(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2005/046122 A2

(43) International Publication Date
19 May 2005 (19.05.2005)

(51) International Patent Classification’: HO04L 12/00 AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
(21) International Application Number: GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
PCT/GB2004/004578 KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
(22) International Filing Date: 29 October 2004 (29.10.2004) PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
(25) Filing Language: English ZW.
(26) Publication Language; Enghsh (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(30) Priority Data: GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
0325417.4 31 October 2003 (31.10.2003) GB ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
(71) Applicants and FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
(72) Inventors: GRAZIOLI, Daniele [IT/GB]; Ramridge SK, TR), OAPL (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
House, Suite 7, Ramridge Park, Weyhill SP11 9BY (GB). GW, ML, MR, NE, SN, TD, TG).
PASQUALL Elena [IT/GB]; Ramridge House, Suite 7,
Ramridge Park, Weyhill SP11 9BY (GB). Published:
— without international search report and to be republished
(74) Agent: BARKER BRETTELL; Medina Chambers, Town upon receipt of that report

Quay, Southampton SO14 2AQ (GB).
For two-letter codes and other abbreviations, refer to the "Guid-
(81) Designated States (unless otherwise indicated, for every ance Notes on Codes and Abbreviations" appearing at the begin-
kind of national protection available): AE, AG, AL, AM, ning of each regular issue of the PCT Gagzette.

(54) Title: COMPUTER NETWORK

o [90 nad o
Oa :

G000 o

i
0
o

i
¥
®

(57) Abstract: A computer network (1) for processing received event data, the computer network comprising a grid of data pro-
cessors (2), each data processor being provided with a node management program, the computer network further comprising shared
data storage means (3) which is accessible and shared by the data processors, the shared data storage means being provided with
(a) declaration data which is representative of where data objects are stored, and whether data objects resulting from processing of
\& incoming event data are to be stored and where such data objects are to be stored, (b) event algorithms and (c) a look-up table which
= indicates which event algorithm is associated with (i) a category of agent originating the event data and/or (ii) a category of event,
& a data processor being such that, in use, the node management program determines (i) the category of agent which originated the

event data and/or (ii) the category of the received event data, retrieves declaration data from the shared data storage means, by use
& of the look-up table determines a respective event algorithm which is associated with (i) the category of the agent which originated
& the event data and/or (ii) the category of event data, the node management program also being operative to call data objects required
o by the selected event algorithm, the node management program locating said data objects in said shared data storage means from

location data included in the declaration data, and the node manager program being operative to store any data objects resulting from

the execution of the algorithm which are to be stored as required by the declaration data, in one or more respective locations in the
g shared data storage means as determined by the declaration data.

A2 |00 R O

WO 2005/046122 PCT/GB2004/004578

10

15

20

25

COMPUTER NETWORK

The present invention relates to computer networks and in particular, but not

exclusively, to a network of computers for processing on-line transactions.

According to a first aspect of the invention there is provided a computer network
for processing received event data, the computer network comprising a plurality
of data processors, each data processor being provided with a node management
program, the computer network further comprising shared data storage means
which is accessible and shared by the data processors, the shared data storage
means being provided with (a) declaration data which is representative of where
data objects are stored, and whether data objects resulting from processing of
event data are to be stored and where such data objects are to be stored, (b)
event algorithms and (c) a look-up table which indicates which event algorithm is
associated with (i) a category of agent originating the event data and/or (ii) a
category of event, a data processor being such that, in use, the node management
program determines (i) the category of agent which originated the event data
and/or (i) the category of the received event data, retrieves declaration data
from the shared data storage means, by use of the look-up table determines a
respective event algorithm which is associated with (i) the category of the agent
which originated the event data and/or (ii) the category of event data, the node
management program also being operative to call data objects required by the
selected event algorithm, the node management program locating said data
objects in said shared data storage means from location data included in the
declaration data, and the node manager program being operative to store any
data objects resulting from the execution of the algorithm which are to be stored
as required by the declaration data, in one or more respective locations in the

shared data storage means as determined by the declaration data.

The term 'event data' is used herein to include a signal which is sent to a data

processor in respect of one or more prospective data processing operations.

WO 2005/046122 PCT/GB2004/004578

10

15

20

In a preferred embodiment of the invention an event is an on-line transaction

request sent by a client to a network of inexpensive computers.

Data objects are preferably objects of data which an event algorithm is required

to process/act on.
A data object may comprise a plurality of subsidiary data objects.

The expression ‘computer network’ should be understood to include at least two
computers which are able to communicate via a communication link and

includes, for example, the Internet and Local Area Networks.

Preferably the declaration data is loaded onto a local memory of the data

processor before an event algorithm is determined and then called.

The declaration data preferably comprises a dictionary of characteristics of all

data objects within the network.

The look-up table is preferably stored in a part of the shared data storage means
which is remote from the data processors, and the data processors
communicating with that part of the shared data storage means by an external
connection. The algorithms are preferably stored in a part of the shared data
storage means which is remote from the data processors, and the data processors
communicating with that part of shared data storage means by an external
connection. Desirably that part of the shared data storage means which is read-

only memory.

Data objects are preferably stored in a part of the shared data storage means
which is remote from the data processors, and the data objects resulting from the
execution of the algorithm which are required to be stored by the declaration

data, in a respective location as also determined by the declaration data.

WO 2005/046122 PCT/GB2004/004578

10

15

20

25

Preferably that part of the shared data storage means which contains objects
which are not alterable as a result of an event algorithm is a read-only memory,
and part which contains objects which may be modified as a result of an

algorithm is a re-writable memory.

Preferably the data processors communicate with the shared data storage means

by an external connection.

In a preferred embodiment, each business event algorithm represents a process
which is implemented as a configurable sequence of re-usable processing units
(business rules) automatically applied by the apparatus to an incoming event.
The sequence of business rules with which a business process is configured
defines the execution order of the business rules. A business rule is preferably
re-usable because several different business processes may be configured using

the same set of business rules.

The network provides the execution framework so that all the operations of the
event algorithms constituting an event algorithm being applied to event data are
part of a single transaction. To process event data, depending on the content of
the event data, one or several different event algorithms, or several parts of

different event algorithms, can be executed by the network.

In a preferred embodiment of the invention, an event algorithm comprises one or
more C/C+ + functions implemented into a Dynamic Link Library or a Run

Time Shared Library.

The event algorithms are preferably of two main categories: solution rules and
infrastructure rules. In a preferred embodiment the solution rules contain logic
required by the specific solution they support while the infrastructure rules are
meant to implement logic required for the management of user errors, system
exceptions and external transactions. The infrastructure rules are executed

asynchronously by each data processor apparatus, ie their execution order does

WO 2005/046122 PCT/GB2004/004578

10

15

20

25

4

not depend on the sequence with which an event algorithm has been configured.
In a preferred embodiment, there are four main types of infrastructure rules:
on_error, on_exception, on_commit and on_rollback. Respectively, they are
meant to support user error management, system exception management and
transaction coordination (commit and rollback) with any external resource
manager. The infrastructure rules on_commit and on_rollback are not needed
for internal transactions ie in such case the apparatus automatically support the
ACID (Atomicity, Consistency, Isolation, Durability) properties to be exhibited

by the transaction itself.

The expression ‘external transaction’ relates to any transaction initiated by one
or more event algorithms (being activated to process the incoming event) toward

any external resource manager.

The expression ‘internal transaction’ relates to any transaction initiated by one or
more event algorithms (being activated to process the incoming transaction
request) that access only persistent data managed by the persistence providers

within the network.

Each data processor is preferably configured to declaration data which is
representative of all the defined data objects included in sequences of business
rules defining all the available event algorithms. In one embodiment of the

invention the declaration data is formalized based on a syntax.

Preferably all data objects to be acted on by the event algorithm are stored in a
local memory of the data processor which comprises a memory stack which is
adapted to be accessible by the algorithm. In a preferred embodiment the stack

is a type of cache memory.

Most preferably said data obtained by the node management program from the
data storage means comprises most of the data which is to be acted upon by the

event algorithm, which is in addition to the data included in the event.

WO 2005/046122 PCT/GB2004/004578

10

15

20

25

The expression ‘resource manager’ relates to a system (external to the network
of the invention) that can participate in coordinated operations/transactions.
Such systems typically (but not only) expose an interface based on the 2PC (2

phases commit) / XA standard paradigm.

The computer network may be viewed as a domain in which the data processors
all hosting the same set of event algorithms (business processes), all having
access to the same set of persistence providers, all having access to the same set

of lock managers and all having access to the same internal bus.

Each instance of a given class of a data object may be stored on several different
persistence providers of the shared data storage means and/or all the instances of
different classes of data objects can be ‘stored’ on several different persistence
providers. For example, each instance of the class A can be stored into the
persistence providers X and Z where X provides persistence to the part Al of
the properties of the class A and Z provides persistence to the part A2 of the
properties of the class A and/or each class can have its own set (one or more) of
persistence providers. This may be viewed as the partitioning of a persistent
data object (global objects) over a multitude of heterogeneous and parallel
persistence providers. Parallel persistence providers are a set of processors,
typically driving third party database engines, that provide persistence to any
persistent objects. The persistence providers are 'parallel' because no

persistence provider is aware of any other persistence provider within a domain.

The network is desirably configured to provide determinism amongst a multitude
of computers that may have concurrent access to the same set of global (shared)

data objects.

In a domain (a partition of a multitude of data processors), each node
management program of a data processor hosting a set of event algorithms

(business processes) is preferably not aware of any other node manager program

WO 2005/046122 PCT/GB2004/004578

10

15

20

25

or another data processor agent within the same domain. This enormously
simplifies the configuration of a domain but iniroduces several issues whenever,
based on a set of incoming events, more than one node manager program has to
trigger one or more business processes resulting in a non volatile change of the

same global (shared) data object.

For instance, two or more node management programs might produce an impact
over the same data object eg an account balance. In all these cases, to guarantee
a deterministic environment, it is essential to provide an external coordination
(or synchronization) amongst the node management programs themselves. Such
coordination (or synchronization) is preferably provided not based on the logic
that is going to be triggered but on the global (shared) data objects that might be
the target of the triggered logic or business processes. In this way it is possible
fo guarantee maximum concurrency (several instances of the same event
algorithm (business process) can be initiated in parallel by several node
management programs when the global target data differ) and determinism
(whenever several instances of the same business process or several instances of
different business processes have the same global target data objects, the

business processes are synchronized).

The computer network preferably comprises at least one lock manager processor
which is connected to the data processors, and are configured to control use and
modification of predetermined data objects requested by the data processors.
Preferably access to those data objects which are intended to be
modified/updated by an event algorithm is controlled by the lock manager
processor which is operative to allow access to one such data object by only one

data processor at any one time.

The lock manager processors have the role to coordinate the access to any global
data object as performed by any processing node manager agent by the mean of

a first memory volatile queue containing pending locks and granted locks. The

WO 2005/046122 PCT/GB2004/004578

10

15

20

25

lock manager processors therefore preferably provide determinism over a
plurality of computers at least some of which may attempt to access a shared

data object at the same time.

Whenever the status of a lock (eg from pending to granted) changes, it is
responsibility of the lock manager processor to notify the owner of the
previously pending lock (a node manager processor), so that the owner of the
lock can continue with the processing of the event algorithm that has lead to the
lock over a global data object. In one embodiment of the invention it is
responsibility of the node manager program to: notify a lock request to the lock
manager processor, notify the release of a lock to the lock manager processor,
notify a lock-set request to the lock manager. It is desirably the responsibility of
the lock manager processor to maintain a queue of pending locks, granted locks
and pending lock-sets. It is desirably the responsibility of the lock manager
processor to notify the node managers when a lock or a lock-set changes its

status, eg from pending to granted.

As a preferred embodiment of the invention, a lock-set is defined as a
transactional unit containing several lock requests. The lock requests within a
lock-set can be granted only if all the lock requests contained into the lock set

can be granted.

Any lock manager processor may preferably be configured to set up a given
maximum time for the status of a lock to change from pending to granted. If the
total amount of time expires it is responsibility of the lock manager to notify the

node manager requesting the lock with such condition.

In one embodiment of the invention each lock manager unit within the multitude
of computers has access to an internal bus through which an event is presented to

the multitude of computers.

WO 2005/046122 PCT/GB2004/004578

10

15

20

25

8

In one embodiment of the invention the plurality of data processors can be
configured so that each lock manager unit has one or more backup units
providing automatic fail-over should a lock manager fail. The automatic fail-over
of the shared lock managers is intended to eliminate any single point of failure

from the apparatus.

In one embodiment of the invention, each unit within the multitude of computers
has access to a set of specialized software agents synchronizing any access to any
global (shared) resource amongst the multitude of computers. In the first
embodiment of the invention each unit within the multitude of computer might
have access to a set of specialized agents providing persistence to any global
(shared) data object required by the logic (or set of business processes) hosted by

the multitude of computers.
The multitude of computers may be partitioned in several domains.

In one embodiment of the invention, the node manager program continues the
processing of an event algorithms (business process) only if all the requested
locks have been granted. It is responsibility of the node manager program fo
rollback any operation initiated by the event algorithm if any of the requested

lock cannot be obtained.

A lock is preferably viewed as a reference to a single data object, as identified

by an associated unique identifier.

Within a same domain it is desirably possible to distribute the computational load
due to lock management over several lock managers. In a preferred embodiment
of the invention such distribution is provided partitioning the lock requests by
classes of data objects for which the lock manager processors have to maintain
the global locks. The partitioning of the computational load related to global
lock management is guaranteed by a configuration repository of which each node

manager program within the same domain has to be aware.

WO 2005/046122 PCT/GB2004/004578

10

15

20

25

9

Preferably the data processors (or nodes), lock manager processors and data
storage means (or repositories) communicate with each other by way of an
internal bus ie one or more computer programs based on store and forward

technology that can participate in operations caused by a received event.

According to a second aspect of the invention there is provided a data processor
for a network of computers which is configured to receive and process received
event data, the data processor being provided with a node management program,
and the data processor being configured to be linked to shared data storage
means which is shared by a least one other such data processor of the network of
computers, the data storage means being provided with (a) declaration data
which is representative of where data objects are stored, whether data objects
resulting from processing of event data are to be stored and where such data
objects are to be stored in the shared data storage means, (b) event algorithm and
(c) a look-up table which indicates which event algorithm is associated with (i) a
category of agent originating the event data and/or (ii) a category of event, the
data processor being such that, in use, the node management program
determines (i) the category of agent which originated the event data and/or (ii)
the category of the received event data, retrieves declaration data from the
shared data storage means, uses the look-up table to determine a respective event
algorithm which is associated with (i) the category of agent that originated the
event data and/or (ii) the category of event data, the node management program
also being operative to call data objects required by the selected event algorithm
from one or more locations in the shared data storage means as stated in the
declaration data, and the node management program being operative to store any
data objects resultin:gf from the execution of the event algorithm which are to be
stored as required by the declaration data, in one or more respective locations in

the shared data storage means as determined by the declaration data.

According to a third aspect of the invention there is provided a machine readable

data carrier which is provided with instructions to implement a node

WO 2005/046122 PCT/GB2004/004578

10

15

20

25

30

10

management program on a data processor in a computer network, the computer
network comprising a plurality of such data processors, the computer network
further comprising shared data storage means which is accessible and shared by
the data processors, the shared data storage means being provided with (a)
declaration data which is representative of where data objects are stored in the
shared data storage means, and whether data objects resulting from processing of
received event data are to be stored and where such data objects are to be stored,
(b) event algorithms and (c) a look-up table which indicates which event
algorithms is associated with (i) a category of agent which originated the event
data and/or (i) the category of the received event data, the node management
program being operative to cause a data processor to determine (i) the category
of agent which originated the event data and/or (ii) the category of the event
data, and accordingly determine an associated event algorithms from the look-up
table, the node management program being operative to call the declaration data
and the node management program being operative to call data objects from the
shared data storage means which objects are required by the event algorithms,
the node manager program locating said data objects in said shared data storage
means from location data included in the declaration data, and the node
management program causing data objects resulting from the execution of the
event algorithms which are to be stored in accordance with the declaration data

in a respective location as determined by the declaration data.

According to a fourth aspect of the invention there is provided a method of
processing received event data comprising causing a data processor from a
network of data processor to determine (i) a category of agent which originated
the event data and/or (i) a category of the event data, determining a respective
event algorithms by means of a look-up table which indicates which event
algorithms is associated with (i) and/or (i), to retrieve from shared data storage
means, which data storage means is shared by the data processoré, declaration
data which is representative of where data objects are stored in the shared data

storage means, to retrieve the selected event algorithms from the shared data

WO 2005/046122 PCT/GB2004/004578

10

15

20

25

11

storage means, to call data objects required for execution of the event algorithms
from the shared data storage means from one or more locations determined by
the declaration data, and, to store any data objects resulting from execution of
the algorithms which are to be stored as required by the declaration data in one
or more locations in the shared data storage means determined by the declaration

data.

A highly preferred embodiment of the invention may be viewed as a run-time
embodiment that facilitates the development of highly distributed computer
environment solutions by letting a developer assume that the solution (algorithm)
will be executed in a single-threaded environment whilst, based on different
deployment configurations, it is actually executed onto a set of parallel, multi-
threaded processors without losing the determinism typical of a single-threaded
processor. Also, the algorithm can be developed using highly popular and

standard third party products, not requiring any specialized compiler.

Various embodiments of the invention will now be described, by way of example

only, with reference to accompanying Figures, in which:
Figure 1 is a block diagram of the apparatus,

Figure 2 is a block diagram of some possible messaging arrangements
between clients (the agents present the transaction requests) and the

apparatus,

Figure 3 is a code listing of a declaration of a purchase event (purchase

transaction request) that exemplifies the declaration of a class of events,

Figure 4 is a code listing that exemplifies the instantiation of a class of

events,

Figure 5 is a block diagram which illustrates binary associative logic,

WO 2005/046122 PCT/GB2004/004578

10

15

20

12

Figure 6 is a code listing of a declaration of the product class of objects,
Figure 7 is a code listing of a declaration of the customer class of objects,
Figure 8 is a block diagram which illustrates ternary associative logic,

Figure 9 is a code listing of various instances of the class product that
exemplifies a single transaction containing several instances of a class of

events,

Figure 10 is a table showing the unique identifiers assigned to each

product instance, accordingly to the example application,

Figure 11 is a table showing the prices assigned to each product instance,

accordingly to the example application,
Figure 12 is a code listing of various instances of the class customer,

Figure 13 shows a table of unique object identifiers assigned to each

customer, accordingly to the example application,

Figures 14A and 14B show a code listing that exemplifies the logic that
might be contained into a business rule, according to the interfaces defined

toward the apparatus,

Figure 15 is a code listing that exemplifies a business rule to be applied
when a consumer presents a purchase event to the apparatus, accordingly

to the example application,

Figure 16 is a code listing that exemplifies a business rule to be applied
when a reseller presents a purchase event to the apparatus, accordingly to

the example application,

WO 2005/046122 PCT/GB2004/004578

10

15

20

25

13

Figures 17A and 17B are code listings that exemplifies the configuration

of business processes with binary and ternary associative logic,

Figure 18 is a code listing that exemplifies a purchase event frame in

which a customer has requested a report,

Figure 19 is a code listing that exemplifies a purchase event frame similar
to that of Figure 18 but in which the customer is impersonating the reseller

role,

Figure 20 is an example of the syntax used to partition the global lock

requests over a multitude of lock managers within the same domain,

Figure 21 is a schematic diagram of a further implementation of the

invention, and

Figure 22 is a block diagram of a test equipment used to run an example

application.

With reference to Figure 1 there is shown a domain 1 comprising a plurality of
node managers 2 which form a servers’ farm, a plurality of persistence
providers 3 and a plurality of global lock managers 4. The domain 1 is
connected by a telecommunication network 5 to a presentation server 6 and a
plurality of client computers 7. The domain 1 is configured to handle and
respond to transaction requests sent by a client computer 7 via the presentation

server 6.

The domain 1 is provided by a collective of node managers 2 providing the main
processing units, each node manager being provided by a computer running the
software node manager which comprises workflow manager software for the
transactional processing of any defined business process. The persistence

providers 3 are connected to the node managers 2 and are DBMS which store

WO 2005/046122 PCT/GB2004/004578

10

15

20

14

global (persistence) objects. The node managers 2 are also connected to the
global lock managers 4 which are server components configured to provide
determinism amongst incoming concurrent transaction requests that might impact
on global objects. Also, the global lock managers 4 (provided by the servers)
are meant to avoid priority inversion by being configured to manage queues of

incoming transaction requests.

The constituent components and functions of the entities shown in Figure 1 will
now be further described in the context of an on-line system which will calculate .
a tariff-based impact for a set of incoming purchase events for market reports.

In addition, the system will update a balance of the respective account.

An order of a client is ultimately a purchase event presented by the client to the

presentation server 6 using Event Presentation Language or EPL.

In the present example, a purchase event has the following layout comprising

five properties or data objects:

Identifier of the product that is being purchased [product_id]

Identifier of the account that is performing the purchase [account_id]

Calculated balance impact [balance_impact]

Time of purchase [time]

Payment method [payment_method]

The following properties of the purchase class will be declared with persistence:

Product_id

WO 2005/046122 PCT/GB2004/004578

10

15

20

15

Account_id
Balance impact
Time

The first four above fields are required to produce an itemised invoice, so they
will have to be remembered at least until such invoice is produced. Based on

such assumptions, a declaration of the purchase event class is shown in Figure 3.

The following property, instead, will be declared without persistence. The
information contained in such properties will be used by the selected algorithm

(business process) and then discarded:
Payment_method

With such syntax the class purchase event and its layout is declared. For this
example the simplest representation has been chosen and for the sake of
simplicity we have declared the whole class as having its persistence managed by
one single persistence provider (as declared in the section ‘STORAGE’).
A single object, based on a more complex class definition, may be
stored/retrieved into/from several independent and heterogeneous persistence

providers.

The Event Presentation Language (EPL) is based on XML and with this
language it is possible to instantiate any class defined within the domain 1.
Therefore the client will have to instantiate a given class using the syntax defined
by the EPL. Once the instance is ready, the client will send such instance to the

presentation server 6 using preferably a 3 party message queuing interface.

The client will have to present a purchase event to the enterprise ecosystem

running on the apparatus. An example of a XML frame (representing a

WO 2005/046122 PCT/GB2004/004578

10

15

20

25

16

purchase event) formalised using the EPL is shown in Figure 4. The layout of
the XML frame carrying the information contained in a purchase event strictly

depends on the declaration of the purchase event class.

A node manager process checks the syntax and the layout of the incoming frame

before the selection of the appropriate event algorithm (business process).

With reference to Figure 2 a client 7 interacis (does purchases) with the
domain 1 via a standard web browser 10. A reseller 9 instead is represented as
an enterprise that has a business application already in place. The reseller 9
represents such external business system. Interfaces are represented with the bi-
directional block arrows tagged with the capital letters A and B. A first kind of
interface, the one tagged with the letter A, between the web browser 10 and the
web server 11 will likely transport HTML over HTTP. The interface B between
the reseller (business system) and the web server 11 will likely transport XML
over HTTP. Last, interface C between any application component hosted by the
web server 11 and the domain 1 is to be XML EPL over a reliable messaging
protocol as supported by the presentation subsystem 5. There are some cases
where it may be convenient to provide an interface between an external business
application and the apparatus directly, without a front end infrastructure like the
one provided by a web server. In this respect, it is to be noted that even in the
architecture shown in Figure 2, some ‘external applications’ interface with the
domain 1 directly already. Such external applications (external to the apparatus)
are represented by the services (eg CGI applications and/or Web Services)

hosted by the web server itself.

Information about the category of the client (or class of the event being
presented to the domain) is encapsulated into the XML frame representing an
instance of the class of thie event. The selection of the role might be, in this
example, supported leveraging the kind of authentication provided by a 3 party

system. For instance, the URL requested by the consumer might reference a

WO 2005/046122 PCT/GB2004/004578

10

15

20

17

CGI (Common Gateway Interface) application that supports authentication based
on a standard access control list and/or leveraging other tools available within
the operating system environment hosting the web server itself. For the sake of
simplicity none of any other of several tools and methods supporting strong

authentication will be described.

The definitions of three classes are stored in a master repository 12 (see

Figure 1).

The files containing the classes’ definitions are based on XML DDL (a language

for the creation of classes of objects).
Purchase event ddl.xml
Customer_ddl.xml

Product_ddl.xml

The file purchase event ddl.xm! contains the declaration of the class
purchase_event, the file customer_ddl.xml contains the declaration of the class
customer and the file product ddl.xml contains the declaration of the class
product. These files are configured to be input to a specialized tool that provides
the parsing and the proper internal representation of the classes into the master

repository (or data dictionary).

For this example we have assumed we have two available persistence providers.
The first one has been named ‘data_ 01’ and the second one has been named
‘data_02°. Such persistence providers are referenced into the declaratior;s of the .
three classes of objects. Using the two different persistence providers, we will
declare the classes of objects so that the instances of the class purchase event

will be stored into the data 01 persistence provider while the instance of the

WO 2005/046122 PCT/GB2004/004578

10

15

20

25

18

classes product and customer will be stored into the data 02 persistence

provider.

Turning to Figure 3 which shows the purchase event class declaration files, such

declaration will now be discussed in more detail.

The class is declared to have persistence and to be ‘contained’ by the persistence
provider ‘data_01’. This is declared into the section <STORAGE>. In the
same section the schema identifier as known by the data source is declared too.
Such schema identifier can have different meanings depending on the
implementation of the underlying program implementing the persistence
provider. In the first embodiment the persistence provider is a relational
database engine and the identifier declared within the section < SCHEMA > will

correspond to a table name.

The property product_id is declared to be of type OBJ ID (an internal type
within the apparatus forming the domain) and it is declared to have persistence.
In the logic used the product id property is meant to contain the reference

(unique identifier) to the product item that is being purchased.

The property account id is declared to be of type OBJ ID, too. Like the
property product id it has persistence. The property account id is meant to
contain the reference (unique identifier) of the customer that is purchasing the

product referenced by the property product_id.

The property balance impact is declared to be of type DOUBLE (an internal
type within the apparatus) and it is declared to have persistence. The property
balance_impact is meant to contain the balance impact generated by the actual

purchase against the balance of the customer performing the purchase itself.

The property payment_method is declared to be of type LONG (an internal type

within the apparatus) and it does not have persistence. Any field that does not

WO 2005/046122 PCT/GB2004/004578

10

15

20

25

19

have persistence will not be forwarded to the underlying persistence providers at
the end of a transaction. This kind of property (without persistence) can be used
when the contained information is necessary only to the logic by which it is
consumed (eg a business rule within a business process) but there is no
requirement for durability. For instance, whenever an event has to be
transformed into another class instance (or into a set of classes’ instances) there
might be no requirement to store all the properties of the original event into the

persistence providers.

The property time is declared to be of type TIMESTAMP (an internal type
within the apparatus). Such type is meant to contain time information. With this
kind of type it is possible to formalize a time period or a date. In the logic of
our example this property contains the information about when the purchase

happens.
Figure 6 shows the product class declaration.

The XML DDL document shown in Figure 6 declares a class named ‘product’

that has the following properties:
Description
Price

The class product has been declared so it will be forwarded to the persistence
provider ‘data_02’. This means that the persistence of the instances of this class
will be provided by a system different than the system providing persistence to
the instances of the class purchase_event. In this example the first persistence
provider (data_01) will be used to store all the incoming purchase events. For
this reason, the data_01 persistence provider is set up to support a typical OLTP
(on-line transaction processing) type of operations. On the other hand, the set of

products on offer very likely will not be updated with an extremely high

WO 2005/046122 PCT/GB2004/004578

10

15

20

20

frequency. Instead the persistence provider containing the products’ instances
will be mainly accessed in order to retrieve the prices of all the defined products.
For this reason, the database containing the products provides a typical and
simple OLAP (on-line analytical processing) service. So, the declaration of

these classes allows configure each persistence provider in the proper way.

The property description is declared to be of type STRING (an internal type
within the apparatus). This property is meant to contain a short description (30
characters) of the item represented by an instance of the class product. The

property description has persistence.

The property price declared as DOUBLE (an internal type within the apparatus)
and with persistence is meant to contain the price of the items represented by the

instances of the class product.

The DDL document shown in Figure 7 declares a class named 'customer' that

has the following properties:
Username

Password

Balance

The class has been declared so that the persistence of all the instance that belong

to such class will be provided by the persistence subsystem 'data_02'.

The property username is declared to be of type STRING and has persistence.

This property is meant to contain the username of a customer.

The property password is declared to be of type STRING and has persistence.

The property password is meant to contain the password assigned to a customer.

WO 2005/046122 PCT/GB2004/004578

10

15

20

25

21

The property balance is declared of type DOUBLE and it has persistence. This
property is meant to contain the whole amount to any expenditure done by a
customer. The value contained into this property will be updated any time the

customer will purchase an item.

Each node manager 2 within the domain 1 references a look-up table (not
illustrated) which is stored in the master repository 12 from which, given a
particular class of event, in this case a purchase event, and a given category of
client (eg customer or reseller), a corresponding reference to an event algorithm
or business process (a piece of logic comprising one or more operations which
may modify existing data, create new data or interact with another system) is

executed.

Based on the look-up table implementing ternary associative logic the
appropriate event algorithm can be retrieved in response to the clients’ role and
to the category of the received event. For reasons of simplicity only one class of

event will be considered, namely that of a purchase event.

Figure 8 illustrates the situation when the consumer agent presents a purchase
event, the node manager software is able to determine a relationship between the
role consumer, the class purchase and the event algorithms Consumer_purchase.
The business process can contain several business rules implementing the logic
that has to be triggered by the purchase event. Such logic is labelled
‘Consumer Purchase’. When the reseller agent presents the purchase event, the
node manager software will ultimately execute the logic into the
Reseller Purchase event algorithms. In the picture such logic is represented

with the box labelled ‘Reseller Purchase’.

Using ternary associative logic it is possible to implement the two different

logics into two well-contained processes or sets of operations. The selection of

WO 2005/046122 PCT/GB2004/004578

10

15

20

22

the proper event algorithms, and thus the proper logic, is responsibility of the

node manager software.

In our example, the enterprise sells the following products:
Telecom report

Automotive report

Oil and Gas Report

Manufacturing report

Retailing report

The currency used for the price of each report item is US dollars and for the
sake of this discussion no currency conversion issue is considered. In a real
scenario, very likely the event algorithms should be extended with one or more
business rules dealing with real-time currency conversion. The prices assigned

to the reports are completely theoretical.

Figure 9 shows a list of the available products stored in one of the persistence
providers 3 (as defined using XML EPL.) Such product objects are stored into
the persistence provider data 02 (as based on the product class definition) and

are thus global objects available to any event algorithms within the domain 1.

As can be seen from the document shown in Figure 9 the listings contains five
different objects that belong to the class product (as declared in the section
<OBJECT >). The instantiation of each object contains the values for the
properties description and price. The table of Figure 11 summarises the prices

assigned to the product objects.

WO 2005/046122 PCT/GB2004/004578

10

15

20

23

For each instantiated object a unique identifier is created automatically by the
apparatus. The table shown in Figure 10 shows the list of the returned unique

object identifiers.

In a preferred embodiment the unique object identifier represents a global unique
identifier (GUID) or Universal Unique Identifier (UUID) as defined into the
Open Software Foundation (OSF) Distributed Computing Environment DCE
documentation. See eg DEC/HP Network Computing Architecture Remote
Procedure Call Run Time Extensions Specifications version OSF TX 1.0.11.
All the object unique identifiers are calculated by the node manager software

whenever a new object is created in the first memory.

Figure 12 shows a listing of a XML EPL document containing the instantiation

of five customers, their user names being:
Customer 01
Customer_02
Customer 03
Customer 04
Customer 05

Figure 13 shows a table of unique object identifiers which correspond to each

customer, the unique identifiers being created by the node manager software.

On receiving an incoming purchase event sent by a client the node manager
software parses the data-frame of the purchase event and in so doing ascertains
both the class of the event (ie a purchase event) and the role of the agent

presenting the event (ie consumer or reseller). Before triggering the respective

WO 2005/046122 PCT/GB2004/004578

10

15

20

25

24

event algorithm (business process) to process the purchase event, the node
manager software retrieves the layout of the class purchase in the form of the

declaration data.

The layouts of all the defined classes (the declaration data) is already available
from the master repository 12 before the event algorithms is initiated, ie all the
layouts of the classes are retrieved form the data dictionary (or master

repository 12) when the software node manager starts.

The node manager software then applies ternary associative logic (as defined into
the repository that contains the definition of all the available business processes)
in order to retrieve the appropriate business process for the processing of the
incoming event. To do so, the node manager software compares the class of the
event and the role of the agent presenting the event to a look-up table that
contains all the ternary associations (class, role, business processes) valid within

the domain of the node manager itself.

The ternary association is already available from the master repository 12 before
the processing of the incoming event, i.e. the look-up table defining all the
ternary associations is retrieved from the master repository when the software

node manager starts.

The workflow manager software (part of the node manager software) then loads
the data of the purchase event into a memory stack which is accessible by any
business rule (or operation within a selected event algorithms) within the

business process that is being executed.

Each business rule contained in the selected business process is then executed
from the proper libraries in the order defined in the sequence of the business
process by the Workflow Manager into the node manager. The workflow
manager is also responsible to asynchronously activate any defined infrastructure

business rule whenever required.

WO 2005/046122 PCT/GB2004/004578

10

15

20

25

25

Figures 14A and 14B show a listing of the logic that is contained by the business
rules to process a purchase event. The logic of the business rule shown in the

listing has been divided into sections A through J for the purpose of explanation.
Section A is a synopsis of the algorithm.

The w_stack argument is a pointer to a wl_workflow_stack object. This object,
ultimately passed to the function from the Workflow Manager of the node
manager exposes a set of interfaces that allows the business rule to access all the
needed objects populating the domain. The main interfaces used in this case are

LOAD and TEMP_LOAD.

The LOAD interface is the main support for determinism. For any object firstly
accessed via this method a lock manager processor implements a domain-scoped
global lock to synchronize all the other business processes running on any node

manager (within the same domain) that might need to access the same object.

The second argument is a reference to a wl_object id object. Such object
encapsulates the unique identifier of the event that has triggered the event
algorithms of which the current business rule is part. The event in question will
be an instance of the class purchase event, so this argument will reference the
unique identifier of an instance of such class. Using the interfaces exposed by
the wl_object_id class it is possible to obtain the class identifier and the unique
identifier of a given object. This argument is ultimately passed to this function
by the Workflow Manager (part of the Node Manager) triggering the business

rule.

The third argument is a reference to an instance of the class wl_client. This
argument is passed to the algorithms (business rule of the event algorithms that
has been triggered by the Workflow Manager) and it contains a set of properties
that uniquely identify the client agent that has presented the event to the

apparatus .

WO 2005/046122 PCT/GB2004/004578

10

15

20

25

30

26

The remaining four arguments are not passed to the function by the Workflow
Manager. Instead they have been used in order to make this function re-usable
from two different business rules: the former devoted to process an event present
by an agent impersonating the consumer role and the latter devoted to process an
event presented to the apparatus by a client agent impersonating the reseller role.
The arguments purchase, account and product will reference, respectively, the
wl_object instances representing the incoming purchase event, the customer
doing the purchase and the product that is being purchased. The last argument
contains the percentage of the discount (accordingly to this simple example) that
has to be applied to the purchase. For the sake of this example, the only
difference between a purchase performed by a reseller and the purchase
performed by a consumer is the applied discount: a reseller will be granted a 5%
discount while no discount will be applied in the case of a purchase performed

by a consumer.

Section B relates to the workflow manager (part of the node manager software),
before triggering the algorithm proper, pushing the incoming event into a
memory stack (wl_workflow_stack) that will be accessible by any other business
rules that will be executed since this moment on. Before any rule can access the
properties of any global object the object has to be loaded into a local stack of a
node (or data processor) provided and maintained by the Workflow Manager
(part of the node manager software). This operation is performed activating the
method ‘LOAD’ exposed by the workflow stack. The load method will
automatically provide synchronization amongst all the node managers running
within the same domain: once an object is ‘loaded’ in the local stack of the Node
Manager for use by an event algorithms it can be accessed only by a business
rule within the same instance of the event algorithms. Only once all the
operations of the algorithm within the same business process have been fired, the
objects committed to the persistence providers (if those objects have persistence)
and such objects are freed from any global lock so they become available to

other business processes on the same or any other node manager within the same

WO 2005/046122 PCT/GB2004/004578

10

15

20

25

27

domain. In the case an object has not to be modified by the algorithm accessing
it there is a more convenient alternative to the load method. The product object
will be accessed by the algorithm using the method ‘TEMP LOAD’. In this
case the product object will be accessed only to retrieve the information about
the product price. In this respect the product object can be seen as if it were a
read-only object. For this reason it is not necessary to put a global lock on the

product object.

Section C shows how the event algorithm has access to some properties of the
incoming event in order to retrieve the object identifier of the customer doing the
purchase and the object identifier of the product that is being purchased, i.e. the
reference to the account id property and the reference to the product_id

property.

The account_id property and the product id property are referenced using_an‘
interface exposed by the class wl_object. After the business rule has loaded the
incoming purchase event, it references the needed properties using the method
PTR_GET. PTR GET copies a variable into a register of the Workflow
Manager which is used by the algorithm. The argument of such method is a
string. INT means Internals. In the first embodiment of the invention, the
layout of a class is always organized into an INTernal part and into an
EXTended part. The account id is the identifier of a property that has been
defined within the INTernal part. The dot is just a syntactical separator.
INT.account_id has so to be read as: the property named ‘account_id’ that has

been defined within the ‘INTERNAL’ part of the class.

Sections D and E are indicative of operations to load the product object and the
account object into the stack provided by the Workflow Manager. Like the
incoming purchase event, the account object is loaded by requesting the
Workflow Manager to copy the data to the stack. The product object is loaded
into the stack calling the method ‘TEMP_LOAD’ of the stack. This is because,

WO 2005/046122 PCT/GB2004/004578

10

15

20

25

28

according to this simple example, the product object is considered to be a read-
only object. For this reason no synchronization is necessary when accessing the
product object. Using the temp_load method, whenever synchronization is not
needed, results in better performance (in this case the global lock manager
agents within the domain are not involved in a request initiated by the temp_load

method).

Section F shows the price of the product item and the current balance of the

account are obtained.

The appropriate properties of the objects (i.e. price and balance) are obtained
with the method pir_get exposed by the wl_object class on which those

properties are loaded into appropriate register.

Section G shows the code broken down into a set of steps. In order to get the
value of a referenced property (in this case the price) the algorithm activates the
method PTR_GET_DATA.

Eventually, after the impact has been calculated, such impact has to be added to

the current balance of the customer. This is done with the code a section H.

The code at section I performs the operation of storing the balance into the
account. Here one can observe that the newly calculated balance is stored into
the account object using the method PTR_SET DATA. Once the new balance is
stored into the account object the object is stored into the stack using the stack
interface store. To store the object back into the stack is necessary to propagate
any change performed against the object (as stored into the stack) to the
underlying persistence providers (eg relational database engines) which is
performed automatically by the workflow manager at the completion of the

business processes participating to the transaction.

Finally, section J is operative to update the purchase event object.

WO 2005/046122 PCT/GB2004/004578

10

15

20

25

29

The node manager software is finally operative to store details of the purchase
event to data_01, and to cause the information relative to requested product and
the current transaction (accordingly to the logic defined for this simple example)

to be sent back to the client.

The code listing shown in Figure 15 shows the full implementation of the

algorithm that has to be applied whenever a consumer performs a purchase.

In the first embodiment of the invention, the presented algorithm is a C+ +
function that will be triggered due to the incoming event. It is to be noted that

the purchase_event_logic will be called passing the discount argument set to 0.0.

This algorithm will be triggered by any incoming purchase event that has been

presented to the apparatus by an agent that is not impersonating the reseller role.

Figure 16 shows the code in which the full implementation of the algorithm to be

applied whenever a reseller performs a purchase.

This algorithm has been copied from the algorithm implemented for the
consumer role shown in Figure 15. The only difference is the value assigned to

the variable discount, passed to the function purchase_event_logic.

As previously discussed the node managers are configured so that, as soon as a
client presents an event of the class purchase event the appropriate business
process will be triggered. The business process will be triggered not only
depending on the class of the incoming event but also on the role impersonated
by the agent that is actually presenting the event. In this case, as soon as a
purchase_event is presented to the node manager, depending on the role of the
client, the node managers have to trigger one of the two algorithms
purchase_event and purchase_event_reseller. More precisely, the

purchase_event_reseller will be triggered whenever the client is impersonating a

WO 2005/046122 PCT/GB2004/004578

10

15

20

25

30

reseller. The event algorithm purchase event will be triggered in all the other

cases (such as when the client is impersonating a consumer).

Figure 17A shows the configuration file that will formalise the required

associative logic.

For the sake of this sample example, the only business processes hosted by the

node managers are:
Purchase_reseller
Purchase

The purchase reseller event algorithm will contain just one business rule
(purchase_event reseller). The same, the business process purchase will contain

just the business rule purchase event.

The first section of the configuration file references all the rules libraries that
have to be used. A library is essentially a container of one or more business
rules. A library can be mapped into a DLL or into a run-time shared library.
For instance, we assume we have put both the two business rules we have seen
before into a single DLL that we have called roadmap.dil. This first section will
tell the node managers that there is one available, that it has to be referenced
using the mnemonic ‘roadmap’ and that its absolute path is

c:\develop\warelite\distribution\roadmap.dIl.

Technically a library is a binary file (for instance, a DLL). As such it is a
component that can be referenced with a file absolute path. Also, it is a
component that has to be referenced easily within the Workflow Configuration
file itself: a business rule will also be contained into a library, so to fully
reference a business rule it is necessary to formalize that a specific business rule

belongs to a specific library. This is quite important, actually two business rules

WO 2005/046122 PCT/GB2004/004578

10

20

25

31

with the same name (but defined into two different libraries) can contain a
completely different logic. So a business rule is always fully identified by a
mnemonic identifier referencing a library followed by the name of the function

(defined within the library) that implements the business rules itself.

A library is thus declared using the following attributes:

e name
e mod
e dir

Also, in order to support the software distribution process of any third party
providing business rules and workflows there is a fourth attribute. This attribute
is called key. The key attribute is meant to contain a string that can be used by
the logic contained into a library to verify if the user of the library is authorized
to use the library. How the value (a string) assigned to the attribute key is used
is complete responsibility of the software provider. Whenever a library is
loaded, the run-time environment will pass such string to a special function (that
can be defined into the library). With such function (wl lib_auth) the software

vendor providing the library can deny or authorize the usage of the library itself.

The second section (entitled ‘workflow declaration with ternary associative

logic’) declares the two business processes purchase and purchase_reseller.

The first line of the second section starts with the declaration of the name of the
business process. It continues declaring the association between such business
process and a class of objects. The tag ‘role’ is meant to declare the relationship
between the business process and a role (in this case the association is with the
role ‘reseller’). The body of the event algorithms (starting nested within

‘{* and ‘}’) contains the sequence of all the business rules forming the business

WO 2005/046122 PCT/GB2004/004578

10

15

20

25

32

process. In this case there is just one business rule and it is referenced using the
mnemonic name of the library where it resides and its name, as defined
internally to the library itself. So, roadmap.purchase event_reseller references

the function purchase_event_reseller as defined into the library ‘roadmap’.

Figure 18 shows an example of a purchase event frame in which a customer has
requested a report. Figure 19 shows a purchase event frame similar to that of

Figure 18 but in which the customer is impersonating the reseller role.

Figure 20 shows an example of a configuration repository for the Global Lock
Managers in a domain, expressed with a specific syntax valid within the

apparatus .

The configuration repository is transformed into a set of suitable data structures
and maintained in a first memory by each node manager within the apparatus.
In a preferred embodiment of the invention, each node manager loads such

configuration at start-up time.

As shown in the example, the syntax that has been adopted allows to identify
each lock manager by specifying its mnemonic name, its IP-address and its IP-

port. This is done within the lines starting with the prefix ‘GLM:’.

Each lock manager declared with the line starting with the prefix ‘GLM:’ has
then to be associated to a set of classes of objects for which a global lock request
might be sent by any node manager within the same domain. The relationship
lock manager classes of objects are established by declaring a set of classes
within the body of each lock manager declaration (starting with ‘{* and ending
with ‘}’) and by using the token ‘class’. The token ‘class’ is meant to declare

one or more classes.

Accordingly to this example, all the lock requests targeting the class

purchase_event will be received and processed by the lock manager identified

WO 2005/046122 PCT/GB2004/004578

10

15

20

25

33

with the mnemonic name GLM_01 whilst all the lock requests targeting the class
product will instead be received and processed by the lock manager identified by

the mnemonic name GLM_02.

Figure 21 shows a further embodiment of the invention which comprises two
domains 21 and 22. The domain 21 comprises a lock manager processor 24 and
two node manager processors 25. Two persistence providers 26 and 27 are
associated with the domain 21. The domain 22 comprises two lock manager
processors 28 and 29 and three persistence providers 32,33 and 34. A unified
data interface 30 between the node managers and objects 23 of the persistence
providers is provided supporting Data Declaration Language (DDL) and Event
Presentation Language (EPL). An internal bus 31 provides communication to

the persistence providers via the unified data interface 30.
The advantages of the above-described inventive networks include the following:

Since the workflow manager retrieves and loads into the stack memory any data
that the algorithms need to act upon, such operations do not have to be included
in the event algorithms. Since the node manager software, using the various
class declarations, controls the persistence of the various data objects involved
into a transaction, the event algorithm does not need to conirol persistence.
Since the node manager software acts as a transaction coordinator this means
that the event algorithm does not need to take account of such. The node
manager software and the lock manager software provide synchronization and
determinism amongst all the business processes within the same domain, so that

the event algorithms do not have to perform such operations.

Importantly, therefore, there is a clear distinction between what one may term
infrastructure logic and the business logic, and so facilitating development,

deployment and extension.

WO 2005/046122 PCT/GB2004/004578

10

15

34

Importantly, therefore, any client agent has not to be aware of the logic that will
be applied by the apparatus, being such logic not referenced within the data
frame being presented by the agent itself, and so facilitating integration and

extension.

Since the node managers are independent units processing transactions
coordinated by one or more lock managers, the overall capacity of the apparatus
can be increased by adding more node managers without any impact on the
business logic, and so facilitating incremental horizontal scalability. Reference is
now made to Figure 22 that shows the equipment that has been used to run a
performance/scalability test based on the earlier example of incoming purchase

events for market reports.

S1 and S2 are the two available subnets. They have been implemented using two
Fast Ethernet Switches. The following table gives the details for the hardware

equipment used in the test.

Name Spec
S1 Netgear Fast Ethernet Switch FS108
S2 Netgear Fast Ethernet Switch FS108

LMO001 HP e-PC

Pentium 4 2.0 Ghz 400 Mhz FSB
768 MB RAM

Fast Ethernet

20 Gb HD (ATA 5400 rpm)

NMO001 | DELL Dimension 4500
Pentium 4 2.53 Ghz 533 FSB
256 MB RAM

2 Fast Ethernet

40 Gb HD (ATA 7000 rpm)

NMO002 | Based on Gigabyte GA-7VRXP

AMD Athlon 1800+ (1.53 Ghz) 200
FSB

256 MB RAM

2 Fast Ethernet

60 Gb HD (ATA 7000 rpm)

WO 2005/046122 PCT/GB2004/004578

10

15

35

DIM11 COMPAQ Evo D-310
Pentium 4 2.0 Ghz 400 FSB
768 MB RAM

3 Fast Ethernet

40 Gb HD (ATA 5400 rpm)

DB001 Based on Gigabyte GA-7VRXP

AMD Athlon 1800+ (1.53 Ghz) 200
FSB

768 MB RAM

1 Fast Ethernet

60 Gb HD (ATA 7000 rpm) x 5

KVM Hub, Cables, Monitor, Keyboard and
mouse

Cat 5 | Various Manufacturers (tested and fully
Cables Cat 5 compliant)

The computers LM001, NM001, NM002 and DIM11 have been configured so
that whenever a Node Manager (on NMO001 or NMO002) needs an exclusive
access to a global object it sends a request to the Lock Manager running on
LMO001. The configuration repository (for the global locks) has been installed
locally on LMOO1 and it is accessed remotely by the computers NMO001,
NMO002, DIM11. Libraries containing the business rules used in the business
processes and the configuration repository for the business processes themselves
have been installed on LMO001 and are accessed remotely by the computers

NMO001, NM002, DIM11.

The Node Managers running on LMO001, NMO001, NM002 and DIMI11 have
been configured in order to run four business processes concurrently (four

threads).

The computer DB001 has been configured to run the relational database engine
in order to accommodate the requirements (persistence providers) of the example
application, as discussed previously. For this test, Microsoft SQL Server 2000
has been used. The disks on DB001 have been configured with RAID 0 (stripe

WO 2005/046122

10

15

20

25

PCT/GB2004/004578

36

mode) in order to have two physical partitions (each formed by a couple of hard

disks), one for data and one for logs.

The figures below show the results from running the example application using
from one node manager to up to four node managers. Such figures are
particularly important to determine the degree of decay when adding more
Nodes Managers. The test has been performed presenting batches of 220K (two
hundred twenty thousands) evenis. In order to present the events, the tool
wl_mq_send has been used. The tool has always been run on DIM11. The
persistence providers hold 220K (two hundred twenty thousands) customer

objects and 2K (two thousands) product objects.

The performance measurements have been taken using the Microsoft
Performance tool connected to Microsoft SQL Server 2000. In this way it is
possible to count (per second) all the transactions against the persistence
provider holding the customers’ account balances. A transaction against the
customer balance account, as said previously, represents the completion of a

business processes’ task initiated by one single event.

The figures presented in the following table represent the minimum capacity

(average) obtained by running the same test several times.

DIM11 NMO001 NMO002 | LMO001 Total
E/S (1 N.M.) |30 - - - 30
E/S (2 N.M.) |30 30 - - 60
E/S 3N.M.) |30 30 30 - 90
E/S 4 N.M.) |30 30 30 30 120
ES = Event Per Second

N.M.

Node Manager

WO 2005/046122

10

15

20

25

PCT/GB2004/004578

The figures presented in the following table represent the maximum capacity

(average) obtained by running the same test several times.

DIM11 | NMO001 | NMO002 |LMO0l | Total
E/S (1 N.M.) |34 - - - 34
E/S @ N.M.) | 34 34 - - 68
E/S GN.M.) |34 34 34 - 102
E/S @N.M.) |34 34 34 34 136
ES = Event Per Second

NM. =

Node Manager

The inventive apparatus finds utility in many areas and the following provides

examples of events for which the inventive apparatus could advantageously be

employed:

e Logistics

@]

0O 0000000000 O0 0O

RFID (Radio Frequency Identification) signal
BarCode signal

Inventory Update (e.g. goods in, goods out)
Inventory Check Request

Inventory reaching watermark

Submission of Bill Of Material (BOM)
BOM Update

Request for Purchase

Supplier Subscription

Start of Shipment

Fleet Position

Package Position

Truck break-down

Delivery Notification

Fleet Fuel Consumption

e Manufacturing

WO 2005/046122 PCT/GB2004/004578

38

RFID signal

Bar Code Signal

Machinery Sensors Signals
Components Pool in Production
Machinery Production Line Status
Machinery break-down
Production Cycle Completion
Inventory Update
Customer/Distributor Order
Recipe Change

BOM Change

Material Price Change

10

O O 0O O0OO0OO0OO0OO0OO0OO0OO0O0

e Financial Services
15 o Request for Quote
Request for Info
Customer Complaint
Stock Purchase
Stock Sell
Position Change
Customer Details Update
Money Transfer Request
Payment Received
Account balance change

20

O 0 OO OO0 O0O0O0

25

e Telecommunications

o Telephone Call

SMS/MMS
Data Transmission
Request for Info
New Service
Field Service Request
Field Service Completion
Service Purchase
Tariff Change
Payment Received
Customer Position
New Marketing Campaign
New Contract Opening
Contract Closure
SNMP (Simple Network Management Protocol) Signal

30

35

40

0O 0000000 O0O0O0O0O0O0

e Utilities
o Request for Quote
45 o Request for Info
o Customer Complaint

WO 2005/046122

10

15

20

25

30

O 000000 00O

e Retail
o

O 0O OO O0OO0OO0OO0OO0OO0OOoOO

PCT/GB2004/004578

39

Stock Purchase

Stock Sell

Customer Details Update
Money Transfer Request
Tariff Change

Usage Update

New Contract Opening
Contract Closure

Field Service Request
Field Service Completion

RFID Signal

BarCode Signal

Inventory Update (e.g. goods in, goods out)
Inventory Check Request

Till Sales Registration
Request for Purchase

Request for Info

Consumer Subscription
Consumer Exchanges Request
Consumer Complaint

Start of Shipment

Delivery Notification
Payment Received

The following provides examples of business scenarios that the inventive

apparatus can execute upon occurrence of the events above mentioned:

e Event:

RFID/BarCode Signal

Manufacturing

= Real time, event driven supply chain execution - from

client order and/or from production line
extended/virtual inventory = check, to inventory

replenishment, transportation etc

= Real time visibility over retail sales

WO 2005/046122 PCT/GB2004/004578

40

* Vendor managed inventory

o Retail

» Real time, event driven supply chain execution (as above)

Sales of value added services to suppliers - i.e. real time

5 visibility over sales of their goods (as above)

Efficient consumer response - in real time

Real time in-store marketing

Trade promotion management (TPM)
o Logistics

10 » Sales of value added services for real time supply chain

execution (as above)
» Real time package delivery tracking
o Airpérts
= Real time luggage tracking
15 o Healthcare
» Drugs/tools total traceability
e Event: SNMP Signal

o Telcos (Internet Service Providers)

WO 2005/046122

10

15

20

PCT/GB2004/004578

41
Real time rating, billing & marketing (e.g. send customers

new offers as soon as they reach a given usage watermark)

Real time network monitoring, problem response,
adjustment (i.e. breakdown events trigger self repair
procedures, switching to back-up/alternate route, engineer

intervention scheduling etc.)
Real time global service scheduling

Real time SLA (Service Level Agreement) monitoring &

adjustment

Real time usage monitoring & djustment

Event: position change

o Financial services

Real time position keeping

Event: stock sale/purchase

o Financial services

Straight through processing (i.e. real time transaction

settlement and reconciliation)

o Utilities

Flow through provisioning

Event: Money transfer request

WO 2005/046122 PCT/GB2004/004578

42

o Financial services
* Real time clearing house processing

The inventive apparatus provides business benefits to both final users enterprises

and to service providers:
5 Final user enterprise benefits

o No requirement {0 compromise between business requirements and

packaged applications capabilities

o Eliminating or substantially reducing the need to map business
requirements onto packaged applications and to compromise on

10 what the enterprise really needs

o Eliminating or substantially reducing expensive applications

customisation

o Responding in real time to any kind of event - eliminate exception

management

15 o No requirement to adopt a manual approach for exceptional
events - just define what the enterprise’s business response should

be and automate it with the inventive system.

o Creating flexibility

o Change the enterprise’s processes by simply changing/adding

20 business rules

o Re-using existing software infrastructure

WO 2005/046122 PCT/GB2004/004578

43

O Re-using existing database cngines, messaging systems etc
o Use of inexpensive hardware

o Use small, cheap computers to run all the enterprise’s business
logic; buy new ones only when the enterprise’s processes need

5 more capacity

o Keep existing applications - without significant financial outlay for EAI

(Enterprise Application Integration) tools and services
o Implement inventive system as an exchange hub in a short period.
o Eliminate or substantially reduce expensive application upgrades
10 o Processes can be modified as the enterprise’s strategy changes
o Facilitating application upgrades

o No requirement fo make significant alterations when legacy
applications are being upgraded: just modify the business rules

that coordinate the legacy applications within the inventive system
15 o Eliminating or substantially reducing down-time

o The enterprise’s processes can be kept running whilst those

processes are being modified

o Possibility for users of the inventive system to become a real time

enterprise with an incremental approach

20 o New processes and new infrastructures can be incorporated to

increase the enterprise’s level of automation.

WO 2005/046122 PCT/GB2004/004578

44

Service Provider Benefits
o Simplifying and speeding-up the development of solutions

o As scalability, determinism, transaction co-ordination and

persistence management are already being taken care of by the

5 inventive system, WL RTPD’ (Real Time Process Design and
Deployment) methodology enables the design & implementation of

processes in a short period (for example in a few days) - making it

possible to manage a large number of small customers at fixed

prices while maintaining profitability
10 o Scaling-up or scaling ~down solutions with no additional coding required

o Large projects are designed and implemented in a very similar
manner to smaller ones -~ leveraging the inventive system
significant scalability services. As the duration of a project can
generally be easily forecasted, it is possible to propose fixed

15 prices to both small and large customers

o Re-using solutions

o Customers’ solutions are made of re-usable, configurable roles,

objects, business rules. It is possible to create libraries to quick-

Start any new project and it’s easy to create commercial solution

20 development toolkits/solution suites for given sectors/business

areas
o Changing solutions easily and quickly

o Customers can be enabled to change as times change by simply

modifying existing business rules, adding new business rules to

WO 2005/046122 PCT/GB2004/004578

45

existing processes, designing new processes with the RTPD?
methodology, scaling up the inventive system's infrastructure by

adding more nodes
o making application hosting a viable business

5 o The inventive system provides a framework for hosting business
solutions that cuts upfront investments, enabling application

service providers to grow their infrastructure as their business

grows

WO 2005/046122 PCT/GB2004/004578

10

15

20

25

46

CLAIMS

1. A computer network (1) for processing received event data, the computer
network comprising a plurality of data processors (2), each data processor being
provided with a node management program, the computer network further
comprising shared data storage means (3) which is accessible and shared by the
data processors, the shared data storage means being provided with (a)
declaration data which is representative of where data objects are stored, and
whether data objects resulting from processing of event data are to be stored and
where such data objects are to be stored, (b) event algorithms and (c) a look-up
table which indicates which event algorithm is associated with (i) a category of
agent originating the event data and/or (ii) a category of event, a data processor
being such that, in use, the node management program determines (i) the
category of agent which originated the event data and/or (ii) the category of the
received event data, retrieves declaration data from the shared data storage
means, by use of the look-up table determines a respective event algorithm
which is associated with (i) the category of the agent which originated the event
data and/or (i) the category of event data, the node management program also
being operative to call data objects required by the selected event algorithm, the
node management program locating said data objects in said shared data storage
means from location data included in the declaration data, and the node manager
program being operative to store any data objects resulting from the execution of
the algorithm which are to be stored as required by the declaration data, in one
or more respective locations in the shared data storage means as determined by

the declaration data.

2. A computer network (1) as claimed in claim 1 in which data objects are

objects of data which an event algorithm is required to process/act on.

WO 2005/046122 PCT/GB2004/004578

10

15

20

25

47

3. A computer network (1) as claimed in claim 1 or claim 2 in which the
declaration data is loaded onto a local memory of a data processor (2) before an

event algorithm is determined and then called.

4. A computer network (1) as claimed in any preceding claim in which the
declaration data comprises a dictionary of characteristics of all data objects

within the network.

5. A computer network (1) as claimed in any preceding claim in which the
look-up table is stored in a part of the shared data storage means (3) which is
remote from the data processors (2), and the data processors communicating

with that part of the shared data storage means by an external connection.

6. A computer network (1) as claimed in any preceding claim in which the
algorithms are stored in a part of the shared data storage means (3) which is
remote from the data processors (2), and the data processors communicating

with that part of shared data storage means by an external connection.

7. A computer network (1) as claimed in claim 6 in which that part of the

shared data storage means (3) is read-only memory.

8. A computer network (1) as claimed in any preceding claim in which data
objects are stored in a part of the shared data storage means (3) which is remote
from the data processors (2), and the data objects resulting from the execution of
the algorithm which are required to be stored by the declaration data, in a

respective location as also determined by the declaration data.

9. A computer network (1) as claimed in any preceding claim in which that
part of the shared data storage means (3) which contains objects which are not
alterable as a result of an event algorithm is a read-only memory, and that part
which contains objects which may be modified as a result of an algorithm is a re-

writable memory.

WO 2005/046122 PCT/GB2004/004578

10

15

20

25

48

10. A computer network (1) as claimed in any preceding claim in which the
data processors communicate with the shared data storage means (3) by an

external connection.

11. A computer network (1) as claimed in any preceding claim in which each
data processor (2) is configured to retrieve declaration data which is
representative of all the defined data objects included in sequences of business

rules defining all the available event algorithms.

12. A computer network (1) as claimed in any preceding claim in which all
data objects to be acted on by the event algorithm are stored in a local memory
of the data processor (2) which comprises a memory stack which is adapted to be

accessible by the algorithm.

13. A computer network (1) as claimed in any preceding claim in which said
data obtained by the node management program from the data storage means (3)
comprises most of the data which is to be acted upon by the event algorithm,

which is in addition to the data included in the event.

14. A computer network (1) as claimed in any preceding claim in which each
instance of a given class of a data object may be stored on several different
persistence providers of the shared data storage means (3) and/or all the
instances of different classes of data objects can be stored on several different

persistence providers.

15. A computer network (1) as claimed in any preceding claim which
comprises at least one lock manager processor (4) which is connected to the data
processors (2), and is configured to control use and modification of

predetermined data objects requested by the data processors.

16. A computer network (1) as claimed in claim 15 in which access to those

data objects which are intended to be modified/updated by an event algorithm is

WO 2005/046122 PCT/GB2004/004578

10

15

20

25

49

controlled by the lock manager processor (4) which is operative to allow access

to one such data object by only one data processor (2) at any one time.

17. A data processor (2) for a network (1) of computers which is configured
to receive and process received event data, the data processor being provided
with a node management program, and the data processor being configured to be
linked to shared data storage means (3) which is shared by a least one other such
data processor of the network of computers, the data storage means being
provided with (a) declaration data which is representative of where data objects
are stored, whether data objects resulting from processing of event data are to be
stored and where such data objects are to be stored in the shared data storage
means, (b) event algorithm and (c) a look-up table which indicates which event
algorithm is associated with (i) a category of agent originating the event data
and/or (ii) a category of event, the data processor being such that, in use, the
node management program determines (i) the category of agent which originated
the event data and/or (i) the category of the received event data, retrieves
declaration data from the shared data storage means, uses the look-up table to
determine a respective event algorithm which is associated with (i) the category
of agent that originated the event data and/or (ii) the category of event data, the
node management program also being operative to call data objects required by
the selected event algorithm from one or more locations in the shared data
storage means as stated in the declaration data, and the node management
program being operative to store any data objects resulting from the execution of
the event algorithm which are to be stored as required by the declaration data, in
one or more respective locations in the shared data storage means as determined

by the declaration data.

18. A machine readable data carrier which is provided with instructions to
implement a node management program on a data processor (2) in a computer
network (1), the computer network comprising a plurality of such data

processors, the computer network further comprising shared data storage

WO 2005/046122 PCT/GB2004/004578

10

15

20

25

30

50

means (3) which is accessible and shared by the data processors, the shared data
storage means being provided with (a) declaration data which is representative of
where data objects are stored in the shared data storage means, and whether data
objects resulting from processing of received event data are to be stored and
where such data objects are to be stored, (b) event algorithms and (c) a look-up
table which indicates which event algorithm is associated with (i) a category of
agent which originated the event data and/or (ii) the category of the received
event data, the node management program being operative to cause a data
processor to determine (i) the category of agent which originated the event data
and/or (ii) the category of the event data, and accordingly determine an
associated event algorithm from the look-up table, the node management
program being operative to call the declaration data and the node management
program being operative to call data objects from the shared data storage means
which objects are required by the event algorithms, the node manager program
locating said data objects in said shared data storage means from location data
included in the declaration data, and the node management program causing data
objects resulting from the execution of the event algorithms which are to be
stored in accordance with the declaration data in a respective location as

determined by the declaration data.

19. A method of processing received event data comprising causing a data
processor (2) from a network (1) of data processors to determine (i) a category
of agent which originated the event data and/or (ii) a category of the event data,
determining a respective event algorithm by means of a look-up table which
indicates which event algorithm is associated with (i) and/or (ii), to retrieve from
shared data storage means (3), which data storage means is shared by the data
processors, declaration data which is representative of where data objects are
stored in the shared data storage means, to retrieve the selected event algorithm
from the shared data storage means, to call data objects required for execution of
the event algorithm from the shared data storage means from one or more

locations determined by the declaration data, and, to store any data objects

WO 2005/046122 PCT/GB2004/004578

51

resulting from execution of the algorithms which are to be stored as required by
the declaration date in one or more locations in the shared data storage means

determined by the declaration data.

WO 2005/046122 PCT/GB2004/004578
1/25

data_01 "~ data_02

SUBSTITUTE SHEET (RULE 26)

PCT/GB2004/004578

WO 2005/046122

2/25

. woyshsqng

uonejuasald

>

-

[

L dvos |
| 199 |
| seoinies gam |

Jesmolg e

o

lojjesay

lawnsuo)

SUBSTITUTE SHEET (RULE 26)

WO 2005/046122 PCT/GB2004/004578

3/25

<CLASS id="purchase event" persistence="yes">
<STORAGE>

<SOURCE>data_01</SOURCE>
<SCHEMA>purchase event_ t_01</SCHEMA>

</STORAGE>
<INTERNAL>
<OBJ_ID id="product_id" creation="mandatory">
<PERSISTENCE>
<MAP>product_id c</MAP>
</PERSISTENCE>
</OBJ_ID>

<OBJ_ID id="account_id" creation="mandatory">
<PERSISTENCE>
<MAP>account_id_ c</MAP>
</PERSISTENCE>
</0OBJ_ID>

<DOUBLE id="balance_ impact" creation="mandatory">
<PERSISTENCE>
<MAP>balance_impact_ c</MAP>
</PERSISTENCE>
</DOUBLE>

<LONG id="payment method" creation="optional">
</LONG>

<TIMESTAMP id="time" creation="mandatory">
<PERSISTENCE>
<MAP>time_c</MAP>
</TIMESTAMP>

</INTERNAL>

<EXTENDED>
</EXTENDED>

</CLASS>

Fig. 3

SUBSTITUTE SHEET (RULE 26)

PCT/GB2004/004578

WO 2005/046122

4/25

p SL]

<1ad IM/>

<ILOHALI0/ >
<TUYNIHINI/>
<dNYISEWIL/>00:G7:0€:GT 9Z-60-T002<uSWT,=PT dNVISIWIIL>
<ONOT/>ET<uPoyizau juswied,=pT HNOT>
<ATIN0A/>0<,30edWT ooueTed,=pT ATLNOd>
<dI_0d0/>0ZPyoRZy ¥ Zav-0288-0067—00FP-00L8PGZe<,PT_2Unoooe,=pT 4I_rdo>
<aI £90/>03L63IGTS676L-8BGE-9ZIF-POP8-2909Pa9e<,PT 1onpoxd,=pT dI LdO>
_ <TYNYHAINI>
<,lus4ad sseyosand,=sSSeTd ILDALdO>

<Idd TM>

SUBSTITUTE SHEET (RULE 26)

PCT/GB2004/004578

WO 2005/046122

5/25

ASVHIAINA

§8330udd SS3aNIsng

s3710d TV

ASVHOUNd ¥INNSNOD

© JueA3l
3SVYHOUNd

SUBSTITUTE SHEET (RULE 26)

WO 2005/046122 PCT/GB2004/004578
6/25

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE WL DDL SYSTEM "C:\develop\warelite\zxml\dtd\wl_ddl.dtd">

<WI,_DDL>

<CLASS id="product">
<STORAGE>
<SOURCE>data_02</SOURCE>
<SCHEMA>roadmap product t_10</SCHEMA>

</STORAGE>
<INTERNAL>
<STRING id="description" creation="mandatory"
len="30">
<PERSISTENCE>
<MAP>desc_c</MAP>
</PERSISTENCE>
</STRING>
<DOUBLE id="price" creation="mandatory">
<PERSISTENCE>
<MAP>price_c</MAP>
</PERSISTENCE>
</DOUBLE>
</INTERNAL>
<EXTENDED/>
</CLASS>

</WL-DDL>

Fig. 6

SUBSTITUTE SHEET (RULE 26)

WO 2005/046122 PCT/GB2004/004578
7/25

<?xml version="1.0" encoding=iso-8859-1"?>
<!DOCTYPE WL DDL SYSTEM "C:\develop\warelite\xml\dtd\wl ddl.dtd">

<WL-DDL>
<CLASS id="customer">
<STORAGE>
<SOURCE>data_02</SOURCE>
<SCHEMA>roadmap customer t 10</SCHEMA>
</STORAGE>
<INTERNAL>
<STRING id="username" creation="mandatory" len="30">
<PERSISTENCE>
<MAP>username_ c</MAP>
</PERSISTENCE>
</STRING>
<STRING id="password" creation="mandatory" len="30">
<PERSISTENCE>
<MAP>password_c</MAP>
</PERSISTENCE>
</STRING>
<DOUBLE id="balance" creation="mandatory">
<PERSISTENCE>
<MAP>balance_c</MAP>
</PERSISTENCE>
</DOUBLE>
</INTERNAL>
<EXTENDED/>
</CLASS>
</WL~-DDL>

Fig. 7

SUBSTITUTE SHEET (RULE 26)

PCT/GB2004/004578

WO 2005/046122

8/25

|

ISYHOMNd ¥IT1IS3Y

ﬁ

$8390¥d SSANISNG T

8 SLf

b ERREREY

31704

< ssv1d

3ASVHOUNd

Ar I10¥

$S390¥d SSaNISNd TL

JIANNSNOD

ISYHOUNd ¥IWNSNOD

~juaAg
3SYHOMNd

lawnsuo)

F10d

SUBSTITUTE SHEET (RULE 26)

WO 2005/046122 PCT/GB2004/004578
9/25

<?xml version="1.0" encoding="iso-8859-1"7?>
<!DOCTYPE WL _EPL SYSTEM "C:\develop\warelite\xml\dtd\wl_epl.dtd">

<WL_EPL>

<OBJECT class="product">
<INTERNAL>
<STRING id="description">Telecom Report</STRING>
<DOUBLE id="price">10.0</DOUBLE>
</INTERNAL>
</OBJECT>

<OBJECT class="product">
<INTERNAL>
<STRING id="description">0il and Gas Report</STRING>
<DOUBLE id="price">5.0</DOUBLE>
</INTERNAL>
</OBJECT>

<OBJECT class="product">
<INTERNAL>
<STRING id="description">Manufacturing Report</STRING>
<DOUBLE id="price">15.0</DOUBLE>
</INTERNAL>
</OBJECT>

<OBJECT cl ass= "product">
<INTERNAL>
<STRING id="description">Retailing Report</STRING>
<DOUBLE id="price">15.0</DOUBLE>
</INTERNAL>
</OBJECT>

<OBJECT class="product">
<INTERNAL>
<STRING id="description">Automotive Report</STRING>
<DOUBLE id="price">10.5</DOUBLE>
</INTERNAL>
</OBJECT>

</WL_EPL>
Fig. 9

SUBSTITUTE SHEET (RULE 26)

WO 2005/046122 PCT/GB2004/004578
10/25

Reports (Product instances) Unique identifier

Telecom Report 54ba17d3-53¢2-4648-b69c-6da14d001205
Qil and Gas Report e8c82e1e-fd93-497f-86c2-47e142d1abb0
Manufacturing Report 6db7bf57-4549-4e9a-b38e-21a75b5a5¢c65
Retailing Report 83a3ab5f6-fae5-4019-82d5-0ff6f11 fa37c
Automotive Report d06b4564-318f-4a25-9d79-64672f5ddf0d

Fig. 10

Reports (Product instances) Price

Telecom Report 10.0
Oil and Gas Report 5.0
Manufacturing Report 15.0
Retailing Report 15.0
Automotive Report 10.5

Fig. 11

SUBSTITUTE SHEET (RULE 26)

WO 2005/046122 PCT/GB2004/004578
11/25

<?xml version="1.0" encoding="iso-8859-1"7?>
<!DOCTYPE WL EPL SYSTEM "C:\develop\warelite\xml\dtd\wl_epl.dtd">

<WL_EPL>
<OBJECT class="customer">
<INTERNAL>
<STRING id="username">customer 01</STRING>
<STRING id="password">customer 01</STRING>
<DOUBLE id="balance">0</DOUBLE>
</INTERNAL>
</OBJECT>
<OBJECT class="customer">
<INTERNAL>
<STRING id="username">customer 02</STRING>
<STRING id="password">customer 02</STRING>
<DOUBLE id="balance">0</DOUBLE>
</INTERNAL>
</OBJECT>
<OBJECT class="customer">
<INTERNAL>
<STRING id="username">customer 03</STRING>
<STRING id="password">customer 03</STRING>
<DOUBLE id="balance">0</DOUBLE>
</INTERNAL>
</OBJECT>

<OBJECT class="customer">
<INTERNAL>
<STRING id="username">customer 04</STRING>
<STRING id="password">customer 04</STRING>
<DOUBLE id="balance">0</DOUBLE>
</INTERNAL>
</OBJECT>
<OBJECT class="customer">

<INTERNAL>
<STRING id="username">customer 05</STRING>

<STRING ld="password">customer:05</STRING>
<DOUBLE id="balance">0</DOUBLE>
</INTERNAL>
</OBJECT>

</WL_EPL>

Fig. 12

SUBSTITUTE SHEET (RULE 26)

WO 2005/046122 PCT/GB2004/004578
12/25

Customers (customer instances) Unique identifier

customer 01 8d7f3b96-f3b0-490f-b7cd-59i6bda4c900
customer 02 00d372a90-b316-4b06-9a19-bdfa1f670b17
customer 03 63240dbb-a362-4b8d-8343-a5¢c91354c669
customer 04 74ccb368-c50c-4433-a433-7a71th86fc45
customer 05 eff68702-b473-4b8d-891a-4124d495169f

Fig. 13

SUBSTITUTE SHEET (RULE 26)

PCT/GB2004/004578

WO 2005/046122

13/25

(

! (uPT 30onpoad-INT,)3o6

{(,PT JUNOOO®*INI,)30b

umw._”mw urnisa
(TION==pT 2onpoxd) || (TIAN==pPT 3unoooe)) IT

13d<- (oseyoandy) (3suU0D x PT 309lLgo M) =

pT aonpoxd 3suo0d y PT 2309[qo M
11d<- (oseyoandy) (1SU0D x PT 309[qo M) =

PT 3UNODOR 3SUOD y PT 309[go M

peseyoand DPuTeq s,21eY3 3Oonpoid oYyl 03 SDUSISDIDI AYF => pPT 3onpoad //

Towolsno HuTseyoand syl 03 s0uUsisisl oyl

(ZJo I 1vd)
Vil Std

=> PT 31unoooe //

=== //
qonpoad aya 03 pue //

qunoooe oyl 01 90UsISISDI 9Yl UTRIJO //
//

{osTeI uanilex
((eseyoand’/pT anduT)peOoT<-3Oels M) IT

== =//

quess oseyoand sseTO 29Uyl JO SOUBR]SUT //

ue sT (3usas HBuTwoouT) jusas ndut oyl //

[1usas anduT 8yl pPeoT] //

lllll //
}
(

AUNODSTP 9Tgnop 3suod !

yonpoad xx 208[go M d

qunoooe xx 108[qo TMm ‘

sseyoand xx 2108[qo M ‘

QUSTTOR QUSTTO [M 13SUOD '

pT 2anduTt® PT 2109[go Tm 21sUOD ‘

oB3lS M 1SUOD x 3{OB1S MOTINIOM TM
)

oThoT jueas oseyoind TOOd OTIRIS

SUBSTITUTE SHEET (RULE 26)

PCT/GB2004/004578

WO 2005/046122

14/25

NN.\.Q N N\NQAN& {9sSTrI uInlex

((TION == ®ouetred) || (TION == 90Tad)) IT

VI ‘S o == =ovzd)) 37

! (,o0UeTRq " INI,.) 10D 13d<- (3Uunoooey) = QouRTRg 3SUOD wmmaHHB
£ (,90Tad " INI.) 306 x13d<- (3onpoady) = 90Tad 3SUOD y 9Seq TM
=== ==//

2oURTR(J 1UNODDE //

sy pue eoT1ad aonpoad syl 39b //

//

_ fosTey UINISI
((aonpoad‘pTt dwel)peoT dwel<-3oe1S M|) IT

aIo @yl jo sseld aya 39s// ! (4,3o0poad,) I9TFTIUSPT s pT due]
! ((pT 30onpoady))pT dwel pT 09fqo Tm
}

===== ==//
jonpoad 9yl peotl //
||||||||||||||||||| ==//
{
{o9sTeI uInjlsSIx
((3unoooe ‘pT dwel)peoT<-}ORis Mj) IT
IO °Yy3 JO SSeTd oyl 18s// ¢ (,TOWOISNO,)ISTITIUSPT 398 pT duwel
! ((PT aunoodey))pT duel pT 3oolfgo M
}
//

junoooe 9yl pPeoT //
//

SUBSTITUTE SHEET (RULE 26)

WO 2005/046122 PCT/GB2004/004578

15/25
//
// calculate the impact
//
double calc_impact;
// store the product price into the var calc_ impact

price->ptr getdata(&calc impact):;

// calculate the discount
double disc = (calc impact / 100.0) * discount;
// calculate the impact using the discount

calc_impact -=disc;

//

// calculate the new balance

//

//double new balance;

// store the account balance into the var new _balance
balance->ptr_get_data(&new_balance;

// calculate the new balance
new_balance += calc_impact;

//

// store the new balance into the account

//

// store the new balance into the account balance

balance->ptr set data(&new_balance);

// store the account object
if (!w_stack->store((**account)))
return false;

//

// store the impact into the purchase event
// =

wl base * const impact= (*purchase)->ptr_get ("INT.balance_ impact");

// sanity check
if | (impact == NULL))
return false;

// store the calculate balance impact into the purchase event
impact->ptr_set_data(&calc_impact);

// store the purchase event object

if (!w_stack->store((**purchase))) V d
return false; lg.

return true;

}

SUBSTITUTE SHEET (RULE 26)

WO 2005/046122 PCT/GB2004/004578

16/25

ROADMAP API bool purchase_event

(

wl workflow_stack * const w_stack
r const wl object id &input_id
, const wl_client &client
[[====m========
// the incoming event
//
wl object *purchase = NULL;
/7
// the customer object (referenced by account id)
//==
wl object *account = NULL;
//
// the product object (referenced by product_id)
//
wl object *product = NULL;
//
// discount applied to consumers (non-resellers)
//
double discount = 0.0;

bool retval = purchase event logic

(
w_stack, input_id,client,
&purchase, &account, &product,

discount
)i
J e
// deallocation of the objects
// loaded with the wl workflow_stack::load
//

delete purchase;
delete account;
delete product;

return retval;

Fig. 15

SUBSTITUTE SHEET (RULE 26)

WO 2005/046122 PCT/GB2004/004578
17/25

ROADMAP API bool purchase_event

wl workflow_stack * const w_stack

, const wl object_id &input id
, const wl_client &client

)

{
//
// the incoming event
e
wl object *purchase = NULL;
// we=
// the customer object (referenced by account_id)
//
wl object *account = NULL;
e
// the product object (referenced by product id)
//
wl object *product = NULL;
| ==mmmmmmmmmm e m oo
// discount applied to resellers
//
double discount = 5.0;

bool retval = purchase_event_logic

(
w_stack, input_id,client,
&purchase, &account, &product,

discount
)i
| /=m=mmmmmmmmmmmmmmmmmm e
// deallocation of the objects
// loaded with the wl workflow_stack::load
/ =mmmmmm—m e

delete purchase;
delete account;
delete product;

return retval;

} Fig. 16

SUBSTITUTE SHEET (RULE 26)

PCT/GB2004/004578

WO 2005/046122

18/25

VLI ‘St

(qusas oseyoand-dewpeox)sTna
}
(x) o704 (qusas oseyonand) sseTo? (eseynind) sweu :yum

/7

5THOT oaTleTOOSSE AIRUTH YITM SS8001d SSOUTSNd //

/7

(roTTosax 1uead® oseyoiand-dewpeor)oTna
}
AumﬂﬁmmmHVQHOMmApcmbwlmmmzousavmmmaouAumﬂﬁmmmulmmMQousavmEmcnmmz

/7

== =//

AmmHSMNﬂQ/QOHpSQﬁMPmﬂU/mumzpmom/mpﬂamumz/HUVMHUuAQmEﬁmongoEmAgmﬁﬁmouvmﬁmc“mHﬂ

=//
SUOT1RIRTOSP SOTIRICII //

/7

SUBSTITUTE SHEET (RULE 26)

PCT/GB2004/004578

WO 2005/046122

19/25

(zoTTosex 1usas oseyoind-dewpeor)eTnd

NN.\.Q N “&@g\ (IsTTosax)sT10x! (qusas sseyoand)sseTo! (zoTTosax oseyonand)suweu:

51,
m& N ° (AT03USAUT IOPIO WOg oTNI"WOC TM)eTnI

(Topa10 WO oTNI WOCQ TM)oTNI

(x)©TOI? (I9PIO WOQ) SSBTD! (JIM ISPIO WO() SURU :

(200 2se3d-zIq 1)°Tna

(z03eIlSTUTWPR)STOX ! (TO0 3831 Jaod)sseTo? (z0o0 21s93d)sweu:

(100 3s93d-zTq 1)oTna

(x)oT0x? (T00 aso3 zxod)sseTo! (700 3se3d)sweu:

SHSSHDOdd SSHUNISNG

(soTnxzTg\UOTINATISTP\9IeMIIOS\ 821 TTaIRM\ 1D) ITP ! (seTnx wodq) pour? (woq TM)oweu:

Nod

(zeab) Aoy ! (s9TNIZTY\UOTINATIASTP\SIRMIJOS\SJTTOIRM\ :D) ITP ! (seTnxzTq 21s°3)pour? (zTq 3)ouweu:

SHTINEZTIY

dVIWAYZ0d

}
MM

{

}
TaM

{

}
dam

{

}
TIM

/7
g4I1

//
g17

//

(S9TNIZTG\UOTAINATIASTP\SILMITOS\SFT2IBM\ 1D) ITP! (deupeox) pow? (dewpeor) sweu :gIT

//
!/

SUOTIRIRTODP SSTIRICTT

//

=//

SUBSTITUTE SHEET (RULE 26)

WO 2005/046122 PCT/GB2004/004578

WRK:

WRK:

WRK:

WRK:

20/25

name(purchase);class(purchase_event);role(*)

rule (roadmap.purchase event)

:name(purchase);class(purchase_event_tt);role(*)

rule (roadmap.purchase event tt)

:name(t_biz_Ol);class(test_event_Ol);role(*)

rule(t_biz.tb_rule 01)

name (t_biz user_error);class(user_error_event);role(*)
rule(t biz.tb message)
rule(t_biz.do_user_error)
on_error (t_biz.manage_user_error)

name (t_biz system error);class(system error_ event);role(*)
rule(t_biz.tb_message)
rule(t biz.do_system error)
on_exception(t_biz.manage_system error)

name(t_biz_on_commit);class(test_event_on_commit);role(*)

rule(t_biz.tb_message)
on commit (t_biz.user_on_commit)

:name (t_biz on rollback);class(test_event_on_rollback);irole(*)

rule(t_biz.tb_message)
on_commit(t_biz.user_on_rollback)

:name (t_biz on rollback);class(test_event_on_rollback);role(*)

rule(t_biz.tb_message)
on_commit (t_biz.user_on_rollback

Fig. 17B
(Part 2 of 2)

SUBSTITUTE SHEET (RULE 26)

PCT/GB2004/004578

WO 2005/046122

21/25

81 ‘S

<1a" TIM/>

<LDErdo/>
<TUYNIHLNI>
<AWYILSHANIL/>00:00:00:TZ S0-€0-2002<u42WT3,=PT dWYLSHNIL>
<ETEN0a/>0 " 0<,30oeduT sdueTedq,=pT =T4N00T>
<dI £90/>006°7EPA9F6SG-POLIA-F067-0dEF-960ETLPB<LPT junoooe,=pT dI [£40>
<-- T0 IBWOISND——i>
AQHIHmo\vaNHooUwaMﬁmlomwglmwmwlmommlmﬁPHMQwmA:UHIpUSGOHQ=HvH ai rdo>
<—— 2x0doy WODSTSL-—i>
<TUNMAILNI >
A:PGOPOI@WGQOHSQ:HWWMHO LO0HLd0>

<Tdd IM>

<uP3p-Tde Tm\p3ip\Tux\o3iTToxeMm\dOToA8P\ 1Dy WALSAS Tad M TIXLOOA >
Aw:HlmmmmIOmﬂ:H@GHUOUﬂm u0 " Ty=UOTSISDA TWX{>

SUBSTITUTE SHEET (RULE 26)

PCT/GB2004/004578

WO 2005/046122

22/25

61 ‘s1d

<Idd IM/>

<LDALrdo/>
<TUNIHLNI>
<dWYLSHAWNIL/>00:00:00°TC G0-£0-200C<u®WT3,=PT JdWYILSHWIL>
_ AmquOQ\VO.oA:pUMQEﬂlmoqmamQ=an 41dn0a>
<dI £490/>006°07ePd9I6G-POoLId-F067~0dEF~96UEFLP8<LPT junoooe,=pT dI LdHO>
_ <-- T0 IBWO3SN) --i>
<dI £90/>S0ZTO00PFIRP9-0690-879F~20EG~EPLTRAFS<PT 30onpoad,=pT dI £d0>
<—— 1J0doY UWODSTdIL--i>
B <TUYNYHLNI>
<, lusad sseyoand,=sseTd ILDA0d0>

<,IDTTOS9I,=9TOI TdHd TM>

<uP3p-Tda” TM\pap\Tux\o3TToxem\doTsasp\ D, WILSAS Tdd IM FAALD0di>
<éuwI-65688-0ST,=DUTPOOUS 0 T,=UOTSISA TWX>

SUBSTITUTE SHEET (RULE 26)

WO 2005/046122 PCT/GB2004/004578
23/25

// GLM declarations

GLM:name (GLM _01);ip addr(192.168.100.1);ip_port (2783)
{
class (purchase_event)
class(test _event 01,target 01)

}

GLM:name (GLM_02);ip addr(192.168.100.2);ip port (2785)
{

class (product)

class (user_error_event)

class (system error_event)

Fig. 20

SUBSTITUTE SHEET (RULE 26)

PCT/GB2004/004578

WO 2005/046122

24/25

V]

om/
V' [Gaa w0 ana« | [Gad i 1ad «
£ aoeyI9)U| eJeq poljuf
62— 1abeuepy apoN 44 @* .
O e |
m mN,,/l\._wmmcms_ apoN 44 |- @.l
|
rre——— [—
W 6Z+— .1oBeuepy spoN H L_of 1obeuep 3001 ¢
. . 67 1
67 ‘1eBeueyy opoN | \mem:ms_ %901 4
/ 8c
&g
nwu _Wm ﬂ 1obBeuepy opoN ¢ —+— G2 \.NN
qu L 9z 1oBeuE| opoN ¢ | — Gz | 1eBeuen > xoo._ «
/
_\N\

SIapINOId 9oUB)SISIad

$991N0S9Y [euoeindwo paJeuIpPI009

17 *S11

=

sjuaby Bunnoy 44 sng |euJajuj

SUBSTITUTE SHEET (RULE 26)

WO 2005/046122

LMO001 DB001
S1—NMO001
NM002 DIM11

Fig, 22

SUBSTITUTE SHEET (RULE 26)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

