Office de la Propriete Canadian CA 2443049 A1 2005/03/26

Intellectuelle Intellectual Property
du Canada Office (21) 2 443 049
v organisme An agency of 12 DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada CANADIAN PATENT APPLICATION
(13) A1
(22) Date de depot/Filing Date: 2003/09/26 (51) CL.Int.”/Int.CI.” GOBF 9/45
(41) Mise a la disp. pub./Open to Public Insp.: 2005/03/26 (71) Demandeur/Applicant:

IBM CANADA LIMITED - IBM CANADA LIMITEE, CA

(72) Inventeurs/Inventors:
SUNDARESAN, VIJAY, CA;
SHEIKH, ALI I., CA

(74) Agent: SAUNDERS, RAYMOND H.

(54) Titre : METHODE D'OPTIMISATION DE PROGRAMME INFORMATIQUE DANS UN ENVIRONNEMENT DE

COMPILATION DYNAMIQUE
54) Title: METHOD FOR COMPUTER PROGRAM OPTIMIZATION IN A DYNAMIC COMPILING ENVIRONMENT

[| SEMANTIC
SCANNER | »| PARSER PO
/ 204 —

202"
200 208 206
S = N
MACHINE CODE
CODE |« OPTIMIZATION f¢——m——
GENERATOR MECHANISM
00 212N
CLASS DYNAMIC CONTROL
| HIERARCHY | CODE STATIC CODE MECHANISM
. ..d OPTIMIZATION | 22
CONSTRUCTION || OPTIMIZATION [| "y v oo LVI —
MECHANISM MECHANISM RTUAL
CALLS]
23 DETECTION
250 MECHANISM ||
16 T 226
2
N| EFFECIED VIRTUAL CALL
CODE TIMIZATION . CALL GRAPH
OPTIMIZATION _PME crianTsn | CONSTRUCTION
MECHANISM MECHANISM |
—t I
—
218, —
ASSUMPTION ASSUMPTION CHECK CHECK
OPTIMIZATION |~ MAINTENANCE }~| PLACEMENT |~ MAINTENANCE
MECHANISM MECHANISM MECHANISM MECHANISM
2347 236 T — 0
GUARD
INSERTION
MECHANISM |
222 7
124 J

(57) Abréegée/Abstract:
Dynamically compiled computer program code containing virtual calls can reduce the options for optimization during compilation. A

virtual call can affect sections of the program code that are compiled subsequent to the virtual call. Therefore, the state under which
the effected sections are to be executed may not be known at the time of compilation thus complicating optimization of these
sections. If assumptions are made about the state of an effected section, then this section can be optimized. In order to provide
proper operation of the executing program code given the optimization, a check of the validity of the assumptions Is performed prior
to execution of the optimized section. If an assumption does not hold true then the original un-optimized section can be executed to

reduce adverse program performance.

AR .
ey . RN
et '\'l'.'.
AU ¥,
e [[[4
N
A

C an a d a http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

10

CA 02443049 2003-09-26

ABSTRACT

Dynamically compiled computer program code containing virtual calls can reduce the
options for optimization during compilation. A virtual call can affect sections of the
program code that are compiled subsequent to the virtual call. Therefore, the state under
which the effected sections are to be executed may not be known at the time of
compilation thus complicating optimization of these sections. If assumptions are made
about the state of an effected section, then this section can be optimized. In order to
provide proper operation of the executing program code given the optimization, a check
of the validity of the assumptions is performed prior to execution of the optimized
section. If an assumption does not hold true then the original un-optimized section can

be executed to reduce adverse program performance.

CA9-2003-0083 24

CA 02443049 2003-09-26

IBM CONFIDENTIAL AND PRIVILEGED

Patent Application
Title | Method for Computer Program Optimization in a Dynamic
Compilation Environment L
5 Vijay Sundaresan
FIRST DRAFT (SEP 15, 2003); FINAL (SEP 23,2003)
10 | IBM Reference No.:CA9-2003-0083 | Firm: Kirby Eades Gale

| Baker
' Ref. N0.:49757

| Agents: Shannon Beech/
Robert Feutlinske

15

Comments:

20

CA9-2003-0083 23

10

15

20

25

30

CA 02443049 2003-09-26

METHOD FOR COMPUTER PROGRAM OPTIMIZATION IN A DYNAMIC
COMPILATION ENVIRONMENT

FIELD OF THE INVENTION

The present invention relates to the field of optimizing computer program code during

dynamic compiling thereof.

BACKGROUND OF THE INVENTION

Object-oriented programming languages organize ideas by classes, which are data
structures composed of both variables and methods. Certain object-oriented
programming languages, such as Java, may enable one class to be built upon or extended
by another class (subclass) which inherits the features of the class that is being built
upon. In addition to acquiring features, the subclass can override methods defined in the
acquired features; thus, there can be multiple classes that define a method with the same
name but with different functionality. In such a case, the method carried out depends on
the class of the of the object (i.e. class representation) that receives the call for execution
of the method. As aresult, such a method call is not static as it may not be known during
compiling of the computer program code which class will actually call the method; thus

such a method call is considered to be a virtual call.

Computer program code is compiled for implementation, which involves reading the
program code, analyzing the semantic form for errors, optimizing the code to reduce cost
during execution and translating the code into a language suitable for execution. During
compiling, the definition of classes are incorporated into the compiled code as they are
encountered. During the optimizing stage, code is simplified to reduce execution time
using known techniques such as trying to present the code in static form by converting
virtual calls to direct method calls. Such known techniques generally attempt to perform
whole program analysis where all relationships between classes (represented by a class

hierarchy) and all relationships between methods (represented by call graphs) are known.

The computer program code may be compiled such that new classes may be dynamically

CA9-2003-0083 1

10

15

20

25

30

CA 02443049 2003-09-26

incorporated during execution and the methods from the newly incorporated classes may
be carried out. In this case, the class hierarchy and call graphs can change between
compiling and execution. The effect of this may be, for example, that variables are
altered during execution of the program code by a class that was not incorporated when a
particular method was compiled. Further, classes are only known after they have been
incorporated. Thus, known techniques based on an assumption of a static class hierarchy
and static call graphs are not valid for computer program code that is dynamically

compiled.

SUMMARY OF THE INVENTION

In accordance with an aspect of the present invention there is provided in a dynamic
compiling environment, a method of optimizing computer program code having a virtual
call that produces unpredictable effects, said method comprising: identifying a section of
the computer program code whose associated state is unpredictable as a result of the
virtual call; optimizing the section based on a set of assumptions about the associated
state; and creating a test in the section for validity of the set of assumptions to activate

the optimized section if the set of assumptions is valid.

In accordance with another aspect of the present invention there is prdvided in an
execution environment having a dynamic compiler and an operating environment for
execution of computer program code, a method of optimizing the computer program code
having a virtual call that produces unpredictable effects, said method comprising:
1dentifying a section of the computer program code whose associated state is
unpredictable as a result of the virtual call; optimizing the section based on a set of
assumptions about the associated state; creating a test in the section for validity of the set
of assumptions to activate the optimized section if the set of assumptions is valid: and
monitoring the associated state of the section during execution of the computer program

code to maintain a watch on the validity of the set of assumptions.

In accordance with yet another aspect of the present invention there is provided a system

for optimizing a computer program code having a virtual call that produces unpredictable

CA9-2003-0083 2

10

13

20

25

30

CA 02443049 2003-09-26

effects in an execution environment having a dynamic compiler and an operating
environment, said system comprising: a plurality of optimization mechanisms each
performing a different type of optimization, each mechanism comprising: an
identification mechanism for identifying a section of the computer program code
according to the type optimization performed by the optimization mechanism, the section
having an associated state that is unpredictable as a result of the virtual call; a section
optimization mechanism for optimizing the section based on a set of assumptions about
the associated state; a test mechanism for creating a test in the section for validity of the
set of assumptions to activate the optimized section if the set of assumptions are valid; a
data storage containing an indication of the associated state for the section and the result
of the associated state on the validity of the set of assumptions; and a monitoring
mechanism for monitoring the associated state and updating the indication of the
associated state in the data storage to maintain a check of the validity of the assumptions

during execution of the computer program code.

In accordance with a further aspect of the present invention there is provided a computer
readable medium having stored thereon computer-executable instructions for optimizing
computer program code having a virtual call that produces unpredictable effects in a
dynamic compiling environment, said computer-executable instructions comprising:
1identifying a section of the computer program code whose associated state is
unpredictable as a result of the virtual call; optimizing the section based on a set of
assumptions about the associated state; and creating a test in the section for validity of

the set of assumptions to activate the optimized section if the set of assumptions is valid.

In accordance with an aspect of the present invention there is provided a computer
readable medium having stored thereon computer-executable instructions for optimizing
the computer program code having a virtual call that produces unpredictable effects in an
execution environment having a dynamic compiler and an operating environment for
execution of computer program code, said computer-executable instructions comprising:
identifying a section of the computer program code whose associated state is

unpredictable as a result of the virtual call; optimizing the section based on a set of

CA9-2003-0083 3

10

15

20

25

30

CA 02443049 2003-09-26

assumptions about the associated state; creating a test in the section for validity of the set
of assumptions to activate the optimized section if the set of assumptions is valid; and
monitoring the associated state of the section during execution of the computer program

code to maintain a check of the validity of the set of assumptions.

Dynamically compiled computer program code containing virtual calls can reduce the
options for optimization during compilation. The virtual call can affect sections of the
program code that are compiled subsequent to the virtual call. Therefore, the state under
which the effected sections are to be executed may not be known at the time of
compilation thus complicating optimization of these sections. If assumptions are made
about the state of an effected section, then this section can be optimized. In order to
provide proper operation of the executing program code given the optimization, a check
of the validity of the assumptions is performed prior to execution of the optimized
section. If the assumption does not hold true then the original un-optimized section can

be executed to reduce adverse program performance.

Other aspects and features of the present invention will become apparent to those
ordinarily skilled in the art upon review of the following description of specific

embodiments of the invention in conjunction with the accompanying figures.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be described in conjunction with the drawings in which:
Fig. 1 1s a system diagram of an exemplary computing environment suitable for
implementation of the present invention;

Fig. 2 is a system diagram of a compiler according to an embodiment of the present
invention; and

Fig. 3 1s a flow diagram for an optimization method in the presence of virtual call

according to an embodiment of the present invention.

DETAILED DESCRIPTION

Fig. 1 and the associated description represent an example of a suitable computing

CA9-2003-0083 4

10

15

20

25

30

CA 02443049 2003-09-26

environment 100 m which the present invention may be implemented. The computer 100
has different layers of functionality that are built on top of each other to cooperatively
operate. A hardware layer 102 includes the hardware resources in the computer 100.
The operating system layer 104 runs in conjunction with the hardware layer 102 and
interconnects the hardware layer 102 with a software layer 106. The software layer 106

contains the functionality with which a user interacts.

The hardware layer 102 contains the physical components of the computer 100 and

includes a central processing unit (CPU) 108, a memory 110, an input/output interface
114 and a bus 112. The CPU 108, the memory 110 and the input/output interface 114 are
connected with one another via the bus 112. The input/output interface 114 is configured

so that it can be connected to an input/output unit 116.

The CPU 108 can be a commercially available CPU or a customized CPU suitable for
operations described herein. Other variations of the CPU 108 can include a plurality of
CPUs interconnected to coordinate various operations and functions. The computer 100
serves as an apparatus for performing the present method by the CPU 108 executing the

present 1nvention.

The operating system layer 104 includes an operating system 118 that interfaces with the
physical components in the hardware layer 102. The operating system 118 may reside in
the memory 110, be executed by the CPU 108 and take advantage of the bus 112 to

interact with other components in the hardware layer 102,

The software layer 106 includes an execution environment 120 that transforms program
code 122 supplied by a user into a form that can be executed by the computer 100. The
execution environment 120 includes a compiler 120 that accepts the program code 122
and translates it into an intermediate form. A virtual machine 126 in the execution
environment 120 includes an interpreter 128 that obtains the intermediate form of the
program code 122 and interfaces with the operating system 118 to interpret the code for

execution on the computer 100 through interactions with components in the hardware

CA9-2003-0083 3

10

15

20

25

30

CA 02443049 2003-09-26

layer 102. The virtual machine 126 acts as a separate operating environment for
execution of the computer program code 122 and keeps track of the state of the program

code 122 during execution.

The present invention is incorporated in the compiler 124 which may be embodied in a
program stored 1n, for example, the memory 110. Alternatively, the present invention
may be recorded on any type of recording medium such as a magnetic disk or an optical
disk. The present invention recorded on such a recording medium may be loaded to the

memory 110 of the computer 100 via the input/output unit 116 (e.g. a disk drive).

Fig. 2 illustrates a system diagram of the compiler 124 according to an embodiment of
the present invention. The compiler 124 includes a scanner 200, a parser 202, a semantic
analyzer 204, a code optimization mechanism 206 and a machine code generator 208.
The scanner 200 scans the program code 122 to create a character string with the
characters of the program code 122 according to techniques known in the art. The parser
202 then analyzes the character string to decipher complete words or commands (tokens)
from the character string according to techniques known in the art. These tokens are then
passed to a semantic analyzer 204 that assesses the validity of the syntax of the program
code 122 given a set of rules that are specific to the format or language of the program
code 122. After the syntax has been assessed, and deemed acceptable, the tokens are
interpreted by the semantic analyzer 204 to determine their meaning (e.g. the functions to
be performed, the variables, etc.). Interpretation of the tokens gives meaning to the
program code 122 for the code optimization mechanism 206 and the machine code

generator 208. The semantic analyzer 204 performs its analysis according to known

techniques.

The program code 122 is provided to the code optimization mechanism 206 from the
semantic analyzer 204 where the code can be optimized to enhance its execution
characteristics, such as execution time, number of resources used, etc. After the code has
been optimized it is provided to a machine code generator 208 where the code is

translated according to known techniques into the intermediate form that can be

CA9-2003-0083 6

.~ - L LR e W VN —

10

15

20

23

30

CA 02443049 2003-09-26

interpreted for execution in the interpreter 128 in conjunction with the components of the

hardware layer 102.

The code optimization mechanism 206 includes a dynamic code optimization mechanism
210, a static code optimization mechanism 212, a class hierarchy construction
mechanism 230, and a control mechanism 232. The control mechanism 232 coordinates
optimization of the program code 122 between the class hierarchy construction
mechanism 230, the dynamic code optimization mechanism 210 and the static code
optimization mechanism 212. The control mechanism 232 has the class hierarchy
construction mechanism 230 search through the program code 122 at the beginning of the
optimization process to identify all class definitions therein. A class hierarchy is created
by the class hierarchy construction mechanism 230 based on the identified class

definitions in the program code 122.

The static code optimization mechanism 212 performs optimizations using known
techniques on those sections of the program code 122 that have a static class hierarchy
and a static call graph and will not change after compiling (e.g. where there are no virtual
calls). The dynamic code optimization mechanism 210 performs optimizations on those
sections of the program code 122 that are dynamic and may change after the program
code 122 has been compiled or may be effected by such changes. The dynamic code
optimization mechanism 210 includes a virtual call optimization mechanism 214 and an

etfected code optimization mechanism 216.

The control mechanism 232 includes a virtual calls identification mechanism 228. The
virtual calls identification mechanism 228 analyzes each method call in the program code
122 to assess if it is a virtual call. In this manner the control mechanism 232 can identify
a method call as being either static or dynamic. On the basis of this information the
control mechanism 232 may activate the dynamic code optimization mechanism 210 in

addition to the static code optimization mechanism 212 if there are virtual calls present in

the program code 122.

CA9-2003-0083 7

10

15

20

235

30

CA 02443049 2003-09-26

Although only two optimization mechanisms are shown in the code optimization
mechanism 216 (i.e. the dynamic code optimization mechanism 210 and the static code
optimization mechanism 212), this is for simplicity of illustration purposes. The static
code optimization mechanism 212 may be composed of a plurality of mechanisms, each
of which performs a different optimization on sections fo the program code 122 that are
static. Each of the plurality of mechanisms that comprise the static code optimization
mechanism 212 may be performed serially on the program code 122. Thus, each

optimization is performed one by one.

Similarly, the dynamic code optimization mechanism 210 is shown to have only two
optimization mechanisms (1.€. the virtual call optimization mechanism 214 and the
effected code optimization mechanism 216). Where more than one technique for
optimizing virtual calls 1s used, there may be a separate virtual call optimization
mechanism 213 for each technique. In the case of the effected code optimization
mechanism 216, there is a separate mechanism for each type of optimization that is to be

performed on a section of the program code 122 that is effected by the virtual call.

Each of the separate mechanisms for the static and dynamic code optimizations are able
to detect sections of the program code 122 that can be optimized according to the specific
technique implemented by the mechanism . This may be accomplished by identifying

keywords, functions, etc. in the section.

The effected code optimization mechanism 216 may run serially after the virtual call
optimization mechanism 214. Alternatively, each of the effected code optimization
mechanisms 216 may have a corresponding static code optimization mechanism 212
where the static code optimization mechanism 212 performs the optimization when a
virtual call does not affect the program code 122 and the effected code optimization
mechanism 216 performs the same optimization when a virtual call does affect the code
122. In the latter case, the static code optimization mechanism 212 may detect the

section of code 122 to be optimized but may also detect that a prior virtual call affects

this section. The static code optimization mechanism 212 then activates the appropriate

CA9-2003-0083 8

10

15

20

23

30

CA 02443049 2003-09-26

effected code optimization mechanism 216 to perform the optimization. Alternatively,
the static code optimization mechanism 212 may set a flag to activate the effected code
optimization mechanism 216 to perform optimization after the virtual call optimization

mechanism 214 i1s done.

The virtual call optimization mechanism 214 searches the program code 122 to try to
identify and optimize virtual calls (possibly having specific characteristics) according to
known techniques. The virtual call optimization mechanism 214 includes a call graph
construction mechanism 226 which builds a call graph for an identified virtual call based
on the methods that can be reached from the method 1n the virtual call since these are the
methods that may be effected by the dynamic character of the virtual call method. The
virtual call optimization mechanism 214 may try to remove the virtual characteristic from
the method call by assessing which object(s) will likely call the method based on the
class hierarchy previously created. As a fail-safe, the viriual call optimization
mechanism 214 may insert a section of code around the virtual call to enable the virtual
call to be activated only when a certain criteria fails. This criteria 1s based on the
assumption used to remove the virtual characteristic from the method call and enables the

program to be properly executed if the assumption does not hold true.

The etfected code optimization mechanism 216 performs optimizations on those sections
of the program code 122 that are effected by a virtual call. The effected code
optimization mechanism 216 includes an assumption optimization mechanism 234, an
assumption maintenance mechanism 236, a check maintenance mechanism 220 and a

check placement mechanism 218.

Each of the etfected code optimization mechanisms 216 optimizes sections of the
program code 122 that are not a virtual call but may be effected by a virtual' call. The
etfected code optimization mechanism 216 may include a pre-determined list of
characteristics of sections of program code 122 that are effected by virtual calls against
which the received section can be compared. Alternatively, the effected code

optimization mechanism 216 may consider any section of code that cannot be optimized

CA9-2003-0083 9

10

15

20

25

30

CA 02443049 2003-09-26

by the static code optimization mechanism 212 due to a dynamic call to be an effected
section of the program code 122, or any section that requires assumptions to be made

about the state of the class hierarchy and the call graph.

The assumption optimization mechanism 234 makes assumptions about the state of the
class hierarchy, the call graph and other indications of the state as appropriate (e.g. class
hierarchy and call graph are assumed to be static), and optimizes the effected section of
the program code 122. The assumptions made by the assumption optimization
mechanism 234 are communicated to the check placement mechanism 218. The check
placement mechanism 218 assesses the assumptions made for the optimization and
inserts an assumption check instruction prior to the effected section of the program code
122 that enables the original un-optimized section of the program code 122 to be used
when the assumptions made are not valid. Thus, the program operates normally when the
assumptions are false. The check maintenance mechanism 220 maintains information
regarding the effects of the virtual call and the assumptions made by the assumption

optimization mechanism 234.

The assumption maintenance mechanism 236 interacts with the execution environment
120 to establish a data structure for maintaining the current status of the assumption(s)
during execution of the program code 122. The data structure may indicate, for example,
if the class hierarchy has changed and if a call graph for a given virtual call has changed.
Upon compiling and making the assumptions, the assumption maintenance mechanism

236 mitializes the data structure to indicate that there are no changes.

A corresponding environment assumption maintenance mechanism (not shown) may be
present in the execution environment 120 to monitor the assumption to determine when
changes occur. When a new class is loaded the environment assumption maintenance
mechanism updates the data structure to relay this information. At the same time the
methods reachable from each virtual call are analyzed to determine if the call graph has
changed and this information is also indicted in the data structure. The environment

assumption maintenance mechanism also determines if the newly loaded class overrides

CA9-2003-0083 10

10

15

20

23

30

CA 02443049 2003-09-26

any previously compiled methods, thus changing the call graph. Alternatively, the
environment assumption maintenance mechanism may check to see if any classes with
methods in the call graph have been extended or built upon by the newly incorporated

class and, if this 1s the case, assume that the call graph has changed.

The check placement mechanism 218 includes a guard insertion mechanism 222 for
inserting the assumption check into the program code 122. The guard insertion
mechanism 222 may insert the assumption directly (e.g. by checking a variable that may
be maintained to check the validity of the assumption) or through the used of a “no
operation” command. The “no operation” command may be inserted before the effected
section of the program code 122 and can be monitored by the check maintenance
mechanism 220. The location of the insertion of the “no operation” command is passed to

the check maintenance mechanism 220.

The check maintenance mechanism 220 keeps track of the assumptions made at each of
the locations at which a “no operations” command (e.g. NOP machine instruction) was
inserted. When the check maintenance mechanism 220 detects that the assumption made
during optimization is no longer valid then a command to direct flow (e.g. GOTO
command) of the program to the original section of the program code 122 replaces the

“no operation” command. This technique is commonly known as code patchng.

Fig. 3 1s a flow diagram illustrating a method 300 for optimizing the program code 122 in
a dynamic compilation environment where the class hierarchy and the call graph of the
program code 122 are not static. The program code 122 is searched in step 302 to create
the class hierarchy. Method calls in the program code 122 are detected in step 304 and

virtual method calls are identified in step 306.

If a virtual call is detected in step 306 then the dynamic optimizations are activated in
step 308 If no virtual calls are detected or after the dynamic optimizations have been
activated, the static optimizations are activated in step 310. The static optimizations are

then performed in step 312. If there was a section of program code 122 that is effected

CA9-2003-0083 11

10

15

20

25

30

CA 02443049 2003-09-26

by a virtual call as determined during static optimization, as detected in step 314, then the
eftected code optimizations are activated in step 316. A pre-determined list of
characteristics of sections of program code 122 that are effected by virtual calls may be
included for comparison with the received section. Alternatively, any section of code
that cannot be optimized by the static code optimization mechanism 212 due to a
dynamic call to be an effected section of the program code 122, or any section that
requires assumptions to be made about the state of the class hierarchy and the call graph

may be considered to be effected by the virtual call.

After the effected code optimizations are activated in step 316 or if no sections of the
program code 122 are effected by a virtual call as determined in step 314 then it is
determine din step 318 if the dynamic optimizations have been activated. If the dynamic
optimizations have been activated , a call graph is constructed for the method in step 320.

After the call graph is constructed for the virtually called method, the virtual call is

- optimized in step 322 and a check is inserted to ensure that the virtual call is performed if

assumptions made in optimizing the virtual call are false.

Atter the virtual call has been optimized it is determined in step 324 if the effected code
optimizations have been activated. If the effected code optimizations have been activated
then the etfected code is specifically optimized in step 326 by making assumptions about
the results of the virtual call. That is, a particular optimization is performed on the
program code 122 that is effected by a virtual call. The assumptions taken to optimize
the program code 122 are determined in step 328. A data structure in the execution
environment 120 that keeps track of the assurnptions is initialized in step 330 to reflect
the current state of the assumptions. A check of the validity of the assumptions, as

indicated by the data structure, is added to the program code 122 in step 332.

The check of the validity of the assumptions enables the original un-optimized section of
the program code 122 to be used when the assumptions made are not valid. Thus, the
program operates normally when the assumptions are false. The assumption check may

be placed in the program code 122 directly (e.g. by checking a variable that may be

CA9-2003-0083 12

10

15

20

25

30

CA 02443049 2003-09-26

maintained to check the validity of the assumption) or through the used of a “no
operation” command. The “no operation” command may be inserted before the effected
section of the program code 122. When it is detected that the assumption made during
optimization is no longer valid then a command to direct flow (e.g. GOTO command) of

the program to the original section of the program code 122 replaces the “no operation”

command.

After the specific optimization is complete (steps 326 to 332) then 1t is determined in step
334 11 there are other optimizations to effected program code 122 to be performed. If
there are other optimizations to be performed to effected code 122 then steps 326 to 334
are repeated until such other optimizations are complete. After the specific optimizations
are finished, or if there were no effected sections or virtual calls in the program code 122

to optimize, then the optimized program code is provided to the machine code generator

208 1n step 336.

There are various types of optimizations that may be effected by virtual calls. A brief
description of various exemplary optimizations and the use of the check performed on
effected code is described below. The following examples take advantage of
functionality found in the Java language; however, this should not be taken to limit the

present invention to the use of such language.

Example 1: Loop Invariants

The example below illustrates a case where the call to the method value in the method
CalculateTotal is virtual since the method defined in either class 4 or class B can be used
depending on the type of the array element a that is the receiver of the call. As a result of
this, the expression this.f (referring to the class variable J of the class receiving the call)
cannot be taken out of the loop for optimization (which would result in fewer of these

calls being made thus reducing time and resources for execution of the method) since it is

not known if the virtual call will modify this value.

class Af{
int

L4
M

|
n
g

CA9-2003-0083 13

10

15

20

23

30

35

40

CA 02443049 2003-09-26

int g = 10;

int value () {return this.f;}

int CalculateTotal (Al] a) 1
int total = 0;

for (int I=0; 1<100; I++) {
total = total +ali].value();
Total = total/this.f;}

}

class B extends A {
int value () {return this.g;}
return total; }

In the optimized example of the method CalculateTotal the virtual call 1s changed using
techniques known in the art and an assumption check is added to the expression this.f to

allow it to be taken out of the loop.

int CalculateTotal (A[] a) {
int total = 0;
t = this.f;
for {(int i=0; 1,100; 1++) {
if (invoked method == method value defined in
class A)
temp = afi1].f;

else
temp = ali1]l.valuel();

total = total + temp:

1if (assumption for method value == false)
t = this.f;

total = total/t;

}

return total; }

Example 2: Global Common Sub-expressions
The example below 1llustrates the case where a sub-expression calculation common to
multiple lines cannot be assumed to have the same result. In this case a virtual call

between the two common calculations means that a single calculation cannot be used

since the virtual call could cause a numerical change in one of the variables used in the

calculations.

tl = o.f + 5;

CA9-2003-0083 14

10

15

20

25

30

35

CA 02443049 2003-09-26

t2 = o.f + 5;

The optimized example below shows the virtual call remaining but the common sub-
expression has been moved before the virtual call and is only performed once. The
assumption check before the setting of the second variable using the common expression

ensures that the second variable 1s set correctly if the assumption is false.

temp = o.f ¥

tl = temp;

o.m{);

1f (assumption for method m == false)
temp = 0.f + 5;

t2 = temp;

Example 3: Global constant propagation

The example below illustrates the case where a variable value is set and then the variable
is called again after a virtual call. The variable is not directly changed in the code but
may be changed by the virtual call and thus the exact value of a second variable relying

on the previously set variable cannot be exactly determined.

f = 5;
.m() ;
1L = o.f + 5;

O O

The optimized example below shows the variable 7/ being set to a constant 10 when the

assumption that method m does not effect the variable o.f'is correct.

o.f = 5;

c.mf() ;

1f (assumption for method == false)
tl = o.f + 5;

else

tl = 10;

Example 4: Global type propagation

CA9-2003-0083 15

10

15

20

25

30

335

4()

CA 02443049 2003-09-26

The example below illustrates the case where there are multiple virtual calls that rely on
the results of each other. In this example, the virtual call m has two possible target

methods at compile time (from class A or class B).

class A { class B extend A {
A m() {return new A(); } A m() {return
new A(}; }
int ml() {return 5;} Int ml ()
{return
10:}
} }
A a=p;

A tl = a.m();
int tZ2 = tl.ml () ;

In the optimized example below the method m in class A and class B have been examined
and 1t has been noted that the 77 will always be of type 4. Given this deduction, the

virtual character of the call to #/ can be removed.

A a = p;

A tl = a.m();

1f (assumption for method m == false)
int t2 = tl.ml{();

else

int t2 = 5;

Example 5:De-synchronization

The example below illustrates a case where an object is twice locked and unlocked to

obtain two different variables in the object.

lock object
read object.fl;
unlock object

(Virtual call which does not modify object.f2)

lock object
read object.f2;

CA9-2003-0083 16

10

15

20

25

30

35

CA 02443049 2003-09-26

unlock object

In the optimized example below accessing fI and f2 can be performed within the same

lock procedure since the virtual call between accessing f/ and f2 does not modify /2.

lock object
read object.fl;
read obiject.f2;
unlock object

1f (call graph of virtual call changed)
lock object
read object.fZ;
unlock object

Example 6: De-synchronization using escape analysis

The example below illustrates a case where a newly created object ¢/ has not yet escaped
to another thread and the only escape point for the object ¢/ is the virtual call m. Thus,
synchronization is not required to access 7/ to prevent other threads from simultaneously
accessing t/. However, the virtual call m provides the possibility for ¢/ to escape to

another thread.

A tl = new A();
this.m(tl);
lock({(tl)
unliock(tl)

In the optimized example below, the synchronization (lock/unlock) of ¢ only needs to be
performed under certain circumstances, that is, where m has created a thread on which 7/

escapes.

A tl = new A{();

this.m(tl):;

1f (assumption for method m== false)
lock (tl)

1f (assumption for method m == false)
unlock (tl)

CA9-2003-0083 17

10

15

20

CA 02443049 2003-09-26

In the present invention program code that is effected by a virtual call can be optimized. ‘
A virtual call may be any method call in object-oriented program code where the class of
the object calling the method is not known thus creating uncertainty as to what method
will actually be called during execution of the program code. Further, class may be
dynamically incorporated into the program code producing unpredictability in the classes
incorporated in the program code. As a result of the virtual call, subsequent sections of
the program code may have an unpredictable state. That is, the class hierarchy, call
graph, numerical values of variables, etc., may not be predictable during compiling of the
program code due to virtual calls and dynamic class incorporation. If assumptions about
the state of an effected section are made then the section can be optimized if a check of
the assumptions is placed around the original un-optimized section to allow execution

thereof should the assumptions be false.

It should be apparent to one skilled in the art that the present invention can be used in
conjunction with any object oriented programming language in which classes may be
dynamically loaded during execution of program code and in which the execution

environment supports storing and maintaining assumption information as classes are
loaded.

It 1s apparent to one skilled in the art that numerous modifications and departures from
the specific embodiments described herein may be made without departing from the

spirit and scope of the invention.

CA9-2003-0083 18

10

15

20

23

30

CA 02443049 2003-09-26

CLAIMS:

1. In a dynamic compiling environment, 2 method of optimizing computer program
code having a virtual call that produces unpredictable effects, said method comprising:

identifying a section of the computer program code whose associated state is
unpredictable as a result of the virtual call;

optimizing the section based on a set of assumptions about the associated state;
and

creating a test in the section for validity of the set of assumptions to activate the

optimized section if the set of assumptions 1s valid.

2. The method according to claim 1, wherein the step of optimizing includes:
inserting the optimized section into the computer program code prior to the un-
optimized section '
and wherein the step of creating a test includes:
placing a test section into the computer program code prior to the optimized
section to determine if the set of assumptions is valid;
activating the optimized section if the set of assumptions is valid; and

activating the un-optimized section if the set of assumptions is invalid.

3. In an execution environment having a dynamic compiler and an operating
environment for execution of computer program code, a method of optimizing the
computer program code having a virtual call that produces unpredictable effects, said
method comprising:

1dentifying a section of the computer program code whose associated state is
unpredictable as a result of the virtual call;

optimizing the section based on a set of assumptions about the associated state:

creating a test in the section for validity of the set of assumptions to activate the
optimized section if the set of assumptions is valid; and

monitoring the associated state of the section during execution of the computer

program code to maintain a watch on the validity of the set of assumptions.

CA9-2003-0083 19

10

15

20

23

30

CA 02443049 2003-09-26

4. The method according to claim 3, wherein the step of optimizing includes:
inserting the optimized section into the computer program code prior to the un-
optimized section '
and wherein the step of creating a test includes:
placing a test section into the computer program code prior to the optimized
section to determine if the set of assumptions is valid;
activating the optimized section if the set of assumptions is valid; and

activating the un-optimized section if the set of assumptions is invalid.

5. The method according to claim 3, wherein the step of creating a test includes:
creating a monitoring data structure to maintain the status of the associated state
and the validity of the set of assumptions; and
initializing the monitoring data structure to indicate that the set of assumptions is

valid.

6. The method according to claim 5, wherein the step of monitoring the associated
state includes:

detecting a change 1n the associated state; and

updating the monitoring data structure according to the detected change in the

associated state.

7. The method according to claim 3, wherein the operating environment is a virtual
machine.
8. A system for optimizing a computer program code having a virtual call that

produces unpredictable etfects in an execution environment having a dynamic compiler
and an operating environment, said system comprising:

a plurality of optimization mechanisms each performing a different type of
optimization, each mechanism comprising:

an 1dentification mechanism for identifying a section of the computer

CA9-2003-0083 20

-, N A e - — AR T = = =

- p—— - . - ® PPN ORI . —
e N v —— e AWAY e A X Ii = "9”5-}"‘\\\! 2 ;i: “_ “i.'..”,lm§;',’n e GI“‘E‘_‘-"‘-‘.-J-M*\‘\V“—"'M“ . LIRS W R NN RUL T WA« g e T AWV g A A S e——— iy g Nl WS - -~ ~

=And VA ac s v S, v NDANS S K vy 4 P A iy e, W rir—"— . ey SN e ey A Oty n!

10

15

20

235

30

CA 02443049 2003-09-26

program code according to the type optimization performed by the
optimization mechanism, the section having an associated state that 1s
unpredictable as a result of the virtual call;
a section optimization mechanism for optimizing the section based on a
set of assumptions about the associated state;
a test mechanism for creating a test in the section for validity of the set of
assumptions to activate the optimized section if the set of assumptions are
valid;
a data storage containing an indication of the associated state for the section and
the result of the associated state on the validity of the set of assumptions; and
a monitoring mechanism for monitoring the associated state and updating the
indication of the associated state 1n the data storage to maintain a check of the validity of

the assumptions during execution of the computer program code.

9. The system according to claim 8, wherein the test mechanism includes:
a data structure creation mechanism for creating and initializing a monitoring data
structure 1n the data storage, the monitoring data structure containing the indication of the

associated state and the result of the associated state on the validity of the set of

assumptions.

10. The system according to claim 8, wherein the monitoring mechanism includes:
a change detection mechanism for detecting a change in the associate state; and
an update mechanism for updating the indication of the associated state and the

result of the associate state on the validity of the set of assumptions according to the

detected change 1n the associated state.

11. The system according to claim 8, wherein the operating environment is a virtual
machine.
12. A computer readable medium having stored thereon computer-executable

instructions for optimizing computer program code having a virtual call that produces

CA9-2003-0083 21

10

15

20

25

30

CA 02443049 2003-09-26

unpredictable effects in a dynamic compiling environment, said computer-executable
instructions comprising:

1dentifying a section of the computer program code whose associated state is
unpredictable as a result of the virtual call;

optimizing the section based on a set of assumptions about the associated state;
and

creating a test in the section for validity of the set of assumptions to activate the

optimized section if the set of assumptions is valid.

13. The computer-executable instructions according to claim 12, wherein the step of
optimizing includes:

nserting the optimized section into the compu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>