(19) World Intellectual Property Organization International Bureau (43) International Publication Date 29 August 2002 (29.08.2002) ## **PCT** # (10) International Publication Number WO 02/066476 A1 (51) International Patent Classification⁷: C07D 471/04, A61K 31/47, A61P 11/16 // (C07D 471/04, 221:00, 221:00) 78464 Konstanz (DE). **ZECH, Karl**; Am Guckenbühl 17, 78465 Konstanz (DE). **REUTTER, Felix**; Halde 1, 78465 Konstanz (DE). - (21) International Application Number: PCT/EP02/01819 - (21) International Application Number: PC1/Er02/01819 - $\textbf{(22)} \ \ \textbf{International Filing Date:} \ \ 21 \ February \ 2002 \ (21.02.2002)$ - (25) Filing Language: English - (26) Publication Language: English - (30) Priority Data: 01104086.2 21 February 2001 (21.02.2001) E - (71) Applicant (for all designated States except US): BYK GULDEN LOMBERG CHEMISCHE FABRIK GMBH [DE/DE]; Byk-Gulden-Strasse 2, 78467 Konstanz (DE). - (72) Inventors: GUTTERER, Beate; Allensbacher Str. 5, 78476 Allensbach (DE). GRUNDLER, Gerhard; Meersburger Str. 4, 78464 Konstanz (DE). HATZELMANN, Armin; Alter Wall 3, 78467 Konstanz (DE). BEUME, Rolf; Bohlstrasse 13, 78465 Konstanz (DE). BUND-SCHUH, Daniela; Rheingutstrasse 17, 78462 Konstanz (DE). KLEY, Hans-Peter; Im Weinberg 3b, 78476 Allensbach (DE). NAVE, Rüdiger; Friedrichstrasse 46, - (72) Inventor; and - (75) Inventor/Applicant (for US only): FLOCKERZI, Dieter [DE/DE]; Ackerweg 26, 78476 Allensbach (DE). - (74) Common Representative: BYK GULDEN LOMBERG CHEMISCHE FABRIK GMBH; Byk-Gulden-Strasse 2, 78467 Konstanz (DE). - (81) Designated States (national): AE, AL, AU, BA, BG, BR, CA, CN, CO, CU, CZ, DZ, EC, EE, GE, HR, HU, ID, IL, IN, IS, JP, KR, LT, LV, MA, MK, MX, NO, NZ, PH, PL, RO, SG, SI, SK, TN, UA, US, VN, YU, ZA, ZW. - (84) Designated States (regional): Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR). #### Published: with international search report For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette. 02/066476 A1 (54) Title: 6-PHENYLBENZONAPHTHYRIDINES #### 6-PHENYLBENZONAPHTHYRIDINES ### Field of application of the invention The invention relates to novel 6-phenylbenzonaphthyridines which are used in the pharmaceutical industry for the production of medicaments. ### Known technical background The international applications WO98/21208 (= USP 6,008,215), WO98/40382 (= USP 6,143,759), WO99/57118 (= USP 6,306,869) and WO00/12501 describe 6-phenylbenzonaphthyridines and their N-oxides as PDE3/4 inhibitors. ### **Description of the invention** It has now been found that the compounds of the formula I, which are described in more detail below and which differ from the prior-art compounds in particular by substitution on the 6-phenyl ring, have surprising and particularly advantageous properties. The invention thus relates to compounds of the formula I, in which R1 is 1-4C-alkyl, R2 is hydroxyl, 1-4C-alkoxy, 3-7C-cycloalkoxy, 3-7C-cycloalkylmethoxy, or 1-4C-alkoxy which is completely or predominantly substituted by fluorine, R3 is hydroxyl, 1-4C-alkoxy, 3-7C-cycloalkoxy, 3-7C-cycloalkylmethoxy, or 1-4C-alkoxy which is completely or predominantly substituted by fluorine, or in which R2 and R3 together are a 1-2C-alkylenedioxy group, R4 is hydrogen, halogen, nitro, 1-4C-alkyl, trifluoromethyl or 1-4C-alkoxy, R5 is a radical of the formula (a), (b) or (c) in which if R5 is a radical of the formula (b), either R6, R7, R8 and R9 independently of one another are hydrogen, 1-7C-alkyl, 3-7C-cycloalkyl, 3-7C-cycloalkylmethyl or hydroxy-2-4C-alkyl, or R6 is hydrogen, 1-7C-alkyl, 3-7C-cycloalkyl, 3-7C-cycloalkylmethyl or hydroxy-2-4C-alkyl, R7 is hydrogen, 1-7C-alkyl, 3-7C-cycloalkyl, 3-7C-cycloalkylmethyl or hydroxy-2-4C-alkyl, and R8 and R9, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-4C-alkyl-)-piperazin-1-yl radical, in which if R5 is a radical of the formula (c), either R10, R11, R12 and R13 independently of one another are hydrogen, 1-7C-alkyl, 3-7C-cycloalkyl, 3-7C-cycloalkyl, 3-7C-cycloalkyl, 3-7C-cycloalkyl, 3-7C-cycloalkyl, 3-7C-cycloalkyl, or R10 and R11 independently of one another are hydrogen, 1-7C-alkyl, 3-7C-cycloalkyl, 3-7C-cycloalkylmethyl or hydroxy-2-4C-alkyl, and R12 and R13, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-4C-alkyl-)-piperazin-1-yl radical, or R10 and R11, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-4C-alkyl-)-piperazin-1-yl radical, and R12 and R13, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-4C-alkyl-)-piperazin-1-yl radical, or R10 and R13 independently of one another are hydrogen or 1-4C-alkyl, and R11 and R12, together and including the N-C(=)-N structure to which they are bonded, are a hexahydropyrimidin-2-ylidene or imidazolidin-2-ylidene radical, the salts of these compounds, as well as the N-oxides, enantiomers, E/Z isomers and tautomers of these compounds and their salts. 1-4C-Alkyl represents a straight-chain or branched alkyl radical having 1 to 4 carbon atoms. Examples which may be mentioned are the butyl, isobutyl, sec-butyl, tert-butyl, propyl, isopropyl and, preferably, the ethyl and methyl radicals. 1-4C-Alkoxy represents radicals which, in addition to the oxygen atom, contain a straight-chain or branched alkyl radical having 1 to 4 carbon atoms. Examples which may be mentioned are the butoxy, isobutoxy, sec-butoxy, tert-butoxy, propoxy, isopropoxy and, preferably, the ethoxy and methoxy radicals. 3-7C-Cycloalkoxy represents, for example, cyclopropyloxy, cyclobutyloxy, cyclopentyloxy, cyclobexyloxy and cyclopentyloxy, of which cyclopropyloxy, cyclobutyloxy and cyclopentyloxy are preferred. 3-7C-Cycloalkylmethoxy represents, for example, cyclopropylmethoxy, cyclobutylmethoxy, cyclobentylmethoxy, cyclobentylmethoxy, of which cyclopropylmethoxy, cyclobutylmethoxy and cyclopentylmethoxy are preferred. As 1-4C-Alkoxy which is completely or predominantly substituted by fluorine, the 2,2,3,3,3-penta-fluoropropoxy, the perfluoroethoxy, the 1,1,2,2-tetrafluoroethoxy, the 1,2,2-trifluoroethoxy, the trifluoromethoxy, in particular the 2,2,2-trifluoroethoxy, and preferably the difluoromethoxy radicals, for example, may be mentioned. In this context, "predominantly" means that more than half of the hydrogen atoms of the 1-4C-alkoxy groups are replaced by fluorine atoms. 1-2C-Alkylenedioxy represents, for example, the methylenedioxy (-O- CH_2 -O-) or the ethylenedioxy (-O- CH_2 -O-) radical. Halogen within the meaning of the invention is fluorine, chlorine or bromine. 1-7C-Alkyl represents straight-chain or branched alkyl radicals having 1 to 7 carbon atoms. Examples which may be mentioned are the heptyl, isoheptyl (5-methylhexyl), hexyl, isohexyl (4-methylpentyl), neohexyl (3,3-dimethylbutyl), pentyl, isopentyl (3-methylbutyl), neopentyl (2,2-dimethylpropyl), butyl, isobutyl, sec-butyl, tert-butyl, propyl, isopropyl, ethyl or methyl radical. 3-7C-Cycloalkyl represents the cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl or cycloheptyl radical. 3-7C-Cycloalkylmethyl represents a methyl radical which is substituted by one of the abovementioned 3-7C-cycloalkyl radicals. Examples which may be mentioned are the cycloalkylmethyl radicals cyclopropylmethyl, cyclobutylmethyl and cyclopentylmethyl. Hydroxy-2-4C-alkyl represents 2-4C-alkyl radicals which are substituted by a hydroxyl group. Examples which may be mentioned are the 2-hydroxyethyl and the 3-hydroxypropyl radicals. The substituents R4 and -C(O)R5 of the compounds of the formula I can be attached in the ortho, meta or para position with respect to the binding position in which the 6-phenyl ring is bonded to the benzonaphthyridine ring system. Preference is given to compounds of the formula I, in which R4 is hydrogen and -C(O)R5 is attached in the meta or in the para position. Suitable salts of compounds of the formula I - depending on substitution - are all acid addition salts or all salts with bases. The pharmacologically tolerable salts of the inorganic and organic acids and bases customarily used in pharmacy may be particularly mentioned. Those suitable are, on the one hand, water-soluble and water-insoluble acid addition salts with acids such as, for example, hydrochloric acid, hydrobromic acid, phosphoric acid, nitric acid, sulfuric acid, acetic acid, citric acid, D-gluconic acid, benzoic acid, 2-(4-hydroxybenzoyl)benzoic acid, butyric acid, sulfosalicylic acid, maleic acid, lauric acid, malic acid, fumaric acid, succinic acid, oxalic acid, tartaric acid, embonic acid, stearic acid, toluenesulfonic acid, methanesulfonic acid or 3-hydroxy-2-naphthoic acid, where the acids are employed in salt preparation - depending on whether a mono- or polybasic acid is concerned and depending on which salt is desired - in an equimolar quantitative ratio or one differing therefrom. On the other hand salts with bases are also suitable. Examples of salts with bases which may be mentioned are alkali metal (lithium, sodium, potassium) or calcium, aluminum, magnesium or titanium salts, where here too the bases are employed in salt preparation in an equimolar quantitative ratio or one differing therefrom. Pharmacologically intolerable salts which can be obtained first, for example, as process products in the preparation of the compounds according to the invention on an industrial scale, are converted into pharmacologically tolerable salts by methods known to the person skilled in the art. It is known
to the person skilled in the art that the compounds according to the invention and their salts, for example when they are isolated in crystalline form, may comprise varying amounts of solvents. Accordingly, the invention also embraces all solvates and in particular all hydrates of the compounds of the formula I, and also all solvates and in particular all hydrates of the salts of the compounds of the formula I. Compounds of the formula I to be emphasized are those in which R1 is 1-4C-alkyl, R2 is 1-4C-alkoxy, 3-6C-cycloalkoxy, 3-6C-cycloalkylmethoxy, or 1-4C-alkoxy which is completely or predominantly substituted by fluorine, R3 is 1-4C-alkoxy, 3-6C-cycloalkoxy, 3-6C-cycloalkylmethoxy, or 1-4C-alkoxy which is completely or predominantly substituted by fluorine, R4 is hydrogen, halogen, nitro, 1-4C-alkyl, trifluoromethyl or 1-4C-alkoxy, R5 is a radical of the formula (a), (b) or (c) in which if R5 is a radical of the formula (b), either R6 is hydrogen, and R7, R8 and R9 independently of one another are hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl, 3-7C-cycloalkylmethyl or hydroxy-2-4C-alkyl, or R6 is hydrogen, R7 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl or 3-7C-cycloalkylmethyl, and R8 and R9, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-2C-alkyl)-piperazin-1-yl radical, in which if R5 is a radical of the formula (c), either R10, R11, R12 and R13 independently of one another are hydrogen, 1-4C-alkyl, 3-7C-cyclo-alkyl, 3-7C-cycloalkylmethyl or hydroxy-2-4C-alkyl, or R10 and R11 independently of one another are hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl, 3-7C-cycloalkylmethyl or hydroxy-2-4C-alkyl, and R12 and R13, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-2C-alkyl)-piperazin-1-yl radical, or R10 and R11, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-2C-alkyl)-piperazin-1-yl radical, and R12 and R13, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-2C-alkyl)-piperazin-1-yl radical, or R10 and R13 independently of one another are hydrogen or 1-4C-alkyl, and R11 and R12, together and including the N-C(=)-N structure to which they are bonded, are a hexahydropyrimidin-2-ylidene or imidazolidin-2-ylidene radical, the salts of these compounds, as well as the N-oxides, enantiomers, E/Z isomers and tautomers of these compounds and their salts. Compounds of the formula I to be particularly emphasized are those in which R1 is methyl, R2 is 1-4C-alkoxy, R3 is 1-4C-alkoxy, R4 is hydrogen, R5 is a radical of the formula (a), (b) or (c) in which if R5 is a radical of the formula (b), either R6 is hydrogen, R7 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl or 3-7C-cycloalkylmethyl, R8 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl or 3-7C-cycloalkylmethyl, and R9 is hydrogen, 1-4C-alkyl or hydroxy-2-4C-alkyl, where at least one of the radicals R7, R8 and R9 is not hydrogen, or R6 is hydrogen, R7 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl or 3-7C-cycloalkylmethyl, and R8 and R9, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-2C-alkyl)-piperazin-1-yl radical. in which if R5 is a radical of the formula (c), either R10 is hydrogen or 1-4C-alkyl, R11 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl or 3-7C-cycloalkylmethyl, R12 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl or 3-7C-cycloalkylmethyl, and R13 is hydrogen, 1-4C-alkyl or hydroxy-2-4C-alkyl, where at least one of the radicals R10, R11, R12 and R13 is not hydrogen, or R10 is hydrogen or 1-4C-alkyl, R11 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl or 3-7C-cycloalkylmethyl, and R12 and R13, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-2C-alkyl)-piperazin-1-yl radical, or R10 and R11, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-2C-alkyl)-piperazin-1-yl radical, and R12 and R13, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-2C-alkyl)-piperazin-1-yl radical. the salts of these compounds, as well as the N-oxides, enantiomers, E/Z isomers and tautomers of these compounds and their salts. Preferred compounds of the formula I are those in which - R1 is methyl, - R2 is methoxy or ethoxy, - R3 is methoxy, - R4 is hydrogen, - R5 is N'-(N,N-dimethyl)guanidyl, N'-(N,N-diethyl)guanidyl, (morpholine)-4-carboxamidinyl, 4-methylpiperazine-1-carboxamidinyl, N'-[N-(2-hydroxyethyl)-N-methyl]guanidinyl, N"-(N,N,N',N'-tetramethyl)guanidyl, N-guanidinyl, N'-(N,N,N"-trimethyl)guanidinyl, N-(N'-methyl)guanidinyl, N-(N'-isopropyl)guanidinyl, N-(N'-propyl)guanidinyl, N-(N'-isobutyl)guanidinyl, N-(N'-ethyl)guanidinyl, N-cyclohexyl-N'-guanidinyl, N-cyclohexylmethyl-N'-guanidinyl, N-butyl-N'-guanidinyl or pyrrolidin-1-carboxamidinyl, the salts of these compounds, as well as the N-oxides, enantiomers, E/Z isomers and tautomers of these compounds and their salts. The compounds of the formula I are chiral compounds having centers of chirality in positions 4a and 10b The invention therefore includes all conceivable pure diastereomers and pure enantiomers and mixtures thereof in any mixing ratio, including the racemates. Preference is given to compounds of the formula I in which the hydrogen atoms in positions 4a and 10b are in the cis position relative to one another. The pure cis enantiomers and their mixtures in any mixing ratio and including the racemates are particularly preferred. Particularly preferred in this context are those compounds of the formula I which in positions 4a and 10b have the same absolute configuration as the compound (-)-cis-4-amino-3-(3-ethoxy-4-methoxy-phenyl)-1-methylpiperidine dihydrochloride having the optical rotation $[\alpha]_D^{20} = -65.5^{\circ}$ (c=1, methanol) which can be employed as a starting material and is described in WO99/57118. The enantiomers can be separated in a known manner (for example by preparing and separating corresponding diastereoisomeric compounds) or by stereoselective synthesis methods. Such separation processes and synthesis methods are described, for example, in EP 247 971 and in DE 42 17 401. The compounds according to the invention can be prepared, for example, as shown in the reaction schemes below. Reaction scheme 1: In a first reaction step, compounds of the formula VII, in which R1, R2 and R3 have the meanings given above, are reacted with compounds of the formula VI, in which R4 has the meaning given above, R is, for example, 1-4C-alkyl and X is a suitable leaving group, for example a chlorine atom. This benzoylation is carried out, for example, according to the Einhorn process, the Schotten-Baumann variant or as described in J. Chem. Soc. C, 1971, 1805-1808. The preparation of cis/trans racemate mixtures and of pure cis racemates of compounds of the formula VII is described, for example, in USP 3,899,494, in DE-A 21 23 328 and in DE-A 16 95 782. Pure cis enantiomers of the compounds of the formula VII can be obtained, for example, by the processes disclosed in EP 0 247 971 and in DE 42 17 401. Compounds of the formula VI are known or can be prepared by known processes such as, for example, the process shown in reaction scheme 2. The compounds of the formula IV are obtained by cyclocondensation of the compounds of the formula V obtained in the first reaction step. The cyclocondensation is carried out in a manner known per se to the person skilled in the art according to Bischler-Napieralski (e.g. as described in J. Chem. Soc., 1956, 4280-4282) in the presence of a suitable condensing agent, such as, for example, polyphosphoric acid, phosphorus pentachloride, phosphorus trichloride, phosphorus pentoxide, thionyl chloride or preferably phosphorus oxytrichloride, in a suitable inert solvent, e.g. in a chlorinated hydrocarbon such as chloroform, or in a cyclic hydrocarbon such as toluene or xylene, or another inert solvent such as acetonitrile, or without a further solvent using an excess of condensing agent, preferably at elevated temperature, in particular at the boiling point of the solvent or condensing agent used. Starting with the compounds of the formula IV, the compounds of the formula I can be obtained by different routes. On the one hand, the compounds of the formula I can be obtained from the compounds of the formula IV by direct reaction with compounds of the formula R5-H. Reaction scheme 1 Furthermore, it is possible to additionally activate the benzoic acid derivatives of the formula III prior to the reaction with compounds of the formula R5-H, for example by forming an acid halide or acid anhydride, or by using coupling agents known to the person skilled in the art, such as, for example, N,N'-dicyclohexylcarbodiimide or N'-(3-dimethylaminopropyl)-N-ethylcarbodiimide (compounds of the formula II). It is also possible to obtain compounds of the formula I from compounds of the formula II by initially reacting the compounds of the formula II in which Y is, for example, a chlorine atom with suitably substituted S-alkyl-isothioureas and then, in a second step, replacing the S-alkyl group by a suitably substituted amine. Similar reactions are described, for example in Arzneim.-Forsch. (Drug Res.) **25**, No. 10, (1975), pp. 1477-1482 or in the following examples. The preparation of compounds of the formula IV, in which R1, R2 and R3 have the meanings given above and R is 1-4C-alkyl and of benzoic acid derivatives of the formula III, in which R1, R2 and R3 have the meanings given
above, is also described in the international application WO98/21208. An alternative synthesis route for compounds of the formula I is shown in reaction scheme 2. Starting with a suitably substituted phthalic acid, isophthalic acid or terephthalic acid monoester derivative (compounds of the formula XII), the acid group is initially activated, for example by forming an acid halide (compounds of the formula VI). Reaction scheme 2: The acid halide (compounds of the formula VI) is then reacted with compounds of the formula R5-H. The ester group of the resulting guanidine derivatives (compounds of the formula XI) is hydrolyzed and the resulting acids (compounds of the formula X) are activated, for example by conversion into an acid halide (compounds of the formula IX). In the next reaction step, compounds of the formula VII, in which R1, R2 and R3 have the meanings given above are benzoylated with the compounds of the formula IX. Again, this benzoylation is carried out, for example, by the Einhorn process, the Schotten-Baumann variant or as described in J. Chem. Soc. (C), 1971, 1805-1808. The final cyclocondensation of the compounds of the formula VIII obtained by the benzoylation affords the compounds of the formula I. The compounds of the formula I prepared by the processes described above can then, if desired, be converted into their salts, or salts of the compounds of the formula I obtained can then, if desired, be converted into the free compounds. Corresponding processes are known to the person skilled in the art. Suitably substituted phthalic acid, isophthalic acid or terephthalic acid monoester derivatives (compounds of the formula VI or XII) are either known or can be prepared by methods known to the person skilled in the art. Exemplary compounds of the formula VI which may be mentioned are methyl 4-chlorocarbonylbenzoate (preparation described in J. Amer. Chem. Soc. 79, (1957), 96 or in Bioorg. Med. Chem. Lett. 1999, 227-232) and methyl 3-chlorocarbonylbenzoate (preparation described in J. Med. Chem. 1999, 2621-2632). It is also known to the person skilled in the art that, if a plurality of reactive centers are present in a starting material or intermediate, it may be necessary to temporarily block one or more reactive centers with protective groups so that a reaction takes place only at the desired reactive center. A detailed description of how to use a large number of proven protective groups can be found, for example, in T.W. Greene, Protective Groups in Organic Synthesis, John Wiley & Sons, 1991. The substances according to the invention are isolated and purified in a manner known per se, for example by distilling off the solvent under reduced pressure and recrystallizing the residue obtained from a suitable solvent or subjecting it to one of the customary purification methods, such as, for example, column chromatography on a suitable support material. Salts are obtained by dissolving the free compound in a suitable solvent (e.g. a ketone, such as acetone, methyl ethyl ketone or methyl isobutyl ketone, an ether, such as diethyl ether, tetrahydrofuran # WO 02/066476 PCT/EP02/01819 - 14 - or dioxane, a chlorinated hydrocarbon, such as methylene chloride or chloroform, or a low-molecular-weight aliphatic alcohol, such as ethanol or isopropanol) which contains the desired acid or base, or to which the desired acid or base is then added. The salts are obtained by filtering, reprecipitating, precipitating with a nonsolvent for the addition salt or by evaporating the solvent. Salts obtained can be converted into the free compounds, which can in turn be converted into salts, by alkalization or by acidification. In this manner, pharmacologically unacceptable salts can be converted into pharmacologically acceptable salts. The following examples serve to illustrate the invention in greater detail without restricting it. Further compounds of the formula I, whose preparation is not explicitly described, can also be prepared in an analogous manner or in a manner familiar per se to the person skilled in the art using customary process techniques. In the examples, m.p. stands for melting point, h for hour(s), RT for room temperature, EF for empirical formula and MW for molecular weight. The compounds mentioned in the examples and their salts are a preferred subject of the invention. ### **Examples** ### **End products** 1. 4-[(+)-cis-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro[c][1,6]naphthyridin-6-yl)-N-(1-imino-1-morpholin-4-ylmethyl)]benzamide dihydrochloride Over a period of about 5 min, a solution of 1.86 g of 4-(cis-9-ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydrobenzo[c][1,6]naphthyridin-6-yl)benzoyl chloride in 70 ml of acetonitrile is added dropwise to a mixture, cooled with ice/water, of 0.51 g of N-amidinomorpholine and 2 ml of triethylamine in 100 ml of acetonitrile. The reaction mixture is stirred at RT overnight and then substantially concentrated under reduced pressure, and the highly viscous residue is partitioned between dichloromethane and saturated sodium bicarbonate solution. The organic phase is washed with water, dried over sodium sulfate and concentrated. The resin-like residue is purified by silica gel chromatography, and the product fraction is separated off and concentrated. The foamed solid residue is dissolved in a little methanol, 2 equivalents of aqueous HCl are added to the solution and this solution is concentrated. This gives 0.84 g of the title compound of m.p. 208-218°C (unsharp, slow deliquescence). EF: C₂₈ H₃₅ N₅ O₄ x 2 HCl; MW: 578.54. Optical rotation: $\left[\alpha\right]_{D}^{20} = +107.1^{\circ}$ (c = 10.46 mg/ml, methanol) Analogously to example 1, the following title compounds are obtained when, instead of N-amidinomorpholine, the respective appropriately substituted guanidines are used as reaction partners: 2. N'-{1-[4-((+)-cis-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro[c][1,6]naph-thyridin-6-yl)phenyl]methanoyl}-N,N-diethylguanidine dihydrochloride EF: C_{28} H_{37} N_5 O_3 x 2 HCI; MW: 564.56; m.p.: 194-203°C (unsharp, solid foam) Optical rotation: $\left[\alpha\right]_{D}^{20}$ = + 73.6° (c = 10.33 mg/ml, methanol) 3. N'-{1-[4-((+)-cis-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro[c][1,6]-naphthyridin-6-yl)phenyl]methanoyl}-N,N-dimethylguanidine dihydrochloride EF: C_{26} H₃₃ N₅ O₃ x 2 HCl; MW: 536.51; m.p.: 134-141°C (unsharp, solid foam) Optical rotation: $\left[\alpha\right]_{D}^{20}$ = + 25.5° (c= 9.79 mg/ml, methanol). The (2R,3R)/(L)-(+)-tartrate of the free base of the title compound has a m.p. 140-146°C; EF: $C_{26} H_{33} N_5 O_3 \times C_4 H_6 O_6 \times 1.23 H_2 O$; MW: 635.90 Optical rotation: $\left[\alpha\right]_{D}^{20}$ = - 41.8° (c= 10.04 mg/ml, methanol) 4. N'-{1-[4-((+)-cis-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro[c][1,6]naph-thyridin-6-yl)phenyl]methanoyl}-N-(2-hydroxyethyl)-N-methylguanidine dihydrochloride EF: $C_{27} H_{35} N_5 O_4 \times 2$ HCI; MW: 566.53; m.p.: 172-179°C (unsharp, solid foam) Optical rotation: $\left[\alpha\right]_{D}^{20}$ = + 51.9° (c = 10.21g/ml, methanol) 5. N"-{1-[4-((-)-cis-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro[c][1,6]naph-thyridin-6-yl)phenyl]methanoyl}-N,N,N',N'-tetramethylguanidine hydrochloride EF: C₂₈ H₃₇ N₅ O₃ x HCl; MW: 528.10; m.p.: 169-175°C (unsharp, solid foam) Optical rotation: $\left[\alpha\right]_{D}^{20} = -44.2^{\circ} \text{ (c} = 9.85 \text{ mg/ml, methanol)}$ 6. N-[1-Amino-1-(4-methylpiperazin-1-yl)methylene]-4-((+)-cis-9-ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro[c][1,6]naphthyridin-6-yl)benzamide dihydrochloride EF: $C_{29} H_{38} N_6 O_3 \times 2 HCI$; MW: 591.59; m.p.: 209-215°C (unsharp) Optical rotation: [α] $_{D}^{20}$ = + 9.8° (c = 9.66 mg/ml, methanol) 7. N-{1-[4-((-)-cis-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6]naphthyridin-6-yl)-phenyl]-methanoyl}-guanidine EF: C₂₄ H₂₉ N₅ O₃; MW: 435.53; m.p.: 180-190°C (unsharp, solid foam) Optical rotation: $\left[\alpha\right]_{D}^{20} = -94.4^{\circ} \text{ (c = 10.38 mg/ml, methanol)}$ 8. N'-{1-[4-((-)-cis-8,9-Dimethoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6]naph-thyridin-6-yl)-phenyl]-methanoyl}-N,N-dimethyl-guanidinehydrochloride EF: C₂₅ H₃₁ N₅ O₃ x HCl; MW: 486.02; m.p.: 188-192°C (unsharp, solid foam) Optical rotation: $\left[\alpha\right]_{D}^{20} = -65.2^{\circ}$ (c = 9.67 mg/ml, methanol); contains about 25 % of the (+)-cisenantiomer 9. N"-{1-[4-((-)-cis-8,9-Dimethoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6] naphthyridin-6-yl)-phenyl]-methanoyl}-N,N,N',N'-tetramethyl-guanidine hydrochloride EF: C_{27} H_{35} N_5 O_3 x HCl x 1.1 H_2 O; MW: 533.95; m.p.: 161-166°C (unsharp, solid foam) Optical rotation: $\left[\alpha\right]_{D}^{20} = -54^{\circ}$ (c = 10.10 mg/ml, methanol); contains about 25 % of the (+)-cisenantiomer 10. N'-{1-[3-(cis)-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6] naphthyridin-6-yl)-phenyl]-methanoyl}-N,N-dimethyl-guanidine EF: C₂₆ H₃₃ N₅ O₃; MW: 463.59; m.p.: 186-188°C (unsharp, solid foam) 11. 4-((cis)-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6]naph-thyridin-6-yl)-N-(1-imino-1-pyrrolidin-1-yl-methyl)-benzamide EF: C₂₈ H₃₅ N₅ O₃; MW: 489.6; m.p.: 145-152°C (unsharp, solid foam) 12. N-{1-[4-((cis)-8,9-Dimethoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6] naphthyridin-6-yl)-phenyl]-methanoyl}-guanidine EF: C₂₃ H₂₇ N₅ O₃; MW: 421.50; m.p.: 151-155°C (unsharp, solid foam) 13. N'-{1-[4-((cis)-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6] naphthyridin-6-yl)-phenyl]-methanoyl}-N,N,N"-trimethyl-guanidine hydrochloride EF: C₂₇ H₃₅ N₅ O₃ x HCl; MW: 514.07; m.p.: 143-150°C (unsharp, solid foam) 14. N-{1-[4-((-)-cis-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6]naphthyridin-6-yl)-phenyl]-methanoyl}-N'-methyl-guanidine EF: C₂₅ H₃₁ N₅ O₃; MW: 449.56; m.p.: 160-168°C (unsharp, solid foam) Optical rotation:
$\left[\alpha\right]_{D}^{20}$ = -71.4° (c = 9.87 mg/ml, methanol) # 15. N-{1-[4-((-)-cis-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6]naphthyridin-6-yl)-phenyl]-methanoyl}-N'-isopropyl-guanidine A suspension of 0.5 g 1-{1-[4-(-)-cis-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10bhexahydrobenzo[c][1,6]naphthyridin-6-yl)-phenyl]-methanoyl}-2-methyl-isothiourea and 0.9 ml isopropylamine in a mixture of 30 ml acetonitril and 30 ml dimethylformamide is stirred at 60 ° C for 6 h. The brownish yellow solution is concentrated in vacuo and the brown residue is dissolved in 100 ml of dichloromethan. The organic phase is washed successively with saturated aqueous NaHCO $_3$ (30 ml each) three times, dried over Na $_2$ SO $_4$ and concentrated in vacuo to give 0.6 g of the titel compound as a soft foam. EF: C_{27} H₃₅ N₅ O₃; MW: 477.61; m.p.: 111-114°C (unsharp, solid foam) Optical rotation: $[\alpha]_{D}^{20} = -71.4^{\circ}$ (c = 9.87 mg/ml, methanol) Analogously to example 15, the following title compounds are obtained when, instead of isopropylamine, the respective appropriately substituted amines are used as reaction partners: 16. N-{1-[4-((-)-cis-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6]naphthyridin-6-yl)-phenyl]-methanoyl}-N'-propyl-guanidine EF: C_{27} H₃₅ N₅ O₃; MW: 477.61; m.p.: 106-108°C (solid foam) Optical rotation: $[\alpha]_{D}^{20} = -92.2^{\circ}$ (c = 10.09 mg/ml, methanol) 17. N-{1-[4-((-)-cis-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6]naphthyridin-6-yl)-phenyl]-methanoyl}-N'-isobutyl-guanidine EF: C_{28} H₃₇ N₅ O₃; MW: 491.64; m.p.: 98-100°C (solid foam) Optical rotation: $[\alpha]_{D}^{20} = -83.0^{\circ}$ (c = 9.94 mg/ml, methanol) 18. N-{1-[4-((-)-cis-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6]naphthyridin-6-yl)-phenyl]-methanoyl}-N'-ethyl-guanidine EF: C_{26} H₃₃ N₅ O₃; MW: 463.58; m.p.: 98-100°C (solid foam) Optical rotation: [α] $\frac{20}{D}$ = -85.0° (c = 10.30 mg/ml, methanol) # 19. N-Cyclohexyl-N'-{1-[4-((-)-cis-9-ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6]naphthyridin-6-yl)-phenyl]-methanoyl}-guanidine EF: C₃₀ H₃₉ N₅ O₃; MW: 517.68; m.p.: 86-90°C (unsharp,s olid foam) Optical rotation: $\left[\alpha\right]_{D}^{20}$ = - 76.8° (c = 10.16 mg/ml, methanol) # 20. N-Cyclohexylmethyl-N'-{1-[4-((-)-cis-9-ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6]naphthyridin-6-yl)-phenyl]-methanoyl}-guanidine EF: C₃₁ H₄₁ N₅ O₃; MW: 531.70; m.p.: 93-96°C (unsharp, solid foam) Optical rotation: $\left[\alpha\right]_{D}^{20} = -73.3^{\circ}$ (c = 9.82 mg/ml, methanol) # 21. N-Butyl-N'-{1-[4-((-)-cis-9-ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6]naphthyridin-6-yl)-phenyl]-methanoyl}-guanidine EF: C₂₈ H₃₇ N₅ O₃; MW: 491.64; m.p.: 77-79°C (unsharp, solid foam) Optical rotation: $\left[\alpha\right]_{D}^{20}$ = -83.5° (c = 9.82 mg/ml, methanol) # 22. N'-{1-[4-((-)-cis-9-Ethoxy-8-methoxy-2-methyl-2-oxy-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6]naphthyridin-6-yl)-phenyl]-methanoyl}-N,N-dimethyl-guanidine 1.2 ml of 30 % aqueous hydrogenperoxide are added to a solution of 0.5 g of N'-{1-[4-((-)-cis-9-ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro[c][1,6]naphthyridin-6-yl)phenyl]methanoyl}-N,N-dimethylguanidine (free base of title compound of example 3) in 20 ml of methanol at RT and the mixture is stirred for 2 days. The reaction is quenched by adding of 2 g Na_2SO_3 . The resulting suspension is filtered and the filtrate concentrated in vacuo. The residue is dissolved in 50 ml of dichloromethane and the organic phase is washed successively with saturated aqueous $NaHCO_3$ (20 ml each) three times, dried over Na_2SO_4 and concentrated in vacuo to give 0.2 g of the titel compound as a yellow solid foam. EF: C₂₆ H₃₃ N₅ O₃; MW: 479.58; m.p.: 220-224°C Optical rotation: $\left[\alpha\right]_{D}^{20}$ = - 106.0° (c = 9.95 mg/ml, methanol) #### Starting materials # A. 4-(cis-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydrobenzo[c][1,6]naphthyridin-6-yl)benzoyl chloride dihydrochloride The title compound is obtained from 4-((-)-cis-9-ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6]naphthyridin-6-yl)benzoic acid by the reaction, known to the person skilled in the art, with a chlorinating agent, such as thionyl chloride, oxalyl chloride, phosphorus trichloride or phosphorus pentachloride. The resulting acid chloride is directly used for the further reaction, without further purification. # B. 1-{1-[4-(-)-cis-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6]naph-thyridin-6-yl)-phenyl]-methanoyl}-2-methyl-isothiourea Over a period of about 5 min at RT, 12.3 g O-benzotriazol-1-yl-tetramethyluronium hexafluorophosphate are added to a suspension of 9.86 g 4-((-)-cis-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6]naphthyridin-6-yl)benzoic acid in 250 ml of acetonitrile and 22 ml diisopropyl-ethylamine. The reaction mixture is stirred 2 hours. Under nitrogen atmosphere the resulting brown solution is added over a period of about 90 min to a suspension prepared from 5.2 g S-methyl-isothiourea sulfate in 150 ml of acetonitrile and 22 ml diisopropyl-ethylamine. The brownish yellow suspension is stirred at RT overnight and then filtered. The light brown residue is washed twice with 50 ml of acetonitrile and dried under reduced pressure. The crude product is used without further purification. This gives 11 g of the title compound of m.p. 199-201°C (slow deliquescence). EF: C_{25} H₃₀ N₃ O₃ S; MW: 466.61. Optical rotation: $[\alpha]_{D}^{20} = -85.8.1^{\circ}$ (c = 9.67 mg/ml, methanol) # C. 4-((-)-cis-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydrobenzo[c][1,6]naph-thyridin-6-yl)benzoic acid The title compound is prepared as described in WO98/21208; Optical rotation: $[\alpha]_D^{20} = -109.7^{\circ}$ (c = 1, methanol + 1.0 equivalent 0.1 N aq. sodium hydroxid) # NOT FURNISHED AT TIME OF PUBLICATION diseases, cerebral malaria or Lyme's disease, shock symptoms [septic shock, endotoxin shock, Gramnegative sepsis, toxic shock syndrome and ARDS (adult respiratory distress syndrome)] and also generalized inflammations in the gastrointestinal region (Crohn's disease and ulcerative colitis); disorders which are based on allergic and/or chronic, faulty immunological reactions in the region of the upper airways (pharynx, nose) and of the adjacent regions (paranasal sinuses, eyes), such as, for example, allergic rhinitis/sinusitis, chronic rhinitis/sinusitis, allergic conjunctivitis and also nasal polyps; and also disorders of the central nervous system such as memory disorders and Alzheimer's disease, candidiasis, leishmaniases and leprosy. On account of their vasorelaxant activity, the compounds according to the invention can also be used for the treatment of high blood pressure disorders of various origins such as, for example, pulmonary high blood pressure and the concomitant symptoms associated therewith, for the treatment of erectile dysfunction or colics of the kidneys and the ureters in connection with kidney stones. On account of their cAMP-increasing action, however, they can also be used for disorders of the heart which can be treated by PDE inhibitors, such as, for example, cardiac insufficiency, and also as antithrombotic, platelet aggregation-inhibiting substances. The invention further relates to a method for the treatment of mammals including humans who are suffering from one of the abovementioned diseases. The method comprises administering a therapeutically effective and pharmacologically acceptable amount of one or more of the compounds according to the invention to the sick mammal. The invention further relates to the compounds according to the invention for use in the treatment and/or prophylaxis of diseases, in particular the diseases mentioned. The invention also relates to the use of the compounds according to the invention for the production of medicaments which are employed for the treatment and/or prophylaxis of the diseases mentioned. The invention furthermore relates to medicaments for the treatment and/or prophylaxis of the diseases mentioned and which contain one or more of the compounds according to the invention. A further subject of the invention is a commercial product, consisting of a customary secondary pack, a primary pack containing the medicament (for example an ampoule or a blister pack) and, if desired, an information leaflet, the medicament exhibiting antagonistic action against cyclic nucleotide phosphodiesterases of types 3 and 4 and leading to the attenuation of the symptoms of illnesses which are connected with cyclic nucleotide phosphodiesterases of types 3 and 4, and the suitability of the medicament for the prophylaxis or treatment of illnesses which are connected with cyclic nucleotide phosphodiesterases of types 3 and 4 being indicated on the secondary pack and/or on the information leaflet of the commercial product, and the medicament containing one or more compounds of the formula I according to the invention. The secondary pack, the primary pack containing the medicament and the information leaflet otherwise comply with what would be regarded as standard to the person skilled in the art for medicaments of this type. Advantageously, the substances according to the invention are also suitable for combination with other substances which bring about stimulation of cAMP, such as prostaglandins (PGE2, PGI2 and prostacyclin) and their derivatives, direct adenylate cyclase stimulators such as forskolin and related substances, or substances indirectly stimulating adenylate cyclase, such as catecholamines and adrenergic receptor agonists, in particular beta-mimetics. In combination, on account of their cAMP degradation-inhibiting action, they in this case display a synergistic, superadditive activity. This comes to bear, for example, in their use in combination with PGE2 for the
treatment of pulmonary hypertension. The medicaments are prepared by methods known per se familiar to the person skilled in the art. As medicaments, the compounds according to the invention (= active compounds) are either employed as such, or preferably in combination with suitable pharmaceutical auxiliaries, e.g. in the form of tablets, coated tablets, capsules, suppositories, patches, emulsions, suspensions, gels or solutions, the active compound content advantageously being between 0.1 and 95%. The person skilled in the art is familiar on the basis of his expert knowledge with the auxiliaries which are suitable for the desired pharmaceutical formulations. Beside solvents, gel-forming agents, ointment bases and other active compound excipients, it is possible to use, for example, antioxidants, dispersants, emulsifiers, preservatives, solubilizers or permeation promoters. For the treatment of diseases of the respiratory tract, the compounds according to the invention are preferably also administered by inhalation, preferably in the form of an aerosol, with the aerosol particles of solid, liquid or mixed composition having a diameter of from 0.5 to 10 μ m, advantageously of from 2 to 6 μ m. The aerosol can be produced, for example, using pressure-driven nozzle nebulizers or ultrasonic nebulizers, advantageously, however, using propellant gas-driven metered aerosols or by means of the propellant gas-free use of micronized active compounds from inhalation capsules. Depending on the inhalation system employed, the administration forms also contain, in addition to the active compounds, the requisite auxiliary substances, for example propellant gases (e.g. Frigen in the case of metered aerosols), surface-active substances, emulsifiers, stabilizers, preservatives, aromatizing agents, fillers (e.g. lactose in the case of powder inhalers) and, where appropriate, additional active compounds. For the purposes of inhalation, there are available a large number of appliances which can be used to generate aerosols of optimal particle size and administer them using an inhalation technique which is as appropriate as possible for the patient. In addition to using attachments (spacers and expanders) and pear-shaped containers (e.g. Nebulator® and Volumatic®), and also automatic spray puff releasers (Autohaler®) for metered aerosols, a number of technical solutions are available, particularly in the case of the powder inhalers (e.g. Diskhaler®, Rotadisk®, Turbohaler® or the inhaler described in European patent application 0 505 321), which technical solutions can be used to achieve optimal administration of the active compound. For the treatment of dermatoses, the compounds according to the invention are used in particular in the form of those medicaments which are suitable for topical application. For the production of the medicaments, the compounds according to the invention (= active compounds) are preferably mixed with suitable pharmaceutical auxiliaries and additionally processed to give suitable pharmaceutical formulations. Suitable pharmaceutical formulations which may be mentioned are, for example, powders, emulsions, suspensions, sprays, oils, ointments, fatty ointments, creams, pastes, gels or solutions. The medicaments according to the invention are prepared by methods known per se. The dosage of the active compounds takes place in the order of magnitude customary for PDE inhibitors. Thus topical application forms (such as, for example, ointments) for the treatment of dermatoses contain the active compounds in a concentration of, for example, 0.1-99%. The dose for administration by inhalation is customarily between 0.1 and 3 mg per day. The customary dose in the case of systemic therapy (p.o. or i.v.) is between 0.01 and 10 mg per kilogram per day. ### **Biological investigations** The second messenger cyclic AMP (cAMP) is known for inhibiting inflammatory cells and cells responsible for the immunological response. The PDE4 isoenzyme is widely distributed in cells associated with the initiation and spreading of inflammatory diseases (H Tenor and C Schudt, in "Phosphodiesterase Inhibitors", 21-40, "The Handbook of Immunopharmacology", Academic Press 1996); its inhibition results in the increase of the intracellular cyclic AMP concentration and thus in the inhibition of cellular activation (JE Souness et al., Immunopharmacology 47: 127-162, 2000). The anti-inflammatory potential of PDE4 inhibitors in vivo has been described in various animal models (MMTeixeira, TIPS 18: 164-170, 1997). To examine the PDE4 inhibition on a cellular level (in vitro), a large number of proinflammatory responses can be measured. Examples are the superoxide production of neutrophilic (C Schudt et al., Arch Pharmacol 344: 682-690, 1991) or eosinophilic (A Hatzelmann et al., Brit J Pharmacol 114: 821-831, 1995) granulocytes, which can be measured as luminol-enhanced chemiluminescence, or the synthesis of tumor necrosis factor alpha (TNFα) in monocytes, macrophages or dendritic cells (Gantner et al., Brit J Pharmacol 121: 221-231, 1997 and Pulmonary Pharmacol Therap 12: 377-386, 1999). The immunomodulatory potential of the PDE4 inhibitors furthermore becomes apparent by inhibition of T-cell responses such as cytokine synthesis or proliferation (DM Essayan, Biochem Pharmacol 57: 965-973, 1999). PDE4 inhibition by the substances according to the invention is thus a central indicator of the suppression of inflammatory processes. Some of the cells involved in inflammatory processes contain, in addition to PDE4, also the PDE3 isoenzyme which likewise contributes to the total cAMP metabolism of these cells. Examples are endothelial cells, mast cells, T-cells, macrophages and dendritic cells. In these cell types, the inhibitory action of PDE4 inhibitors can be enhanced by additional PDE3 inhibition. In the case of (respiratory) smooth muscle cells, inhibition of the PDE3 activity is furthermore important for (broncho)relaxation (A Hatzelmann et al., in "Phosphodiesterase Inhibitors", 147-160, "The Handbook of Immunopharmacology", Academic Press, 1996). ### A. Methodology ### 1. Inhibition of PDE isoenzymes The PDE activity was determined according to Thompson et al. (Adv Cycl Nucl Res 10: 69-92, 1979) with some modifications (Bauer and Schwabe, Naunyn-Schmiedeberg's Arch Pharmacol 311: 193-198, 1980). The test samples contained 20 mM Tris (pH 7.4), 5 mM MgCl₂, 0.5 µM cAMP or cGMP, [³H]cAMP or [³H]cGMP (about 30 000 cpm/sample), the PDE isoenzyme-specific additives described in greater detail below, the indicated concentrations of inhibitor and an aliquot of the enzyme solution in a total sample volume of 200 µl. Dilution series of the compounds according to the invention were prepared in DMSO and further diluted in the samples [1:100 (v/v)], to give the desired end concentration of the inhibitors at a DMSO concentration of 1% (v/v), which for its part has only a minute effect on PDE activity. After preincubation at 37°C for 5 minutes, the reaction was started by addition of the substrate (cAMP or cGMP). The samples were incubated at 37°C for a further 15 min. The reaction was terminated by addition of 50 µl 0.2 N HCl. After cooling on ice for 10 minutes and addition of 25 µg 5'-nucleotidase (snake venom from Crotalus atrox), the mixture was again incubated at 37°C for 10 min and the samples were then applied to QAE Sephadex A-25 columns (sample volume 1 ml). The columns were eluted with 2 ml of 30 mM ammonium formate (pH 6.0). The radioactivity of the eluate was measured and corrected by the corresponding blank values (measured in the presence of denatured protein); the blank values were less than 5% of the total radioactivity. In no case did the proportion of hydrolyzed nucleotide exceed 30% of the original substrate concentration. PDE3 (cGMP-inhibited) was investigated in homogenates of human platelets (see Schudt et al., Biochem Pharmacol 1991: 42, 153-162) using cAMP or cGMP as substrate. PDE4 (cAMP-specific) was investigated in the cytosol of human polymorphonuclear leukocytes (PMNL) [isolated from leukocyte concentrates, see Schudt et al., Arch Pharmacol 1991: <u>344</u>, 682-690] using cAMP as substrate. The PDE3 inhibitor motapizone (1 μM) was used to suppress the PDE3 activity emanating from contaminated platelets. The IC₅₀ values were determined from the concentration-inhibition curves by nonlinear regression. # B. Results In table 1 below, the inhibitory concentrations according to section A1 [inhibitory concentrations as -log IC_{50} (mol/l)] are indicated for a number of compounds according to the invention for the PDE4 and the PDE3 isoenzyme. The number of the compounds corresponds to the numbers of the examples in the section End products. Table 1 | Compound | PDE4 | PDE3 | | |----------|---------------------------------|------|--| | | [-log IC ₅₀ , mol/l] | | | | 1 | 9.22 | 6.87 | | | 2 | 9.77 | 7.37 | | | 3 | 9.39 | 7.06 | | | 4 | 8.34 | 5.94 | | | 5 | 9.01 | 6.89 | | | 6 | 9.13 | 6.44 | | | 7 | 8.83 | 6.71 | | | 10 | 8.15 | 6.05 | | | 11 | 8.41 | 6.26 | | | 13 | 9.34 | 7.04 | | | 14 | 8.82 | 6.51 | | | 15 | 9.11 | 6.81 | | | 16 | 9.65 | 6.78 | | | 17 | 9.34 | 6.91 | | | 18 | 8.76 | 6.61 | | | 19 | 9.50 | 6.88 | | | 20 | 9.65 | 7.01 | | | 21 | 9.49 | 6.89 | | | 22 | 7.71 | 6.17 | | ### Patent claims - 28 - ### 1. A compound of the formula I, #### in which R1 is 1-4C-alkyl, R2 is hydroxyl, 1-4C-alkoxy, 3-7C-cycloalkoxy, 3-7C-cycloalkylmethoxy, or 1-4C-alkoxy which is completely or predominantly substituted by fluorine, R3 is hydroxyl, 1-4C-alkoxy, 3-7C-cycloalkoxy, 3-7C-cycloalkylmethoxy, or 1-4C-alkoxy which is completely or predominantly substituted by fluorine, or in which R2 and R3 together are a 1-2C-alkylenedioxy group, R4 is hydrogen, halogen, nitro, 1-4C-alkyl, trifluoromethyl or 1-4C-alkoxy, R5 is a radical of the formula (a), (b) or (c) in which if R5 is a radical of the formula (b), either R6, R7, R8 and R9
independently of one another are hydrogen, 1-7C-alkyl, 3-7C-cycloalkyl, 3-7C-cycloalkylmethyl or hydroxy-2-4C-alkyl, or R6 is hydrogen, 1-7C-alkyl, 3-7C-cycloalkyl, 3-7C-cycloalkylmethyl or hydroxy-2-4C-alkyl, R7 is hydrogen, 1-7C-alkyl, 3-7C-cycloalkyl, 3-7C-cycloalkylmethyl or hydroxy-2-4C-alkyl, and R8 and R9, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-4C-alkyl-)-piperazin-1-yl radical, in which if R5 is a radical of the formula (c), either R10, R11, R12 and R13 independently of one another are hydrogen, 1-7C-alkyl, 3-7C-cyclo-alkyl, 3-7C-cycloalkylmethyl or hydroxy-2-4C-alkyl, or R10 and R11 independently of one another are hydrogen, 1-7C-alkyl, 3-7C-cycloalkyl, 3-7C-cycloalkylmethyl or hydroxy-2-4C-alkyl, and R12 and R13, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-4C-alkyl-)-piperazin-1-yl radical. or R10 and R11, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-4C-alkyl-)-piperazin-1-yl radical, and R12 and R13, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-4C-alkyl-)-piperazin-1-yl radical. or R10 and R13 independently of one another are hydrogen or 1-4C-alkyl, and R11 and R12, together and including the N-C(=)-N structure to which they are bonded, are a hexahydropyrimidin-2-ylidene or imidazolidin-2-ylidene radical, the salts of these compounds, as well as the N-oxides, enantiomers, E/Z isomers and tautomers of these compounds and their salts. - 2. A compound of the formula I as claimed in claim 1, in which - R1 is 1-4C-alkyl, - R2 is hydroxyl, 1-4C-alkoxy, 3-7C-cycloalkoxy, 3-7C-cycloalkylmethoxy, or 1-4C-alkoxy which is completely or predominantly substituted by fluorine, - R3 is hydroxyl, 1-4C-alkoxy, 3-7C-cycloalkoxy, 3-7C-cycloalkylmethoxy, or 1-4C-alkoxy which is completely or predominantly substituted by fluorine, or in which R2 and R3 together are a 1-2C-alkylenedioxy group, R4 is hydrogen, halogen, nitro, 1-4C-alkyl, trifluoromethyl or 1-4C-alkoxy, R5 is a radical of the formula (a), (b) or (c) in which if R5 is a radical of the formula (b), either R6, R7, R8 and R9 independently of one another are hydrogen, 1-7C-alkyl, 3-7C-cycloalkyl, 3-7C-cycloalkylmethyl or hydroxy-2-4C-alkyl, or R6 is hydrogen, 1-7C-alkyl, 3-7C-cycloalkyl, 3-7C-cycloalkylmethyl or hydroxy-2-4C-alkyl, R7 is hydrogen, 1-7C-alkyl, 3-7C-cycloalkyl, 3-7C-cycloalkylmethyl or hydroxy-2-4C-alkyl, and R8 and R9, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-4C-alkyl-)-piperazin-1-yl radical, in which if R5 is a radical of the formula (c), either R10, R11, R12 and R13 independently of one another are hydrogen, 1-7C-alkyl, 3-7C-cycloalkyl, 3-7C-cycloalkyl, 3-7C-cycloalkyl, 3-7C-cycloalkyl, 3-7C-cycloalkyl, or R10 and R11 independently of one another are hydrogen, 1-7C-alkyl, 3-7C-cycloalkyl, 3-7C-cycloalkylmethyl or hydroxy-2-4C-alkyl, and R12 and R13, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-4C-alkyl-)-piperazin-1-yl radical, or R10 and R11, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-4C-alkyl-)-piperazin-1-yl radical, and R12 and R13, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-4C-alkyl-)-piperazin-1-yl radical, or R10 and R13 independently of one another are hydrogen or 1-4C-alkyl, and R11 and R12, together and including the N-C(=)-N structure to which they are bonded, are a hexahydropyrimidin-2-ylidene or imidazolidin-2-ylidene radical, the salts of this compound, as well as the enantiomers, E/Z isomers and tautomers of this compound and their salts. 3. A compound of the formula I as claimed in claim 1, in which R1 is 1-4C-alkyl, R2 is 1-4C-alkoxy, 3-6C-cycloalkoxy, 3-6C-cycloalkylmethoxy, or 1-4C-alkoxy which is completely or predominantly substituted by fluorine, R3 is 1-4C-alkoxy, 3-6C-cycloalkoxy, 3-6C-cycloalkylmethoxy, or 1-4C-alkoxy which is completely or predominantly substituted by fluorine, R4 is hydrogen, halogen, nitro, 1-4C-alkyl, trifluoromethyl or 1-4C-alkoxy, R5 is a radical of the formula (a), (b) or (c) in which if R5 is a radical of the formula (b), either R6 is hydrogen, and R7, R8 and R9 independently of one another are hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl, 3-7C-cycloalkylmethyl or hydroxy-2-4C-alkyl, or R6 is hydrogen, R7 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl or 3-7C-cycloalkylmethyl, and R8 and R9, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-2C-alkyl)-piperazin-1-yl radical. in which if R5 is a radical of the formula (c), either R10, R11, R12 and R13 independently of one another are hydrogen, 1-4C-alkyl, 3-7C-cyclo-alkyl, 3-7C-cycloalkylmethyl or hydroxy-2-4C-alkyl, or R10 and R11 independently of one another are hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl, 3-7C-cycloalkyl, and R12 and R13, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-2C-alkyl)-piperazin-1-yl radical. or R10 and R11, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-2C-alkyl)-piperazin-1-yl radical, and R12 and R13, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-2C-alkyl)-piperazin-1-yl radical, or R10 and R13 independently of one another are hydrogen or 1-4C-alkyl, and R11 and R12, together and including the N-C(=)-N structure to which they are bonded, are a hexahydropyrimidin-2-ylidene or imidazolidin-2-ylidene radical, the salts of these compounds, as well as the N-oxides, enantiomers, E/Z isomers and tautomers of these compounds and their salts. - 4. A compound of the formula I as claimed in claim 1, in which - R1 is 1-4C-alkyl, - R2 is 1-4C-alkoxy, 3-6C-cycloalkoxy, 3-6C-cycloalkylmethoxy, or 1-4C-alkoxy which is completely or predominantly substituted by fluorine, - R3 is 1-4C-alkoxy, 3-6C-cycloalkoxy, 3-6C-cycloalkylmethoxy, or 1-4C-alkoxy which is completely or predominantly substituted by fluorine, - R4 is hydrogen, halogen, nitro, 1-4C-alkyl, trifluoromethyl or 1-4C-alkoxy, - R5 is a radical of the formula (a), (b) or (c) in which if R5 is a radical of the formula (b), either R6 is hydrogen, and R7, R8 and R9 independently of one another are hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl, 3-7C-cycloalkylmethyl or hydroxy-2-4C-alkyl, or R6 is hydrogen, R7 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl or 3-7C-cycloalkylmethyl, and R8 and R9, together and including the nitrogen atom to which both are bonded are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-2C-alkyl)-piperazin-1-yl radical. in which if R5 is a radical of the formula (c), either R10, R11, R12 and R13 independently of one another are hydrogen, 1-4C-alkyl, 3-7C-cyclo-alkyl, 3-7C-cycloalkylmethyl or hydroxy-2-4C-alkyl, or R10 and R11 independently of one another are hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl, 3-7C-cycloalkylmethyl or hydroxy-2-4C-alkyl, and R12 and R13, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-2C-alkyl)-piperazin-1-yl radical, or R10 and R11, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-2C-alkyl)-piperazin-1-yl radical, and R12 and R13, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-2C-alkyl)-piperazin-1-yl radical, or R10 and R13 independently of one another are hydrogen or 1-4C-alkyl, and R11 and R12, together and including the N-C(=)-N structure to which they are bonded, are a hexahydropyrimidin-2-ylidene or imidazolidin-2-ylidene radical, the salts of this compound, as well as the enantiomers, E/Z isomers and tautomers of this compound and their salts. - 5. A compound of the formula I as claimed in claim 1, in which - R1 is methyl, - R2 is 1-4C-alkoxy, - R3 is 1-4C-alkoxy, - R4 is hydrogen, R5 is a radical of the formula (a), (b) or (c) in which if R5 is a radical of the formula (b), either R6 is hydrogen, R7 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl or 3-7C-cycloalkylmethyl, R8 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl or 3-7C-cycloalkylmethyl, and R9 is hydrogen, 1-4C-alkyl or hydroxy-2-4C-alkyl, where at least one of the radicals R7, R8 and R9 is not hydrogen, or R6 is hydrogen, R7 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl or 3-7C-cycloalkylmethyl, and R8 and R9, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-2C-alkyl)-piperazin-1-yl radical, in which if R5 is a radical of the formula (c), either R10 is hydrogen or 1-4C-alkyl, R11 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl or 3-7C-cycloalkylmethyl, R12 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl or 3-7C-cycloalkylmethyl, and R13 is hydrogen, 1-4C-alkyl or hydroxy-2-4C-alkyl, where at least one of the radicals R10, R11, R12 and R13 is not hydrogen, or R10 is hydrogen or 1-4C-alkyl, R11 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl or 3-7C-cycloalkylmethyl, and R12 and R13, together and including the
nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-2C-alkyl)-piperazin-1-yl radical, or R10 and R11, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-2C-alkyl)-piperazin-1-yl radical, and R12 and R13, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-2C-alkyl)-piperazin-1-yl radical, the salts of these compounds, as well as the N-oxides, enantiomers, E/Z isomers and tautomers of these compounds and their salts. 6. A compound of the formula I as claimed in claim 1, in which R1 is methyl, R2 is methoxy or ethoxy, R3 is methoxy, R4 is hydrogen, is N'-(N,N-dimethyl)guanidinyl, N'-(N,N-diethyl)guanidinyl, (morpholine)-4-carboxamidinyl, 4-methylpiperazine-1-carboxamidinyl, N'-[N-(2-hydroxyethyl)-N-methyl]guanidinyl, N"-(N,N,N',N'-tetramethyl)guanidinyl, N-guanidinyl, N'-(N,N,N"-trimethyl)guanidinyl, N-(N'-methyl)guanidinyl, N-(N'-isopropyl)guanidinyl, N-(N'-propyl)guanidinyl, N-(N'-isobutyl)guanidinyl, N-(N'-ethyl)guanidinyl, N-cyclohexyl-N'-guanidinyl, N-cyclohexylmethyl-N'-guanidinyl, N-butyl-N'-quanidinyl or pyrrolidin-1-carboxamidinyl, the salts of these compounds, as well as the N-oxides, enantiomers, E/Z isomers and tautomers of these compounds and their salts. 7. A compound of the formula I as claimed in claim 1, in which R1 is methyl, R2 is 1-4C-alkoxy, R3 is 1-4C-alkoxy, R4 is hydrogen, R5 is a radical of the formula (b) or (c), in which if R5 is a radical of the formula (b), either R6 is hydrogen, R7 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl or 3-7C-cycloalkylmethyl, R8 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl or 3-7C-cycloalkylmethyl, and R9 is hydrogen, 1-4C-alkyl or hydroxy-2-4C-alkyl, where at least one of the radicals R7, R8 and R9 is not hydrogen, or R6 is hydrogen, R7 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl or 3-7C-cycloalkylmethyl, and R8 and R9, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-2C-alkyl)-piperazin-1-yl radical, in which if R5 is a radical of the formula (c), either R10 is hydrogen or 1-4C-alkyl, R11 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl or 3-7C-cycloalkylmethyl, R12 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl or 3-7C-cycloalkylmethyl, and R13 is hydrogen, 1-4C-alkyl or hydroxy-2-4C-alkyl, where at least one of the radicals R10, R11, R12 and R13 is not hydrogen, or R10 is hydrogen or 1-4C-alkyl, R11 is hydrogen, 1-4C-alkyl, 3-7C-cycloalkyl or 3-7C-cycloalkylmethyl, and R12 and R13, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-2C-alkyl)-piperazin-1-yl radical. or R10 and R11, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-2C-alkyl)-piperazin-1-yl radical, and R12 and R13, together and including the nitrogen atom to which both are bonded, are a 1-pyrrolidinyl, 1-piperidinyl, 1-hexahydroazepinyl, 4-morpholinyl or 4-(1-2C-alkyl)-piperazin-1-yl radical. the salts of this compound, as well as the enantiomers, E/Z isomers and tautomers of this compound and their salts. - 8. A compound of the formula I as claimed in claim 1, in which - R1 is methyl, - R2 is methoxy, ethoxy or propoxy, - R3 is methoxy or ethoxy, - R4 is hydrogen, WO 02/066476 PCT/EP02/01819 is N'-(N,N-dimethyl)guanidyl, N'-(N,N-diethyl)guanidyl, (morpholine)-4-carboxamidinyl, 4-methyl-R5 piperazine-1-carboxamidinyl, N'-[N-(2-hydroxyethyl)-N-methyl]guanidinyl or N"-(N,N,N',N'-tetramethyl)guanidyl, the salts of this compound, as well as the enantiomers, E/Z isomers and tautomers of this compound and their salts. A compound of the formula I, selected from the group consisting of 9. 4-[(+)-cis-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro[c][1,6]naphthyridin-6-yl)-N-(1-imino-1-morpholin-4-ylmethyl)]benzamide, $N'-\{1-[4-((+)-cis-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro[c][1,6]naphthyridin-6-yl\}$ phenyl]methanoyl}-N,N-diethylguanidine, phenyl]methanoyl}-N,N-dimethylguanidine, phenyl]methanoyl}-N-(2-hydroxyethyl)-N-methylguanidine, N"-{1-[4-((-)-cis-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro[c][1,6]naphthyridin-6-yl)phenyl]methanoyl}-N,N,N',N'-tetramethylguanidine, N-[1-Amino-1-(4-methylpiperazin-1-yl)methylene]-4-((+)-cis-9-ethoxy-8-methoxy-2-methyl- 1,2,3,4,4a,10b-hexahydro[c][1,6]naphthyridin-6-yl)benzamide, N-{1-[4-((-)-cis-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6]naphthyridin-6-yl)phenyl]-methanoyl}-guanidine, N'-{1-[4-((-)-cis-8,9-Dimethoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6]naphthyridin-6-yl)phenyl]-methanoyl}-N,N-dimethyl-guanidine, phenyl]-methanoyl}-N,N,N',N'-tetramethyl-guanidine, N'-{1-[3-(cis)-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6]naphthyridin-6-yl)phenyl]-methanoyl}-N,N-dimethyl-guanidine, 4-((cis)-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6]naphthyridin-6-yl)-N-(1imino-1-pyrrolidin-1-yl-methyl)-benzamide, phenyl]-methanoyl}-guanidine, phenyl]-methanoyl}-N,N,N"-trimethyl-guanidine, N-{1-[4-((-)-cis-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6]naphthyridin-6-yl)phenyl]-methanoyl}-N'-methyl-guanidine, N-{1-[4-((-)-cis-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6]naphthyridin-6-yl)phenyl]-methanoyl}-N'-isopropyl-guanidine, N-{1-[4-((-)-cis-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6]naphthyridin-6-yl)-phenyl]-methanoyl}-N'-propyl-guanidine, N-{1-[4-((-)-cis-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6]naphthyridin-6-yl)-phenyl]-methanoyl}-N'-isobutyl-guanidine, $N-\{1-[4-((-)-cis-9-Ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6]naphthyridin-6-yl)-phenyl]-methanoyl\}-N'-ethyl-guanidine,$ N-Cyclohexyl-N'-{1-[4-((-)-cis-9-ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6]-naphthyridin-6-yl)-phenyl]-methanoyl}-guanidine, N-Cyclohexylmethyl-N'-{1-[4-((-)-cis-9-ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c]-[1,6]naphthyridin-6-yl)-phenyl]-methanoyl}-guanidine, N-Butyl-N'-{1-[4-((-)-cis-9-ethoxy-8-methoxy-2-methyl-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6]naph-thyridin-6-yl)-phenyl]-methanoyl}-guanidine, N'-{1-[4-((-)-cis-9-Ethoxy-8-methoxy-2-methyl-2-oxy-1,2,3,4,4a,10b-hexahydro-benzo[c][1,6]naph-thyridin-6-yl)-phenyl]-methanoyl}-N,N-dimethyl-guanidine, and the salts of these compounds. - 10. A compound of the formula I as claimed in claim 1, in which the hydrogen atoms in positions 4a and 10b are in the cis position relative to one another, the salts of this compound, as well as the N-oxides, enantiomers, E/Z isomers and tautomers of this compound and their salts. - 11. A compound of the formula I as claimed in claim 2, in which the hydrogen atoms in positions 4a and 10b are in the cis position relative to one another, the salts of this compound, as well as the enantiomers, E/Z isomers and tautomers of this compound and their salts. - 12. A compound of the formula I as claimed in claim 1 which, in positions 4a and 10b, has the same absolute configuration as the compound (-)-cis-4-amino-3-(3-ethoxy-4-methoxyphenyl)-1-methyl-piperidine dihydrochloride having the optical rotation $[\alpha]_D^{20} = -65.5^{\circ}$ (c=1, methanol), the salts of this compound, as well as the N-oxides, enantiomers, E/Z isomers and tautomers of this compound and their salts. - 13. A compound of the formula I as claimed in claim 2 which, in positions 4a and 10b, has the same absolute configuration as the compound (-)-cis-4-amino-3-(3-ethoxy-4-methoxyphenyl)-1-methyl-piperidine dihydrochloride having the optical rotation $[\alpha]_D^{20} = -65.5^{\circ}$ (c=1, methanol), the salts of this compound, as well as the enantiomers, E/Z isomers and tautomers of this compound and their salts. - 14. A compound of the formula I as claimed in claim 1 for treating diseases. - **15.** A medicament comprising one or more compounds of the formula I as claimed in claim 1 together with customary pharmaceutical auxiliaries and/or excipients. - **16.** The use of compounds of the formula I as claimed in claim 1 for producing medicaments for treating respiratory disorders and/or dermatoses. #### INTERNATIONAL SEARCH REPORT ational Application No PCT/EP 02/01819 A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C07D471/04 A61K31/47 A61P11/16 //(C07D471/04,221:00, 221:00) According to International Patent Classification (IPC) or to both national classification and IPC #### **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 7 CO7D A61K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data | Category ° | Citation of document, with indication, where appropriate, of the relevant passages | Relevant to claim No. | |------------|--|-----------------------| | Y | WO 98 40382 A (BYK GULDEN LOMBERG CHEM FAB;FLOCKERZI DIETER (DE)) 17 September 1998 (1998-09-17) cited in the application page 19; claim 1 | 1-9 | | Y | WO 00 12501 A (BYK GULDEN LOMBERG CHEM FAB;FLOCKERZI DIETER (DE)) 9 March 2000 (2000-03-09) cited in the application page 13; claim 1 | 1-9 | | Υ | WO 98 21208 A (BYK GULDEN LOMBERG CHEM FAB; FLOCKERZI DIETER (DE)) 22 May 1998 (1998-05-22) cited in the application page 22; claim 1 | 1-9 | | | -/ | | | Further documents are listed in the continuation of box C. | Patent
family members are listed in annex. | | |---|---|--| | Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed | "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such document, such combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family | | | Date of the actual completion of the international search 16 May 2002 | Date of mailing of the international search report 28/05/2002 | | | Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 | Authorized officer Seelmann, I | | # INTERNATIONAL SEARCH REPORT Ir Itional Application No PCT/EP 02/01819 | | ation) DOCUMENTS CONSIDERED TO BE RELEVANT | Relevant to claim No. | | |------------|---|--------------------------|--| | Category ° | Citation of document, with indication, where appropriate, of the relevant passages | Tielevalit to Cidiff NO. | | | Y | WO 99 57118 A (BYK GULDEN LOMBERG CHEM FAB;FLOCKERZI DIETER (DE)) 11 November 1999 (1999-11-11) cited in the application page 14; claim 1 | 1-9 | | | Y | WO 98 55481 A (BYK GULDEN LOMBERG CHEM FAB; FLOCKERZI DIETER (DE); HATZELMANN ARM) 10 December 1998 (1998-12-10) page 7; claim 1 | 1-9 | | | | | | | | | | | | # INTERNATIONAL SEARCH REPORT ir flonal Application No PCT/EP 02/01819 | Patent document cited in search report | Publication date | | Patent family member(s) | Publication date | |--|------------------|----------|----------------------------|--------------------------| | WO 9840382 A | 17-09-1998 | AU | 6825898 A | 29-09-1998 | | , , | . 2, 0, 1,00 | WO | 9840382 A1 | 17-09-1998 | | | | EP | 0968211 A1 | 05-01-2000 | | | | JP | 2001514640 T | 11-09-2001 | | | | US | 6143759 A | 07-11-2000 | | WO 0012501 A | 09-03-2000 | AU | 5970199 A | 21-03-2000 | | | | WO | 0012501 A1 | 09-03-2000 | | | | EP | 1109810 A1 | 27-06-2001 | | WO 9821208 A | 22-05-1998 | AU | 733129 B2 | 10-05-2001 | | | | ΑU | 5317098 A | 03-06-1998 | | | | BG | 103310 A | 31-05-2000 | | | | BR | 9713338 A | 09-05-2000 | | | | CN | 1236367 A | 24-11-1999 | | | | CZ | 9901675 A3 | 17-11-1999 | | | | EΕ | 9900105 A | 15-10-1999 | | | | WO | 9821208 A1 | 22-05-1998 | | | | EP | 0937074 A1 | 25-08-1999 | | | | HU | 0000426 A2 | 28-02-2001 | | | | JP | 2001503442 T | 13-03-2001 | | | | NO | 992282 A | 11-05-1999 | | | | NZ | 334976 A | 27-10-2000 | | | | PL | 333429 A1 | 06-12-1999 | | | | SK | 62399 A3 | 08-10-1999 | | | | TR | 9900856 T2 | 21-07-1999 | | | | US | 6008215 A | 28-12-1999 | | | | ZA | 9710102 A | 11-05-1998 | | WO 9957118 | 11-11-1999 | AU | 3928999 A | 23-11-1999 | | | | CA | 2330738 A1 | 11-11-1999 | | | | WO | 9957118 A1 | 11-11-1999 | | | | ΕP | 1075477 A1 | 14-02-2001 | | | | US | 6306869 B1 | 23-10-2001 | | WO 9855481 | 10-12-1998 | AU | 8106598 A | 21-12-1998 | | | | WO | 9855481 A1 | 10-12-1998 | | | | | | | | | | EP
JP | 0988302 A1
2002502403 T | 29-03-2000
22-01-2002 |