
a loop iteration even for those threads that might be inactive. This is both inefficient in
resources and time.

[0070] In view of these drawbacks, this disclosure proposes techniques for performing
serialized operations in a parallel processing system (e.g., a SIMD processing system).
In examples below, this disclosure describes an instruction (e.g., a hardware-executed
instruction) whereby an active thread from a plurality of threads may be selected to
perform a serialized operation, without the need to access any inactive threads.

[0071] The solution proposed is in this disclosure is a “GetOne” instruction
(GetOne and branch()) that may be executed by control unit 72 of GPU 12. Control
unit 72 may configured to select a single active thread out of a plurality of threads (e.g.,
the threads in wave) for execution. Control unit 72 may determine which threads are
currently active using the active flag stored by control flow module 94. Once the single
active thread is selected, all other active threads in the wave may execute a branch
condition, while the selected thread performs a divergent operation (e.g., the serial
operation). The “GetOne” instruction can be then used to execute a serial operation as

shown by the following pseudo code:

LOOP: GetOne_and_branch TRY AGAIN
{perform serialized operation}
goto CONTINUE

TRY AGAIN: goto LOOP

CONTINUE

[0072] In the example above, control unit 72 is initially instructed to go to the LOOP
nstruction of the code. The LOOP instruction includes the “GetOne” instruction
(GetOne_and_branch) that selects a single active thread from a plurality of active

threads (e.g., a wave) and proceeds to the serial instruction ({perform serialized

WO 2015/167777 PCT/US2015/025362

19
operation}) and then exits the control block (goto CONTINUE) and goes inactive.
Unselected threads perform the branch instruction of the GetOne and_branch
instruction. In the above example, the branch instruction is a “TRY_ AGAIN”
instruction, which essentially sends all unselected active threads back to the Loop
instruction. Then, another of the remaining active threads may be selected to perform
the serialized operation.
[0073] The mechanism of the “GetOne” instruction allows for efficient serialization
within a wave without additional variables and without requiring a loop iteration for
inactive threads. The techniques of this disclosure take advantage of the fact that the
parallel threads within a wave already have some level of synchronization due to their
shared single instruction. In this way, the “GetOne” instruction of this disclosure allows
for one active thread to be selected for serial operation, while simultaneously making all
other active threads inactive.
[0074] FIG. 4 is a flow diagram showing the serialized operation techniques of this
disclosure in more detail. Initially, control unit 72 of GPU 12 may receive a “GetOne”
instruction (100). In response to the “GetOne” instruction, control unit 72 is configured
to determine which threads in a plurality of threads (e.g., a wave) are active (102). In
one example, control unit 72 may be configured to read an active flag associated with
cach of the threads to determine which threads are active. If control unit 72 determines
that no active threads are remaining (103), the control block ends (return 112).
[0075] If control unit 72 determines that there are active threads remaining (103),
control unit 72 may then select one active thread of the plurality of threads (104). The
selected thread (YES of 106) then performs the serial operation (108) on one of
processing elements 74. After the serial operation is performed, the selected active
thread is deactivated (110). The remaining active threads that are not selected may be
looped back to the “Get One” instruction (NO of 106).
[0076] GPU 12 configured to execute the “GetOne” instruction for serial execution
described above, may also be configured to use the “GetOne” instruction to split a
single wave that exhibits divergence into multiple sub-waves, each of which may be
uniform. Suppose an example where it is desirable to perform a (possibly divergent)
subroutine call. That is, a situation where only a portion of the threads in the wave are
to perform the subroutine. One conventional technique for executing a divergent

subroutine involves executing each thread uniquely. This may be inefficient.

WO 2015/167777 PCT/US2015/025362

20
[0077] Instead, GPU 12 may be configured to execute the “GetOne” instruction to store
a subroutine in a shared register that may then be executed by all threads having access
to the shared register (i.e., processing elements 74 that have access to the shared
register). The shared register may be part of data store 78, instruction store 76, or other
memory available to processing elements 74.
[0078] Using the “GetOne” instruction and the shared register, GPU 12 may be
configured to select a subroutine target (i.e., a location where subroutine instructions are
stored) using the “GetOne” instruction, broadcast that target to all threads (i.e., provide
an indication that a subroutine location is stored in a shared register), and execute the
subroutine on all matching threads (i.c., execute the subroutine on processing elements
74 having access to the shared register). This process may then be repeated for other
threads having access to different shared registers. Example pseudocode for this

process is shown below.

LOOP: GetOne and branch CONTINUEI1

shared RO = subroutine target //store target in a 'shared' register

CONTINUET: if (subroutine target == shared RO)

{ call(subroutine target)
goto CONTINUE2
}
goto LOOP
CONTINUE2:

[0079] Initially, control unit 72 would proceed to the LOOP section of the code and
execute the “GetOne” instruction as previously described. The “GetOne” instruction
selects one active thread to perform an operation. In the example above, a selected
active thread would perform an operation that stores the address of a location
(subroutine_target) in a shared register (shared R0). Any active threads that were not
selected would perform the CONTINUEI operation. In the CONTINUE] operation,
cach thread (i.e., processing element 74) having access to shared register shared RO
executes the code located at subroutine target and exits the control block at
CONTINUE 2. If any non-selected active threads do not have access to the shared

register, the non-selected active threads returns to the loop operation, where another

WO 2015/167777 PCT/US2015/025362

21
sub-routine call may be stored in a different shared register. Again, as with the example
of serial operation, any inactive threads are skipped and the minimal number of unique
subroutine calls is made.
[0080] FIG. 5 is a flowchart illustrating an example method of the disclosure. The
techniques of FIG. 5 may be implemented by GPU 12, including control unit 72 of
GPU12. In one example of the disclosure, GPU 12 is configured to perform a method
of performing divergent operations on a multi-threaded processor. GPU 12 may be
configured to determine one or more active threads from a plurality of threads (152),
select one active thread from the one or more active threads (154), and perform a
divergent operation on the selected active thread (156).
[0081] In one example of the disclosure, the multi-threaded processor is a SIMD
processor. In another example of the disclosure, the plurality of threads form a wave,
wherein the wave is executed by the SIMD processor in parallel.
[0082] In another example of the disclosure, GPU 12 is configured to perform the
divergent operation on the selected active thread by performing a serialized operation on
the selected active thread. In another example of the disclosure, the divergent operation
stores a sub-routine target in a shared register, and GPU 12 is further configured to
execute code stored at the sub-routine target on the one or more active threads having
access to the shared register.
[0083] The techniques described in this disclosure may be implemented, at least in part,
in hardware, software, firmware or any combination therecof. For example, various
aspects of the described techniques may be implemented within one or more processors,
including one or more microprocessors, digital signal processors (DSPs), application
specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or any
other equivalent integrated or discrete logic circuitry, as well as any combinations of
such components. The term “processor” or “processing circuitry” may generally refer
to any of the foregoing logic circuitry, alone or in combination with other logic circuitry,
or any other equivalent circuitry such as discrete hardware that performs processing.
[0084] Such hardware, software, and firmware may be implemented within the same
device or within separate devices to support the various operations and functions
described in this disclosure. In addition, any of the described units, modules or
components may be implemented together or separately as discrete but interoperable
logic devices. Depiction of different features as modules or units is intended to

highlight different functional aspects and does not necessarily imply that such modules

WO 2015/167777 PCT/US2015/025362

22
or units must be realized by separate hardware or software components. Rather,
functionality associated with one or more modules or units may be performed by
separate hardware, firmware, and/or software components, or integrated within common
or separate hardware or software components.
[0085] The techniques described in this disclosure may also be stored, embodied or
encoded in a computer-readable medium, such as a computer-readable storage medium
that stores instructions. Instructions embedded or encoded in a computer-readable
medium may cause one or more processors to perform the techniques described herein,
¢.g., when the instructions are executed by the one or more processors. Computer
readable storage media may include random access memory (RAM), read only memory
(ROM), programmable read only memory (PROM), erasable programmable read only
memory (EPROM), electronically erasable programmable read only memory
(EEPROM), flash memory, a hard disk, a CD-ROM, a floppy disk, a cassette, magnetic
media, optical media, or other computer readable storage media that is tangible.
[0086] Computer-readable media may include computer-readable storage media, which
corresponds to a tangible storage medium, such as those listed above. Computer-
readable media may also comprise communication media including any medium that
facilitates transfer of a computer program from one place to another, e.g., according to a
communication protocol. In this manner, the phrase “computer-readable media”
generally may correspond to (1) tangible computer-readable storage media which is
non-transitory, and (2) a non-tangible computer-readable communication medium such
as a transitory signal or carrier wave.
[0087] Various aspects and examples have been described. However, modifications can
be made to the structure or techniques of this disclosure without departing from the

scope of the following claims.

WO 2015/167777 PCT/US2015/025362

23
WHAT IS CLAIMED IS:

1. A method of performing divergent operations on a multi-threaded processor, the
method comprising:

determining one or more active threads from a plurality of threads;

selecting one active thread from the one or more active threads; and

performing a divergent operation on the selected active thread.

2. The method of claim 1, wherein the multi-threaded processor is a single

instruction multiple data (SIMD) processor.

3. The method of claim 2, wherein the plurality of threads form a wave, wherein

the wave is executed by the SIMD processor in parallel.

4. The method of claim 1, wherein performing the divergent operation on the
selected active thread comprises performing a serialized operation on the selected active

thread.

5. The method of claim 1, wherein performing the divergent operation comprises
storing a sub-routine target in a shared register, the method further comprising:
executing code stored at the sub-routine target on the one or more active threads

having access to the shared register.

6. An apparatus configured to perform divergent operations, the apparatus
comprising:
a multi-threaded processor comprising:

a control unit configured to determine one or more active threads from a
plurality of threads, and to select one active thread from the one or more active threads;
and

a plurality of processing elements, wherein one processing element of the
plurality of processing elements associated with the selected active thread is configured

to perform a divergent operation.

WO 2015/167777 PCT/US2015/025362

24
7. The apparatus of claim 6, wherein the multi-threaded processor is a single

instruction multiple data (SIMD) processor.

8. The apparatus of claim 7, wherein the plurality of threads form a wave, wherein

the wave is executed by the SIMD processor in parallel.

9. The apparatus of claim 6, wherein the processing element associated with the

selected active thread is configured to perform a serialized operation.

10. The apparatus of claim 6, wherein the divergent operation stores a sub-routine
target in a shared register, and wherein the plurality of processing elements are further
configured to execute code stored at the sub-routine target on any processing elements
of the plurality of processing elements that are associated with the one or more active

threads and that have access to the shared register.

11. An apparatus configured to perform divergent operations on a multi-threaded
processor, the apparatus comprising:
means for determining one or more active threads from a plurality of threads;
means for selecting one active thread from the one or more active threads; and

means for performing a divergent operation on the selected active thread.

12. The apparatus of claim 11, wherein the multi-threaded processor is a single

instruction multiple data (SIMD) processor.

13. The apparatus of claim 12, wherein the plurality of threads form a wave, wherein

the wave is executed by the SIMD processor in parallel.

14. The apparatus of claim 11, wherein the means for performing the divergent
operation on the selected active thread comprises means for performing a serialized

operation on the selected active thread.

WO 2015/167777 PCT/US2015/025362

25
15. The apparatus of claim 11, wherein the divergent operation stores a sub-routine
target in a shared register, the apparatus further comprising:
means for executing code stored at the sub-routine target on the one or more

active threads having access to the shared register.

16. A multi-threaded processor configured to perform divergent operations, the
multi-threaded processor comprising:

a control unit configured to determine one or more active threads from a
plurality of threads, and to select one active thread from the one or more active threads;
and

a plurality of processing elements, wherein one processing element of the
plurality of processing elements associated with the selected active thread is configured

to perform a divergent operation.

17. The multi-threaded processor of claim 16, wherein the multi-threaded processor

is a single instruction multiple data (SIMD) processor.

18. The multi-threaded processor of claim 17, wherein the plurality of threads form

a wave, wherein the wave is executed by the SIMD processor in parallel.

19. The multi-threaded processor of claim 16, wherein the processing element
associated with the selected active thread is configured to perform a serialized

operation.

20. The multi-threaded processor of claim 16, wherein the divergent operation stores
a sub-routine target in a shared register, and wherein the plurality of processing
elements are further configured to execute code stored at the sub-routine target on any
processing elements of the plurality of processing elements that are associated with the

one or more active threads and that have access to the shared register.

WO 2015/167777 PCT/US2015/025362

Page1/5
10
=
TRANSCEIVER USER |
MODULE INTERFACE | D'SGP(;'AY |
64 62 | = |
e e e
A
— e — e] ————————— —— — — — — — 1
| |
| |
Il PrOCESSOR GPU |
I 16 - 12 |
| |
| |
|

SYSTEM MEMORY
14

FIG. 1

PCT/US2015/025362

WO 2015/167777

Page2/5

8.
FHO1S
viva

¢ '9Old

aos

arl
ILNEIERE

ONISS3O0¥d

098 @ 898 @

o] 71
ILNEIERE

ONISS3O0dd

ars
IN3IW3T3
ONISS3O0¥d

V98

vgd

471
ILNEIERE

ONISS3O0¥d

97
FHO1S
NOILON™LSNI

08

N\

V (42

L1INN TOYLINOD

X

¢l

PCT/US2015/025362

WO 2015/167777

Page 3/5

8z
FHO01S vivd

Va4

vz
SIN3INW313
ONISS3O0dd

97
FHO1S
NOILON™LSNI

08

N7

28

26

06

ITNAON [«— 3ITNAON
34093a HO134

!

i

N7

ved

¥6

88

JTNAON e YILNNOD
MO14 WYY90dd

TO™ULNOD

[4)
L1INN TOHULNOD

€ Old

WO 2015/167777 PCT/US2015/025362

Page4/5

— | <GeToNe” |[100

INSTRUCTION

l

DETERMINE f102
ACTIVE
THREADS

103

NO f1 12
RETURN

ACTIVE
THREADS
REMAINING?

SELECT ONE f104
ACTIVE
THREAD

SELECTED
THREAD?

PERFORM I1 08
SERIAL
OPERATION

l

DEACTIVATE
THREAD

110
I

FIG. 4

WO 2015/167777

Page 5/5

PCT/US2015/025362

DETERMINE ONE OR MORE ACTIVE
THREADS FROM A PLURALITY OF
THREADS

152
f

'

SELECT ONE ACTIVE THREAD FROM THE
ONE OR MORE ACTIVE THREADS

154
f

l

PERFORM A DIVERGENT OPERATION ON
THE SELECTED ACTIVE THREAD

156
f

FIG. 5

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/025362

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/38
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X US 2011/078690 Al (FAHS BRIAN [US] ET AL) 1-20
31 March 2011 (2011-03-31)

paragraph [0056] - paragraph [0057]
paragraph [0062] - paragraph [0081];
figures 5A,5B

X US 7 634 637 B1 (LINDHOLM JOHN ERIK [US] 1-20
ET AL) 15 December 2009 (2009-12-15)
column 20, line 52 - column 22, line 24
A US 6 947 047 B1 (MOY SIMON [US] ET AL) 1-20
20 September 2005 (2005-09-20)

column 5, line 26 - column 6, line 43
column 15, line 19 - line 54

See patent family annex.

D Further documents are listed in the continuation of Box C.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance

"E" earlier application or patent but published on or after the international

- "X" document of particular relevance; the claimed invention cannot be
filing date

considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

22 June 2015

Date of mailing of the international search report

30/06/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Moraiti, Marina

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/US2015/025362
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2011078690 Al 31-03-2011 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - wo-search-report
	Page 34 - wo-search-report

