

(19) 日本国特許庁(JP)

(12) 公表特許公報(A)

(11) 特許出願公表番号

特表2005-502188
(P2005-502188A)

(43) 公表日 平成17年1月20日(2005.1.20)

(51) Int.Cl.⁷
H01L 21/304
B24B 37/00
C09K 3/14F1
H01L 21/304 622D
B24B 37/00 H
C09K 3/14 550C
C09K 3/14 550Z

テーマコード(参考)

3C058

審査請求 未請求 予備審査請求 有 (全 33 頁)

(21) 出願番号 特願2002-592420 (P2002-592420)
 (86) (22) 出願日 平成14年5月17日 (2002.5.17)
 (85) 翻訳文提出日 平成15年11月18日 (2003.11.18)
 (86) 國際出願番号 PCT/US2002/015825
 (87) 國際公開番号 WO2002/094957
 (87) 國際公開日 平成14年11月28日 (2002.11.28)
 (31) 優先権主張番号 09/860,933
 (32) 優先日 平成13年5月18日 (2001.5.18)
 (33) 優先権主張國 米国(US)
 (81) 指定国 EP(AT, BE, CH, CY, DE, DK, ES, FI, FR,
 GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), CN, JP, KR

(71) 出願人 500045132
 ロデール ホールディングス インコーポ
 レイテッド
 RODEL HOLDINGS, INC.
 アメリカ合衆国 デラウェア州 1989
 9 ウィルミントン ノース マーケッ
 ト ストリート 1105 スウィート
 1300
 (74) 代理人 100078662
 弁理士 津国 肇
 (74) 代理人 100075225
 弁理士 篠田 文雄
 (74) 代理人 100113653
 弁理士 東田 幸四郎

最終頁に続く

(54) 【発明の名称】ケミカルメカニカル研磨組成物およびそれに関する方法

(57) 【要約】

CMPにより金属を除去するための研磨組成物は、金属酸化剤と、酸化物抑制剤と、錯化剤と、金属と結合を形成する親水性官能基を有する第一部分の分子およびCMP中に研磨パッドと係合して、パッドが金属の表面からエンジニアドコポリマーを除去するための疎水性官能基を有する第二部分の分子を含み、CMPによる金属除去を可能にする一方、埋め込み回路相互接続からのエンジニアリングコポリマーの除去を最小化してディッシングを最小化するエンジニアドコポリマーとを含む。

【特許請求の範囲】

【請求項 1】

金属酸化剤、酸化物抑制剤および錯化剤を含む、C M Pにより金属を除去するための研磨組成物であって、

金属と結合を形成する親水性官能基を有する第一部分の分子を含み、そしてさらにC M P中に研磨パッドと係合して、パッドが金属の表面からエンジニアドコポリマーを除去するための疎水性官能基を有する第二部分の分子を含み、C M Pによる金属除去を可能にする一方、埋め込み回路相互接続からのエンジニアリングコポリマーの除去を最小化してディッシングを最小化するエンジニアドコポリマーにより、さらに特徴付けられる組成物。

【請求項 2】

前記エンジニアドコポリマーが、ランダムコポリマー、ブロックコポリマー、分岐鎖状コポリマーおよび交互コポリマーからなる群より選ばれる、請求項1記載の研磨組成物。

【請求項 3】

前記エンジニアドコポリマーが約1重量%までの濃度で存在する、請求項1記載の研磨組成物。

【請求項 4】

約3重量%までの砥粒をさらに特徴とする、請求項1記載の研磨組成物。

【請求項 5】

前記エンジニアドコポリマーがアクリル酸モノマーおよびメタクリル酸モノマーから誘導され、そのアクリル酸モノマー対メタクリル酸モノマーのモル比が約1:20～約20:1の範囲である、請求項1記載の研磨組成物。

【請求項 6】

前記エンジニアドコポリマーがエチレン性不飽和モノマーの混合物から誘導される、請求項1記載の研磨組成物。

【請求項 7】

前記エンジニアドコポリマーが約1重量%までの濃度を有し、前記酸化剤が約15重量%までの濃度を有し、前記錯化剤が約3重量%までの濃度を有し、前記抑制剤が約2重量%までの濃度を有する、請求項7記載の研磨組成物。

【請求項 8】

C M Pにより金属を除去するための、研磨パッドおよび研磨組成物を用いて金属を研磨することを含む方法であって、前記研磨組成物が、金属酸化剤と、酸化物抑制剤と、錯化剤と、金属と結合を形成する親水性官能基を有する第一部分の分子を含み、C M P中に研磨パッドと係合して、パッドが金属の表面からエンジニアドコポリマーを除去するようにして、C M Pによる金属除去を可能にする一方、埋め込み回路相互接続からのエンジニアリングコポリマーの除去を最小化してディッシングを最小化する疎水性官能基を有する第二部分の分子をさらに含むエンジニアドコポリマーとを含むものである方法。

【請求項 9】

前記研磨組成物が約3重量%までの濃度の砥粒をさらに含む、請求項8記載の方法。

【発明の詳細な説明】

【技術分野】

【0001】

本発明は、半導体基板のケミカルメカニカル研磨(C M P)に関する。C M Pは、集積回路、マルチチップモジュール、コンデンサなどを形成する半導体基板上の薄い膜または層を除去し、平坦化することに関する。膜または層は、3種の異なる材料に応じて次のように分類される：(i)導電性金属層；(ii)導電性金属層とその下にある絶縁層との間のバリヤー膜またはライナー膜；および(iii)金属回路相互接続を形成する埋め込み金属線を有するその下にある絶縁層。C M P工程の間、研磨パッドが流体研磨組成物と協同して金属層を除去し、半導体基板を研磨して、その上に層が順次に製造されてゆく平滑で平坦な被研磨表面を設ける。順次に製造される層自体もC M Pにより研磨される。

【0002】

10

30

40

50

研磨組成物は、砥粒を含有するスラリー、または実質的に無粒子の研磨組成物を含む、反応性液剤と呼ばれるスラリーを含む。C M P の間、研磨パッドが半導体基板に対して動かされ、その基板に摩擦を加える。この摩擦が研磨組成物と基板表面との化学反応と組み合わさせて、半導体基板から材料を除去する。ディッシングとは、C M P 工程中に、回路相互接続から金属が除去されることによって引き起こされる、望まざる空所をいう。エロージョンとは、C M P 工程中に、回路相互接続の周囲の絶縁材料が過剰に除去されることをいう。

【 0 0 0 3 】

U S 6 , 1 1 7 , 7 7 5 は、C M P 中に、エッチングおよび酸化によって回路相互接続が除去されるのを抑制する抑制剤および界面活性剤であって、C M P により除去される金属に付着する抑制剤および界面活性剤を開示している。抑制剤および界面活性剤は、研磨パッドが加える摩擦によって除去される。抑制剤はB T A を含み、界面活性剤は、ポリアクリル酸、ポリアクリル酸アンモニウム、ポリメタクリル酸およびポリアクリル酸アンモニウムのうちの 1 種を含む。

【 0 0 0 4 】

本発明は、半導体基板のC M P 中にディッシングを抑制するためのエンジニアドコポリマーであって、基板表面上の金属と結合を形成する 1 個以上の親水性官能基を有する第一部分の分子と、C M P 中に研磨パッドと係合して、パッドが研磨される金属の表面からエンジニアドコポリマーを除去するための 1 個以上の疎水性官能基を有する第二部分の分子とを含み、C M P による金属除去を可能にする一方、埋め込み回路相互接続からのエンジニアリングコポリマーの除去を最小化してディッシングを最小化するエンジニアドコポリマーに関する。

【 0 0 0 5 】

以下、本発明の実施態様を一例として詳細な説明を参照しながら記載する。

【 0 0 0 6 】

エンジニアドコポリマーは、基板表面上の金属と結合を形成する 1 個以上の親水性官能基を有する第一部分の分子を形成し、C M P 中に研磨パッドと係合して、パッドが研磨される金属の表面からエンジニアドコポリマーを除去するための 1 個以上の疎水性官能基を有する第二部分の分子を形成する 1 種以上のモノマーから誘導され、C M P 中の金属除去を可能にする一方、埋め込み回路相互接続からのエンジニアリングコポリマーの除去を最小化してディッシングを最小化する。親水性官能基は、イオン化可能な官能基である。疎水性官能基は、非イオン性の官能基である。エンジニアドコポリマーは、基板からの金属除去を促進する一方、基板表面および研磨パッド表面との接触を介して起こる反応を抑制することによって、埋め込み金属回路相互接続のディッシングを最小化する。

【 0 0 0 7 】

一実施態様においては、エンジニアドコポリマーは、C M P 中に基板表面と強力な結合、たとえば配位共有結合を容易に形成する親水性官能基が得られるように 1 種以上のモノマーから誘導される。さらに、エンジニアドコポリマーは、ファンデルワールス力または他の相互作用によってそのコポリマー分子に構造的剛性を与える疎水性官能基が得られるように 1 種以上のモノマーから誘導される。エンジニアドコポリマーの剛性は、それらの官能基を形成するモノマーのモル比を変化させることにより調節される。エンジニアリングコポリマーを誘導または合成するために 2 種のモノマーを使用する場合、それぞれのモノマーのモル比は、約 1 : 2 0 ~ 約 2 0 : 1 で変化させることができる。コポリマーを生成するために 2 種を超えるモノマーを使用する場合、モル比の総計は 1 である。本発明のエンジニアドコポリマーが少なくとも 2 種のモノマーから誘導される実施態様においては、1 種のモノマーがポリエチレン性不飽和であって、コポリマー中で增量剤または架橋剤として作用する。

【 0 0 0 8 】

一実施態様によると、第一部分の分子は、C M P によって除去される金属と結合を形成するための、カルボキシル、ヒドロキシル、ハロゲン、ホスホネート、ホスフェート、スル

10

20

30

40

50

フェート、スルホネート、ニトロなどの親水性官能基 1 個以上を含む。

【 0 0 0 9 】

一実施態様によると、少なくとも 1 種以上のエンジニアドコポリマーが、反応性液剤中に約 1 重量 % まで存在する。この反応性液剤は、(i) 酸化剤を約 15 重量 % まで、(ii) 腐食抑制剤を約 2 重量 % まで、(iii) 反応性液剤中で金属イオン錯体を形成する錯化剤を約 3 重量 % まで含む無粒子の研磨組成物である。さらに、この反応性液剤は、約 5.0 未満の pH 値、あるいはまた、約 2.8 ~ 約 4.2 の範囲内の pH 値、あるいはまた、約 2.8 ~ 約 3.8 の範囲内の pH 値を含む。

【 0 0 1 0 】

別の実施態様によると、少なくとも 1 種以上のエンジニアドコポリマーが、砥粒を含有する研磨組成物中に約 1 重量 % まで存在する。この組成物は、(i) 酸化剤を約 15 重量 % まで、(ii) 腐食抑制剤を約 2 重量 % まで、(iii) 錯化剤を約 3 重量 % まで、そして(iv) 砥粒を約 3 重量 % まで含む。さらに、この組成物は、約 5.0 未満の pH 値、あるいはまた、約 2.8 ~ 約 4.2 の範囲内の pH 値、あるいはまた、約 2.8 ~ 約 3.8 の範囲内の pH 値を含む。

【 0 0 1 1 】

一実施態様においては、エンジニアドコポリマーは、モノマーの混合物、たとえばアクリル酸モノマーとメタクリル酸モノマーとをモル比約 1 : 20 ~ 約 20 : 1 の範囲内、あるいはまた約 1 : 1 の範囲内で組み合わせたものから誘導される。

【 0 0 1 2 】

別の実施態様において、エンジニアドコポリマーは、モノマーの混合物、たとえば 2 種以上のエチレン性不飽和モノマーの混合物であって、分岐鎖状および / または非分岐鎖状コポリマー分子を形成するための不飽和カルボン酸モノマーを少なくとも約 50 重量 % 含有する混合物から誘導される。

【 0 0 1 3 】

不飽和カルボン酸モノマーは、不飽和モノカルボン酸モノマーまたは不飽和ジカルボン酸モノマーのいずれかを含む。不飽和モノカルボン酸モノマーとは、1 分子当たり炭素原子 3 ~ 6 個とカルボン酸基 1 個を有する不飽和カルボン酸モノマーおよびそれらの水溶性塩のうちの 1 種をいう。適したエチレン性不飽和モノカルボン酸モノマーは、たとえばアクリル酸、オリゴマー性アクリル酸、メタクリル酸、クロトン酸、ビニル酢酸、およびこれらの誘導体、たとえば対応する無水物、アミド、エステルおよびそれらの水溶性塩である。

【 0 0 1 4 】

不飽和ジカルボン酸モノマーとは、1 分子当たり炭素原子 4 ~ 8 個を含有する不飽和ジカルボン酸モノマー、シス - およびトランス - ジカルボン酸の無水物、ならびにそれらの水溶性塩のうちの 1 種をいう。適した不飽和ジカルボン酸モノマーは、たとえばマレイン酸、フマル酸、 - メチレングルタル酸、イタコン酸、シトラコン酸、メサコン酸、シクロヘキセンジカルボン酸、および誘導体、たとえばこれらの対応する無水物、アミド、エステルおよび水溶性塩を含む。

【 0 0 1 5 】

別の実施態様においては、エンジニアドコポリマーは、モノエチレン性不飽和モノマー、たとえば、たとえばスチレン、 - メチルスチレン、ビニルトルエン、 o - 、 m - および p - メチルスチレン、エチルビニルベンゼン、ビニルナフタレンならびにビニルキシエレンを含むビニル芳香族モノマーの 1 種以上から誘導される。ビニル芳香族モノマーは、対応する置換された相対物、たとえば 1 個以上のハロゲン基 (たとえばフッ素、塩素または臭素) およびニトロを含有するハロゲン化誘導体、または、たとえばシアノ、アルコキシ、ハロアルキル、カルボアルコキシ、カルボキシ、アミノおよびアルキルアミノの誘導体のうちの 1 種を包含する。

【 0 0 1 6 】

別の実施態様においては、エンジニアドコポリマーは、たとえば含窒素環式化合物、たと

10

20

30

40

50

えばビニルピリジン、2-メチル-5-ビニルピリジン、2-エチル-5-ビニルピリジン、3-メチル-5-ビニルピリジン、2,3-ジメチル-5-ビニルピリジン、2-メチル-3-エチル-5-ビニルピリジン、メチル置換キノリン類およびイソキノリン類、1-ビニルイミダゾール、2-メチル-1-ビニルイミダゾール、N-ビニルカプロラクタム、N-ビニルブチロラクタムおよびN-ビニルピロリドンを含むモノエチレン性不飽和モノマーの1種以上から誘導される。モノエチレン性不飽和モノマーはさらに、エチレンおよび置換エチレンモノマー、たとえば-オレフィン類、たとえばプロピレン、イソブチレンおよび長鎖アルキル-オレフィン類（たとえば($C_{10} \sim C_{20}$)アルキル-オレフィン類）；ビニルアルコールエステル類、たとえば酢酸ビニルおよびステアリン酸ビニル；ハロゲン化ビニル類、たとえば塩化ビニル、フッ化ビニル、臭化ビニル、塩化ビニリデン、フッ化ビニリデンおよび臭化ビニリデン；ビニルニトリル類、たとえばアクリロニトリルおよびメタクリルニトリルを含む。

10

20

【0017】
別の実施態様においては、エンジニアドコポリマーは、アクリルモノマーの1種とメタクリル酸アルキルモノマーの1種との重合から誘導される。アルキル基が炭素原子1~6個を有するメタクリル酸アルキルモノマー（「低カット」メタクリル酸アルキル類とも呼ばれる）の例は、メタクリル酸メチル（MMA）、アクリル酸メチルおよびエチル、メタクリル酸プロピル、メタクリル酸ブチル（BMA）およびアクリル酸ブチル（BA）、メタクリル酸イソブチル（IBMA）、メタクリル酸ヘキシルおよびシクロヘキシル、アクリル酸シクロヘキシル、ならびにこれらの組み合わせである。アルキル基が炭素原子7~15個を有するメタクリル酸アルキルモノマー（「中カット」メタクリル酸アルキル類とも呼ばれる）の例は、アクリル酸2-エチルヘキシル（EHA）、メタクリル酸2-エチルヘキシル、メタクリル酸オクチル、メタクリル酸デシル、メタクリル酸イソデシル（IDMA、分岐鎖状(C_{10})アルキルの異性体混合物に基づく）、メタクリル酸ウンデシル、メタクリル酸ドデシル（メタクリル酸ラウリルとしても知られる）、メタクリル酸トリデシル、メタクリル酸テトラデシル（メタクリル酸ミリスチルとしても知られる）、メタクリル酸ペンタデシル、ならびにこれらの組み合わせである。同じく実施態様に包含されるものは：メタクリル酸ドデシル-ペンタデシル（DPMA）、メタクリル酸ドデシル、トリデシル、テトラデシルおよびペンタデシルの直鎖状および分岐鎖状異性体の混合物；ならびにメタクリル酸ラウリル-ミリスチル（LMA）、メタクリル酸ドデシルおよびテトラデシルの混合物である。アルキル基が炭素原子16~24個を有するメタクリル酸アルキルモノマー（「高カット」メタクリル酸アルキル類とも呼ばれる）の例は、メタクリル酸ヘキサデシル（メタクリル酸セチルとしても知られる）、メタクリル酸ヘプタデシル、メタクリル酸オクタデシル（メタクリル酸ステアリルとしても知られる）、メタクリル酸ノナデシル、メタクリル酸エイコシル、メタクリル酸ベヘニル、ならびにこれらの組み合わせである。同じく有用なものは：メタクリル酸セチル-エイコシル（CEMA）、メタクリル酸ヘキサデシル、オクタデシルおよびエイコシルの混合物、ならびにメタクリル酸セチル-ステアリル（SMA）、メタクリル酸ヘキサデシルおよびオクタデシルの混合物である。

30

40

【0018】
別の実施態様においては、エンジニアドコポリマーは、アルキル基の中にジアルキルアミノ基を有するメタクリル酸アルキルモノマーおよびアクリル酸アルキルモノマー、たとえばメタクリル酸ジメチルアミノエチル、アクリル酸ジメチルアミノエチル；ジアルキルアミノアルキルメタクリルアミドおよびアクリルアミドモノマー、たとえばN,N-ジメチルアミノエチルメタクリルアミド、N,N-ジメチルアミノプロピルメタクリルアミド、N,N-ジメチルアミノブチルメタクリルアミド、N,N-ジエチルアミノプロピルメタクリルアミドおよびN,N-ジメチルアミノブチルメタクリルアミドの1種以上から誘導される。アルキル基の中に1個以上のヒドロキシ基を有するメタクリル酸アルキルおよびアクリル酸アルキルモノマー、特にヒドロキシ基がアルキル基中で-位置（2-位置）に見られるもの。メタクリル酸ヒドロ

50

キシアルキルおよびアクリル酸ヒドロキシアルキルモノマーは、置換されたアルキル基 (C₂ ~ C₆) アルキルを有し、分岐鎖状または非分岐鎖状のメタクリル酸およびアクリル酸ヒドロキシアルキルモノマーは、メタクリル酸 2 - ヒドロキシエチル (HEMA) 、アクリル酸 2 - ヒドロキシエチル、メタクリル酸 2 - ヒドロキシプロピル、メタクリル酸 1 - メチル - 2 - ヒドロキシエチル、アクリル酸 2 - ヒドロキシプロピル、アクリル酸 1 - メチル - 2 - ヒドロキシエチル、メタクリル酸 2 - ヒドロキシプロピルおよびアクリル酸 2 - ヒドロキシプロピルを含む。メタクリル酸 1 - メチル - 2 - ヒドロキシエチルとメタクリル酸 2 - ヒドロキシプロピルとの混合物は、「メタクリル酸ヒドロキシプロピル」またはHPMAとして知られる。

【0019】

10

別の実施態様においては、エンジニアドコポリマーは、たとえばアミドモノマー、たとえばジアルキルアミノアルキルアクリルアミドまたはメタクリルアミド (たとえばジメチルアミノプロピルメタクリルアミド) 、N, N - ビス - (ジメチルアミノアルキル) アクリルアミドまたはメタクリルアミド、N - - アミノエチルアクリルアミドまたはメタクリルアミド、N - (メチルアミノ - エチル) アクリルアミドまたはメタクリルアミド、アミノアルキルピラジンアクリルアミドまたはメタクリルアミド；アクリル酸エステルモノマー、たとえばジアルキルアミノアルキルのアクリル酸エステルまたはメタクリル酸エステル (たとえばジメチルアミノエチルのアクリル酸エステルまたはメタクリル酸エステル) 、 - アミノエチルのアクリル酸エステルまたはメタクリル酸エステル、N - (n - プチル) - 4 - アミノブチルのアクリル酸エステルまたはメタクリル酸エステル、メタクリロキシエトキシエチルアミン、およびアクリロキシプロポキシプロピルアミン；ビニルモノマー、たとえばビニルピリジン；アミノアルキルビニルエーテル類またはスルフィド類、たとえば - アミノエチルビニルエーテル、 - アミノエチルビニルスルフィド、N - メチル - - アミノエチルビニルエーテルまたはスルフィド、N - エチル - - アミノエチルビニルエーテルまたはスルフィド、N - ブチル - - アミノエチルビニルエーテルまたはスルフィド、およびN - メチル - 3 - アミノプロピルビニルエーテルまたはスルフィド；N - アクリロキシアルキルオキサゾリジン類およびN - アクリロキシアルキルテトラヒドロ - 1, 3 - オキサジン類、たとえばメタクリル酸オキサゾリジニルエチル、アクリル酸オキサゾリジニルエチル、3 - (- メタクリロキシプロピル) テトラヒドロ - 1, 3 - オキサジン、3 - (- メタクリロキシエチル) - 2, 2 - ペンタメチレンオキサゾリジン、3 - (- メタクリロキシエチル) - 2 - メチル - 2 - プロピルオキサゾリジン、N - 2 - (2 - アクリロキシエトキシ) エチルオキサゾリジン、N - 2 - (2 - メタクリロキシエトキシ) エチル - 5 - メチルオキサゾリジン、3 - [2 - (2 - メタクリロキシエトキシ) エチル] - 2, 2 - ジメチルオキサゾリジン、N - 2 - (2 - アクリロキシエトキシ) エチル - 5 - メチルオキサゾリジン、3 - [2 - (メタクリロキシエトキシ) エチル] - 2 - フェニルオキサゾリジン、N - 2 - (2 - メタクリロキシエトキシ) エチルオキサゾリジン、および3 - [2 - (2 - メタクリロキシエトキシ) エチル] - 2, 2 - ペンタメチレンオキサゾリジンを含む含アミンモノマーの1種以上から誘導される。

【0020】

40

別の実施態様において、エンジニアドコポリマーは、2 - アクリルアミド - 2 - メチル - 1 - プロパンスルホン酸、2 - メタクリルアミド - 2 - メチル - 1 - プロパンスルホン酸、3 - メタクリルアミド - 2 - ヒドロキシ - 1 - プロパンスルホン酸、アリルスルホン酸、アリルオキシベンゼンスルホン酸、2 - ヒドロキシ - 3 - (2 - プロペニルオキシ) プロパンスルホン酸、2 - メチル - 2 - プロペニル - 1 - スルホン酸、スチレンスルホン酸、ビニルスルホン酸、アクリル酸 3 - スルホプロピル、メタクリル酸 3 - スルホプロピル、およびこれらの水溶性塩のうちの1種以上から選ばれる不飽和スルホン酸モノマーを含むモノマーの1種以上から誘導される。一実施態様によると、エンジニアドコポリマーは、アクリル酸モノマーとメタクリル酸モノマーとをモル比約1:20 ~ 約20:1の範囲内で、あるいはまた、約1:1(±25%)で組み合わせたものから誘導される。

50

【0021】

したがって、エンジニアドコポリマーは、前述した種類のモノマーから選ばれるモノマーの1種以上の重合によって誘導され、ランダムコポリマー、分岐鎖状コポリマー、ブロックコポリマーおよび交互コポリマーを含む。

【0022】

エンジニアドコポリマーは、市販の研磨パッド、たとえばU.S.5,489,233、U.S.5,932,486およびU.S.5,932,486記載の研磨パッドとともにCMP用の研磨組成物に使用される。

【0023】

CMP中に材料、たとえば銅を基板表面から除去するには、金属酸化剤、腐食抑制剤、たとえばベンゾトリニアゾール、BTAならびに親水性官能基および疎水性官能基を有するモノマーから誘導されるエンジニアドコポリマーの分子を含有する研磨組成物を使用する。CMP中、腐食抑制剤分子およびエンジニアドコポリマー分子は再分配を受け、競合して基板上の金属表面との結合を形成する。金属表面は、水和金属原子および水和金属原子-腐食抑制剤分子錯体を含む。たとえば、基板上の例示的な銅層表面は、水和銅原子および水和銅原子-BTA錯体を有する。親水性官能基は、強力な結合、たとえば配位共有結合を形成する。疎水性官能基は、研磨パッド表面上の既知の微小凹凸(nanoasperities)と強いファンデルワールス結合を形成する。

【0024】

エンジニアドコポリマーは、ここに記載した方法で、従来の研磨組成物に添加される。CMP用研磨組成物に使用される酸化剤は、非限定的に、過酸化物、たとえば過酸化水素、ヨウ素酸塩、たとえばヨウ素酸カリウム、硝酸塩、たとえば硝酸セシウム、硝酸バリウム、硝酸アンモニウム、および/または硝酸アンモニウムと硝酸セシウムとの混合物、炭酸塩、たとえば炭酸アンモニウムならびに過硫酸塩、たとえば過硫酸アンモニウムおよび/または過硫酸ナトリウムならびに過塩素酸塩を含む。

【0025】

U.S.5,391,258に開示されている錯化剤は、ヒドロキシ基とともに2個以上のカルボキシレート基を含有するカルボン酸を含む。さらに、錯化剤は、非限定的に、直鎖状モノ-およびジカルボン酸ならびにそれらの対応する塩、たとえばリンゴ酸およびリンゴ酸塩；酒石酸および酒石酸塩；グルコン酸およびグルコン酸塩；クエン酸およびクエン酸塩；マロン酸およびマロン酸塩；ギ酸およびギ酸塩；乳酸および乳酸塩；フタル酸およびフタル酸塩；ならびにポリヒドロキシ安息香酸およびそれらの塩を含む。同様に研磨組成物中に使用することができる。

【0026】

CMP用の研磨組成物に使用される腐食抑制剤は、BTA(ベンゾトリニアゾール)およびTTA(トリルトリニアゾール)またはそれらの混合物を含む。使用に適した他の抑制剤は、1-ヒドロキシベンゾトリニアゾール、N-(1H-ベンゾトリニアゾール-1-イルメチル)ホルムアミド；3,5-ジメチルピラゾール；インダゾール；4-ブロモピラゾール；3-アミノ-5-フェニルピラゾール；3-アミノ-4-ピラゾールカルボニトリル；1-メチルイミダゾール；インドリンQTSなどを含む。

【0027】

CMP用の研磨組成物は、実質的に粒子を含まないか、あるいはまた、非限定的に、アルミナ、シリカ、セリア、ゲルマニア、ダイヤモンド、炭化ケイ素、チタニア、ジルコニアおよびこれらの種々の混合物を含む材料の砥粒を含有する。一実施態様においては、本発明の研磨組成物はいかなる砥粒をも含有しない。別の実施態様において、研磨組成物は、平均粒径50nm未満の砥粒を約0～約3%の範囲の低濃度で含有する。他の実施態様においては、砥粒の重量%は約50%まで可能である。

【0028】

場合によって、CMP用研磨組成物は、アミンのようなpH緩衝剤を含有してもよく、界面活性剤、脱凝集剤、粘度調整剤、潤滑剤、清浄剤などを含有してもよい。

10

20

30

40

50

【0029】

以下の例が本発明の種々の態様を例示する。すべての部および%値は重量基準であり（すなわち、研磨組成物の重量に対する）、すべての分子量はゲル浸透クロマトグラフィー（GPC）により決定され、断りない限り重量平均分子量である。

【0030】

例1

下記のようにしてエンジニアドコポリマーIおよびIIを誘導または合成した。すべての分子量は、GPC分析法を用い、以下の手順にしたがって決定した。分子量測定法：試料をpH7の0.02Mリン酸二水素ナトリウム中に約0.1%w/vの濃度で溶解し、10分間振とうしたのち、0.45μmPTFE（ポリテトラフルオロエチレン）膜フィルタに通してろ過した。分析は、この溶液100μLを、40で保持したTosoHaas TSKgel GMPWxIおよびTosoHaas TSKgel G2500PWxIおよびTosoHaas TSKgel G2500WxIの30cm×8mmカラムからなる2本カラムセットに注入することにより、実施した。使用した移動相は、流量1mL/分のこの溶液であった。検出は、示差屈折率測定法によって実施した。狭分子量ポリアクリル酸標準試料を用いて系を較正した。

【0031】

エンジニアドコポリマーI

攪拌機、還流冷却器、熱電対、および隔膜注入口を備えた1リットルの四ツ口フラスコに、脱イオン水575.00gおよび0.15重量%FeSO₄·7H₂O 5.00gを加えた。この溶液を60で攪拌しながら、これに氷メタクリル酸109.00gおよび氷アクリル酸91.00gを含有するモノマー混合物20.00gを加えた。65で、脱イオン水10.00g中の過硫酸ナトリウム0.50gおよび脱イオン水30.00g中のメタ重亜硫酸ナトリウム4.00gを、定速で別々に130分かけて加えた。10分後、残りのモノマー混合物を72で定速で120分かけて加えた。添加後、溶液を熱いまま10分間保持し、その後、62まで冷ました。次に、脱イオン水5.00g中の過硫酸ナトリウム0.12gを加えた。この溶液を10分間保持し、この手順を繰り返した。攪拌した溶液を50%水酸化ナトリウム20.20gおよび30%過酸化水素2.70gで調節した。次に、脱イオン水5.00g中のイソアスコルビン酸0.25gを加えた。溶液を5分間保持し、この手順を繰り返した。このコポリマー水溶液は、pH3.8で、固体分24.3%、アクリル酸548ppm、検出不能量のメタクリル酸および相当するモル比の分子量（MW）178,700を有していた。

【0032】

エンジニアドコポリマーII

攪拌機、還流冷却器、熱電対、および隔膜注入口を備えた1リットルの四ツ口フラスコに、脱イオン水575.00gおよび0.15重量%FeSO₄·7H₂O 5.00gを加えた。この溶液を72で攪拌しながら、これに脱イオン水10.00g中の過硫酸ナトリウム1.00g、脱イオン水60.00g中のメタ重亜硫酸ナトリウム12.00gおよび氷メタクリル酸109.00gと氷アクリル酸91.00gとを含有するモノマー混合物を定速で別々に120分かけて加えた。添加後、溶液を熱いまま10分間保持し、62まで冷まし、その後、脱イオン水5.00g中の過硫酸ナトリウム0.12gを加えた。この溶液を熱いまま10分間保持し、さらに脱イオン水5.00g中の過硫酸ナトリウム0.12gを加えた。攪拌した溶液を50%水酸化ナトリウム20.20gおよび30%過酸化水素6.00gで調節した。次に、脱イオン水5.00g中のイソアスコルビン酸0.25gを加えた。この溶液を5分間保持し、この手順を繰り返した。このコポリマー水溶液は、pH3.6で、固体分24.3%、アクリル酸426ppm、検出不能量のメタクリル酸および相当するモル比の分子量（MW）28,800を有していた。

【0033】

エンジニアドコポリマーIIA

攪拌機、還流冷却器、熱電対、および隔膜注入口を備えた1リットルの四ツ口フラスコに、脱イオン水を500.00gおよび0.15重量%FeSO₄·7H₂O 5.00gを加

10

20

30

40

50

えた。この溶液を 90 度で搅拌しながら、これに脱イオン水 10.00 g 中の過硫酸ナトリウム 0.80 g を加えた。90 度で 5 分間保ったのち、氷メタクリル酸 67.70 g および氷アクリル酸 132.30 g を含有するモノマー混合物 12.00 g を加えた。5 分後、92 度で、脱イオン水 40.00 g 中の過硫酸ナトリウム 7.20 g、脱イオン水 20.00 g 中の次亜リン酸ナトリウム 2.00 g および残りのモノマー混合物を別々に定速で 120 分かけて加えた。添加後、溶液を熱いまま 30 分間保持し、その後 70 度まで冷ました。次に、50% 水酸化ナトリウム 20.20 g を滴下して加えた。このコポリマー水溶液は、pH 3.6 で、固体分 26.8%、検出不能量のメタクリル酸またはアクリル酸および相当するモル比の分子量 (MW) 29,600 を有していた。

【0034】

10

エンジニアドコポリマー IIB

搅拌機、還流冷却器、熱電対、および隔膜注入口を備えた 1 リットルの四ツ口フラスコに、脱イオン水 410.00 g および 0.15 重量% $\text{FeSO}_4 \cdot 7\text{H}_2\text{O}$ 5.00 g を加えた。この溶液を 92 度で搅拌しながら、これに脱イオン水 60.00 g 中の過硫酸ナトリウム 10.00 g を定速で 122 分かけて加えた。2 分後、92 度で、脱イオン水 20.00 g 中の次亜リン酸ナトリウム 1.50 g および氷メタクリル酸 147.20 g と氷アクリル酸 52.80 g とを含有するモノマー混合物を別々に定速で 120 分かけて加えた。添加後、溶液を熱いまま 30 分間保持し、その後 70 度まで冷ました。次に、50% 水酸化ナトリウム 20.20 g を滴下して加えた。このコポリマー水溶液は、pH 3.8 で、固体分 29.8%、検出不能量のメタクリル酸またはアクリル酸および相当するモル比の分子量 (MW) 19,500 を有していた。

【0035】

20

エンジニアドコポリマー I、II、IIA および IIB それぞれを研磨組成物と組み合わせ、それを CMP に使用して AMAT Mirra 研磨機上でそれぞれの銅パターン付きウェーハを研磨した。CMP による研磨は、以下の条件で、第一工程は、ダウンフォース 5 psi、プラテン速度 93 rpm、キャリヤ速度 87 rpm で 60 秒間；第二工程は、ダウンフォース 3 psi、プラテン速度 93 rpm、キャリヤ速度 87 rpm で 60 秒間、実施した。第一の研磨工程は、AMAT Mirra 上で、Mirra 終点検出系によって決定される終点に到達するまで実施した。第二研磨工程は、終点曲線の傾斜が 0 になった時点で終了させた。Rodel 社 (米デラウェア州 Newark) から市販されている I C 1000 (X-Y 溝付) 研磨パッドを各研磨試験に使用した。各研磨試験中、スラリー流量を 250 mL/分で一定に保持した。Tencor P1 プロフィルメータを使用して、各試験ウェーハの中心部、中間部および端部における 100 μm 線のディシングを測定した。種々の研磨試験中に得られたデータを以下の表 1 にまとめた。

30

【0036】

【表 1】

表 1

試料	pH	除去速度 (オングストローム/分)	平均 ディッシング (オングストローム)	残分
対照	3.1	3,435	1,300	有意量の残分
A1	3.0	5,394	1,920	清浄/ 残分なし
A2	3.5	3,285	1,580	清浄/ 残分なし
B1	3.0	4,611	1,350	清浄/ 残分なし
B2	3.5	3,200	990	清浄/ 残分なし
C1	3.0		2014	清浄/ 残分なし
D1	3.0		831	有意量の残分

10

20

30

40

50

【0037】

すべての研磨組成物は、過酸化水素を9%、BTAを0.3%およびリンゴ酸を0.22%含有していた。

【0038】

対照は、数平均分子量250,000および30,000をそれぞれ有するポリアクリル酸の1:1混合物を0.18%含有するものであった。

【0039】

研磨組成物A1およびA2は、活性なエンジニアドコポリマーIを0.36%含有するものであった。

【0040】

研磨組成物B1およびB2は、活性なエンジニアドコポリマーIIを0.36%含有するものであった。

【0041】

研磨組成物C1は、活性なエンジニアドコポリマーIIBを0.18%含有するものあり、研磨組成物D1は、活性なエンジニアドコポリマーIIAを0.18%含有するものであった。

【0042】

各研磨組成物の残りの重量%は水からなっていた。

【0043】

表1のデータは、ポリメタクリル酸とポリアクリル酸とのモル比7:3の組成物を含有するコポリマーはウェーハからすべての銅残分を除去するが、ポリメタクリル酸とポリアクリル酸とのモル比3:7の組成物を含有するコポリマーはすべての銅残分を除去することができないことを示す。したがって、銅残分の除去は、少なくとも等モル比1:1以上の比のポリメタクリル酸をそのコポリマー中に要する。

【0044】

例2

以下に記載するようにしてエンジニアドコポリマーIII、IVおよびVを合成した。

【0045】

エンジニアドコポリマーIII

攪拌機、還流冷却器、熱電対、および隔膜注入口を備えた2リットルの四ツ口丸底フラスコに、脱イオン水を700.00gおよび0.15重量% $\text{FeSO}_4 \cdot 7\text{H}_2\text{O}$ 6.00gを加えた。この溶液を80で攪拌しながら、これに脱イオン水100.00g中の過硫

酸ナトリウム 13.50 g、50%水酸化ナトリウム 75.00 gならびに氷メタクリル酸 106.00 gおよびメタクリル酸ヒドロキシエチル 160.00 gを含有する混合物を定速で別々に 125 分かけて加え、その際、反応釜温度を 92 度まで上昇させた。添加後、溶液を 30 分間保持し、その後、脱イオン水 1.00 g 中の過硫酸ナトリウム 0.20 g を加えた。溶液を熱いまま 10 分間保持し、脱イオン水 4.00 g 中の過硫酸ナトリウム 0.50 g で手順を繰り返した。このコポリマー水溶液は、pH 6.2 で、固体分 25.9%、メタクリル酸 1450 ppm および相当するモル比の MW 20, 100 を有していた。

【0046】

エンジニアドコポリマー IV

搅拌機、還流冷却器、熱電対、および隔膜注入口を備えた 2 リットルの四ツ口丸底フラスコに、脱イオン水 577.00 g および 0.15 重量% FeSO₄ · 7H₂O 3.00 g を加えた。この溶液を 88 度で搅拌しながら、これに脱イオン水 50.00 g 中の過硫酸ナトリウム 10.20 g、50%水酸化ナトリウム 99.00 g ならびに氷メタクリル酸 206.50 g およびメタクリル酸ヒドロキシエチル 132.60 g を含有する混合物を定速で別々に 125 分かけて加えた。添加後、溶液を 88 ~ 90 度で 55 分間保持し、その後、脱イオン水 7.20 g 中の過硫酸ナトリウム 1.10 g を加え、溶液を熱いまま 60 分間保持し、65 度まで冷まし、脱イオン水 40.00 g で希釈した。このコポリマー水溶液は、pH 5.9 で、固体分 34.0%、メタクリル酸 397 ppm および相当するモル比の MW 14, 100 を有していた。

【0047】

エンジニアドコポリマー V

搅拌機、還流冷却器、熱電対、および隔膜注入口を備え、脱イオン水 800.00 g を入れた 2 リットルの四ツ口丸底フラスコに、86 度で、抑制剤 0.25 g、1.75 重量% 界面活性剤溶液 70.80 g と、脱イオン水 300.00 g、30% 界面活性剤溶液 2.20 g、メタクリル酸メチル 325.00 g および氷メタクリル酸 4.20 g を含有するモノマー-エマルション 68.30 g を加えたのち、脱イオン水 16.7 g 中の過硫酸ナトリウム 2.30 g を加えた。添加後、反応釜材料を 86 度で 15 分間保持した。残りのモノマー-エマルションに、30% 界面活性剤溶液 23.00 g、氷メタクリル酸 248.50 g、および n-ドデシルメルカプタン 5.70 g を加えたのち、すすぎ水 30.00 g を加えた。このモノマー-エマルションを 85 度の反応釜に定速で 120 分かけて加えた。添加後、反応物を熱いまま 15 分間保持し、冷まし、その後 100 / 325 メッシュのふるいに通してろ過した。このエマルションポリマーは、pH 2.8 で、固体分 31.4%、メタクリル酸 331 ppm、メタクリル酸メチル 171 ppm、相当するモル比の MW 56, 400、および粒径 105 nm を有していた。

【0048】

表 2 は、本発明の方法にしたがってエンジニアドコポリマー III、IV および V を含有する研磨組成物を用いて得られた除去速度データをまとめたものである。すべての研磨組成物は、各エンジニアドコポリマーを 0.36%、過酸化水素を 9%、BTA を 0.3%、およびリンゴ酸を 0.22% 含有するものであった。各研磨組成物の残りの重量% は水からなっていた。

【0049】

【表 2】

10

20

30

40

表 2

エンジニアド コポリマー	分子量 (MW)	除去速度 (オングストローム/分)
III	20,100	1,500
IV	14,100	3,000
V	56,400	<1,000

【 0 0 5 0 】

10

表2のデータは、本発明を使用した場合、1分当たり1,000オングストロームを超える除去速度が得られることを示す。例示した研磨組成物は、それぞれ、酸含有モノマー50モル%超を有するモノマー混合物から製造されたエンジニアドコポリマーを含むものであつた。

【 0 0 5 1 】

20

CMP用の研磨組成物は、基板表面上の金属と結合を形成する1個以上の親水性官能基を有する第一部分の分子を含み、そしてさらにCMP中に研磨パッドと係合して、パッドが研磨される金属の表面からエンジニアドコポリマーを除去する1個以上の疎水性官能基を有する第二部分の分子をさらに含み、CMPによる金属除去を可能にする一方、埋め込み回路相互接続からのエンジニアリングコポリマーの除去を最小化してディッシングを最小化するエンジニアドコポリマーを備える。

【国際公開パンフレット】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
28 November 2002 (28.11.2002)

PCT

(10) International Publication Number
WO 02/094957 A2

(51) International Patent Classification: C09G 1/00 (74) Agents: KITA, Gerald, K. et al.; Rodel Holdings, Inc., 1105 North Market Street, Suite 1300, Wilmington, DE 19899 (US).

(21) International Application Number: PCT/US02/15825

(22) International Filing Date: 17 May 2002 (17.05.2002)

(81) Designated States (national): CN, JP, KR.

(25) Filing Language: English

(84) Designated States (regional): European patent (AT, BE, CII, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

(26) Publication Language: English

(30) Priority Data: 09/860,933 18 May 2001 (18.05.2001) US

Published:
without international search report and to be republished
upon receipt of that report

(71) Applicant: RODEL HOLDINGS, INC. [US/US]; 1105 North Market Street, Suite 1300, Wilmington, DE 19899 (US).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(72) Inventors: WEINSTEIN, Barry; 419 Bluebird Lane, Dresher, PA 19025 (US); GHOSH, Tirthankar; 502 Filbert Road, Oreland, PA 19075 (US).

WO 02/094957 A2

(54) Title: CHEMICAL MECHANICAL POLISHING COMPOSITIONS AND METHODS RELATING THERETO

(57) Abstract: A polishing composition for removing metal by CMP comprises, a metal oxidizer, an oxide inhibitor, a complexing agent, and an engineered copolymer comprising, molecules of a first moiety having hydrophilic functional groups forming bonds with the metal, and molecules of a second moiety having hydrophobic functional groups that engage a polishing pad during CMP for the pad to remove the engineered copolymer from a surface of the metal, which enables removal of the metal by CMP while minimizing removal of the engineering copolymer from recessed circuit interconnects to minimize dishing.

WO 02/094957

PCT/US02/15825

CHEMICAL MECHANICAL POLISHING COMPOSITIONS AND METHODS RELATING THERETO

The invention relates to chemical mechanical polishing (CMP) of a semiconductor substrate. CMP refers to removal and planarization of thin films or layers on a semiconductor substrate, which form integrated circuits, multi-chip modules, capacitors and the like. The films or layers are classified according to three different materials: (i) a conductive metal layer; (ii) a barrier film or liner film between the conductive metal layer and an underlying dielectric layer; and (iii) an underlying dielectric layer having recessed metal lines that form metal circuit interconnects. During a CMP process, a polishing pad in combination with a fluid polishing composition removes a layer of metal, and polishes the semiconductor substrate with a smooth planar polished surface on which are manufactured successive layers. The successive layers themselves are polished by CMP.

15 The polishing composition comprises, a slurry having abrasive particles or a slurry, referred to as a reactive liquid, that comprises a substantially particle-free polishing composition. During CMP, the polishing pad undergoes motion relative to the semiconductor substrate, and applies friction to the substrate. The friction is combined with chemical reaction of the polishing composition with the surface of the substrate to remove material from the semiconductor substrate. Dishing refers to unwanted cavities that are caused by removal of metal from the circuit interconnects, during a CMP process. Erosion refers to excessive removal of dielectric material surrounding the circuit interconnects, during a CMP process.

20 US 6,117,775 discloses an inhibitor and a surfactant that suppress removal by etching and oxidation of circuit interconnects during CMP, while the inhibitor and surfactant adhere to a metal that is being removed by CMP. The inhibitor and surfactant are removed by friction applied by a polishing pad. The inhibitor comprises BTA, and the surfactant comprises, one of; polyacrylic acid, polyammoniumacrylate, polymethacrylic acid and polyammoniumacrylate.

25 30 The invention is directed to an engineered copolymer for suppressing dishing during CMP of a semiconductor substrate, wherein the engineered copolymer comprises, molecules of a first moiety having one or more hydrophilic functional groups forming bonds with the metal on the substrate surface, and molecules of a second moiety having

WO 02/094957

PCT/US02/15825

one or more hydrophobic functional groups that engage the polishing pad during CMP for the pad to remove the engineered copolymer from the surface of the metal being polished, which enables removal of the metal by CMP, while minimizing removal of the engineering copolymer from the recessed circuit interconnects to minimize dishing.

5 Embodiments of the invention will now be described by way of example with reference to the accompanying detailed description.

The engineered copolymer is derived from one or more monomers forming molecules of a first moiety having one or more hydrophilic functional groups forming bonds with the metal on the substrate surface, and forming molecules of a second moiety 10 having one or more hydrophobic functional groups that engage the polishing pad during CMP for the pad to remove the engineered copolymer from the surface of the metal being polished, which enables removal of the metal by CMP, while minimizing removal of the engineering copolymer from the recessed circuit interconnects to minimize dishing. Hydrophilic functional groups are ionizable functional groups. Hydrophobic 15 functional groups are non-ionizable functional groups. The engineered copolymer enhances removal of metal from a substrate, while minimizing dishing of recessed metal circuit interconnects through controlled contact-mediated reactions with the substrate surface and the polishing pad surface.

In an embodiment, the engineered copolymer is derived from one or more 20 monomers to provide hydrophilic functional groups that readily form strong bonds, e.g. coordinate covalent bonds, with the substrate surface during CMP. Further, the engineered copolymer is derived from one or more monomers to provide hydrophobic functional groups that provide structural rigidity to the copolymer molecules by van der Waals forces or other interactions. The rigidity of the engineered copolymer is adjusted 25 by varying the mole ratios of the monomers forming the functional groups. When two monomers are utilized to derive or synthesize the engineering copolymer, the mole ratio of each monomer can be varied from about 1:20 to about 20:1. When more than two monomers are used to generate the copolymer, the total of all mole ratios is 1. In an embodiment, wherein the engineered copolymer of the invention is derived from at least 30 two monomers, one monomer is polyethylenically unsaturated and serves as the extending agent or crosslinking agent in the copolymer.

WO 02/094957

PCT/US02/15825

According to an embodiment, the molecules of the first moiety comprises, hydrophilic functional groups of one or more of; carboxyl, hydroxyl, halogen, phosphonate, phosphate, sulfonate, sulfate, nitro and the like, to form bonds with the metal being removed by CMP.

5 According to an embodiment, at least one or more engineered copolymers are present up to about 1% by weight in a reactive liquid. The reactive liquid is a particle-free polishing composition that comprises, (i) up to about 15% by weight of an oxidizing agent; (ii) up to about 2% by weight of a corrosion inhibitor; and (iii) up to about 3% by weight of a complexing agent forming complex metal ions in the reactive liquid. Further, 10 the reactive liquid comprises, a pH under about 5.0, alternatively, a pH in a range of about 2.8 to about 4.2, and alternatively, a pH in a range of about 2.8 to about 3.8.

According to another embodiment, at least one or more engineered copolymers are present up to about 1% by weight in a polishing composition having abrasive particles. The composition comprises, (i) up to about 15% by weight of an oxidizing 15 agent; (ii) up to about 2% by weight of a corrosion inhibitor; (iii) up to about 3% by weight of a complexing agent, and (iv) up to about 3% by weight of abrasive particles. Further, the composition comprises, a pH under about 5.0, alternatively, a pH in a range of about 2.8 to about 4.2, and alternatively, a pH in a range of about 2.8 to about 3.8.

20 In an embodiment, the engineered copolymer is derived from a mixture of monomers, for example, an acrylic acid monomer and methacrylic acid monomer, combined at a mole ratio in a range of about 1:20 to about 20:1, and alternatively in a range of about 1:1.

25 In another embodiment, the engineered copolymer is derived from a mixture of monomers, for example, a mixture of, two or more, ethylenically unsaturated monomers, said mixture containing at least about 50% by weight of an unsaturated carboxylic acid monomer to form branched and/or unbranched copolymer molecules.

30 The unsaturated carboxylic acid monomer comprises, either an unsaturated monocarboxylic acid monomer or an unsaturated dicarboxylic acid monomer. An unsaturated monocarboxylic acid monomer refers to one of unsaturated carboxylic acid monomers containing 3 to 6 carbon atoms per molecule with a single carboxylic acid group and water-soluble salts thereof. Suitable ethylenically unsaturated monocarboxylic acid monomers are, for example, acrylic acid, oligomeric acrylic acid,

WO 02/094957

PCT/US02/15825

methacrylic acid, crotonic acid, vinylacetic acid and derivatives thereof such as corresponding anhydrides, amides, esters and water-soluble salts thereof.

An unsaturated dicarboxylic acid monomer refers to one of unsaturated dicarboxylic acid monomers containing 4 to 8 carbon atoms per molecule, anhydrides of 5 the cis-and trans- dicarboxylic acids, and water-soluble salts thereof. Suitable unsaturated dicarboxylic acid monomers comprsse, for example, maleic acid, fumaric acid, alpha-methylene glutaric acid, itaconic acid, citraconic acid, mesaconic acid, cyclohexenedicarboxylic acid, and derivatives such as corresponding anhydrides, amides, esters and water-soluble salts thereof.

10 In another embodiment, the engineered copolymer is derived from one or more of monoethylenically unsaturated monomers, such as, vinylaromatic monomers comprising, for example, styrene, α -methylstyrene, vinyltoluene, ortho-, meta- and para-methylstyrene, ethylvinylbenzene, vinylphthalene and vinylxlenes. The vinylaromatic monomer includes a corresponding substituted counterpart, for example, one of 15 halogenated derivatives, containing one or more halogen groups, such as fluorine, chlorine or bromine; and nitro, or, for example, derivatives of, cyano, alkoxy, haloalkyl, carbalkoxy, carboxy, amino and alkylamino.

In another embodiment, the engineered copolymer is derived from one or more of 20 monoethylenically unsaturated monomers comprising, for example, nitrogen-containing ring compounds, for example, vinylpyridine, 2-methyl-5-vinylpyridine, 2-ethyl-5-vinylpyridine, 3-methyl-5-vinylpyridine, 2,3-dimethyl-5-vinylpyridine, 2-methyl-3-ethyl-5-vinylpyridine, methyl-substituted quinolines and isoquinolines, 1-vinylimidazole, 2-methyl-1-vinylimidazole, N-vinylcaprolactam, N-vinylbutyrolactam and N-vinylpyrrolidone. Monoethylenically unsaturated monomers also comprise ethylene 25 and substituted ethylene monomers, for example: α -olefins such as propylene, isobutylene and long chain alkyl α -olefins (such as (C₁₀-C₂₀)alkyl α -olefins); vinyl alcohol esters such as vinyl acetate and vinyl stearate; vinyl halides such as vinyl chloride, vinyl fluoride, vinyl bromide, vinylidene chloride, vinylidene fluoride and vinylidene bromide; vinyl nitriles such as acrylonitrile and methacrylonitrile.

30 In another embodiment, the engineered copolymer is derived from the polymerization of one of acrylic monomers and one of alkyl methacrylate monomers. Examples of the alkyl methacrylate monomer wherein the alkyl group contains from 1 to

WO 02/094957

PCT/US02/15825

6 carbon atoms (also called the "low-cut" alkyl methacrylates), are methyl methacrylate (MMA), methyl and ethyl acrylate, propyl methacrylate, butyl methacrylate (BMA) and butyl acrylate (BA), isobutyl methacrylate (IBMA), hexyl and cyclohexyl methacrylate, cyclohexyl acrylate and combinations thereof. Examples of the alkyl methacrylate monomer wherein the alkyl group contains from 7 to 15 carbon atoms (also called the "mid-cut" alkyl methacrylates), are 2-ethylhexyl acrylate (EHA), 2-ethylhexyl methacrylate, octyl methacrylate, decyl methacrylate, isodecyl methacrylate (IDMA, based on branched (C₁₀)alkyl isomer mixture), undecyl methacrylate, dodecyl methacrylate (also known as lauryl methacrylate), tridecyl methacrylate, tetradecyl methacrylate (also known as myristyl methacrylate), pentadecyl methacrylate and combinations thereof. Also included in an embodiment are: dodecyl-pentadecyl methacrylate (DPMA), a mixture of linear and branched isomers of dodecyl, tridecyl, tetradecyl and pentadecyl methacrylates; and lauryl-myristyl methacrylate (LMA), a mixture of dodecyl and tetradecyl methacrylates. Examples of alkyl methacrylate monomers wherein the alkyl group contains from 16 to 24 carbon atoms (also called the "high-cut" alkyl methacrylates), are hexadecyl methacrylate (also known as cetyl methacrylate), heptadecyl methacrylate, octadecyl methacrylate (also known as stearyl methacrylate), nonadecyl methacrylate, eicosyl methacrylate, behenyl methacrylate and combinations thereof. Also useful are: cetyl-eicosyl methacrylate (CEMA), a mixture of 20 hexadecyl, octadecyl, and eicosyl methacrylate; and cetyl-stearyl methacrylate (SMA), a mixture of hexadecyl and octadecyl methacrylate.

In another embodiment, the engineered copolymer is derived from one or more of, alkyl methacrylate monomers and acrylate monomers with a dialkylamino group in the alkyl radical, such as dimethylaminoethyl methacrylate, dimethylaminoethyl acrylate; dialkylaminoalkyl methacrylamide and acrylamide monomers, such as N,N-dimethylaminoethyl methacrylamide, N,N-dimethylaminopropyl methacrylamide, N,N-dimethylaminobutyl methacryl-amide, N,N-diethylaminoethyl methacrylamide, N,N-diethylaminopropyl methacrylamide and N,N-diethylaminobutyl methacrylamide. Alkyl methacrylate and acrylate monomers with one or more hydroxyl groups in the alkyl radical, especially those wherein the hydroxyl group is found at the β -position (2-position) in the alkyl radical. Hydroxyalkyl methacrylate and acrylate monomers have a substituted alkyl group (C₂-C₆)alkyl, branched or unbranched Hydroxy-alkyl

WO 02/094957

PCT/US02/15825

methacrylate and acrylate monomers comprise, 2-hydroxyethyl methacrylate (HEMA), 2-hydroxyethyl acrylate, 2-hydroxypropyl methacrylate, 1-methyl-2-hydroxyethyl methacrylate, 2-hydroxypropyl acrylate, 1-methyl-2-hydroxyethyl acrylate, 2-hydroxybutyl methacrylate and 2-hydroxybutyl acrylate. A mixture of 1-methyl-2-hydroxyethyl methacrylate and 2-hydroxypropyl methacrylate, is known as "hydroxypropyl methacrylate" or HPMA.

In another embodiment, the engineered copolymer is derived from one or more of, amine-containing monomers comprising, for example, amide monomers, such as, dialkylaminoalkyl acrylamides or methacrylamides (for example, dimethylaminopropyl methacrylamide), N,N-bis-(dimethylaminoalkyl) acrylamides or methacrylamides, N-β-aminoethyl acrylamide or methacrylamide, N-(methylamino-ethyl)acrylamide or methacrylamide, aminoalkylpyrazine acrylamides or methacrylamides; acrylic ester monomers such as dialkylaminoalkyl acrylates or methacrylates (for example, dimethylaminoethyl acrylate or methacrylate), β-aminoethyl acrylate or methacrylate, N-(n-butyl)-4-aminobutyl acrylate or methacrylate, methacryloxyethoxyethylamine, and acryloxypropoxypropoxypropylamine; vinyl monomers such as vinyl pyridines; aminoalkyl vinyl ethers or sulfides such as β-aminoethyl vinyl ether, β-aminoethyl vinyl sulfide, N-methyl-β-aminoethyl vinyl ether or sulfide, N-ethyl-β-aminoethyl vinyl ether or sulfide, N-butyl-β-aminoethyl vinyl ether or sulfide, and N-methyl-3-aminopropyl vinyl ether or sulfide; N-acryloxyalkyloxazolidines and N-acryloxyalkyltetrahydro-1,3-oxazines such as oxazolidinylethyl methacrylate, oxazolidinylethyl acrylate, 3-(γ-methacryloxypropyl)tetrahydro-1,3-oxazine, 3-(β-methacryloxyethyl)-2,2-pentamethylene-oxazolidine, 3-(β-methacryloxyethyl)-2-methyl-2-propyl-oxazolidine, N-2-(2-acryloxyethoxy)ethyl-oxazolidine, N-2-(2-meth-acryloxyethoxy)-ethyl-5-methyl-oxazolidine, 3-[2-(2-methacryloxyethoxy)ethyl]-2,2-dimethyloxazolidine, N-2-(2-acryloxyethoxy)ethyl-5-methyl-oxazolidine, 3-[2-(meth-acryloxyethoxy)-ethyl]-2-phenyl-oxazolidine, N-2-(2-methacryloxyethoxy)ethyl-oxazolidine, and 3-[2-(2-methacryloxyethoxy)ethyl]-2,2-pentamethylene-oxazolidine.

In another embodiment, the engineered copolymer is derived from one or more of, monomers with an unsaturated sulfonic acid monomer selected from one or more of 2-acrylamido-2-methyl-1-propanesulfonic acid, 2-methacrylamido-2-methyl-1-propanesulfonic acid, 3-methacrylamido-2-hydroxy-1-propanesulfonic acid, allylsulfonic

WO 02/094957

PCT/US02/15825

acid, allyloxybenzenesulfonic acid, 2-hydroxy-3-(2-propenyl)propanesulfonic acid, 2-methyl-2-propene-1-sulfonic acid, styrene sulfonic acid, vinyl sulfonic acid, 3-sulfopropyl acrylate, 3-sulfopropyl methacrylate and water-soluble salts thereof.

According to an embodiment, an engineered copolymer is derived from acrylic acid monomer and methacrylic acid monomer combined at a mole ratio in a range of about 1:20 to about 20:1, and alternatively, about 1:1 ($\pm 25\%$).

Accordingly, an engineered copolymer is derived from polymerization of one or more of, monomers selected from the aforementioned classes of monomers, including, random copolymers, branched copolymers, block copolymers and alternating

10 copolymers.

The engineered copolymer is used in a polishing composition for CMP together with a commercially available polishing pad, for example, a polishing pad described in US5,489,233 and US5,932,486 and US5,932,486.

15 Removal of material, e.g., copper, from a substrate surface during CMP utilizes a polishing composition containing, a metal oxidizing agent, a corrosion inhibitor, e.g., benzotriazole, BTA, and molecules of an engineered copolymer derived from monomers having hydrophilic functional groups and hydrophobic functional groups. During CMP, the corrosion inhibitor molecules and the engineered copolymer molecules undergo redistribution and compete to form bonds with the metal surface on the substrate. The 20 metal surface comprises hydrated metal atoms and hydrated metal atom-corrosion inhibitor molecular complexes. For example, a surface of an exemplary copper layer on a substrate has hydrated copper atoms and hydrated copper atom-BTA complexes. The hydrophilic functional groups form strong bonds, e.g., coordinate covalent bonds. The hydrophobic functional groups form strong van der Waals bonds with known 25 nanoasperities on the polishing pad surface.

The engineered copolymer is added to conventional polishing compositions, in a manner now described. An oxidizing agent used in a polishing composition for CMP includes, but is not limited to, peroxides such as hydrogen peroxide, iodates such as potassium iodate, nitrates such as cesium nitrate, barium nitrate, ammonium nitrate, 30 and/or mixtures of ammonium nitrate and cesium nitrate, carbonates such as ammonium carbonate, and persulfates such as ammonium persulfate and/or sodium persulfate and perchlorates.

WO 02/094957

PCT/US02/15825

1 A complexing agent, disclosed by US5,391,258, includes a carboxylic acid containing two or more carboxylate groups with hydroxy groups. Further, a complexing agent includes, but is not limited to, straight chain mono-and dicarboxylic acids and their corresponding salts such as malic acid and malates; tartaric acid and tartarates; 5 gluconic acid and gluconates; citric acid and citrates; malonic acid and malonates; formic acid and formates; lactic acid and lactates; phthalic acid and phthalates; and polyhydroxybenzoic acid and its salts. can also be used in the polishing composition.

10 Corrosion inhibitors used in polishing compositions for CMP include BTA (benzotriazole) and TTA (tolyltriazole) or mixtures thereof. Other inhibitors that are suitable for use include: 1-hydroxybenzotriazole, N-(1H-benzotriazole-1-ylmethyl)formamide; 3,5-dimethylpyrazole; indazole; 4-bromopyrazole; 3-amino-5-phenylpyrazole; 3-amino-4-pyrazolecarbonitrile; 1-methylimidazole; Indolin QTS and the like.

15 A polishing composition for CMP is substantially particle-free or, alternatively, contains abrasive particles of a material that includes, but is not limited to, alumina, silica, ceria, germania, diamond, silicon carbide, titania, zirconia and various mixtures thereof. In an embodiment, the polishing composition of the invention does not contain any abrasive particles. In another embodiment, the polishing composition contains low levels of abrasives in a range from about 0 to about 3%, with an average particle 20 diameter less than 50 nm. In other embodiments, the weight % of abrasive can be up to about 50%.

25 Optionally, a polishing composition for CMP may contain pH buffers such as amines, and may contain surfactants, deflocculants, viscosity modifiers, wetting agents, cleaning agents and the like.

20 The following examples illustrate various aspects of the invention. All parts and percentages are on a weight basis (i.e., by weight of the polishing composition) and all molecular weights are determined by gel permeation chromatography (GPC) and are weight-average molecular weights unless otherwise indicated.

30 **EXAMPLE 1**

Engineered copolymers I and II were derived or synthesized as described below. All molecular weights were determined utilizing GPC analysis according to the

WO 02/094957

PCT/US02/15825

following procedure. Molecular weight Determination: Samples were dissolved in 0.02M sodium dihydrogen phosphate at pH 7 at a concentration of approximately 0.1% w/v and shaken for 10 minutes, followed by filtration through a 0.45 micron PTFE polytetrafluoroethylene membrane filter. The analysis was performed by injecting 100 5 microliters of this solution into a 2-column set consisting of a TosoHaas TSKgel GMPWx1 and a TosoHaas TSKgel G2500PWx1 and a TosoHaas TSKgel G2500 Wx1 30 cm x 8 mm column, held at 40 C. The mobile phase used was this solution at a flow rate of 1 ml/min. Detection was via a differential refractive index measurement. The system was calibrated with narrow poly(acrylic) acid standards.

10 **Engineered Copolymer I :** To a 1 liter, 4-neck flask equipped with a mechanical stirrer, a reflux condenser, a thermocouple, and septum inlets was added 575.00 g (grams) deionized (D.I.) water and 5.00 g of 0.15 weight % FeSO₄·7H₂O. To this stirred solution at 60°C, 20.00 g of a monomer mixture containing 109.00 g of glacial methacrylic acid and 91.00 g of glacial acrylic acid was added. At 65°C, 0.50 15 g of sodium persulfate in 10.00 g D.I. water and 4.00 g sodium metabisulfite in 30.00 g D.I. water were added linearly and separately over 130 min. Ten minutes later, the remaining monomer mixture was added linearly over 120 min., at 72°C. After addition, the solution was held at temperature for 10 min., then cooled to 62°C. Next, 0.12 g of sodium persulfate in 5.00 g D.I. water was added. The solution was held for 10 min. and 20 the procedure repeated. The stirred solution was adjusted with 20.20 g of 50% sodium hydroxide and 2.70 g of 30% hydrogen peroxide. Next, 0.25 g of isoascorbic acid in 5.00 g D.I. water was added. The solution was held for 5 min. and the procedure repeated. The aqueous copolymer solution at pH 3.8 had a solids content of 24.3%, 548 ppm, parts per million, of acrylic acid, no detectable methacrylic acid and a molecular 25 weight (MW) of 178,700 with a corresponding mole ratio.

Engineered Copolymer II: To a 1 liter, 4-neck flask equipped with a mechanical stirrer, reflux condenser, thermocouple, and septum inlets, was added, 575.00 g of D.I. water and 5.00 g of 0.15 weight % FeSO₄·7H₂O. To this stirred solution at 72°C, 1.00 g of sodium persulfate in 10.00 g D.I. water, 12.00 g sodium 30 metabisulfite in 60.00 g D.I. water and a mixture containing 109.00 g of glacial methacrylic acid and 91.00 g of glacial acrylic acid were added linearly and separately

WO 02/094957

PCT/US02/15825

over 120 min. After addition, the solution was held at temperature for 10 min., cooled to 62°C and followed by the addition of 0.12 g sodium persulfate in 5.00 g D.I. water. The solution was held at temperature for 10 min. and another 0.12 g of sodium persulfate in 5.00 g D.I. water was added. The stirred solution was adjusted with 20.20 g of 50% sodium hydroxide and 6.00 g of 30 % hydrogen peroxide. Next, 0.25 g of isoascorbic acid in 5.00 g D.I. water was added. The solution was held for 5 min. and the procedure repeated. The aqueous copolymer solution at pH 3.6 had a solids content of 24.3%, 426 ppm of acrylic acid, no detectable methacrylic acid and a MW of 28,800 with a corresponding mole ratio.

10 **Engineered Copolymer II A.** To a 1 liter, 4-neck flask equipped with a mechanical stirrer, reflux condenser, thermocouple, and septum inlets was added 500.00 grams (g.) deionized (DI) water and 5.00 g. of 0.15 weight % FeSO₄·7H₂O. To this stirred solution at 90°C, 0.80 g. of sodium persulfate in 10.00 g. of DI water was added. After holding five minutes at 90°C, 12.00 g. of a monomer mixture containing 67.70 g. 15 of glacial methacrylic acid and 132.30 g. of glacial acrylic acid was added. Five minutes later, at 92°C, 7.20 g. of sodium persulfate in 40.00 g. DI water, 2.00 g. sodium hypophosphite in 20.00 g. DI water and the remaining monomer mixture were added separately and linearly over 120 min. After addition, the solution was held at temperature for 30 min., then cooled to 70°C. Next, 20.20 g. of 50 % sodium hydroxide 20 was added, dropwise. The aqueous copolymer solution at pH 3.6 had a solids content of 26.8%, no detectable methacrylic acid or acrylic acid and a molecular weight (Mw) of 29,600 with a corresponding mole ratio.

25 **Engineered Copolymer II B.** To a 1 liter, 4-neck flask equipped with a mechanical stirrer, reflux condenser, thermocouple, and septum inlets was added 410.00 grams (g.) deionized (DI) water and 5.00 g. of 0.15 weight % FeSO₄·7H₂O. To this stirred solution at 92°C, 10.00 g. sodium persulfate in 60.00 g. DI water was added linearly over 122 minutes. Two minutes later, at 92°C, 1.50 g. sodium hypophosphite in 20.00 g. DI water and a monomer mixture containing 147.20 g. glacial methacrylic acid and 52.80 g. glacial acrylic acid were added separately and linearly over 120 min. After 30 addition, the solution was held at temperature for 30 min., and then cooled to 70°C. Next, 20.20 g. of 50 % sodium hydroxide was added, dropwise. The aqueous copolymer

WO 02/094957

PCT/US02/15825

solution at pH 3.8 had a solids content of 29.8%, no detectable methacrylic acid or acrylic acid and a molecular weight (Mw) of 19,500 with a corresponding mole ratio.

Each of the engineered copolymers I, II, IIA and IIB was combined with a polishing composition, which was used in CMP to polish respective copper patterned wafers on an AMAT Mirra polishing machine. Polishing by CMP was performed under the following conditions: First step at 5 psi down force, 93 rpm platen speed and 87 rpm carrier speed for 60 seconds; Second step at 3 psi down force, 93 rpm platen speed, 87 rpm carrier speed for 60 seconds. The first step of polishing was performed until endpoint was achieved on the AMAT Mirra as determined by the Mirra endpoint detection system. The second polishing step was terminated when the endpoint curve slope was zero. An IC1000 (X-Y grooved) polishing pad available from Rodel, Inc., Newark, Delaware was used for each polishing test. The slurry flow rate was held constant at 250 ml/min during each polishing test. A Tencor P1 profilometer was used to measure dishing of 100 μ m lines in the center, middle and edge of each test wafer. The data obtained during the various polishing tests are summarized in Table 1 below.

TABLE 1

Sample	pH	Removal Rate (Angstroms/min)	Average Dishing (Angstroms)	Residuals
Control	3.1	3,435	1,300	Significant residuals
A1	3.0	5,394	1,920	Clear/no residuals
A2	3.5	3,285	1,580	Clear/no residuals
B1	3.0	4,611	1,350	Clear/no residuals
B2	3.5	3,200	990	Clear/no residuals
C1	3.0		2014	Clear/no residuals
D1	3.0		831	Significant residuals

All polishing compositions contained 9% hydrogen peroxide, 0.3% BTA and 0.22% malic acid.

WO 02/094957

PCT/US02/15825

The Control contained 0.18% of a 1:1 mixture of polyacrylic acids with number average molecular weights of 250,000 and 30,000, respectively.

Polishing compositions A1 and A2 contained 0.36% of active engineered copolymer I.

5 Polishing compositions B1 and B2 contained 0.36% of active engineered copolymer II.

Polishing composition C1 contained 0.18% of active engineered copolymer IIB and Polishing composition D1 contained 0.18% of active engineered copolymer IIA.

10 The remaining weight percentage of each polishing composition comprised water.

The data in Table I indicates that a copolymer containing a 7:3 molar composition of polymethacrylic acid to polyacrylic acid clears the wafer of all copper residue whereas a copolymer containing a 3:7 molar composition of polymethacrylic acid to polyacrylic acid does not clear all the copper residue. Accordingly, clearing of copper residuals requires at least an equimolar ratio 1:1 or greater ratio, of the polymethylacrylic acid in the copolymer.

EXAMPLE 2

20 Engineered copolymers III, IV and V were synthesized as described below.

Engineered Copolymer III: To a 2 liter, 4-neck round bottom flask equipped with a mechanical stirrer, reflux condenser, thermocouple, and septum inlets was added 700.00 g (grams) of D.I. water and 6.00 g of 0.15 weight % $\text{FeSO}_4 \cdot 7\text{H}_2\text{O}$. To this stirred solution at 80°C, 13.50 g of sodium persulfate in 100.00 g D.I. water; 75.00 g of 25 50% sodium hydroxide and a mixture containing 106.00 g of glacial methacrylic acid and 160.00 g hydroxyethyl methacrylate were added linearly and separately over 125 min. as the kettle temperature was allowed to rise to 92°C. After addition, the solution was held for 30 min. and 0.20 g sodium persulfate in 1.00 g D.I. water was then added. The solution was held at temperature for 10 min. and the procedure repeated with 0.50 g 30 sodium persulfate in 4.00 g D.I. water. The aqueous copolymer solution at pH 6.2 had a solids content of 25.9%, 1450 ppm methacrylic acid and a MW of 20,100 with a corresponding mole ratio.

WO 02/094957

PCT/US02/15825

Engineered Copolymer IV: To a 2 liter, 4-neck round bottom flask equipped with a mechanical stirrer, reflux condenser, thermocouple, and septum inlets was added 577.00 g of D.I. water and 3.00 g of 0.15 weight % $\text{FeSO}_4 \cdot 7\text{H}_2\text{O}$. To this stirred solution at 88°C, 10.20 g of sodium persulfate in 50.00 g D.I. water, 99.00 g of 50% sodium hydroxide and a mixture containing 206.50 g of glacial methacrylic acid and 132.60 g hydroxyethyl methacrylate were added linearly and separately over 125 min. After addition, the solution was held at 88 to 90°C for 55 min. and 1.10 g sodium persulfate in 7.20 g D.I. water was then added and the solution held at temperature for 60 min., cooled to 65°C and diluted with 40.00 g D.I. water. The aqueous copolymer solution at pH 5.9 had a solids content of 34.0 %, 397 ppm methacrylic acid and a MW of 14,100 with a corresponding mole ratio.

Engineered Copolymer V: To a 2 liter, 4-neck round bottom flask equipped with a mechanical stirrer, reflux condenser, thermocouple, septum inlets and containing 800.00 g D.I. water at 86°C was added; 0.25 g of inhibitor, 70.80 g of a 1.75 wt % surfactant solution, 68.30 g of a monomer emulsion, containing 300.00 g D.I. water, 2.20 g of a 30% surfactant solution, 325.00 g of methyl methacrylate, and 4.20 g of glacial methacrylic acid followed by 2.30 g of sodium persulfate in 16.7 g D.I. water. After addition, the kettle material was held at 86°C for 15 minutes. To the remaining monomer emulsion 23.00 g of a 30% surfactant solution, 248.50 g of glacial methacrylic acid, and 5.70 g of n-dodecyl mercaptan was added followed by 30.00 g of rinse water. This monomer emulsion was added linearly over 120 min. to the kettle at 85°C. After addition, the reaction was held at temperature for 15 min., cooled, then filtered through 100/325 mesh screens. The emulsion polymer at pH 2.8 had a solids content of 31.4%, 331 ppm of methacrylic acid, 171 ppm of methyl methacrylate, a MW of 56,400 with a corresponding mole ratio, and a particle size of 105 nm.

Table 2 summarizes removal rate data obtained, according to the method of the invention, utilizing polishing compositions containing engineered copolymers III, IV and V. All polishing compositions contained 0.36% of the respective engineered copolymer, 9% hydrogen peroxide, 0.3% BTA, and 0.22% malic acid. The remaining weight percentage of each polishing composition comprised water.

Table 2

Engineered Copolymer	Molecular Weight (MW)	Removal Rate (Angstroms/minute)
III	20,100	1,500
IV	14,100	3,000
V	56,400	<1,000

The data in Table 2 illustrate that removal rates in excess of 1,000 Angstroms per minute are obtained utilizing the invention. The exemplified polishing compositions

5 respectively comprised engineered copolymers made from a mixture of monomers, wherein the mixture has greater than 50 mole% of acid-containing monomers.

A polishing composition for CMP is provided with an engineered copolymer comprising, molecules of a first moiety having one or more hydrophilic functional groups forming bonds with the metal on the substrate surface, and further comprising, 10 molecules of a second moiety having one or more hydrophobic functional groups that engage the polishing pad during CMP for the pad to remove the engineered copolymer from the surface of the metal being polished, which enables removal of the metal by CMP, while minimizing removal of the engineering copolymer from the recessed circuit 15 interconnects to minimize dishing.

WO 02/094957

PCT/US02/15825

CLAIMS:

1. A polishing composition for removing metal by CMP comprises, a metal oxidizer, an oxide inhibitor and a complexing agent, further characterised by;
 - an engineered copolymer comprising, molecules of a first moiety having
- 5 hydrophilic functional groups forming bonds with the metal, and further comprising, molecules of a second moiety having hydrophobic functional groups that engage a polishing pad during CMP for the pad to remove the engineered copolymer from a surface of the metal, which enables removal of the metal by CMP, while minimizing removal of the engineering copolymer from recessed circuit interconnects to minimize
- 10 dishing.
2. The polishing composition as in Claim 1, wherein said engineered copolymer is selected from a group consisting of; random copolymers, block copolymers, branched copolymers and alternating copolymers.
3. The polishing composition as in Claim 1 wherein the engineered copolymer is
- 15 present at a concentration up to about 1% by weight.
4. The polishing composition as in Claim 1, further characterised by; abrasive particles up to about 3% by weight.
5. A polishing composition as in Claim 1 wherein the engineered copolymer is derived from an acrylic acid monomer and a methacrylic acid monomer at a mole ratio of
- 20 acrylic acid monomer to methacrylic acid monomer in a range of, about 1:20 to about 20:1.
6. A polishing composition as in Claim 1 wherein the engineered copolymer is derived from a mixture of ethylenically unsaturated monomers.
7. A polishing composition as in Claim 7 wherein the engineered copolymer has
- 25 a concentration up to about 1% by weight, the oxidizing agent has a concentration up to about 15% by weight, the complexing agent has a concentration up to about 3% by weight, and the inhibitor has a concentration up to about 2% by weight.
8. A method for removing metal by CMP, comprising: polishing the metal with a polishing pad and a polishing composition, the polishing composition having, a metal
- 30 oxidizer, an oxide inhibitor, a complexing agent, and an engineered copolymer comprising, molecules of a first moiety having hydrophilic functional groups forming bonds with the metal, and further comprising, molecules of a second moiety having

WO 02/094957

PCT/US02/15825

hydrophobic functional groups that engage the polishing pad during CMP for the pad to remove the engineered copolymer from a surface of the metal, which enables removal of the metal by CMP while minimizing removal of the engineering copolymer from recessed circuit interconnects to minimize dishing.

5 9. The method as in Claim 8 wherein the polishing composition further comprises abrasive particles of a concentration up to about 3% by weight.

【国際公開パンフレット（コレクトバージョン）】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
28 November 2002 (28.11.2002)

PCT

(10) International Publication Number
WO 02/094957 A3(51) International Patent Classification⁵: C09G 1/02, C09K 3/14
(74) Agents: KITA, Gerald, K. et al.; Rodel Holdings, Inc., 1105 North Market Street, Suite 1300, Wilmington, DE 19899 (US).

(21) International Application Number: PCT/US02/15825

(22) International Filing Date: 17 May 2002 (17.05.2002)

(81) Designated States (national): CN, JP, KR.

(25) Filing Language: English

(84) Designated States (regional): European patent (AT, BE, CII, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

(26) Publication Language: English

(30) Priority Data:

09/860,933 18 May 2001 (18.05.2001) US

Published:
with international search report

(71) Applicant: RODEL HOLDINGS, INC. (US/US); 1105 North Market Street, Suite 1300, Wilmington, DE 19899 (US).

(88) Date of publication of the international search report:
23 October 2003

(72) Inventors: WEINSTEIN, Barry; 419 Bluebird Lane, Dresher, PA 19025 (US); GHOSH, Tirthankar; 502 Filbert Road, Oreland, PA 19075 (US).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A3

(54) Title: CHEMICAL MECHANICAL POLISHING COMPOSITIONS AND METHODS RELATING THERETO

(57) Abstract: A polishing composition for removing metal by CMP comprises, a metal oxidizer, an oxide inhibitor, a complexing agent, and an engineered copolymer comprising, molecules of a first moiety having hydrophilic functional groups forming bonds with the metal, and molecules of a second moiety having hydrophobic functional groups that engage a polishing pad during CMP for the pad to remove the engineered copolymer from a surface of the metal, which enables removal of the metal by CMP while minimizing removal of the engineering copolymer from recessed circuit interconnects to minimize dishing.

WO 02/094957 A3

【国際調査報告】

INTERNATIONAL SEARCH REPORT		International Application No PCT/US 02/15825
A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C09G1/02 C09K3/14		
According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 C09G C09K		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 01 14496 A (RODEL HOLDINGS INC) 1 March 2001 (2001-03-01) page 4, line 3 -page 7, line 32 -----	
A	US 4 752 628 A (PAYNE CHARLES C) 21 June 1988 (1988-06-21) -----	
A	WO 99 64527 A (RODEL HOLDINGS INC) 16 December 1999 (1999-12-16) claims -----	
<input type="checkbox"/> Further documents are listed in the continuation of box C. <input checked="" type="checkbox"/> Patent family members are listed in annex.		
* Special categories of cited documents :		
A document defining the general state of the art which is not considered to be of particular relevance		
B earlier document but published on or after the international filing date		
C document which may relate to the publication date of another citation or other special reason (as specified)		
D document referring to an oral disclosure, use, exhibition or other means		
E document published prior to the international filing date but later than the priority date claimed		
F later document published after the international filing date or priority date and not in conflict with the application but cited to understand a principle or theory underlying the invention		
G document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone		
H document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is considered in combination with one or more other such documents, such combination being obvious to a person skilled in the art		
I document number of the same patent family		
Date of the actual completion of the international search	Date of mailing of the international search report	
20 January 2003	31/01/2003	
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patenttaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3018	Authorized officer Leroy, A	

Form PCT/ISA/210 (second sheet) (July 1996)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No.
PCT/US 02/15825

Patent document cited in search report	Publication date		Patent family member(s)	Publication date
WO 0114496	A	01-03-2001	EP 1210395 A1 WO 0114496 A1 US 6443812 B1 US 2002062600 A1	05-06-2002 01-03-2001 03-09-2002 30-05-2002
US 4752628	A	21-06-1988	DE 3815578 A1 JP 63318257 A	24-11-1988 27-12-1988
WO 9964527	A	16-12-1999	EP 1102821 A1 JP 2002517593 T WO 9964527 A1 US 6331134 B1 US 2002019202 A1 US 2001024933 A1	30-05-2001 18-06-2002 16-12-1999 18-12-2001 14-02-2002 27-09-2001

Form PCT/ISA/210 (patent family annex) (July 1992)

フロントページの続き

(72)発明者 ワインスタイン, バリー

アメリカ合衆国、ペンシルベニア 19025、ドレシャー、ブルーバード・レーン 419

(72)発明者 ゴーシュ, ターサンカー

アメリカ合衆国、ペンシルベニア 19075、オールランド、フィルバート・ロード 502

F ターム(参考) 3C058 AA07 CA01 CB02 DA02 DA12