wo 20187102691 A1 | 0E 00O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
07 June 2018 (07.06.2018)

(10) International Publication Number

WO 2018/102691 A1l

WIPO I PCT

(5D

2D

22)

(25)
(26)
(30$)

an

a2

74

62y

International Patent Classification:
GO6F 17/30 (2006.01)

International Application Number:
PCT/US2017/064227

International Filing Date:
01 December 2017 (01.12.2017)

Filing Language: English
Publication Language: English
Priority Data:

62/428,860 01 December 2016 (01.12.2016) US

Applicant: AB INITIO TECHNOLOGY LLC [US/US];
201 Spring Street, Lexington, Massachusetts 02421 (US).

Inventors: CLEMENS, David; 18 Middlesex St., Cam-
bridge, Massachusetts 02140 (US). RADIVOJEVIC, Du-
san; 140 Weyland Circle, North Andover, Massachusetts
01845 (US). GALARNEAU, Neil; 2 Shrewsbury Road,
West Roxbury, Massachusetts 02132 (US).

Agent: GERRATANA, Frank, L. et al; Fish &
Richardson P.C., P.O. Box 1022, Minneapolis, Minnesota
55440-1022 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ,BA, BB, BG, BH, BN, BR, BW, BY, BZ,

(84)

CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK, LR, LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM,KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(54) Title: GENERATING, ACCESSING, AND DISPLAYING LINEAGE METADATA

(57) Abstract: Among other things, we describe a method of receiving a portion of

114

122
\ ‘ Lineage Metadata -

Lineage
®
v Lineage
Metadata

Query
124

Lineage Server

126

128

/

Lineage
Metadata

\ Database
Queries

Metadata
Database

106

FIG. 1B

metadata from a data source, the portion of metadata describing nodes and edges;
generating instances of a data structure representing the portion of metadata, at least
one instance of the data structure including an identification value that identifies a
corresponding node, one or more property values representing respective propetties
of the corresponding node, and one or more pointers to respective identitication val-
ues, each pointer representing an edge associated with a node identified by the cor-
responding respective identitication value; storing the instances of the data structure
in random access memory; receiving a query that includes an identification of at least
one particular element of data; and using at least one instance of the data structure
to cause a display of a computer system to display a representation of lineage of the
particular element of data.

WO 2018/102691 PCT/US2017/064227

GENERATING, ACCESSING., AND DISPLAYING LINEAGE
METADATA

TECHNICAL FIELD
This application relates to data structures and methods for generating, accessing,
and displaying lineage metadata, e.g. lineage of an element of data stored in a data

storage system.

BACKGROUND

Enterprises use data processing systems, such as data warehousing, customer
relationship management, and data mining, to manage data. In many data processing
systems, data are pulled from many different data sources, such as database files,
operational systems, flat files, the Internet, and other sources into a central repository.
Often, data are transformed before being loaded in the data system. Transformation may
include cleansing, integration, and extraction. To keep track of data, its sources, and the
transformations that have happened to the data stored in a data system, metadata can be
used. Metadata (sometimes called “data about data”) are data that describe other data’s
attributes, format, origins, histories, inter-relationships, etc. Metadata management can
play a central role in complex data processing systems.

Sometimes a user may want to investigate how certain data are derived from
different data sources. For example, a user may want to know how a dataset or data
object was generated or from which source a dataset or data object was imported. Tracing
a dataset back to sources from which it is derived is called data lineage tracing (or
“upstream data lineage tracing”). Sometimes a user may want to investigate how certain
datasets have been used (called “downstream data lineage tracing” or “impact analysis”),
for example, which application has read a given dataset. A user may also be interested in
knowing how a dataset is related to other datasets. For example, a user may want to know
if a dataset is modified, what tables will be affected.

Lineage, which is a kind of metadata, enables a user to obtain answers to
questions about data lineage (e.g., “Where did a given value come from?” “How was the

output value computed?” “Which applications produce and depend on this data?”’). A

WO 2018/102691 PCT/US2017/064227

user can understand the consequences of proposed modifications (e.g., “If this piece
changes, what else will be affected?” “If this source format changes, which applications
will be affected?””). A user can also obtain questions to answers involving both technical
metadata and business metadata (e.g., “Which groups are responsible for producing and
using this data?” “Who changed this application last?” “What changes did they make?”).
The answers to these questions can assist in analyzing and troubleshooting
complex data processing systems. For example, if an element of data has an unexpected
value, any number of prior inputs or data processing steps might be responsible for this
unexpected value. Accordingly, lineage is sometimes presented to a user in the form of a
diagram that includes a visual element representing an element of data of interest, as well
as visual elements representing other elements of data that affect or are affected by the
element of data of interest. A user can view this diagram and visually identify other
elements of data and/or transformations that affect the element of data of interest. As an
example, by using this information, the user can see whether any of the elements of data
and/or transformations may be a source of unexpected values, and correct (or flag for
correction) any of the underlying data processing steps if problems are discovered. As
another example, by using this information, the user can identify any elements of data or
transformations that may be essential to a portion of the system (e.g., such that the
element of data of interest would be affected by their removal from the system), and/or
elements of data or transformations that may not be essential to a portion of the system
(e.g., such that the element of data of interest would not be affected by their removal

from the system).

SUMMARY

Among other things, we describe a method performed by a data processing
apparatus, the method including receiving a portion of metadata from a data source, the
portion of metadata describing nodes and edges, at least some of the edges each
representing an effect of one node upon another node, each edge having a single
direction; generating instances of a data structure representing the portion of metadata, at
least one instance of the data structure including an identification value that identifies a
corresponding node, one or more property values representing respective properties of the

corresponding node, and one or more pointers to respective identification values, each

2

WO 2018/102691 PCT/US2017/064227

pointer representing an edge associated with a node identified by the corresponding
respective identification value; storing the instances of the data structure in random
access memory; receiving a query that includes an identification of at least one particular
element of data; and using at least one instance of the data structure to cause a display of
a computer system to display a representation of lineage of the particular element of data.

These techniques can be implemented in a number of ways, including as a
method, system, and/or computer program product stored on a computer readable storage
device.

Aspects of these techniques can include one or more of the following advantages.
Lineage metadata can be stored using a special-purpose data structure designed for speed
and efficiency when responding to queries for lineage metadata. Lineage metadata can be
stored in memory, such that a computer system storing the lineage metadata can respond
to queries for lineage metadata more quickly than if the lineage metadata were not stored
in memory (e.g., if the lineage metadata were stored in and accessed from a hard disk or
another kind of storage technique). Using the techniques described herein, lineage data

can be retrieved much faster than other techniques, e.g., 500 times faster.

DESCRIPTION OF DRAWINGS

FIGS. 1A-1D show a metadata processing environment.

FIGS. 2A-2E show examples of information displayed in a metadata viewing
environment.

FIG. 3 shows an example data structure.

FIG. 4 shows an example walk plan.

FIG. 5A shows a flowchart representing a procedure for storing lineage metadata
in a form defined by a special-purpose data structure.

FIG. 5B shows a flowchart representing a procedure for causing lineage metadata
to be displayed.

FIG. 6 shows a flowchart representing a procedure for traversing lineage metadata
stored in the form of special-purpose data structures.

Like reference symbols in the various drawings indicate like elements.

WO 2018/102691 PCT/US2017/064227

DESCRIPTION

A system that manages access to metadata can receive a query from a user
requesting lineage of a particular element of data and, in response, deliver a diagram
representing lineage of the element of data. If the element of data belongs to a data
storage system that stores a relatively large amount of data, the system that manages
access to the metadata may need to expend a large amount of processing time in order to
process the lineage of the element of data and generate the corresponding diagram.
However, the processing can be sped up and made more efficient by introducing a system
that is dedicated to processing lineage metadata and optimized for this kind of processing.
Accordingly, this specification describes a technique by which a specialized system is
used for the purpose of processing and storing lineage metadata in a manner that is
typically faster and more efficient than if the specialized system were not used.

FIG. 1A shows a metadata processing environment 100 that includes a lineage
server 102 which stores and provides lineage metadata to other systems in the
environment. The metadata processing environment 100 also includes a metadata server
104 which typically responds to requests for metadata. The metadata server 104 has
access to metadata 106 stored in a metadata database 108. The metadata 106 comes from
data sources 110A-C which contribute metadata 112A-C to the metadata database 108 on
an ongoing basis. For example, the data sources 110A-C may be any combination of
relational databases, flat files, network sources, and so on.

In use, the metadata server 104 responds to a query 114 received from a user
terminal 116 operated by a user 118. For example, the user terminal 116 could be a
computing device such as a personal computer, laptop computer, tablet device,
smartphone, etc. In some examples, the user terminal 116 operates a network-based user
application such as a web browser, e.g., if the metadata server 104 is configured to
provide access to data over a network and includes, or communicates with, a web server
that can interface with the web browser. In general, many of the interactions between
computer systems described herein may take place using the Internet or a similar
communications network using communications protocols commonly used on these kinds

of networks.

WO 2018/102691 PCT/US2017/064227

The metadata server 104 is configured to respond to queries for multiple kinds of
metadata. Because one kind of metadata is lineage metadata, the metadata server 104 can
process a query 114 that requests lineage of a particular element of data, e.g., an element
of data 120 stored by one of the data sources 110A-C, by accessing metadata 106 stored
in the metadata database 108 describing the lineage of the particular element of data. The
metadata server 104 can then provide lineage metadata 122 to the user terminal 116, e.g.,
lineage metadata in the form of a lineage diagram (described below with respect to FIGS.
2A-2E).

In some examples, processing a query 114 related to lineage metadata is a task
that takes a relatively large amount of processing time and/or uses a relatively large
amount of processing resources of the metadata server 104. For example, in order to
process the query 114, the metadata server 104 may need to access metadata 106 stored
in the metadata database 108. In this example, the metadata server 104 would need to
spend processing resources generating queries to the metadata database 108 in order to
access all of the required metadata. Further, the process of transmitting a query to the
metadata database 108 and waiting for a response introduces latency, e.g.,
communications network latency. Additionally, in some examples, the metadata server
104 would need to process the metadata received from the metadata database 108 in order
to extract metadata needed to create a lineage diagram. For example, the metadata
received from the metadata database 108 may include information not directly pertinent
to lineage of an element of data of interest, since the metadata database 108 stores a
variety of kinds of metadata beyond lineage metadata, and so additional processing time
is used to identify and remove the information not pertinent to lineage.

In some implementations, the lineage server 102 is used to provide lineage
metadata to the metadata server 104, e.g., to improve performance of the metadata
processing environment 100. The lineage server 102 is a specialized system that stores
lineage metadata 124 in a form that can be typically accessed faster and more efficiently
than techniques that do not use a lineage server. In particular, the lineage server 102
stores lineage metadata 124 using a special-purpose data structure designed for speed and
efficiency when responding to queries for lineage metadata. A data structure defines an

arrangement of data, such that all data stored using a particular data structure is arranged

WO 2018/102691 PCT/US2017/064227

in the same manner. The data structure technique is described in further detail below with
respect to FIG. 3.

In use, the lineage server 102 transmits queries 126 to the metadata database 108
in order to retrieve lineage metadata 128. The lineage server 102 ideally stores a
comprehensive body of lineage metadata, e.g., for most or all of the data elements 120
stored by the data sources 110A-C. In this way, the lineage server 102 can respond to
queries for lineage for most of the data elements 120 for which a query might be made.
As the lineage server 102 receives lineage metadata 128 from the metadata database 108,
the lineage server 102 updates its data structures containing stored lineage metadata 124.
In some examples, the lineage server 102 sends new queries 126 to the metadata database
108 on regular intervals, e.g., every hour or every day or another interval, in order to
store a relatively up-to-date body of lineage metadata. For example, the intervals can be
scheduled intervals, e.g., corresponding to schedule data maintained by the lineage server
102.

As shown in greater detail in FIG. 1B, the metadata server 104 receives a query
114 for lineage metadata (e.g., a query for lineage metadata that can be used to display a
lineage diagram on the user terminal 116), the metadata server 104 can provide the query
114 to the lineage server 102. The lineage server can then return lineage metadata 122
responsive to the query 114. The metadata server 104 need not expend as much
processing time and use as many processing resources preparing the received lineage
metadata 122 before providing it to the user terminal 116, compared to lineage metadata
retrieved using other techniques such as retrieving the lineage metadata from the
metadata database 108.

FIGS. 1C and 1D show elements of the lineage server 102 and metadata server
104 and the way in which they interact. As described above, the metadata server 104
receives a query 114 that requests lineage of a particular element of data. The query 114
identifies the particular data element (e.g., one of the data elements 120 of FIG. 1A) for
which lineage is requested. The metadata server 104 uses the identity of the data element
to select a walk plan 130 from a set of walk plans 132 that can be used to gather lineage
metadata related to the data element. A walk plan 130 is a data structure (e.g,, a

structured document containing tagged portions, such as an XML document) which

WO 2018/102691 PCT/US2017/064227

describes how to traverse (“walk’) a set of lineage metadata in a particular manner. In
some examples, a walk plan can be selected based on a data type of the data element. For
example, a particular data type can be associated with a particular one of the walk plans
132 (e.g., an association stored in an index of associations accessible to the metadata
server 104). The walk plans 132 are described in detail below with respect to FIG. 4.

Once a walk plan 130 has been selected, the metadata server 104 transmits the
query 114 and the walk plan 130 to the lineage server 102. In response, the lineage server
102 identifies lineage metadata relevant to the query 114 among its data structures 134 of
lineage metadata. The data structures 134 are a representation of lineage metadata
arranged in a way that minimizes the amount of storage space needed to contain them,
without omitting any data that is needed to respond to a query for lineage metadata. Thus,
the lineage server 102 can typically use the data stored in its data structures 134 to
provide the metadata server 104 all of the lineage metadata that the metadata server 104
would need to respond to a query 114. The data structures 134 are described in detail
below with respect to FIG. 3.

In some implementations, the data structures 134 are loaded in memory 135 of the
lineage server 102 for fast access (e.g., fast reading and writing of data). One example of
memory is random access memory. Random access memory stores items of data in a
manner such that each item of data can be accessed in substantially the same amount of
time as any other item of the same size (e.g., a byte or a word). In contrast, other types of
data storage, such as magnetic disks, have physical constraints that cause some items of
data to take longer to access than other elements of data, depending on the current
physical state of the disk (e.g., the position of a magnetic read/write head). Items of data
stored in random access memory are typically stored at an address unique to that item of
data or shared among a small number of items of data. Random access memory is
typically volatile, such that data stored in random is lost if the random access memory is
disconnected from an active power source (e.g., a computer system loses power). In
contrast, magnetic disks and some other kinds of data storage is non-volatile and retains
data absent an active power source.

Because the lineage server 102 stores the data structures 134 in memory 135, the

lineage server 102 can read and write lineage metadata faster than techniques that do not

WO 2018/102691 PCT/US2017/064227

store the data structures in memory 135. In particular, the data structures 134 are arranged
in a way that minimizes the amount of data use. For example, the data structures 134 may
omit data such as text strings present in the original lineage metadata obtained from the
metadata server 104. Thus, all of the data structures 134, e.g., all of the data representing
lineage metadata, can be stored in memory 135 while the lineage server 102 is in use.
Computer systems typically have constraints on the amount of random access memory
that can be used at a given time (e.g., due to addressing limitations). Further, random
access memory tends to be more expensive on a per-byte basis than other types of data
storage (e.g., magnetic disk). Thus, if random access memory is used, the data structures
134 may have an upper limit to their combined size on a particular computer system.
Accordingly, the techniques described herein (e.g., the techniques described below with
respect to FIG. 3) minimize their size but retain information with respect to lineage that
may be requested by a query 114.

In some implementations, the metadata server 104 also stores lineage metadata
137 (e.g., lineage metadata received from the metadata database 108 shown in FIG. 1A).
However, the metadata server 104 does not store most of its stored lineage metadata 137
in random access memory, e.g., because the metadata server 104 does not use the data
structures of the lineage server 102. Thus, even if the metadata server 104 also stores
some lineage metadata 137, the metadata server 104 can access the lineage metadata 124
of the lineage server 102 to obtain any metadata not stored locally at the metadata server
104. If the lineage server 102 were not used, a metadata server 104 storing some lineage
metadata 137 typically would access lineage metadata stored in the metadata database
108 (FIG. 1A), which, as described above, may have performance disadvantages
compared to using the lineage server 102.

Although random access memory is used here as the primary example, other types
of memory can be used with the lineage server 102. For example, another kind of
memory is flash memory. Unlike random access memory, flash memory is non-volatile.
However, flash memory typically has constraints on accessing items of data. Some types
of flash memory are configured in a way that a collection of data items (e.g., blocks of
data items) is the smallest unit of data that can be accessed at a time, as opposed to

individually accessible data items. For example, in order to delete an item of data on

WO 2018/102691 PCT/US2017/064227

some types of flash memory, an entire block must be deleted. The remaining items of
data can be re-written to the flash memory to preserve them.

The lineage server 102 uses the walk plan 130 to traverse the data structures 134
and collect lineage metadata stored in the data structures that is responsive to the query
114. As shown in FIG. 1D, the lineage server 102 then sends a response 138 containing
the lineage metadata 139 back to the metadata server 104. The metadata server 104 can
use the lineage metadata 139 to generate its own response 140 to the query 114. The
response 140 could take one of several forms. In some examples, the response 140
contains the same lineage metadata 139 received from the lineage server 102, e.g., in a
form with minimal post-processing. In some examples, the metadata server 104 performs
post-processing on the lineage metadata 139. For example, the metadata server 104 may
change the form of the lineage metadata 139 to a human-readable form, e.g., if the
lineage metadata 139 is received in an encoded format that is not human-readable. In
some examples, the metadata server 104 generates a lineage diagram based on the lineage
metadata 139 and incorporates data representing the lineage diagram into the response
140. In some examples, the response 140 is transmitted to the user terminal 116 (FIG.
1A), e.g., if the response 140 is a lineage diagram (as described in detail below with
respect to FIGS. 2A-2E). In some examples, the response 140 is transmitted to an
intermediate system before it is transmitted to the user terminal and/or processed into a
form suitable for transmission to the user terminal.

FIG. 2A shows an example of information displayed in a metadata viewing
environment. In some examples, the metadata viewing environment is an interface that
executes on a user terminal, e.g., the user terminal 116 shown in FIG. 1A. In the example
of FIG. 2A, the metadata viewing environment displays information related to a data
lineage diagram 200A. One example of metadata viewing environment is a web-based
application that allows a user (e.g., the user 118 shown in FIG. 1A) to visualize and edit
metadata. Using the metadata viewing environment, a user can explore, analyze, and
manage metadata using a standard Web browser from anywhere within an enterprise.
Each type of metadata object has one or more views or visual representations. The
metadata viewing environment of FIG. 2A illustrates a lineage diagram for target element

206A.

WO 2018/102691 PCT/US2017/064227

For example, the lineage diagram displays the end-to-end lineage for the data
and/or processing nodes that represent the metadata objects stored in the metadata server
104 (FIG. 1A); that is, the objects a given starting object depends on (its sources) and the
objects that a given starting object affects (its targets). In this example, connections are
shown between data elements 202A and transformations 204 A, two examples of
metadata objects. The metadata objects are represented by nodes in the diagram. Data
elements 202A can represent datasets, tables within datasets, columns in tables, and fields
in files, messages, and reports, for example. An example of a transformation 204A is an
element of an executable that describes how a single output of a data element is
produced. The connections between the nodes are based on relationships among the
metadata objects.

FIG. 2B is illustrates a corresponding lineage diagram 200B for the same target
element 206A shown in FIG. 2A except each element 202B is grouped and shown in a
group based on a context. For example, data elements 202B are grouped in datasets 208B
(e.g., tables, files, messages, and reports), applications 210B (that contain executables
such as graphs and plans and programs, plus the datasets that they operate on), and
systems 212B. Systems 212B are functional groupings of data and the applications that
process the data; systems consist of applications and data groups (e.g., databases, file
groups, messaging systems, and groups of datasets). Transformations 204B are grouped
in executables 214B, applications 210B, and systems 212B. Executables such as graphs,
plans or programs, read and write datasets. Parameters can set what groups are expanded
and what groups are collapsed by default. This allows users to see the details for only the
groups that are important to them by removing unnecessary levels of details.

Using the metadata viewing environment to perform data lineage calculations is
useful for a number of reasons. For example, calculating and illustrating relationships
between data elements and transformations can help a user determine how a reported
value was computed for a given field report. A user may also view which datasets store a
particular type of data, and which executables read and write to that dataset. In the case of
business terms, the data lineage diagram may illustrate which data elements (e.g.,
columns and fields) are associated with certain business terms (e.g., definitions in an

enterprise).

10

WO 2018/102691 PCT/US2017/064227

Data lineage diagrams shown within the metadata viewing environment can also
aid a user in impact analysis. Specifically, a user may want to know which downstream
executables are affected if a column or field is added to a dataset, and who needs to be
notified. Impact analysis may determine where a given data element is used, and can also
determine the ramifications of changing that data element. Similarly, a user may view
what datasets are affected by a change in an executable, or whether it safe to remove a
certain database table from production.

Using the metadata viewing environment to perform data lineage calculations for
generating data lineage diagrams is useful for business term management. For instance, it
is often desirable for employees within an enterprise to agree on the meanings of business
terms across that enterprise, the relationships between those terms, and the data to which
the terms refer. The consistent use of business terms may enhance the transparency of
enterprise data and facilitates communication of business requirements. Thus, it is
important to know where the physical data underlying a business term can be found, and
what business logic is used in computations.

Viewing relationships between data nodes can also be helpful in managing and
maintaining metadata. For instance, a user may wish to know who changed a piece of
metadata, what the source (or “source of record”) is for a piece of metadata, or what
changes were made when loading or reloading metadata from an external source. In
maintaining metadata, it may be desirable to allow designated users to be able to create
metadata objects (such as business terms), edit properties of metadata objects (such as
descriptions and relationships of objects to other objects), or delete obsolete metadata
objects.

The metadata viewing environment provides a number of graphical views of
objects, allowing a user to explore and analyze metadata. For example, a user may view
the contents of systems and applications and explore the details of any object, and can
also view relationships between objects using the data lineage views, which allows a user
to easily perform various types of dependency analysis such as the data lineage analysis
and impact analysis described above. Hierarchies of objects can also be viewed, and the
hierarchies can be searched for specific objects. Once the object is found bookmarks can

be created for objects allowing a user to easily return to them.

11

WO 2018/102691 PCT/US2017/064227

With the proper permissions, a user can edit the metadata in the metadata viewing
environment. For example, a user can update descriptions of objects, create business
terms, define relationships between objects (such as linking a business term to a field in a
report or column in a table), move objects (for instance, moving a dataset from one
application to another) or delete objects.

In FIG. 2C, a corresponding lineage diagram 200C for target element 206A is
shown, but the level of resolution is set to applications that are participating in the
calculation for the target data element 206A. Specifically, applications 202C, 204C,
206C, 208C, and 210C are shown, as only those applications directly participate in the
calculation for the target data element 206A. If a user wishes to view any part of the
lineage diagram in a different level of resolution (e.g., to display more or less detail in the
diagram), the user may activate the corresponding expand/collapse button 212C.

FIG. 2D shows a corresponding lineage diagram 200D at a different level of
resolution. In this example, an expand/collapse button 212C has been activated by a user,
and the metadata viewing environment now displays the same lineage diagram, but
application 202C has been expanded to show the datasets 214D and executables 216D
within application 202C.

FIG. 2E shows a corresponding lineage diagram 200E at a different level of
resolution. In this example, a user has selected to show everything expanded by a custom
expansion. Any field or column which is an ultimate source of data (e.g., it has no
upstream systems) is expanded. In addition, fields that have a specific flag set are also
expanded. In this example, the specific flags are set on datasets and fields at a key
intermediate point in the lineage, and one column is the column for which the lineage is
being shown.

Other examples of lineage are described in United States Patent Application
Serial No. 12/629,466, titled “VISUALIZING RELATIONSHIPS BETWEEN DATA
ELEMENTS AND GRAPHICAL REPRESENTATIONS OF DATA ELEMENT
ATTRIBUTES,” which is hereby incorporated by reference in its entirety.

Viewing elements and relationships in the metadata viewing environment can be
made more useful by adding information relevant to each of the nodes that represent

them. One exemplary way to add relevant information to the nodes is to graphically

12

WO 2018/102691 PCT/US2017/064227

overlay information on top of certain nodes. These graphics may show some value or
characteristic of the data represented by the node, and can be any property in the
metadata database. This approach has the advantage of combining two or more normally
disparate pieces of information (relationships between nodes of data and characteristics
of the data represented by the nodes) and endeavors to put useful information “in
context.” For example, characteristics such as metadata quality, metadata freshness, or
source of record information can be displayed in conjunction with a visual representation
of relationships between data nodes. While some of this information may be accessible in
tabular form, it may be more helpful for a user to view characteristics of the data along
with the relationships between different nodes of data. A user can select which
characteristic of the data will be shown on top of the data element and/or transformation
nodes within the metadata viewing environment. Which characteristic is shown can also
be set according to default system settings.

As described above with respect to FIG. 1A, the lineage server 102 uses data
structures 134 to store lineage metadata in memory (e.g., random access memory). FIG. 3
shows an example data structure 300. In use, the lineage server 102 contains many
instances of the data structure 300. An instance of a data structure is a collection of data
(e.g., collection of bits) formatted in a manner defined by the data structure. An instance
of the data structure 300 described here is sometimes referred to as a “node.”

Each instance of the data structure 300 represents a metadata object, e.g., one of
the data elements 202 A or transformations 204A shown in FIG. 2A. In some examples,
each instance of the data structure 300 represents a node that may be shown in a lineage
diagram, e.g., the diagrams 200A-200E shown in FIGS. 2A-2E.

In use, the lineage server 102 stores each data structure 300 at a memory location
302 specific to the data structure. Each data structure 300 typically points to memory
locations of other data structures.

The data structure 300 is made up of several fields. A field is a collection of data,
e.g., a subset of the bits that make up an instance of the data structure 300. An identifier
field 310 includes data representing a unique identifier for an instance of the data
structure 300. A type field 312 includes data representing a type of a metadata object

represented by the corresponding instance of the data structure 300. In some examples,

13

WO 2018/102691 PCT/US2017/064227

2%

the type could be “data element,” “transformation,” and so on. In some examples, the
type field 312 also indicates how many forward and backward edges are included in the
instance of the data structure 300. Properties fields 314 each represent different
characteristics of the metadata object represented by the corresponding instance of the
data structure 300. Examples of the properties fields 314 can include a “name” field that
includes a text label identifying the metadata object, and a “subtype” field that indicates a
subtype of the metadata object, e.g., whether the metadata object represents a file object,
executable object, a database object, or another subtype. Other types of properties can be
used. In general, the type field 312 and properties fields 314 can be customized for a
particular instance of the lineage server 102, and are not confined to the examples listed
here.

The data structure also includes fields that represent forward edges 316A-C and
backward edges 316D-F. The edge fields 316A-F enable the lineage server 102 to “walk”
from data structure to data structure and collect the data of the data structure when
gathering lineage metadata. In the broadest sense, when we refer to “collecting” a portion
data, we mean identifying the portion of data as pertinent to a future action (e.g.,
transmitting the collected data). Collecting a portion of data sometimes includes copying
the data, e.g., copying the data to a buffer or queue to be used in the future action.

Each edge field 316A-F includes a pointer field 320A-B. The pointer field 320A-
B stores an address of a respective memory location 322A-B. In general, a memory
location 322A-B referenced by a pointer field 320A-B refers to a portion of memory that
stores another instance of the data structure 300. In this way, one instance of a data
structure representing a metadata object is “linked” to one or more other instances of data
structures representing other metadata objects. Thus, the edges 316A-D can correspond
to, e.g., the relationships among the metadata objects shown in the lineage diagram
examples 200A-E of FIGS. 2A-2E. For example, a forward edge 316A represents an
effect that a metadata object (e.g., the metadata object represented by this instance of the
data structure 300) has on another metadata object (e.g., the metadata object represented
by the instance of the data structure at the memory location 322A). As another example, a

backward edge 316D represents an effect that another metadata object (e.g, the metadata

14

WO 2018/102691 PCT/US2017/064227

object represented by the instance of the data structure at the memory location 322B) has
on the metadata object of this instance of the data structure 300.

Each edge field 316A-F also includes one or more flags 324. The flags 324 are
indicators of information about their associated edge. In some examples, one of the flags
324 may indicate a type of the associated edge, selected from multiple possible types.
Many types of edges are possible. For example, some types of edges are input/output
edges (representing output from one object and input to another object), element/dataset
edges (representing an association between an element and the dataset to which the
element belongs), and application/parent edges (representing an association between an
executable application and a container, such as a container that also contains datasets
associated with the application).

Many of the elements of the data structure 300 typically use a relatively small
amount of data. For example, the data associated with the identifier field 310, type field
312, and properties fields 314 together may only be a few bytes. e.g., 32 bytes. These
fields encode commonly used information within as little as a few bits; for example, if
there are only eight possible types for a node, the type field 312 can be as little as three
bits long. More complex data, such as strings of text representing the node types, need
not be used. Further, the data associated with the memory location 322A-C is typically
the same amount of data as the length of a memory address associated with the type of
computer system executing software that instantiates the data structure 300. Thus, most
or all instances of a data structure 300 may use a relatively small amount of data in total,
compared to the data used by other techniques for storing lineage metadata.

FIG. 4 shows an example of a walk plan 400. As described above with respect to
FIG. 1C, walk plans 400 are typically stored by the metadata server 104. In use, the
metadata server 104 provides a walk plan to the lineage server 102 when requesting
lineage metadata.

A walk plan 400 describes information used by the lineage server 102 when
traversing its stored data structures 134. In general, when a query for lineage metadata is
received, e.g., lineage metadata pertinent to a particular metadata object, not all types of

lineage metadata need to be returned in response. In some examples, depending on the

15

WO 2018/102691 PCT/US2017/064227

query, lineage metadata associated with some types of edges may not need to be returned
because it is not responsive to the query.

Accordingly, the walk plan 400 includes records 402A-C for each edge type that
may be among the types of edges represented by the lineage metadata stored by the
lineage server 102. A record 402A includes an edge type field 404 that includes data
indicating the type of edge corresponding to the record 402A. A record 402A also
includes a follow flag 406, a collect node flag 408, and a collect edge flag 409 for the
forward direction 410, and a follow flag 412, a collect node flag 414, and a collect edge
flag 415 for the backward direction 416.

A follow flag 406, 412 indicates whether or not the lineage server 102 should
follow an edge of this edge type when traversing its data structures 134. Put another way,
a follow flag 406 for the forward direction 410 indicates whether or not the lineage server
102, referring to FIG. 3, should access the memory location 322A identified by a pointer
field 320A of a forward edge field 316A of an instance of the data structure 300.
Similarly, a follow flag 412 for the backward direction 416 indicates whether or not the
lineage server 102, referring to FIG. 3, should access the memory location 322b
identified by a pointer field 320b of a backward edge field 316D of an instance of the
data structure 300.

A collect node flag 408, 414 indicates whether or not the lineage server 102
should collect an instance of the data structure 300 (FIG. 3), sometimes referred to as a
“node,” pointed to by this edge type when traversing its data structures 134. When we
refer to collecting an instance of the data structure 300, we mean that the data of the
instances (or nodes) is added to the data that will be returned in response to a query being
processed by the lineage server 102 (FIG. 1A) processing the query. Thus, if a node is
collected, data associated with the metadata object represented by the instance of the data
structure 300 will be among the lineage metadata returned by the lineage server 102.

A collect edge flag 409, 415 indicates whether or not the lineage server 102
should collect the edge (e.g, corresponding to the pointer field 320A of an instance of the
data structure 300). If an edge is collected, data representing the edge will be among the
lineage metadata returned by the lineage server 102. In some implementations, an edge

may not be collected if the edge does not represent a flow of data between the nodes. For

16

WO 2018/102691 PCT/US2017/064227

example, the edge may represent the association between a data object (represented by
one node) and a container of the data object (representing by another node). In this way,
by using collect node flags 408, 414 and collect edge flags 409, 415 in a walk plan 400,
nodes can be associated with each other in a variety of ways that may or may not be
collected for inclusion in lineage metadata, and nodes can represent a variety of data that
may or may not be collected for inclusion in lineage metadata.

In some implementations, in use, a walk plan 400 can be represented in the form
of one or more XML (Extensible Markup Language) documents. An XML document is a
collection of portions separated by “tags.” A tag typically contains a label (e.g., a label
identifying the type of tag) and may also include one or more attributes. Tags sometimes
come in the form of a start tag and an end tag, such that a start tag is paired with a
corresponding end tag. In this way, tags can be hierarchical, such that tags are “nested”
within other tags, e.g., by placing a tag between another tag’s start tag and end tag pair.

An example walk plan in the form of an XML document is presented below:

<lineageServerPlan direction="both" conditionalOnArg="!autoFilterEnabled"
replacesQueries="walk">
<useEdge name="DE-Tr">
<condition special="ExelnterfaceCallStack" />
<condition special="ControlFilter" />
<condition special="Summarization" />
</useEdge>
<useEdge name="Tr-DE">
<condition special="ExelnterfaceCallStack" />
<condition special="ControlFilter" />
<condition special="Summarization" />
</useEdge>
<useEdge name="DE-DS" direction="forward" collectEdge="false"
conditionalOnArg="walkDSlevel" />
<useEdge name="Tr-Exe" direction="forward" collectEdge="false"

conditionalOnArg="walkDSlevel" />

17

WO 2018/102691 PCT/US2017/064227

<useEdge name="DS-Exe" conditionalOnArg="walkDSlevel">
<condition special="ExelnterfaceCallStack" />
<condition special="DSLevellfNoDE" />
</useEdge>

<useEdge name="Exe-DS" conditionalOnArg="walkDSlevel">
<condition special="ExelnterfaceCallStack" />
<condition special="DSLevellfNoDE" />
</useEdge>

<useEdge name="DE-DS" direction="backward" collectEdge="false">
<condition special="DSLevellfNoDE" />
</useEdge>

<useEdge name="Tr-Exe" direction="backward" collectEdge="false">
<condition special="DSLevellfNoDE" />
</useEdge>

</lineageServerPlan>

In this example, the “useEdge” tag specifies information for a given type of edge.
Each “useEdge” tag can correspond to a record (e.g., the records 402A-C of the walk plan
400). The “name” attribute specifies the type of edge (e.g., the edge type 404), the
“direction” attribute specifies the direction (e.g., forward direction 410 or backward
direction 416), the “collectEdge” attribute specifies whether to collect the edge (e.g., the
collect flags 408, 414). Other tags can be used. For example, the “condition special” tag
shown in the example above is used to specify custom rules that are carried out when an
edge of the specified edge type is followed. In some examples, the custom rules may
specify conditions to determine if the edge should be followed and/or collected.

FIG. 5A shows a flowchart representing a procedure 500 for storing lineage
metadata in a form defined by a special-purpose data structure, e.g., the data structure 300
shown in FIG. 3. The procedure 500 can be carried out, for example, by components of
the lineage server 102 shown in FIG. 1A.

The procedure requests 502 lineage metadata from a metadata source. For

example, the metadata source could be the metadata database 108 shown in FIG. 1A. The

18

WO 2018/102691 PCT/US2017/064227

request could be a request made on regular or semi-regular intervals, for example, every
hour, every ten minutes, every minute, or any other interval. In some examples, the
request could be made in response to an event, e.g., an event such as a notification that
new metadata is available at the metadata source.

Lineage metadata typically describes nodes and edges, such that each node
represents a metadata object, and the edges each represent a one-way effect of one node
upon another node, e.g., such that each edge has a single direction.

In some examples, e.g., when a lineage server 102 has not yet generated an initial
set of data structures representing lineage metadata, the request is a request for all lineage
metadata stored by the data source. In some examples, e.g., when the lineage server 102
is updating an existing set of stored data structures, the request is a request for lineage
metadata that has been added or changed since the last request.

The procedure receives 504 data, e.g., lineage metadata, from the metadata
source. For example, the lineage metadata can be data representing metadata objects and
relationships between the metadata objects.

The procedure generates 506 data structures, e.g., instances of the data structure
300 shown in FIG. 3. For example, the data structures can contain information
corresponding to the data received from the metadata source. In some examples, each
instance of the data structure corresponds to a respective node received from the metadata
source. The data structure can include a field for identification values, e.g., an
identification value that identifies the node corresponding to an instance of the data
structure. The data structure can also include property fields that represent properties of a
node corresponding to an instance of the data structure. The data structure can also
pointers to identification values of other nodes, such that the pointers represent edges to
the nodes corresponding to the respective identification values.

The procedure stores 508 the data structures. For example, the data structures can
be stored in memory, e.g., the memory 135 shown in FIG. 1C. In some examples, the
data structures are stored in random access memory. Because the data structures are used
to store lineage metadata, any data not relevant to lineage (e.g., other types of metadata
stored at the metadata source) can be omitted, reducing the amount of data needed to

store the data structures.

19

WO 2018/102691 PCT/US2017/064227

In use, the procedure returns to requesting 502 lineage metadata from the
metadata source, e.g., on the next regularly scheduled interval.

FIG. 5B shows a flowchart representing a procedure 520 for causing lineage
metadata to be displayed. The procedure 520 can be carried out, for example, by
components of the lineage server 102 shown in FIG. 1A. In general, a lineage server is
configured to return a response to a query that includes metadata describing lineage of a
particular element of data, e.g., a metadata object. In some examples, the metadata
describes a sequence of nodes and edges, wherein one of the nodes of the sequence
represents the particular element of data. In some examples, the procedure 520 is used to
access lineage metadata stored by the procedure 500 described above with respect to FIG.
5A.

The procedure receives 522 a query, e.g., a query for lineage metadata. In some
examples, the query identifies a metadata object for which lineage metadata is requested.

In some implementations, the query includes an identification of a type of lineage
and a walk plan that identifies which types of edges are relevant to the identified type of
lineage. In some examples, the walk plan includes conditions for following or collecting
an edge based on one or more property values representing respective properties of a
corresponding node. An example of a walk plan 400 is shown in FIG. 4.

The procedure gathers 524 lineage metadata. For example, a node representing
the metadata object of the received query can be accessed and collected, and edges (e.g.,
pointers to memory locations) can be traversed to collect other nodes. The gathering of
lineage metadata is described in further detail below with respect to FIG. 6.

The procedure transmits 526 the gathered lineage metadata. For example, the
gathered lineage metadata can be transmitted to a computer system that issued the query.

After the gathered lineage metadata is transmitted, the gathered lineage metadata
may be caused to be displayed 528 on a computer system, e.g., the user terminal 116
shown in FIG. 1A. For example, the lineage metadata may be displayed in the form of a
lineage diagram such as the lineage diagrams 200A-200E shown in FIG. 2A - 2E.

FIG. 6 shows a flowchart representing a procedure 600 for traversing lineage

metadata stored in the form of special-purpose data structures, e.g., instances of the data

20

WO 2018/102691 PCT/US2017/064227

structure 300 shown in FIG. 3. The procedure 600 can be carried out, for example, by
components of the lineage server 102 shown in FIG. 1A.

The procedure receives 602 a query and walk plan, e.g., the query 114 and walk
plan 130 shown in FIG. 1C. The procedure accesses 604 accesses an initial node (e.g.,
instance of the data structure 300 shown in FIG. 3) representing a metadata object
referenced by the query 114. For example, the initial node may be identified by an
identifier field 310 (FIG. 3) storing data that is associated with the metadata object. The
initial node is then used as the “current” node, and a recursive portion of the process
begins in which the current node is selected from a queue and operations are applied to
the current node. Put another way, the initial node is placed in a queue as the first node of
the queue, and other nodes are subsequently added to the queue as the procedure is
carried out.

The procedure determines 606 if there are remaining forward edge pointers in the
current node (e.g., forward edge pointers that have not yet been accessed). If so, the
procedure accesses 608 the next pointer that has yet to be accessed, e.g., accesses the
memory location of the pointer to retrieve data stored at that memory location. The
procedure determines 610 whether to “walk™ (e.g., process) the node at that pointer, e.g.,
according to the edge type associated with the pointer, based on the walk plan (as
described above with respect to FIG. 4). If not, the procedure accesses 608 another
pointer. If so, the procedure determines whether to collect 611 the node at that pointer. If
so, the procedure stores 612 the data of the node to be returned in response to the query,
and then places 614 the node in the queue so that its pointers can be accessed. If not, the
procedure only puts the node in the queue.

Once all of the forward edge pointers in the current node have been traversed, the
procedure determines 616 if there are remaining backward edge pointers in the current
node. If so, the procedure accesses 608 the next backward edge pointer.

If there are no remaining forward edge pointers or backward edge pointers, the
procedure determines 618 if any nodes remain in the queue. If so, the procedure accesses
620 the next node in the queue, and carries out operations described above using the next
node in the queue as the current node. If no nodes remain, the procedure prepares 622 the

collected data for transmission to other system. For example, the collected data may be

21

WO 2018/102691 PCT/US2017/064227

arranged in a particular format because it is transmitted. As another example, encoded
data in the collected data may be decoded. For example, data fields containing an
encoded value can be converted to a text string corresponding to the value.

Once the data is prepared for transmission, the data can be transmitted, e.g., as
described in FIG. 5B with respect to transmission 526 of data.

The systems and techniques described herein can be implemented, for example,
using a programmable computing system executing suitable software instructions or it
can be implemented in suitable hardware such as a field-programmable gate array
(FPGA) or in some hybrid form. For example, in a programmed approach the software
may include procedures in one or more computer programs that execute on one or more
programmed or programmable computing system (which may be of various architectures
such as distributed, client/server, or grid) each including at least one processor, at least
one data storage system (including volatile and/or non-volatile memory and/or storage
elements), at least one user interface (for receiving input using at least one input device or
port, and for providing output using at least one output device or port). The software may
include one or more modules of a larger program, for example, that provides services
related to the design, configuration, and execution of dataflow graphs. The modules of
the program (e.g., elements of a dataflow graph) can be implemented as data structures or
other organized data conforming to a data model stored in a data repository.

The software may be stored in non-transitory form, such as being embodied in a
volatile or non-volatile storage medium, or any other non-transitory medium, using a
physical property of the medium (e.g., surface pits and lands, magnetic domains, or
electrical charge) for a period of time (e.g., the time between refresh periods of a dynamic
memory device such as a dynamic RAM). In preparation for loading the instructions, the
software may be provided on a tangible, non-transitory medium, such as a CD-ROM or
other computer-readable medium (e.g., readable by a general or special purpose
computing system or device), or may be delivered (e.g., encoded in a propagated signal)
over a communication medium of a network to a tangible, non-transitory medium of a
computing system where it is executed. Some or all of the processing may be performed
on a special purpose computer, or using special-purpose hardware, such as coprocessors

or field-programmable gate arrays (FPGAs) or dedicated, application-specific integrated

22

WO 2018/102691 PCT/US2017/064227

circuits (ASICs). The processing may be implemented in a distributed manner in which
different parts of the computation specified by the software are performed by different
computing elements. Each such computer program is preferably stored on or downloaded
to a computer-readable storage medium (e.g., solid state memory or media, or magnetic
or optical media) of a storage device accessible by a general or special purpose
programmable computer, for configuring and operating the computer when the storage
device medium is read by the computer to perform the processing described herein. The
inventive system may also be considered to be implemented as a tangible, non-transitory
medium, configured with a computer program, where the medium so configured causes a
computer to operate in a specific and predefined manner to perform one or more of the
processing steps described herein.

A number of embodiments of the invention have been described. Nevertheless, it
is to be understood that the foregoing description is intended to illustrate and not to limit
the scope of the invention, which is defined by the scope of the following claims.
Accordingly, other embodiments are also within the scope of the following claims. For
example, various modifications may be made without departing from the scope of the
invention. Additionally, some of the steps described above may be order independent,

and thus can be performed in an order different from that described.

23

WO 2018/102691 PCT/US2017/064227

What is claimed is:
1. A method performed by a data processing apparatus, the method including:
receiving a portion of metadata from a data source, the portion of metadata
describing nodes and edges, at least some of the edges each representing an effect of one
node upon another node, each edge having a single direction;
generating instances of a data structure representing the portion of metadata, at
least one instance of the data structure including:
an identification value that identifies a corresponding node,
one or more property values representing respective properties of the
corresponding node, and
one or more pointers to respective identification values, each pointer
representing an edge associated with a node identified by the corresponding
respective identification value;
storing the instances of the data structure in random access memory;
receiving a query that includes an identification of at least one particular element
of data; and
using at least one instance of the data structure to cause a display of a computer

system to display a representation of lineage of the particular element of data.

2. The method of claim 1, wherein the query includes an identification of a type
of lineage and a walk plan that identifies which types of nodes and edges are relevant to

the identified type of lineage.

3. The method of claim 2, wherein the walk plan includes conditions for
following or collecting an edge based on one or more property values representing

respective properties of a corresponding node.

4. The method of any of claims 1 to 3, wherein at least one of the identification

values represents a node corresponding to the particular element of data identified in the

query.

24

WO 2018/102691 PCT/US2017/064227

5. The method of any of claims 1 to 4, wherein the data processing apparatus is
configured to return a response to the query, the response including metadata describing

lineage of the particular element of data.

6. The method of claim 5, wherein the metadata describing lineage of the
particular element of data includes metadata describing a sequence of nodes and edges,

wherein one of the nodes of the sequence represents the particular element of data.

7. The method of any of claims 1 to 6, wherein the set of metadata includes text
strings associated with respective nodes, wherein the data structure omits at least one of

the text strings.

8. The method of any of claims 1 to 7, wherein generating the instances of the
data structures includes identifying metadata that is relevant to lineage and storing the

identified metadata in a format defined by the data structure.

9. The method of any of claims 1 to 8, wherein at least one of the pointers
includes a reference to a memory location associated with a portion of the random access
memory, wherein the memory location corresponds to a location of a node corresponding

to one of the identity values.

10. The method of any of claims 1 to 9, including

in response to receiving the query:

accessing data stored using the data structure, including accessing an instance of
the data structure containing at least one identifier that corresponds to the particular
element of data identified by the query; and

based on the data stored using the data structure, generating a response to the
query, the response including lineage metadata, the lineage metadata describing a
sequence of nodes and edges, wherein one of the nodes of the sequence represents the

particular element of data.

25

WO 2018/102691 PCT/US2017/064227

11. The method of any of claims 1 to 10, including

accessing a first instance of the data structure, the first instance of the data
structure identified by a first identifier that corresponds to the particular element of data
identified by the query;

accessing a pointer associated with the first identifier, the pointer associated with
the first identifier;

accessing a second instance of the data structure, the second instance of the data
structure identified by a second identifier, the second identifier being stored at a memory
location referenced by the pointer associated with the first identifier; and

collecting data of the second instance of the data structure;

wherein the response includes data representing a node associated with the second

identifier.

12. The method of any of claims 1 to 11, including transmitting requests to the
data source on scheduled intervals, wherein the portion of metadata is received from the

data source in response to one of the requests.

13. A system including:

at least one non-transitory computer-readable storage medium storing executable
instructions; and

one or more processors configured to execute the instructions;

wherein execution of the instructions causes:

receiving a portion of metadata from a data source, the portion of metadata
describing nodes and edges, at least some of the edges each representing an effect of one
node upon another node, each edge having a single direction;

generating instances of a data structure representing the portion of metadata, at
least one instance of the data structure including:

an identification value that identifies a corresponding node,

one or more property values representing respective properties of the

corresponding node, and

26

WO 2018/102691 PCT/US2017/064227

one or more pointers to respective identification values, each pointer representing
an edge associated with a node identified by the corresponding respective identification
value;

storing the instances of the data structure in random access memory;

receiving a query that includes an identification of at least one particular element
of data; and

using at least one instance of the data structure to cause a display of a computer

system to display a representation of lineage of the particular element of data.

14. A non-transitory computer readable storage device storing instructions that,
when executed, carry out operations including:

receiving a portion of metadata from a data source, the portion of metadata
describing nodes and edges, at least some of the edges each representing an effect of one
node upon another node, each edge having a single direction;

generating instances of a data structure representing the portion of metadata, at
least one instance of the data structure including:

an identification value that identifies a corresponding node,

one or more property values representing respective properties of the
corresponding node, and

one or more pointers to respective identification values, each pointer representing
an edge associated with a node identified by the corresponding respective identification
value;

storing the instances of the data structure in random access memory;

receiving a query that includes an identification of at least one particular element
of data; and

using at least one instance of the data structure to cause a display of a computer

system to display a representation of lineage of the particular element of data.

15. A system including:

27

WO 2018/102691 PCT/US2017/064227

means for receiving a portion of metadata from a data source, the portion of
metadata describing nodes and edges, at least some of the edges each representing an
effect of one node upon another node, each edge having a single direction;

means for generating instances of a data structure representing the portion of
metadata, at least one instance of the data structure including:

an identification value that identifies a corresponding node,

one or more property values representing respective properties of the
corresponding node, and

one or more pointers to respective identification values, each pointer representing
an edge associated with a node identified by the corresponding respective identification
value;

means for storing the instances of the data structure in random access memory;

means for receiving a query that includes an identification of at least one
particular element of data; and

means for using at least one instance of the data structure to cause a display of a

computer system to display a representation of lineage of the particular element of data.

16. A method performed by a data processing apparatus, the method including:

receiving a query that includes an identification of at least one particular element
of data;

receiving an identification of a type of lineage;

receiving a walk plan which identifies which types of nodes and edges are
relevant to the identified type of lineage,

wherein the walk plan includes 1) at least one identifier corresponding to a type of
edge, and 2) at least one identifier corresponding to a direction of traversal for the type of
edge, and 3) at least one indicator corresponding to an action to be taken when traversing
the edge;

traversing, based on the walk plan, nodes and edges; and

based on the traversal of the nodes and edges, causing a display of a computer

system to display a representation of lineage of the particular element of data.

28

WO 2018/102691 PCT/US2017/064227

17. The method of claim 16, wherein the nodes correspond to respective instances
of a data structure, and the edges correspond to respective pointers to a respective

instance of the data structure.

18. The method of claim 17, wherein an instance of the data structure includes:

an identification value that identifies a corresponding node,

one or more property values representing respective properties of the
corresponding node, and

one or more pointers to respective identification values, each pointer representing
an edge associated with a node identified by the corresponding respective identification

value.

19. The method of any of claims 16 to 18, wherein the walk plan is chosen based

on a data type of the particular element of data identified by the query.

20. The method of any of claims 16 to 19, wherein the walk plan includes a

structured document.

29

100

120

WO 2018/102691

Data
elements

A

Data Source

Data Source

Data Source

PCT/US2017/064227
113

118

Query

\ Lineage
Metadata
Query

/in&age\ ’
’

Lineage
Metadata

124

1 26\
1124 Queries
\

Metadata
\ @
- E/Iettagata
1128 atabase
Metadata |~ Metadata
Metadata
112C

FIG. 1A

WO 2018/102691

126

PCT/US2017/064227
2/13
114 /122
Lineage Metadata
Lineage
Query
Lineage Server /’ ,
Lineage
AN /7
N // Metadata
S , P y
~ L 4
0 w 124
A
128
Lineage
Database Metadata /
Queries
e
~
Metadata
Database
Metadata

106

FIG. 1B

WO 2018/102691

150

114~

313

Query

,,,,,,,,,,,,,

Walk Plans

/

130

Metadata Server

\

)
Query

Walk Plan

/

132

Data Structures
134

Memory
135

Lineage Server

102

FIG. 1C

PCT/US2017/064227

WO 2018/102691 PCT/US2017/064227
4/13

100

T Query | 104
Response

,,,,,,,,,,,,,,,,

u Walk Plans
130/
Metadata Server
104
A
Response
Lineage 138
Metadata
139
Data Structures
134
Memory
135
Lineage Server
102

FIG. 1D

PCT/US2017/064227

WO 2018/102691

513

PCT/US2017/064227

WO 2018/102691

6/13

d¢ Ol

g80¢

B

i [

WX/
d

g00¢

(@ @@ @S (@

g¢0¢

aroc

PCT/US2017/064227

WO 2018/102691

m3

J¢ 9l4

J80¢

N4 74

[F@/

EE SSX0 8
wa)sAg Buissadoid [enua) &)

*'90IN0G

¢0¢
ayoc

300¢

PCT/US2017/064227

WO 2018/102691

8/13

d¢ 9l

agie

3]
EE SSXOE®
wa)sAg Buissasoid [enuad g

[

&

XXd SXS
D]
X1d SXS
D
/ puiddy buidd
/. 'y bulddely SANIT SXS

8

o>

M

WXV SXS

>
XSvd

220 H_WA/

uonesiddy 921nog B

w)sAg aseg

~arie

N4 74 400z

PCT/US2017/064227

WO 2018/102691

913

= A

v90¢

174

ﬁ d VLVATINOY SO NV 1L g

CIE 114 13SvE NV IS0 D
=)

oe &

1V it

m._.zmwm_m_n_uoo._.um__:

v,
~\

w._.zmwm_w_n_ | 988L ¥IN

ﬁ 9 ozzz V_Io 988) %
um

lvava ._.zoo So Ny ._._.“Q

HIFNNN ES VRIE g

'd VLva ._.zoo So Ny ._._.“;

ﬁ
|
_
)

YIENNN n_m_<o nv L4 g

._E SIS NV 1S9

_M_m_

404NN €&

NN

| 35V

diA

¥

300¢

PCT/US2017/064227

WO 2018/102691

10/13

€ ol

a9ie-

V916

uoneso AJowsy

/
va/
geze sbel4 Jﬁ
) 1 sobp3
| uoneoo Aiowspy H 19)U104 piemsoeg
- L \
N\
_ goze
/= Y,
39L€ /mohm
va/
veze sbe|4 Jﬁ
Y A T sabp3
| uoneosoq Alowspy H 19)U104 piemiod
d L - _ _ _ \
A\
voce
[
— L
g9.¢ /
J91¢ saladold
_ 1415
adA| ~N.zie
Joyquep| N
0L¢ 708

00¢

PCT/US2017/064227

WO 2018/102691

11/13

9bp3109]100

777

9PON 329100

- uonoallq pJemyoeg

MOJ|04

9bp3109]100

0iv

9PON 329100

— uonoalIq pJemio

MOJ|04

774
adA] abp3

v Old

007
> Ueld e

WO 2018/102691 PCT/US2017/064227
12/13
500\
—> Request data from metadata source

202

Y

Receive data from metadata source

204

Y

Generate data structures
206
Store data structures
208
520\
Receive query
922
Gather lineage metadata
924
Transmit lineage metadata
226
Lineage is displayed

228

FIG. 5B

FIG. 6

WO 2018/102691
13/13

Receive query and
walk plan
602

Y

Access node
representing initial
metadata object gog4

v

600

Access next node in

PCT/US2017/064227

?
queue <—Yes Any ngggs left?
620 T
Are there remaining 1
forward edge pointers?
no
no
Are there remaining
yes backward edge pointers?
616 Put node
— in queue
614
yes no T
— , Store
Access next pointer node data
608 612
no T

Based on walk plan, walk node
referenced by pointer?
610

yes

Based on walk plan, collect
node referenced by pointer?
611

FIG. 6

yes

Prepare data for
fransmission

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/064227

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F17/30
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

X LUCAS ZAMBOULIS ED

Restructuring",

PAGE(S) 57 - 71, XP019008451,
ISBN: 978-3-540-22382-5

page 60 - page 63

page 70

19 June 2004 (2004-06-19), KEY
TECHNOLOGIES FOR DATA MANAGEMENT; [LECTURE
NOTES IN COMPUTER SCIENCE;;LNCS],
SPRINGER-VERLAG, BERLIN/HEIDELBERG,

- HOWARD WILLIAMS ET 1-20
AL: "XML Data Integration by Graph

D Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

27 April 2018

Date of mailing of the international search report

11/05/2018

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Krawaritis, Achilles

Form PCT/ISA/210 (second sheet) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - wo-search-report

