

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
3 May 2007 (03.05.2007)

PCT

(10) International Publication Number
WO 2007/051164 A2

(51) International Patent Classification:

A61K 39/395 (2006.01) *C12N 5/06* (2006.01)
C07H 21/04 (2006.01) *C07K 16/28* (2006.01)
C12P 21/06 (2006.01)

E. [US/US]; 209 WEISER PLACE, Trappe, PA 19426 (US). **HUANG, Chong, C.** [CN/US]; 34 COBBLESTONE DRIVE, Paoli, PA 19301 (US). **LAMB, Roberta** [US/US]; 400 LAKESIDE ROAD, Wynnewood, PA 19096 (US). **MBOW, Mouhamadou, L.** [US/US]; 301 WINDING WAY, King Of Prussia, PA 19406 (US). **SARISKY, Robert, T.** [US/US]; 2569 COLD SPRING ROAD, Lansdale, PA 19446 (US). **SAN, Mateo, Lani** [US/US]; 118 NORTH FAIRFIELD ROAD, Devon, PA 19333 (US).

(21) International Application Number:

PCT/US2006/060305

(22) International Filing Date: 26 October 2006 (26.10.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/730,793 27 October 2005 (27.10.2005) US

(71) Applicant (for all designated States except US): CENTO-COR, INC. [US/US]; 200 GREAT VALLEY PARKWAY, Malvern, PA 19355 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DUFFY, Karen,

(74) Agent: **BAUMEISTER, Kirk**; ONE JOHNSON & JOHNSON PLAZA, New Brunswick, NJ 08933 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,

[Continued on next page]

(54) Title: TOLL LIKE RECEPTOR 3 MODULATORS, METHODS AND USES

Nucleotide sequence for C1130 heavy chain variable region

ATGGAATGTAACTGGATACTTCCCTTATTCTGTCGGTAATTCAGGGTCTACTCAGAGGTTCAAGCTCCACAGCTGGGACTGTGCTGGCAAGGCTGGGCTCCGTGAAGATGTCCTGCAAGGC TTCTGGCTACAGGTTCCAGCTACGGGATGCACGGGTTAAACAGAGGCTGGACAGGGCTCA GAATGGATTGGTGCATTATCTGGAAACAATGATATTACTTATACTCAGAAGTTCAAGGGCA AGGCCAAACTGACTGCGACTCACATCCGCCAGCACTACCTACATGGAACCTCAGCAGCCTGACAAA TGAAGACTCTGGGTCTATTACTGTTCAACTCTAAATGTTGCTTATTGGGCCAAGGGACTCTG GTCACTGTCAGTCA (SEQ ID NO: 5)

(57) Abstract: Toll Like Receptor 3 (TLR3) modulators, such as antibodies, polynucleotides encoding TLR3 antibodies or fragments thereof, and methods of making and using the foregoing are disclosed.

Amino Acid sequence for C1130 Heavy Chain variable region

MECNWILPFILSVISGVYSEVQLQQSGTVLARPGASVCKMSCKASGYRFSSYGMHWVKQRPGQGL EWIGAIYPGNNDITYTQFKGKAKLTAVTSASTTYMELSSLTNEDSAVYYCSTLMFAYWGQGTL VTVTA (SEQ ID NO: 6)

Signal Sequence

MECNWILPFILSVISGVY (SEQ ID NO: 7)

FR1

EVQLQQSGTVLARPGASVCKMSCKAS (SEQ ID NO: 8)

CDR1

GYRFSSYGMH (SEQ ID NO: 9)

FR2

WVKQRPGQQGLEWIG (SEQ ID NO: 10)

CDR2

AIYPGNNNDITYTQFKG (SEQ ID NO: 11)

FR3

KAKLTAVTSASTTYMELSSLTNEDSAVYYCST (SEQ ID NO: 12)

CDR3

LMFAY (SEQ ID NO: 13)

Mouse J HC

WGQGTLVTVTA (SEQ ID NO: 14)

WO 2007/051164 A2

RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(84) Designated States (*unless otherwise indicated, for every kind of regional protection available*): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,

Published:

— *without international search report and to be republished upon receipt of that report*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

TOLL LIKE RECEPTOR 3 MODULATORS, METHODS AND USESField of the Invention

The present invention relates to Toll Like Receptor 3 (TLR3) modulators such as antibodies.

Background of the Invention

Recognition of foreign antigens by mammalian cells can be mediated by a set of innate immune receptors called Toll-like receptors (TLRs). TLRs recognize conserved patterns derived from microbial pathogens identified as pathogen-associated molecular patterns (PAMPs) (Barton *et al.*, *Science* 300:1524-1525, 2003). Interaction of a TLR with a PAMP results in a signaling cascade involving NF- κ B activation and transcription of cytokine gene expression. Ten human toll-like receptors and five TLR adaptor proteins have been identified.

TLRs are able to expand their repertoire of ligands by forming homo- or heterodimers as well as binding different adaptor proteins. For example, TLR3 binds dsRNA, an intermediate in viral replication. TLR3 also interacts with PolyI:C, a synthetic dsRNA analog, and mRNA from necrotic cells. Activation of TLR3 leads to the secretion of Type I interferons, which are important in the control of viral infection. A full-length human TLR3 amino acid sequence and encoding polynucleotide sequence are shown in SEQ ID NOS: 1 and 2, respectively. TLRs TLR7, TLR8, and TLR9 also have nucleic acid ligands; activation of these TLRs can also lead to interferon secretion.

Type I interferons trigger signaling cascades to activate a set of immediate early-response genes (IFN-stimulated genes or ISGs) and have proven useful in the clinic. The resulting antiviral activities include mRNA translation inhibition, RNA editing, and RNA degradation (Samuel *et al.*, *Clin Microbiol Rev*

14:778-809, 2001). Currently, a combination therapy of pegylated interferon and the broad-spectrum antiviral compound ribavirin is being used to treat hepatitis C infection (Manns *et al.*, *Lancet* 358:958-965, 2001).

The critical anti-viral role of Type I IFNs is further demonstrated by the evolution of viral resistance mechanisms to inhibit the production of Type I IFNs by infected host cells. For example, the NS1 protein of influenza antagonizes IRF-3 activation and IFN β production (Donelan *et al.*, *J Virol* 78: 11574-11582, 2004) and the A52R poxvirus protein associates with IRAK2 and TRAF6 to block signaling downstream of TLR3 (Harte *et al.*, *J Exp Med*, 197:343-351, 2003). Thus, therapies based on triggering TLR activation or enhancing TLR-mediated signaling pathways increase endogenous IFN α/β production and assist the host in the control of acute viral infections.

The use of TLR agonists to modulate the outcome of an immune response is currently being investigated for therapeutic use (O'Neill, *Curr Opin Pharm* 3:396-403, 2003; Schetter *et al.*, *Curr Opin Drug Discov Devel* 7:204-210, 2004). For example, CpG oligodinucleotides (ODN), a TLR9 ligand, are capable of stimulating the production of type I IFN and a T_H1 response (Krieg, *Annu Rev Immunol* 20:709-60, 2002), a finding that suggests the possible use of CpG ODN not only as a vaccine adjuvant but also for the treatment and or prevention of diseases that necessitate a potent T_H1 response. Another example is the synthetic TLR7 agonist imiquimod, an approved agent for the treatment of genital warts; its protective effect is thought to be mediated through the stimulation of inflammatory cytokines such as IFN α , TNF α and IL-1 β (Saunder, *J Amer Acad Derm* 43: S6-S11, 2000). Overall, these findings show that TLR agonists are a novel class of immunomodulatory agents with the potential of having a significant therapeutic benefit.

Thus, a need exists for the identification of novel immunomodulatory agents that potentiate the effect of TLR agonists. Such novel TLR-based therapies are expected to have an advantage of providing a sustained immune response with less frequent dosing regimens.

Brief Description of the Drawings

Fig. 1 shows C1130 anti-hTLR3 mAb heavy chain variable region sequences.

Fig. 2 shows C1130 anti-hTLR3 mAb light chain variable region sequences.

Fig. 3 shows C1130 induced IL-8, MCP-1, MIP-1 α , RANTES, and TNF α secretion by human peripheral blood mononuclear cells (PBMCs) at 24h.

Fig. 4 shows C1130 enhanced CpG-induced IFN α production at 24h.

Fig. 5 shows C1130 decreased R848-induced IL-10 production at 24h.

Fig. 6 shows C1130 recognition of cell-surface TLR3 on stably transfected HEK293 cells.

Fig. 7 shows C1130 recognition of cell-surface TLR3 on stably transfected A549-TLR3.2 cells.

Fig. 8 shows C1130 recognition of Cynomolgus macaque PBMCs.

Summary of the Invention

One aspect of the invention is an isolated antibody reactive with human Toll Like Receptor 3 (hTLR3) or its homologs that induces cellular production of a cytokine selected from the group consisting of IL-8, MCP-1, MIP1- α , RANTES and TNF- α .

Another aspect of the invention is an isolated antibody reactive with hTLR3 or its homologs that modifies an immune response to other Toll Like Receptor ligands.

Another aspect of the invention is an isolated antibody reactive with hTLR3 having the antigen binding ability of a monoclonal antibody comprising the amino acid sequences of the heavy chain complementarity determining regions (CDRs) as shown in SEQ ID NOS: 9, 11 and 13 and the amino acid sequences of the light chain CDRs as shown in SEQ ID NOS: 19, 21 and 23.

Another aspect of the invention is an isolated antibody reactive with hTLR3 comprising the amino acid sequences of the heavy chain complementarity determining regions (CDRs) as shown in SEQ ID NOS: 9, 11 and 13 and the amino acid sequences of the light chain CDRs as shown in SEQ ID NOS: 19, 21 and 23.

Another aspect of the invention is an isolated antibody reactive with hTLR3 comprising a heavy chain comprising the amino acid sequence shown in SEQ ID NO: 6 and a light chain comprising the amino acid sequence shown in SEQ ID NO: 16.

Another aspect of the invention is an isolated polynucleotide encoding an antibody heavy chain comprising the CDR amino acid sequences shown in SEQ ID NOS: 9, 11 and 13.

Another aspect of the invention is an isolated polynucleotide encoding an antibody light chain comprising the CDR amino acid sequences shown in SEQ ID NOS: 19, 21 and 23.

Another aspect of the invention is an isolated polynucleotide encoding an antibody heavy chain comprising the amino acid sequence shown in SEQ ID NO: 6.

Another aspect of the invention is an isolated polynucleotide encoding an antibody light chain comprising the amino acid sequence shown in SEQ ID NO: 16.

Other aspects of the invention include methods of treating or preventing viral infection comprising administering to a patient a therapeutically effective amount of an antibody of the invention in combination with an immune stimulant.

Another aspect of the invention is a method of treating cancer comprising administering to a patient a therapeutically

effective amount of an antibody of the invention in combination with an immune stimulant.

Another aspect of the invention is a method of treating inflammatory bowel disease comprising administering to a patient a therapeutically effective amount of an antibody of the invention in combination with an immune stimulant.

Other aspects of the invention include methods of treating or preventing a viral infection-associated symptom comprising administering to a patient a therapeutically effective amount of an antibody of the invention in combination with a Toll-Like Receptor 7 (TLR7) agonist.

Other aspects of the invention include methods of treating or preventing a pulmonary disease and pathogen-mediated exacerbation comprising administering to a patient a therapeutically effective amount of an antibody of the invention in combination with a TLR9 or TLR7 agonist.

Other aspects of the invention include methods of treating or preventing graft-versus-host disease (GVHD) comprising administering to a patient a therapeutically effective amount of an antibody of the invention in combination with a TLR9 or TLR7 agonist.

Other aspects of the invention include methods of treating or preventing autoimmune disease comprising administering to a patient a therapeutically effective amount of an antibody of the invention in combination with an immune treatment.

Detailed Description of the Invention

All publications, including but not limited to patents and patent applications, cited in this specification are herein incorporated by reference as though fully set forth.

The term "antibodies" as used herein is meant in a broad sense and includes immunoglobulin or antibody molecules including polyclonal antibodies, monoclonal antibodies including

murine, human, humanized and chimeric monoclonal antibodies and antibody fragments.

In general, antibodies are proteins or polypeptides that exhibit binding specificity to a specific antigen. Intact antibodies are heterotetrameric glycoproteins, composed of two identical light chains and two identical heavy chains. Typically, each light chain is linked to a heavy chain by one covalent disulfide bond, while the number of disulfide linkages varies between the heavy chains of different immunoglobulin isotypes. Each heavy and light chain also has regularly spaced intrachain disulfide bridges. Each heavy chain has at one end a variable domain (V_H) followed by a number of constant domains. Each light chain has a variable domain at one end (V_L) and a constant domain at its other end; the constant domain of the light chain is aligned with the first constant domain of the heavy chain and the light chain variable domain is aligned with the variable domain of the heavy chain. Antibody light chains of any vertebrate species can be assigned to one of two clearly distinct types, namely kappa (κ) and lambda (λ), based on the amino acid sequences of their constant domains. Immunoglobulins can be assigned to five major classes, namely IgA, IgD, IgE, IgG and IgM, depending on the heavy chain constant domain amino acid sequence. IgA and IgG are further sub-classified as the isotypes IgA₁, IgA₂, IgG₁, IgG₂, IgG₃ and IgG₄.

The term "antibody fragments" means a portion of an intact antibody, generally the antigen binding or variable region of the intact antibody. Examples of antibody fragments include Fab, Fab', F(ab')₂ and Fv fragments, diabodies, single chain antibody molecules and multispecific antibodies formed from at least two intact antibodies.

The term "antigen" as used herein means any molecule that has the ability to generate antibodies either directly or

indirectly. Included within the definition of "antigen" is a protein-encoding nucleic acid.

"CDRs" are defined as the complementarity determining region amino acid sequences of an antibody which are the hypervariable regions of immunoglobulin heavy and light chains. See, e.g., Kabat *et al.*, Sequences of Proteins of Immunological Interest, 4th ed., U.S. Department of Health and Human Services, National Institutes of Health (1987). There are three heavy chain and three light chain CDRs or CDR regions in the variable portion of an immunoglobulin. Thus, "CDRs" as used herein refers to all three heavy chain CDRs, or all three light chain CDRs or both all heavy and all light chain CDRs, if appropriate.

CDRs provide the majority of contact residues for the binding of the antibody to the antigen or epitope. CDRs of interest in this invention are derived from donor antibody variable heavy and light chain sequences, and include analogs of the naturally occurring CDRs, which analogs also share or retain the same antigen binding specificity and/or neutralizing ability as the donor antibody from which they were derived.

The term "homolog" means protein sequences having between 40% and 100% sequence identity to a reference sequence. Homologs of hTLR3 include polypeptides from other species that have between 40% and 100% sequence identity to a known hTLR3 sequence. Percent identity between two peptide chains can be determined by pair wise alignment using the default settings of the AlignX module of Vector NTI v.9.0.0 (Invitrogen Corp., Carlsbad, CA).

The term "in combination with" as used herein means that the described agents can be administered to an animal together in a mixture, concurrently as single agents or sequentially as single agents in any order.

The term "mimetibody" as used herein means a protein having the generic formula (I):

(V1-Pep-Lk-V2-Hg-C_H2-C_H3) (t)

(I)

where V1 is a portion of an N-terminus of an immunoglobulin variable region, Pep is a polypeptide that binds to cell surface TLR3, Lk is a polypeptide or chemical linkage, V2 is a portion of a C-terminus of an immunoglobulin variable region, Hg is a portion of an immunoglobulin hinge region, C_H2 is an immunoglobulin heavy chain C_H2 constant region and C_H3 is an immunoglobulin heavy chain C_H3 constant region and t is independently an integer of 1 to 10. A mimetobody can mimic properties and functions of different types of immunoglobulin molecules such as IgG1, IgG2, IgG3, IgG4, IgA, IgM, IgD and IgE dependent on the heavy chain constant domain amino acid sequence present in the construct. In some mimetobody embodiments, V1 may be absent. A mimetobody of the present invention modulates TLR biological activity through binding to TLR-expressing cells.

The term "monoclonal antibody" (mAb) as used herein means an antibody (or antibody fragment) obtained from a population of substantially homogeneous antibodies. Monoclonal antibodies are highly specific, typically being directed against a single antigenic determinant. The modifier "monoclonal" indicates the substantially homogeneous character of the antibody and does not require production of the antibody by any particular method. For example, murine mAbs can be made by the hybridoma method of Kohler *et al.*, *Nature* 256:495-497 (1975). Chimeric mAbs containing a light chain and heavy chain variable region derived from a donor antibody (typically murine) in association with light and heavy chain constant regions derived from an acceptor antibody (typically another mammalian species such as human) can be prepared by the method disclosed in U.S. Pat. No. 4,816,567. Humanized mAbs having CDRs derived from a non-human donor immunoglobulin (typically murine) and the remaining immunoglobulin-derived parts of the molecule being derived from

one or more human immunoglobulins, optionally having altered framework support residues to preserve binding affinity, can be obtained by the techniques disclosed in Queen *et al.*, *Proc. Natl. Acad. Sci. (USA)*, 86:10029-10032 (1989) and Hodgson *et al.*, *Bio/Technology*, 9:421 (1991).

Exemplary human framework sequences useful for humanization are disclosed at, e.g., www.ncbi.nlm.nih.gov/entrez/query.fcgi; www.ncbi.nlm.nih.gov/igblast; www.atcc.org/phage/hdb.html; www.mrc-cpe.cam.ac.uk/ALIGNMENTS.php; www.kabatdatabase.com/top.html; ftp.ncbi.nih.gov/repository/kabat; www.sciquest.com; www.abcam.com; www.antibodyresource.com/onlinecomp.html; www.public.iastate.edu/~pedro/research_tools.html; www.whfreeman.com/immunology/CH05/kuby05.htm; www.hhmi.org/grants/lectures/1996/vlab; www.path.cam.ac.uk/~mrc7/mikeimages.html; mcb.harvard.edu/BioLinks/Immunology.html; www.immunologylink.com; pathbox.wustl.edu/~hcenter/index.html; www.appliedbiosystems.com; www.nal.usda.gov/awic/pubs/antibody; www.m.ehime-u.ac.jp/~yasuhito/Elisa.html; www.biodesign.com; www.cancerresearchuk.org; www.biotech.ufl.edu; www.isac-net.org; baserv.uci.kun.nl/~jraats/links1.html; www.recab.uni-hd.de/immuno.bme.nwu.edu; www.mrc-cpe.cam.ac.uk; www.ibt.unam.mx/vir/V_mice.html; <http://www.bioinf.org.uk/abs>; antibody.bath.ac.uk; www.unizh.ch; www.cryst.bbk.ac.uk/~ubcg07s; www.nimr.mrc.ac.uk/CC/ccaewg/ccaewg.html; www.path.cam.ac.uk/~mrc7/humanisation/TAHHP.html; www.ibt.unam.mx/vir/structure/stat_aim.html; www.biosci.missouri.edu/smithgp/index.html; www.jerini.de; imgt.cines.fr; and Kabat *et al.*, Sequences of Proteins of

Immunological Interest, U.S. Dept. Health (1987), each entirely incorporated herein by reference.

Fully human mAbs lacking any non-human sequences can be prepared from human immunoglobulin transgenic mice by techniques referenced in, e.g., Lonberg *et al.*, *Nature* 368:856-859 (1994); Fishwild *et al.*, *Nature Biotechnology* 14:845-851 (1996) and Mendez *et al.*, *Nature Genetics* 15:146-156 (1997). Human mAbs can also be prepared and optimized from phage display libraries by techniques referenced in, e.g., Knappik *et al.*, *J. Mol. Biol.* 296:57-86 (2000) and Krebs *et al.*, *J. Immunol. Meth.* 254:67-84 (2001).

The present invention relates to TLR3 receptor binding agents capable of modulating TLR3 receptor-mediated signaling. Such binding agents include anti-TLR3 antibodies having the properties of binding a TLR3 receptor and modulating TLR3 receptor-mediated signaling.

One aspect of the invention is an antibody reactive with human Toll Like Receptor 3 (hTLR3) or hTLR3 homologs that induces cellular production of a cytokine selected from the group consisting of IL-8, MCP-1, MIP1- α , RANTES and TNF- α . These antibodies are useful as research reagents, diagnostic reagents and therapeutic agents. In particular, the antibodies of the invention are useful as therapeutic agents that can stimulate an immune response against foreign antigens.

Another aspect of the invention is an antibody reactive with hTLR3 or hTLR3 homologs that modulates a cytokine response induced by other TLR ligands. Modulation of a cytokine response results in potentiation or modification of the immune response to other TLR ligands including Cpg ODN and R848. For example, antibodies of the invention can enhance the production of Type 1 interferons such as interferon- α (IFN- α) when used in combination with TLR9 ligands such as CpG oligodinucleotides (CpG ODN).

Another aspect of the invention is an antibody reactive with hTLR3 or hTLR3 homologs that decreases the production of IL-10 produced by TLR7 agonists. For example, the antibodies of the invention significantly decrease the production of the anti-inflammatory cytokine IL-10 produced by the TLR7 agonist R848, also known as resiquimod. While not wishing to be bound to any particular theory, it is believed that the antibodies of the invention potentiate the inflammatory response to TLR7 agonists.

In one embodiment, the antibody of the invention is an isolated antibody reactive with hTLR3 having the antigen binding ability of a monoclonal antibody having the amino acid sequences of the heavy chain complementarity determining regions (CDRs) as set forth in SEQ ID NOS: 9 (CDR H1), 11 (CDR H2) and 13 (CDR H3) and the amino acid sequences of the light chain CDRs as shown in SEQ ID NOS: 19 (CDR L1), 21 (CDR L2) and 23 (CDR L3). An exemplary antibody is a monoclonal antibody having heavy chain CDR amino acid sequences as shown in SEQ ID NOS: 9, 11 and 13 and light chain CDR amino acid sequences as shown in SEQ ID NOS: 19, 21 and 23.

Another embodiment of the invention is an isolated polynucleotide encoding an antibody heavy chain having the CDR amino acid sequences shown in SEQ ID NOS: 9, 11 and 13 or a complementary nucleic acid. Other polynucleotides which, given the degeneracy of the genetic code or codon preferences in a given expression system, encode the heavy chain variable region CDRs shown in SEQ ID NOS: 9, 11 and 13 are also within the scope of the invention.

Another embodiment of the invention is an isolated polynucleotide encoding an antibody light chain having the CDR amino acid sequences shown in SEQ ID NOS: 19, 21 and 23 or a complementary nucleic acid. Other polynucleotides which, given the degeneracy of the genetic code or codon preferences in a given expression system, encode the light chain variable region

CDRs shown in SEQ ID NOS: 19, 21 and 23 are also within the scope of the invention.

Another embodiment of the invention is an isolated antibody reactive with hTLR3 comprising a heavy chain having the amino acid sequence shown in SEQ ID NO: 6 and a light chain having the amino acid sequence shown in SEQ ID NO: 16.

Another embodiment of the invention is an isolated polynucleotide encoding the amino acid sequence shown in SEQ ID NO: 6 or its complement. An exemplary polynucleotide encoding the amino acid sequence shown in SEQ NO: 6 has the sequence shown in SEQ ID NO: 5.

Another embodiment of the invention is an isolated polynucleotide encoding the amino acid sequence shown in SEQ ID NO: 16 or its complement. An exemplary polynucleotide encoding the amino acid sequence shown in SEQ NO: 16 has the sequence shown in SEQ ID NO: 15.

Exemplary antibodies may be antibodies of the IgG, IgD, IgGA or IgM isotypes. Additionally, such antibodies can be post-translationally modified by processes such as glycosylation, isomerization, aglycosylation or non-naturally occurring covalent modification such as the addition of polyethylene glycol moieties (pegylation) and lipidation. Such modifications may occur *in vivo* or *in vitro*. Fully human, humanized and affinity-matured antibody molecules or antibody fragments are within the scope of the invention as are mimetibodies, fusion proteins and chimeric proteins.

The antibody of the invention may bind hTLR3 with a K_d less than or equal to about 10^{-7} , 10^{-8} , 10^{-9} , 10^{-10} , 10^{-11} or 10^{-12} M. The affinity of a given molecule for a hTLR3 receptor can be determined experimentally using any suitable method. Such methods may utilize Biacore or KinExA instrumentation, ELISA or competitive binding assays known to those skilled in the art.

Antibody molecules binding a given TLR3 homolog with a desired affinity can be selected from libraries of variants or fragments by techniques including antibody affinity maturation and other art-recognized techniques suitable for non-antibody molecules.

Another embodiment of the invention is a vector comprising at least one polynucleotide of the invention. Such vectors may be plasmid vectors, viral vectors, transposon based vectors or any other vector suitable for introduction of the polynucleotides of the invention into a given organism or genetic background by any means.

Another embodiment of the invention is a host cell comprising any of the polynucleotides of the invention such as a polynucleotide encoding a polypeptide comprising SEQ ID NO: 9, SEQ ID NO: 11 and SEQ ID NO: 13 and a polynucleotide encoding a polypeptide comprising SEQ ID NO: 19, SEQ ID NO: 21 and SEQ ID NO: 23. Such host cells may be eukaryotic cells, bacterial cells, plant cells or archeal cells. Exemplary eukaryotic cells may be of mammalian, insect, avian or other animal origins. Mammalian eukaryotic cells include immortalized cell lines such as hybridomas or myeloma cell lines such as SP2/0 (American Type Culture Collection (ATCC), Manassas, VA, CRL-1581), NS0 (European Collection of Cell Cultures (ECACC), Salisbury, Wiltshire, UK, ECACC No. 85110503), FO (ATCC CRL-1646) and Ag653 (ATCC CRL-1580) murine cell lines. An exemplary human myeloma cell line is U266 (ATCC CRL-TIB-196). Other useful cell lines include those derived from Chinese Hamster Ovary (CHO) cells such as CHO-K1 (ATCC CRL-61) or DG44.

Another embodiment of the invention is a method of making an antibody of the invention comprising culturing a host cell of the invention and recovering the antibody produced by the host cell. Such an antibody may be the hTLR3 antibody exemplified

below as mAb C1130 having heavy and light amino acid sequences as shown in SEQ ID NOs: 6 and 16, respectively.

The ability of the antibodies of the invention to potentiate CpG-mediated IFN- α production provides for various combination-type therapies. For example, the use of an antibody of the invention in combination with foreign antigens such as TLR agonist molecules or vaccine antigens will modulate an immune response and be useful in treating infections. Thus, another aspect of the invention is the use of an antibody of the invention in combination with other immune stimulants such as interferon or TLR9 agonists including, but not limited to, CpG ODN to stimulate and sustain an immune response as measured by enhanced production of Type I IFN (e.g., IFN α) to prevent or treat viral infections including hepatitis viruses, herpes simplex virus, human immunodeficiency virus and human papilloma virus and other cutaneous and mucosal-associated infections. Also, the invention provides for use of an antibody of the invention in combination with other immune stimulants such as interferon or TLR9 agonists including, but not limited to, CpG ODN to treat cancers including multiple myeloma, chronic myelogenous leukemia, hairy cell leukemia, malignant melanoma, and sarcomas (including Kaposi's sarcoma). Further, the invention also provides for the use of an antibody of the invention in combination with other immune stimulants such as interferon or TLR9 agonists including but not limited to CpG ODN to treat inflammatory bowel diseases (e.g., Crohn's disease and ulcerative colitis).

Another aspect of the invention is the use of an antibody of the invention in combination with a TLR7 agonist such as R848 (resiquimod) or imiquimod to provide for a combination therapy to prevent or treat viral infection-associated symptoms such as genital warts. The synthetic TLR7 agonist imiquimod has been approved by regulatory authorities for the treatment of genital

warts. Another aspect of the invention is the use of an antibody of the invention in combination with TLR9 or TLR7 agonists to prevent or treat pulmonary diseases including bacterial, fungal and viral pneumonias, and pathogen-mediated exacerbation of pulmonary diseases such as asthma, bronchitis and chronic obstructive pulmonary diseases. Yet another aspect of the invention is the use of an antibody of the invention in combination with TLR9 or TLR7 agonists to prevent or treat graft-versus-host disease (GVHD). Yet another aspect of the invention is the use of an antibody of the invention in combination with immune treatments, such as interferon, to prevent or treat autoimmune diseases, including multiple sclerosis and lupus.

The methods of the invention may be used to treat an animal belonging to any genus. Examples of such animals include humans, mice, birds, reptiles, and fish.

Amounts of a given TLR3 antibody sufficient to treat a given condition can be readily determined. In the method of the invention the TLR3 antibody may be administered singly or in combination with at least one other TLR agonist molecule or vaccine antigen.

The mode of administration for therapeutic use of the antibodies of the invention may be any suitable route that delivers the agent to the host. The proteins, antibodies, antibody fragments and mimetibodies and pharmaceutical compositions of these agents are particularly useful for parenteral administration, *i.e.*, subcutaneously, intramuscularly, intradermally, intravenously or intranasally.

Antibodies of the invention may be prepared as pharmaceutical compositions containing an effective amount of the antibody as an active ingredient in a pharmaceutically acceptable carrier. An aqueous suspension or solution containing the antibody, preferably buffered at physiological

pH, in a form ready for injection is preferred. The compositions for parenteral administration will commonly comprise a solution of the antibody of the invention or a cocktail thereof dissolved in an pharmaceutically acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers may be employed, e.g., 0.4% saline, 0.3% glycine and the like. These solutions are sterile and generally free of particulate matter. These solutions may be sterilized by conventional, well-known sterilization techniques (e.g., filtration). The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, etc. The concentration of the antibody of the invention in such pharmaceutical formulation can vary widely, i.e., from less than about 0.5%, usually at or at least about 1% to as much as 15 or 20% by weight and will be selected primarily based on fluid volumes, viscosities, etc., according to the particular mode of administration selected.

Thus, a pharmaceutical composition of the invention for intramuscular injection could be prepared to contain 1 mL sterile buffered water, and between about 1 ng to about 100 mg, e.g. about 50 ng to about 30 mg or more preferably, about 5 mg to about 25 mg, of an antibody of the invention. Similarly, a pharmaceutical composition of the invention for intravenous infusion could be made up to contain about 250 ml of sterile Ringer's solution, and about 1 mg to about 30 mg and preferably 5 mg to about 25 mg of an antibody of the invention. Actual methods for preparing parenterally administrable compositions are well known and are described in more detail in, for example, "Remington's Pharmaceutical Science", 15th ed., Mack Publishing Company, Easton, PA.

The antibodies of the invention, when in a pharmaceutical preparation, can be present in unit dose forms. The appropriate therapeutically effective dose can be determined readily by

those of skill in the art. A determined dose may, if necessary, be repeated at appropriate time intervals selected as appropriate by a physician during the treatment period.

The antibodies of the invention can be lyophilized for storage and reconstituted in a suitable carrier prior to use. This technique has been shown to be effective with conventional immunoglobulins and protein preparations and art-known lyophilization and reconstitution techniques can be employed.

The present invention will now be described with reference to the following specific, non-limiting examples.

Example 1

Generation of anti-TLR3 mAbs

The anti-TLR3 mAb was generated using standard hybridoma technology in normal Balb/c mice (Kohler *et al.*, *J Immunol* 6:511-519, 1976). All animal procedures were performed in accordance with the guidelines established by the Institutional Animal Care and Use Committee. The mice were injected intradermally twice with plasmid DNA encoding amino acids 1-703 of human TLR3 (SEQ ID NO: 3). Amino acids 1-703 correspond to the predicted extracellular domain of hTLR3 (SEQ ID NO: 4). The mice received the plasmid DNA injections of 10 µg/mouse two weeks apart. The mice were boosted by intradermal injection with the extracellular domain of the purified recombinant human TLR3 protein. The first and second protein immunizations, with 15 µg protein, occurred two and four weeks after the second plasmid DNA injection. The third boost (10 µg protein) occurred five months later. Three days prior to the harvest of the spleens, the mice were injected intravenously with the TLR3 protein (15 µg/mouse). B cell fusions were performed using standard methods (Kohler *et al.*, *supra*). Hybridomas were selected using media containing hypoxanthine-aminopterin-thymidine. Wells were screened by ELISA to detect anti-TLR3 antibodies. Positive wells were expanded and cloned using

limiting dilution. A large batch of antibody was prepared and purified using a Protein G column. The endotoxin levels were confirmed to be <1 EU/mg. mAb C1130 was generated in this manner. The antibody sequence is shown in Figs. 1 and 2.

Example 2

Isolation of Human Periperal Blood Mononuclear Cells

PBMCs were isolated from human blood. Whole blood was collected from a human donor into heparin-coated syringes. Approximately 50 mL of sterile Hank's Balanced Salt Solution (HBSS) (Invitrogen) was added to every 100 mL of blood. Thirty-eight mL of blood:HBSS were added to a 50 mL conical tube and 11 mL Ficoll-Paque Plus solution (Amersham) was slowly layered underneath. The tubes were centrifuged at 400x g for 40 minutes at room temperature. The centrifuge brake was turned off to preserve the gradient. The PBMCs form a white layer just above the Ficoll. The PBMCs from one conical were aspirated with a pipette into a new 50 mL conical. The tube was filled with HBSS to wash away the remainder of the Ficoll. The cells were spun at 600x g for 10 minutes. The supernatant was poured off and the pellet was resuspended in 10 mL Red Blood Cell Lysis Solution (Sigma) in a single tube. The tube was incubated at room temperature for ten minutes. The tube was brought to 50 mL with HBSS, and the cells were pelleted by centrifugation at 600x g. The cells were washed twice more with HBSS. After the final wash the pellet was resuspended in complete media: RPMI 1640 media/10% FBS/1X Non-Essential Amino Acids/ 1X Sodium Pyruvate/ 10 ug/mL gentamycin. Gentamycin was purchased from Sigma; the other media components were purchased from Invitrogen. An aliquot of the cells was removed and mixed with 50 μ L trypan blue to obtain a live cell count. The cells were plated in 48-well plates at a concentration of 3×10^6 cells/well (0.5 mL/well).

Example 3Determination of Anti-hTLR3 Antibody Effects on Cytokine/Chemokine Production

Purified antibodies were added to PBMCs to a final concentration of 20 μ g/mL. The cells and the antibodies were incubated at 37°C for 30 minutes to one hour before the addition of 1 μ g/mL CpG2216 (synthesized by Invitrogen), or 1 μ g/mL R848 (Invivogen). CpG2216 has the sequence 5'-ggG GGA CGA TCG TCg ggg gg-3'. The bases in capital letters are linked by phosphodiester bonds and those in lowercase are linked by phosphorothioate bonds. R848, also known as resiquimod, is an imidazoquinolinamine, and is in the same compound class as imiquimod. Supernatants were harvested after 24h and frozen at -20°C.

Cytokine and chemokine concentrations in the supernatants were measured using Luminex technology. A Luminex Kit from Biosource was used to measure the following cytokines/chemokines: IL-1 β , IL-6, IL-8, IL-10, IL-12, TNF α , IFN α , IFN γ , RANTES, MCP-1, MIP-1 α and IP-10. In some instances, IFN α levels were measured using an ELISA kit (PBL Biomedical Labs). Statistical analysis was performed using two-factor analysis of variance with follow-up pairwise comparisons.

The results are shown in Fig. 3 and indicate that incubation of PBMCs with C1130 resulted in the production of IL-8, MCP-1, MIP-1 α , RANTES, and TNF α by the human cells (n=3 experiments). These effects were not seen in PBMCs incubated with another anti-TLR3 murine IgG1 antibody, C1068 that was generated in a similar manner to C1130. Lots of purified antibody were tested for endotoxin and the levels were below 1 EU/mg.

Example 4Determination of Anti-hTLR3 Antibody Effects on IFN α Production

Since some TLRs are known to dimerize and/or use different adaptor proteins to alter ligand-binding specificity, PBMCs that were pretreated with the anti-hTLR3 antibody C1130 were stimulated with ligands for other TLRs, in particular CpG2216 as described in Example 3 to examine the effect of TLR3 modulation on the response to other TLR ligands. Since the ligands for TLR3 and TLR9 are nucleic acids, and both activate interferon secretion, it was hypothesized that they could share a signaling pathway. The results from three experiments are shown in Fig. 4 and indicate that PBMCs incubated with C1130 and CpG2216 secreted more IFN α than cells stimulated with CpG alone. The average increase was 7-fold.

Example 5

Determination of Anti-hTLR3 Antibody Effects on IL10 Production

The ligands for TLR7 and TLR8 are also nucleic acids. R848 (resiquimod) is a synthetic ligand for TLR7 and TLR8 in humans, which have been shown to recognize guanosine- and uridine-rich single-stranded RNA (Heil *et al.*, *Science* 5663: 1526, 2004) and was used to stimulate human PBMCs. Activation of TLR7, like TLR3, triggers the secretion of Type-I interferons. The results in Fig. 5 indicate that C1130 did not affect levels of IFN α secreted by PBMCs in response to R848. Though PBMCs usually secrete very high levels of IFN α in response to R848, in two of three experiments stimulation with R848 induced the production of ~500 pg/mL IFN α (a level low enough to presumably see any effect by an agonist or antagonist mAb). C1130 did affect R848-induced IL-10 levels. In three experiments, C1130 decreased R848-induced IL-10 by an average of 5-fold.

Example 6

Recognition of Epithelial Cell Surface TLR3 by Antibody C1130

Flow cytometry analyses were conducted on a Fluorescence-Activated Cell Sorter (FACS) instrument. C1130 antibody was

conjugated to APC using a Zenon mouse IgG1 labeling kit according to the manufacturer's protocol. Five microliters of labeling reagent per 1 μ g of mAb were incubated for 5 minutes at room temperature and protected from light. Blocking reagent was added at a ratio of 5 μ l to 1 μ g of mAb according to the manufacturer's protocol. Zenon-labeled antibodies were used within 30 minutes of conjugation. HEK293 (human embryonic kidney epithelial cells) that were stably transfected with human TLR3 were purchased from Invivogen.

293-TLR3 were fixed by 15 minute incubation in Cytofix either prior to or following staining. Approximately 1x10⁶ cells in 50 μ l were incubated with APC-labeled antibody in 96-well round bottom plate for 30-60 minutes on ice. Cells were washed 3 times in PBS+1% FBS by centrifugation at 1600rpm for 2 minutes. Data acquisition was performed on a Becton-Dickinson FACSCalibur instrument and data analysis was performed using WinList (Verity Software House, Topsham, ME).

The results in Fig. 6 show that antibody C1130 binds to surface TLR3 on 293-hTLR3 cells fixed either before or after staining. A commercially available PE-labeled anti-hTLR3 (clone 3.7) was used as a positive control and Zenon APC-labeled mouse IgG1 as a negative control. These data demonstrate that the anti-hTLR3 antibody C1130 recognizes epithelial cells.

Example 7

Recognition of Lung Epithelial Cell Surface TLR3 by Antibody

C1130

A549 cells, a human lung epithelial cell line, were obtained from the American Type Culture Collection (ATCC Accession No. CCL-185). Cells were transfected with a mammalian expression vector encoding a neomycin selectable marker along with a full-length copy of the human TLR3 gene under the control of the cytomegalovirus (CMV) promoter using Lipofectamine 2000 reagent (Invitrogen, Inc). A549 cells were also transfected in

parallel with the vector plasmid DNA-only (encoding neomycin resistance) as a control. Twenty-four hours post-transfection, cells were then trypsinized and seeded at dilution of 1:20 in media containing neomycin (G418) at 0.5 mg/ml. Cell clones appeared after 2 weeks growth in selection media containing G418. Cell colonies from each transfection were separately pooled. A549 cell lines derived from transfection and selection with the full-length human TLR3 expression vector (A549-hTLR3) or vector control (A549-neo) were maintained in growth media containing 0.5 mg/ml of G418.

C1130 antibody was conjugated to APC as described in Example 7. A549-TLR3.2 cells were fixed by 15 minute incubation in Cytofix either prior to or following staining. Approximately 1×10^6 cells in 50 μ l were incubated with APC-labeled antibody in 96-well round bottom plate for 30-60 minutes on ice. Cells were washed 3 times in PBS+1% FBS by centrifugation at 1600rpm for 2 minutes. Data acquisition and analysis was performed as described in Example 7. The results in Fig. 7 shows that C1130 binds to surface TLR3 on A549-TLR3.2 cells fixed either before or after staining. A commercially available PE-labeled anti-TLR3 (Clone 3.7) was used as a positive control and Zenon APC-labeled mouse IgG1 as a negative control. The ability of C1130 to recognize lung epithelial cells indicates that it has potential therapeutic use in pulmonary infections.

Example 8

Recognition of Cynomolgus White Blood Cells by Antibody C1130

Whole blood from Cynomolgus macaques was diluted 1:10 in FACSlyse buffer and incubated for 15 minutes at room temperature to lyse the red blood cells. Cells were then washed in PBS+1% FBS 4 times by centrifugation at 1400 rpm for 8 minutes. The resulting cell pellet was resuspended in PBS+1% FBS and counted manually using a hemacytometer. Cell viability was determined

by staining a sample cell population with 0.2% trypan blue. All samples tested were at least 95% viable.

The total cell pellet was resuspended in 1-2 ml of PBS supplemented with 10% FBS and kept at either 4°C or 37°C to evaluate for differences in receptor internalization. Fifty microliters (approximately 2×10^6 cells) were distributed to each well in 96-well round bottom plates. FITC, PE and APC labeled mAbs were added at 1 μ g per well, incubated for at least 30 minutes at either 4°C or 37°C and protected from light. Cells were then washed 3 times in PBS + 1% FBS by centrifugation at 1600 rpm for 2 minutes. After the final wash the cells were resuspended in Cytofix buffer and incubated for 15 minutes at either 4°C or 37°C. Following paraformaldehyde fixation in the Cytofix buffer, the cells were washed once by centrifugation at 1600 rpm for 2 minutes and resuspended in 200 μ l of PBS+1% FBS. Samples were either read immediately or stored overnight at 4°C before acquisition. Data acquisition and analysis was performed as described in Example 7.

The results shown in Fig. 8 indicate that C1130 binds to cynomolgus macaque (cyano) CD11b positive cells, CD83 positive cells, CD86 positive cells, and CD3 positive cells. CD83 is found on B cells and dendritic cells and CD3 is found only on T-cells, indicating that C1130 recognizes different cell populations in PBMCs.

The present invention now being fully described, it will be apparent to one of ordinary skill in the art that many changes and modifications can be made thereto without departing from the spirit or scope of the appended claims.

CLAIMS

1. An isolated antibody reactive with human Toll Like Receptor 3 (hTLR3) or its homologs that induces cellular production of a cytokine selected from the group consisting of IL-8, MCP-1, MIP1- α , RANTES and TNF- α .
2. An isolated antibody reactive with hTLR3 or its homologs that modifies an immune response to other Toll Like Receptor ligands.
3. An isolated antibody reactive with hTLR3 having the antigen binding ability of a monoclonal antibody comprising the amino acid sequences of the heavy chain complementarity determining regions (CDRs) as shown in SEQ ID NOS: 9, 11 and 13 and the amino acid sequences of the light chain CDRs as shown in SEQ ID NOS: 19, 21 and 23.
4. An isolated antibody reactive with hTLR3 comprising the amino acid sequences of the heavy chain complementarity determining regions (CDRs) as shown in SEQ ID NOS: 9, 11 and 13 and the amino acid sequences of the light chain CDRs as shown in SEQ ID NOS: 19, 21 and 23.
5. An isolated antibody reactive with hTLR3 comprising a heavy chain comprising the amino acid sequence shown in SEQ ID NO: 6 and a light chain comprising the amino acid sequence shown in SEQ ID NO: 16.
6. An isolated polynucleotide encoding an antibody heavy chain comprising the CDR amino acid sequences shown in SEQ ID NOS: 9, 11 and 13.
7. An isolated polynucleotide encoding an antibody light chain comprising the CDR amino acid sequences shown in SEQ ID NOS: 19, 21 and 23.
8. An isolated polynucleotide encoding an antibody heavy chain comprising the amino acid sequence shown in SEQ ID NO: 6.

9. The polynucleotide of claim 7 comprising the sequence shown in SEQ ID NO: 5.

10. An isolated polynucleotide encoding an antibody light chain comprising the amino acid sequence shown in SEQ ID NO: 16.

11. The polynucleotide of claim 10 comprising the sequence shown in SEQ ID NO: 15.

12. A vector comprising at least one polynucleotide of claims 6, 7, 8, 9, 10 or 11.

13. A host cell comprising the vector of claim 12.

14. A method of making an antibody reactive with hTLR3 comprising culturing the host cell of claim 13 and recovering the antibody produced by the host cell.

15. A hybridoma cell line that produces the antibody of claim 5.

16. A method of treating viral infection comprising administering to a patient a therapeutically effective amount of the antibody of claim 1 in combination with an immune stimulant.

17. The method of claim 16 wherein the immune stimulant is interferon or a Toll-Like Receptor-9 (TLR9) agonist.

18. The method of claim 16 wherein the viral infection is hepatitis viruses, herpes simplex virus, human immunodeficiency virus, human papilloma virus or other cutaneous and mucosal-associated infections.

19. A method of preventing viral infection comprising administering to a patient a prophylactically effective amount of the antibody of claim 1 in combination with an immune stimulant.

20. The method of claim 19 wherein the immune stimulant is interferon or a Toll-Like Receptor-9 (TLR9) agonist.

21. The method of claim 19 wherein the viral infection is hepatitis viruses, herpes simplex virus, human immunodeficiency virus, human papilloma virus or other cutaneous or mucosal-associated infections.

22. A method of treating cancer comprising administering to a patient a therapeutically effective amount of the antibody of claim 1 in combination with an immune stimulant.

23. The method of claim 22 wherein the immune stimulant is interferon or a Toll-Like Receptor 9 (TLR9) agonist.

24. The method of claim 22 wherein the cancer is multiple myeloma, chronic myelogenous leukemia, hairy cell leukemia, malignant melanoma or sarcomas.

25. A method treating inflammatory bowel disease comprising administering to a patient a therapeutically effective amount of the antibody of claim 1 in combination with an immune stimulant.

26. The method of claim 25 wherein the immune stimulant is interferon or a TLR9 agonist.

27. The method of claim 25 wherein the inflammatory bowel disease is Crohn's disease or ulcerative colitis.

28. A method of treating a viral infection-associated symptom comprising administering to a patient a therapeutically effective amount of the antibody of claim 1 in combination with a Toll-Like Receptor 7 (TLR7) agonist.

29. The method of claim 28 wherein the TLR7 agonist is imiquimod or resiquimod.

30. The method of claim 28 wherein the viral infection-associated symptom is genital warts.

31. A method preventing a viral infection-associated symptom comprising administering to a patient a prophylactically effective amount of the antibody of claim 1 in combination with a Toll-Like Receptor 7 (TLR7) agonist.

32. The method of claim 31 wherein the TLR7 agonist is imiquimod or resiquimod.

33. The method of claim 31 wherein the viral infection-associated symptom is genital warts.

34. A method of treating a pulmonary disease and pathogen-mediated exacerbation comprising administering to a patient a therapeutically effective amount of the antibody of claim 1 in combination with a TLR9 or TLR7 agonist.

35. The method of claim 34 wherein the TLR7 agonist is imiquimod or resiquimod.

36. The method of claim 34 wherein the pulmonary disease is bacterial, fungal or viral pneumonias, and pathogen-mediated exacerbation is asthma, bronchitis or chronic obstructive pulmonary diseases.

37. A method preventing a pulmonary disease and pathogen-mediated exacerbation comprising administering to a patient a prophylactically effective amount of the antibody of claim 1 in combination with a TLR9 or TLR7 agonist.

38. The method of claim 37 wherein the TLR7 agonist is imiquimod or resiquimod.

39. The method of claim 37 wherein the pulmonary disease is bacterial, fungal or viral pneumonias, and pathogen-mediated exacerbation is asthma, bronchitis or chronic obstructive pulmonary diseases.

40. A method of treating graft-versus-host disease (GVHD) comprising administering to a patient a therapeutically effective amount of the antibody of claim 1 in combination with a TLR9 or TLR7 agonist.

41. The method of claim 40 wherein the TLR7 agonist is imiquimod or resiquimod.

42. A method preventing GVHD comprising administering to a patient a prophylactically effective amount of the antibody of claim 1 in combination with a TLR9 or TLR7 agonist.

43. The method of claim 42 wherein the TLR7 agonist is imiquimod or resiquimod.

44. A method of treating autoimmune disease comprising administering to a patient a therapeutically effective amount of the antibody of claim 1 in combination with an immune treatment.

45. The method of claim 44 wherein the immune treatment is interferon.

46. The method of claim 44 wherein the autoimmune disease is multiple sclerosis or lupus.

47. A method preventing an autoimmune disease comprising administering to a patient a prophylactically effective amount of the antibody of claim 1 in combination with an immune treatment.

48. The method of claim 47 wherein the immune treatment is interferon.

49. The method of claim 47 wherein the autoimmune disease is multiple sclerosis or lupus.

Figure 1

Nucleotide sequence for C1130 heavy chain variable region

ATGGAATGTAACGGATACTCCTTTATTCTGTCGGTAATTCAAGGGGCTACTCAGAGGTTCAAGGC
AGCTCCAGCAGTCTGGACTGTGCTGGCAAGGCCTGGGCTTCGTAAAGATGTCTGCAAGGC
TTCTGGCTACAGGTTCCAGCTACGGGATGCACTGGTAAAACAGAGGCCTGGACAGGGTCTA
GAATGGATTGGTGTATTATCCTGGAAACAATGATATTACTTATACTCAGAAGTCAAGGGCA
AGGCCAAACTGACTGCAGTCACATCCGCCAGCACTACCTACATGGAACTCAGCAGCCTGACAAA
TGAAGACTCTGCGGTCTATTACTGTTCAACTCTAATGTTGCTTATTGGGCCAAGGGACTCTG
GTCACTGTCACTGCA (SEQ ID NO: 5)

Amino Acid sequence for C1130 Heavy Chain variable region

MECNWILPFILSVISGVYSEVQLQQSGTVLARPGASVKMSCKASGYRFSSYGMHWVKQRPGQGL
EWIGAIYPGNNDITYTQKFKGKAKLTAVTSASTTYMELSSLTNEDSAVYYCSTLMFAYWGQGTL
VTVTA (SEQ ID NO: 6)

Signal Sequence

MECNWILPFILSVISGVYS (SEQ ID NO: 7)

FR1

EVQLQQSGTVLARPGASVKMSCKAS (SEQ ID NO: 8)

CDR1

GYRFSSYGMH (SEQ ID NO: 9)

FR2

WVKQRPGQGLEWIG (SEQ ID NO: 10)

CDR2

AIYPGNNDITYTQKFKG (SEQ ID NO: 11)

FR3

KAKLTAVTSASTTYMELSSLTNEDSAVYYCST (SEQ ID NO: 12)

CDR3

LMFAY (SEQ ID NO: 13)

Mouse J HC

WGQGTLVTVTA (SEQ ID NO: 14)

Figure 2

Nucleotide sequence for C1130 Light Chain variable region

ATGGACATGAGGGTTCCTGCTCACGTTTGGCTTCTGGCTCTGGTTCCAGGTACAGAT
GTGACATCCAGATGACCCAGTCTCCATCTTCCTATCTGCCTCTGGGAGAAAGAGTCAGTCT
CACTTGTGGGCAAGTCAGGAAATTAGTGATCAGTTAAGTTGGCTTCAGCAGAAATCGGGTGG
ACTATTAAACGCCTGGTCTATGCCGCATCCACTTAGATTCTGGTGTCCAAAAGGTTCACTG
GCAGTAGGTCTGGGTCAAGACTTCTCACCACAGCAGCCTTGAGTCTGAAGATTTGCAGA
CTATTACTGTCTACGATATGATAATTATCCGTGGACGTTGGCAGGCACCAGGCTGGAAATC
AGA (SEQ ID NO: 15)

Amino Acid sequence for C1130 Light Chain variable region

MDMRVPAHVFGFLLLWFPGRCDIQMTQSPSSLSASLGERVSLTCRASQEISDHLSWLQQKSGG
TIKRLVYAASTLDSGVPKRFSGSRSGSDFSLTISSEDFADYYCLRYDNYPWTFGAGTRLEI
R (SEQ ID NO: 16)

Signal sequence

MDMRVPAHVFGFLLLWFPGRTRC (SEQ ID NO: 17)

FR1

DIQMTQSPSSLSASLGERVSLTC (SEQ ID NO: 18)

CDR1

RASQEISDHLS (SEQ ID NO: 19)

FR2

WLQQKSGGTIKRLVY (SEQ ID NO: 20)

CDR2

AASTLDS (SEQ ID NO: 21)

FR3

GVPKRFSGSRSGSDFSLTISSEDFADYYC (SEQ ID NO: 22)

CDR3

LRYDNYPWT (SEQ ID NO: 23)

Mouse J KAPPA

FGAGTRLEIR (SEQ ID NO: 24)

Figure 3

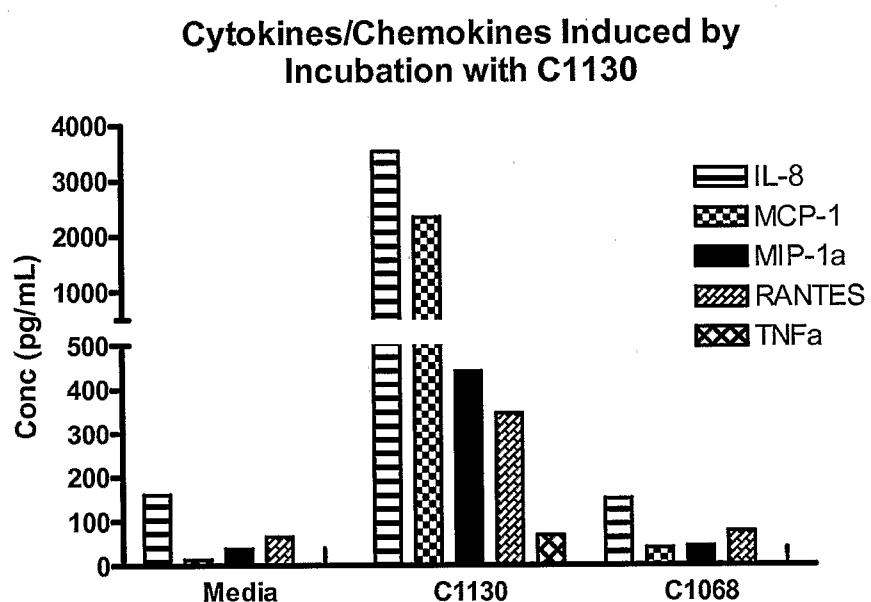


Figure 4

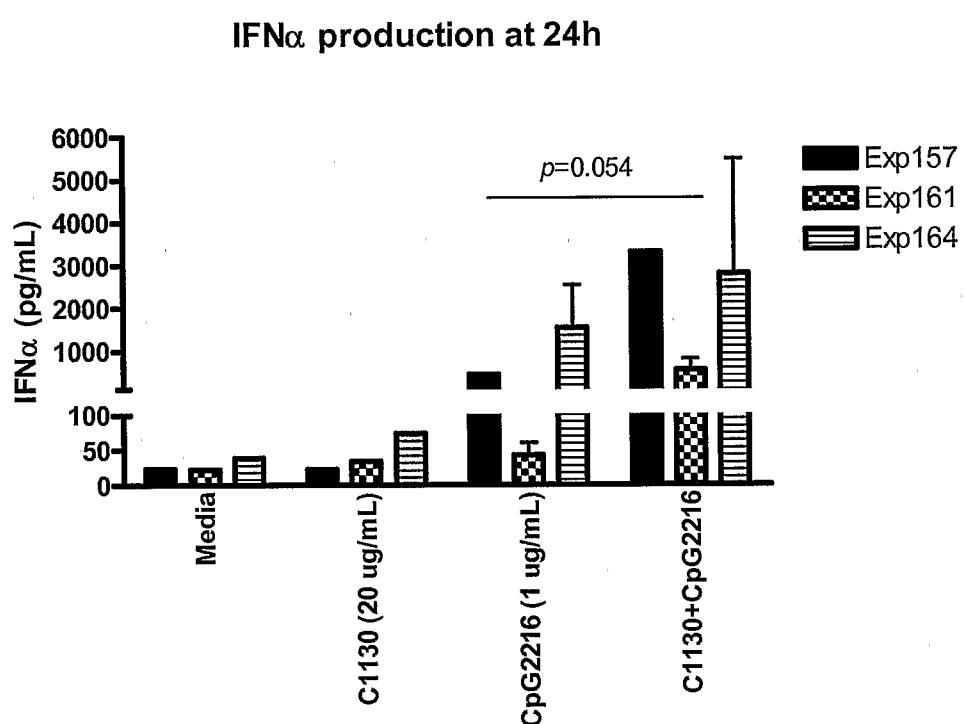


Figure 5

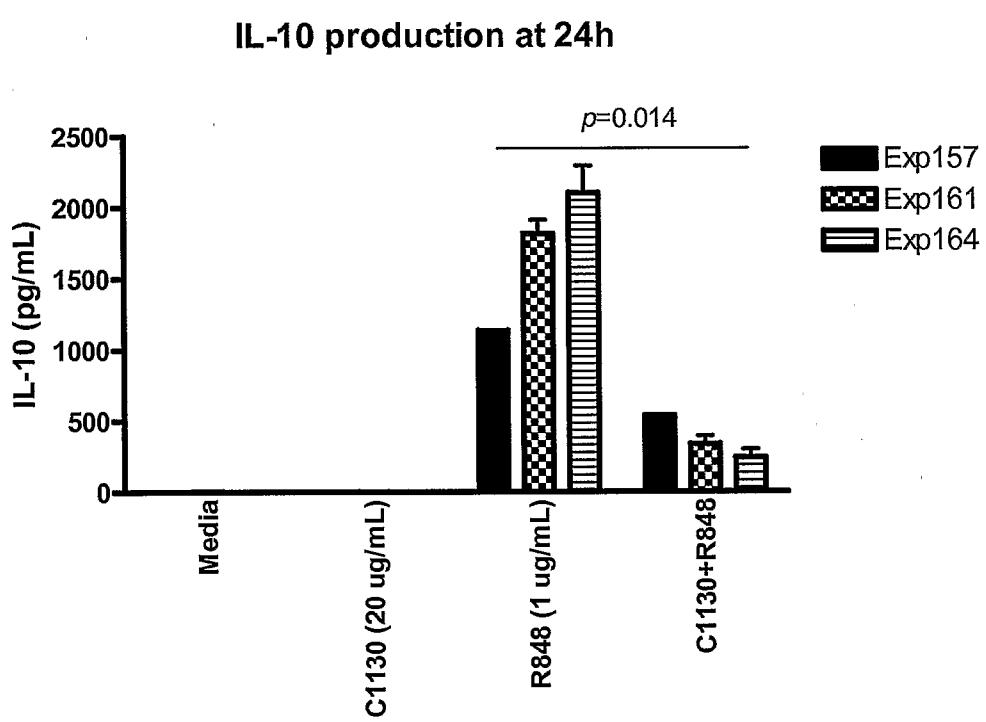


Figure 6

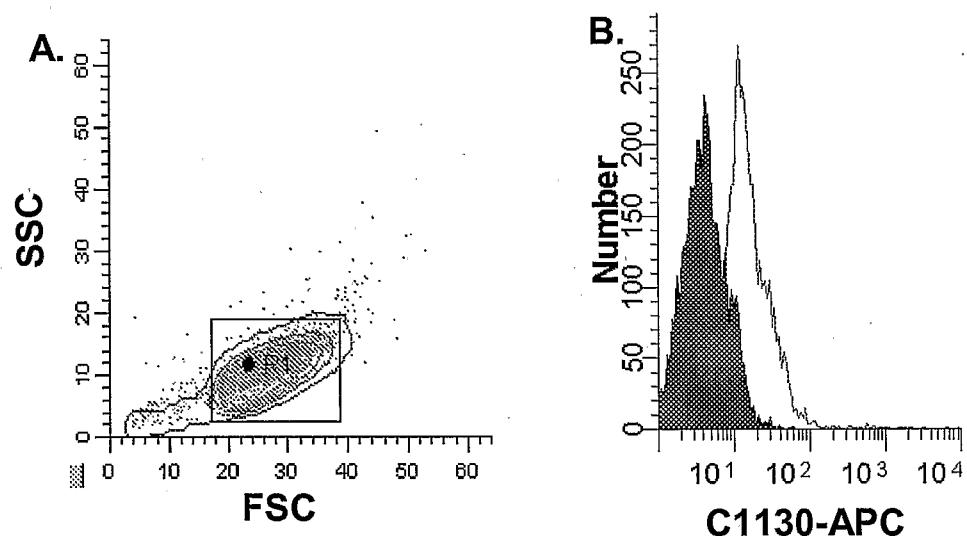

293-TLR3

Figure 7

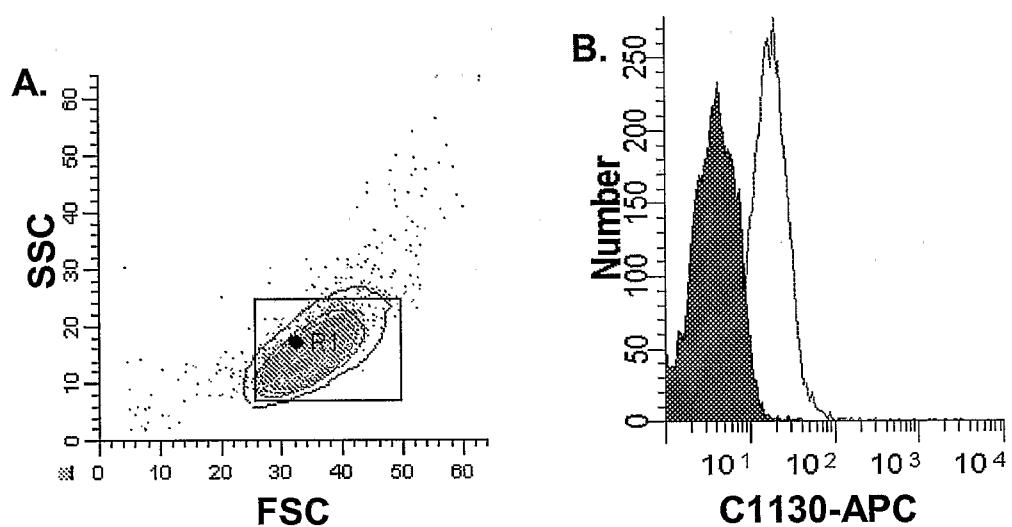
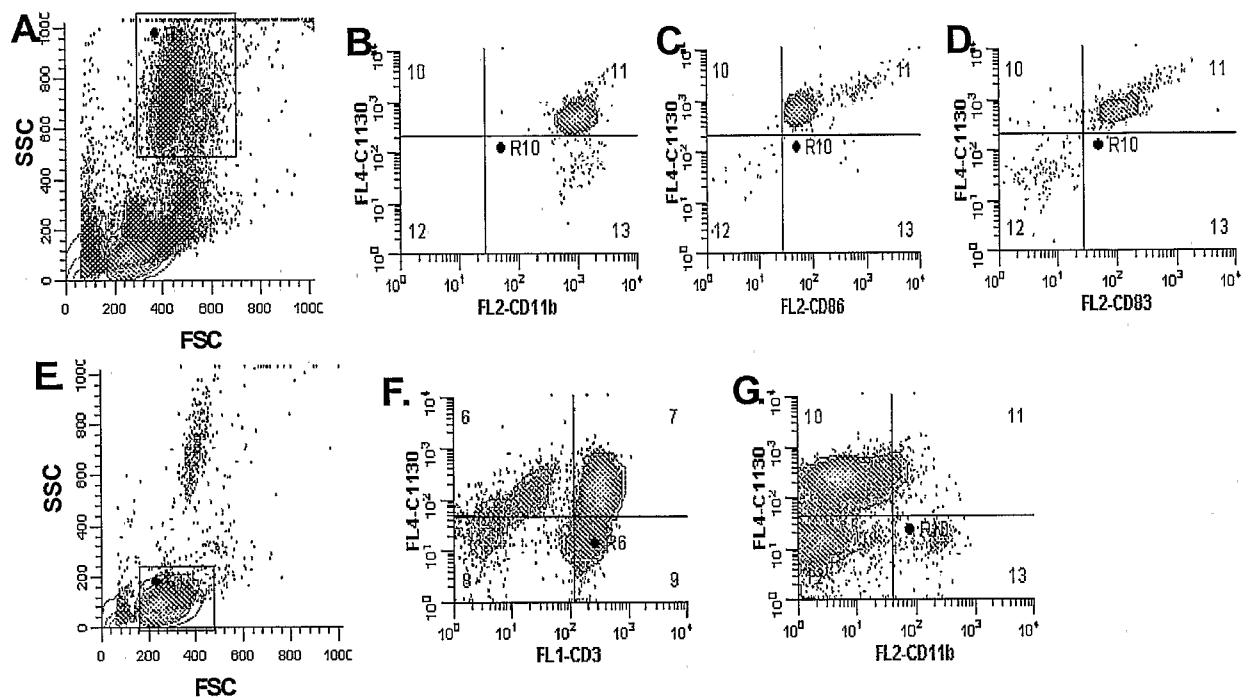


A549-TLR3.2

Figure 8

SEQUENCE LISTING

5 <110> CENTOCOR, INC.
10 <120> TOLL LIKE RECEPTOR 3 ANTIBODIES, METHODS
AND USES
15 <130> CEN5116 PCT
<140> TO BE ASSIGNED
<141> 2006-10-27
20 <150> 60/730,793
<151> 2005-10-27
25 <160> 24
30 <170> FastSEQ for Windows Version 4.0
<210> 1
<211> 2712
<212> DNA
<213> Homo sapiens
35 <400> 1
atgagacaga ctttgccttg tatctacttt tgggggggccc ttttgcctt tggatgctg 60
tgtgcacccct ccaccaccaa gtgcactgtt agccatgaag ttgctgactg cagccacctg 120
aagttgactc aggtacccga tggatctaccc acaaacataa cagtgttcaa ctttacccat 180
aatcaactca gaagattacc agccgcacac ttccacaaggt atagccagct aactagctt 240
gatgttaggat ttaacaccat ctcaaaactg gagccagaat tggccagaa acttcccatg 300
ttaaaaggtt tgaacacccca gcacaatgag ctatctcaac tttctgataa aaccttgc 360
ttctgcacga atttgactga actccatctc atgtccaaact caatccagaa aattaaaaat 420
aatcccttgc tcaagcagaa gaatttaatc acattagatc tggctcataa tggcttgc 480
tctacaaaaat taggaactca ggttcagctg gaaaatctcc aagagttctt attatcaa 540
aataaaattc aagcgctaaa aagtgaagaa ctggatatct ttgccaattc atctttaaaa 600
aaatttagagt tggcatcgaa tcaaaattaaa gagtttctc caggggtgtt tcacgcaatt 660
ggaagattat ttggccttgc tctgaacaat gtccagctgg gtcccccagct tacagagaag 720
ctatgtttgg aatttagcaaa cacaaggatttgc cggaaatctgt ctctgagtaa cagccagctg 780
40 tccaccacca gcaatacaac ttcttggga ctaaaagtggaa caaatctcac tatgctcgat 840
ctttccttaca acaactttaa tgggttgggt aacgattcct ttgcttggct tccacaacta 900
gaatattttc tccttagagta taataatata cagcatttgc tttctcactc ttgcacggg 960
ctttcaatgt tgaggtacccat gaatttggaa cggcttttgc ctaaaacaaag tattttccctt 1020
gcctcactcc ccaagatttgc tgattttgc ttctgagtttgc taaaatgtttt ggagcacctt 1080
45 aacatggaaag ataatgatata tccaggcata aaaagcaata tggtcacagg attgataaaac 1140
ctgaaaatact taagtctatc caactccctt acaagtttgc gaactttgc aatgaaaaca 1200
tttgcattac ttgcatttgc tcccttacac atactcaacc taaccaagaa taaaatctca 1260
aaaatagaga gtgtatgttttgc ctcttgggtt gggccacccat aagtacttgc cttggccctt 1320
aatgaaatttgc ggcaagaactt cacaaggccat gaatggagag gtcttagaaaa tattttcgaa 1380
50 atctatctt cctacaacaa gtacctgcag ctgacttagga actccttgc cttggccctt 1440
agccttcaac gactgtatc ccgaagggtt gccccttaaaatgtgatgttgc ctctcatttca 1500
ccattccagc ctcttgcatttgc cttgaccatttgc ctggatctaa gcaacaacaa catagccaa 1560
ataaaatgatg acatgttggaa gggcttgc gaaacttagaaaa ttctcgatatttgcagcataac 1620
aacttagcacttgc qgctctggaa acacqcaac cttggccctt ccatttatttgc cttaaagggtt 1680

ctgttcacc tccacatcct taacttggag tccaaacggct ttgacgagat cccagttgag 1740
 gtcttcaagg atttatttga actaaagatc atcgatttag gattgaataa tttaaacaca 1800
 cttccagcat ctgtcttaa taatcaggtg tctctaaagt cattgaacct tcagaagaat 1860
 ctcataacat ccgttgagaa gaaggtttc gggccagct tcaggaacct gactgagtt 1920
 5 gatatgcgct ttaatccctt tgattgcacg tggaaagta ttgcctgggt tggtaattgg 1980
 attaaccgaga cccataccaa catccctgag ctgtcaagcc actacctttg caacactcca 2040
 cctcaactatc atggggttccc agttagactt tttgatacat catcttgcac agacagtggc 2100
 cccttgaac tcttttcat gataaatacc agtacccgt tgattttat cttaattgtt 2160
 cttctcatcc actttgaggg ctggaggata tcttttattt ggaatgttc agtacatcga 2220
 10 gttcttgggtt tcaaagaaat agacagacag acagaacagt ttgaatatgc agcatatata 2280
 attcatgcct ataaagataa ggattgggtc tggaaacatt tctcttcaat ggaaaaggaa 2340
 gaccaatctc tcaaattttg tctggaaagaa agggactttg aggccgggtgt ttttgaacta 2400
 gaagcaattt gtaacagcat caaaagaagc agaaaaattt ttttggat aacacaccat 2460
 ctattaaaag acccattatg caaaagattc aaggtacatc atgcagttca acaagctatt 2520
 15 gaacaaaatc tggattccat tatattgggtt ttccttggg agattccaga ttataaactg 2580
 aaccatgcac tctgtttgcg aagaggaatg tttaaatctc actgcacatc ttactggcca 2640
 gttcagaaaag aacggatagg tgccttcgt cataaattgc aagtagcact tggatccaaa 2700
 aactctgtac at 2712

20 <210> 2
 <211> 904
 <212> PRT
 <213> Homo sapiens

25 <400> 2
 Met Arg Gln Thr Leu Pro Cys Ile Tyr Phe Trp Gly Gly Leu Leu Pro
 1 5 10 15
 Phe Gly Met Leu Cys Ala Ser Ser Thr Thr Lys Cys Thr Val Ser His
 20 25 30

30 Glu Val Ala Asp Cys Ser His Leu Lys Leu Thr Gln Val Pro Asp Asp
 35 40 45
 Leu Pro Thr Asn Ile Thr Val Leu Asn Leu Thr His Asn Gln Leu Arg
 50 55 60

35 Arg Leu Pro Ala Ala Asn Phe Thr Arg Tyr Ser Gln Leu Thr Ser Leu
 65 70 75 80
 Asp Val Gly Phe Asn Thr Ile Ser Lys Leu Glu Pro Glu Leu Cys Gln
 85 90 95

Lys Leu Pro Met Leu Lys Val Leu Asn Leu Gln His Asn Glu Leu Ser
 100 105 110

40 Gln Leu Ser Asp Lys Thr Phe Ala Phe Cys Thr Asn Leu Thr Glu Leu
 115 120 125
 His Leu Met Ser Asn Ser Ile Gln Lys Ile Lys Asn Asn Pro Phe Val
 130 135 140

45 Lys Gln Lys Asn Leu Ile Thr Leu Asp Leu Ser His Asn Gly Leu Ser
 145 150 155 160
 Ser Thr Lys Leu Gly Thr Gln Val Gln Leu Glu Asn Leu Gln Glu Leu
 165 170 175

Leu Leu Ser Asn Asn Lys Ile Gln Ala Leu Lys Ser Glu Glu Leu Asp
 180 185 190

50 Ile Phe Ala Asn Ser Ser Leu Lys Leu Glu Leu Ser Ser Asn Gln
 195 200 205
 Ile Lys Glu Phe Ser Pro Gly Cys Phe His Ala Ile Gly Arg Leu Phe
 210 215 220

Gly Leu Phe Leu Asn Asn Val Gln Leu Gly Pro Ser Leu Thr Glu Lys
 225 230 235 240
 Leu Cys Leu Glu Leu Ala Asn Thr Ser Ile Arg Asn Leu Ser Leu Ser
 245 250 255
 5 Asn Ser Gln Leu Ser Thr Thr Ser Asn Thr Thr Phe Leu Gly Leu Lys
 260 265 270
 Trp Thr Asn Leu Thr Met Leu Asp Leu Ser Tyr Asn Asn Leu Asn Val
 275 280 285
 10 Val Gly Asn Asp Ser Phe Ala Trp Leu Pro Gln Leu Glu Tyr Phe Phe
 290 295 300
 Leu Glu Tyr Asn Asn Ile Gln His Leu Phe Ser His Ser Leu His Gly
 305 310 315 320
 Leu Phe Asn Val Arg Tyr Leu Asn Leu Lys Arg Ser Phe Thr Lys Gln
 325 330 335
 15 Ser Ile Ser Leu Ala Ser Leu Pro Lys Ile Asp Asp Phe Ser Phe Gln
 340 345 350
 Trp Leu Lys Cys Leu Glu His Leu Asn Met Glu Asp Asn Asp Ile Pro
 355 360 365
 20 Gly Ile Lys Ser Asn Met Phe Thr Gly Leu Ile Asn Leu Lys Tyr Leu
 370 375 380
 Ser Leu Ser Asn Ser Phe Thr Ser Leu Arg Thr Leu Thr Asn Glu Thr
 385 390 395 400
 Phe Val Ser Leu Ala His Ser Pro Leu His Ile Leu Asn Leu Thr Lys
 405 410 415
 25 Asn Lys Ile Ser Lys Ile Glu Ser Asp Ala Phe Ser Trp Leu Gly His
 420 425 430
 Leu Glu Val Leu Asp Leu Gly Leu Asn Glu Ile Gly Gln Glu Leu Thr
 435 440 445
 Gly Gln Glu Trp Arg Gly Leu Glu Asn Ile Phe Glu Ile Tyr Leu Ser
 30 450 455 460
 Tyr Asn Lys Tyr Leu Gln Leu Thr Arg Asn Ser Phe Ala Leu Val Pro
 465 470 475 480
 Ser Leu Gln Arg Leu Met Leu Arg Arg Val Ala Leu Lys Asn Val Asp
 485 490 495
 35 Ser Ser Pro Ser Pro Phe Gln Pro Leu Arg Asn Leu Thr Ile Leu Asp
 500 505 510
 Leu Ser Asn Asn Ile Ala Asn Ile Asn Asp Asp Met Leu Glu Gly
 515 520 525
 Leu Glu Lys Leu Glu Ile Leu Asp Leu Gln His Asn Asn Leu Ala Arg
 40 530 535 540
 Leu Trp Lys His Ala Asn Pro Gly Gly Pro Ile Tyr Phe Leu Lys Gly
 545 550 555 560
 Leu Ser His Leu His Ile Leu Asn Leu Glu Ser Asn Gly Phe Asp Glu
 565 570 575
 45 Ile Pro Val Glu Val Phe Lys Asp Leu Phe Glu Leu Lys Ile Ile Asp
 580 585 590
 Leu Gly Leu Asn Asn Leu Asn Thr Leu Pro Ala Ser Val Phe Asn Asn
 595 600 605
 Gln Val Ser Leu Lys Ser Leu Asn Leu Gln Lys Asn Leu Ile Thr Ser
 50 610 615 620
 Val Glu Lys Lys Val Phe Gly Pro Ala Phe Arg Asn Leu Thr Glu Leu
 625 630 635 640
 Asp Met Arg Phe Asn Pro Phe Asp Cys Thr Cys Glu Ser Ile Ala Trp
 645 650 655

Phe Val Asn Trp Ile Asn Glu Thr His Thr Asn Ile Pro Glu Leu Ser
 660 665 670
 Ser His Tyr Leu Cys Asn Thr Pro Pro His Tyr His Gly Phe Pro Val
 675 680 685
 5 Arg Leu Phe Asp Thr Ser Ser Cys Lys Asp Ser Ala Pro Phe Glu Leu
 690 695 700
 Phe Phe Met Ile Asn Thr Ser Ile Leu Leu Ile Phe Ile Phe Ile Val
 705 710 715 720
 Leu Leu Ile His Phe Glu Gly Trp Arg Ile Ser Phe Tyr Trp Asn Val
 10 725 730 735
 Ser Val His Arg Val Leu Gly Phe Lys Glu Ile Asp Arg Gln Thr Glu
 740 745 750
 Gln Phe Glu Tyr Ala Ala Tyr Ile Ile His Ala Tyr Lys Asp Lys Asp
 755 760 765
 15 Trp Val Trp Glu His Phe Ser Ser Met Glu Lys Glu Asp Gln Ser Leu
 770 775 780
 Lys Phe Cys Leu Glu Glu Arg Asp Phe Glu Ala Gly Val Phe Glu Leu
 785 790 795 800
 Glu Ala Ile Val Asn Ser Ile Lys Arg Ser Arg Lys Ile Ile Phe Val
 20 805 810 815
 Ile Thr His His Leu Leu Lys Asp Pro Leu Cys Lys Arg Phe Lys Val
 820 825 830
 His His Ala Val Gln Gln Ala Ile Glu Gln Asn Leu Asp Ser Ile Ile
 835 840 845
 25 Leu Val Phe Leu Glu Glu Ile Pro Asp Tyr Lys Leu Asn His Ala Leu
 850 855 860
 Cys Leu Arg Arg Gly Met Phe Lys Ser His Cys Ile Leu Asn Trp Pro
 865 870 875 880
 Val Gln Lys Glu Arg Ile Gly Ala Phe Arg His Lys Leu Gln Val Ala
 30 885 890 895
 Leu Gly Ser Lys Asn Ser Val His
 900

35 <210> 3
 <211> 2109
 <212> DNA
 <213> Homo sapiens

40 <400> 3
 atgagacaga ctttgccttg tatctacttt tgggggggccc ttttgcctt tggatgtctg 60
 tgtgcacccctt ccaccaccaa gtgcactgtt agccatgaag ttgctgactg cagccacctg 120
 aagtgtactc aggtaccggta tgatctaccc acaaataaa cagtgttcaa ccttacccat 180
 aatcaactca gaagattacc agccgccaac ttcacaaggt atagccagct aactagctt 240
 45 gatgttaggat ttaacaccat ctcaaaaactg gagccagaat tggccagaa acttccatg 300
 ttaaaaatgttt tgaacctcca gcacaatgag ctatctcaac ttctgtataa aacctttgcc 360
 ttctgcacga atttgactga actccatctc atgtccaaact caatccagaa aattaaaaat 420
 aatcccttttgc tcaaggcagaa gaatttaatc acattagatc tggcttcataa tggcttgtca 480
 tctacaaaat taggaactca ggttcagctg gaaaatctcc aagagcttctt attatcaaac 540
 50 aataaaaattc aagcgctaaa aagtgaagaa ctggatatct ttgccaattc atctttaaaa 600
 aaatttagagt tgtcatcgaa tcaaaattaaa gagttttctc cagggtgttt tcacgcaatt 660
 ggaagattat ttggcctctt tctgaacaat gtccagctgg gtcccagcct tacagagaag 720
 ctatgtttgg aatttagcaaa cacaaggcatt cggaaatctgt ctctgagtaa cagccagctg 780
 tccaccacca gcaatacaac tttcttggga ctaaagtggaa caaatctcac tatgctcgat 840

	ctttcctaca acaacttaaa tgtggttgggt aacgattcct ttgctggct tccacaacta 900
	gaatatttct tcctagagta taataatata cagcatttgc tttctcaactc tttgcacggg 960
	cttttcaatg tgaggtacct gaatttggaa cggctttta ctaaacaaag tatttccctt 1020
	gcctcactcc ccaagattga tgattttct tttcaagtggc taaaatgttt ggagcacctt 1080
5	aacatggaaatataatgtat tccaggcata aaaagcaata tgttcacagg attgataaac 1140
	ctgaaatact taagtctatc caactcctt acaagtttgc gaactttgc aatgaaaca 1200
	tttgtatcac ttgctcattc tcccttacac atactcaacc taaccaagaa taaaatctca 1260
	aaaatagaga gtgtatgcctt ctcttgggtt ggccacccat aagtacttga cctggccctt 1320
	aatgaaatggcaagaact cacaggccag gaatggagag gtctagaaaa tattttcgaa 1380
10	atctatctt cctacaacaa gtacctgcag ctgacttagga actcctttgc cttggcccca 1440
	agccttcaac gactgatgct ccgaagggtt gcccctaaaa atgtggatag ctctccctca 1500
	ccattccagc ctcttcgtaa cttgaccatt ctggatctaa gcaacaacaa catagccaaac 1560
	ataaaatgtt acatgttggaa gggtcttggaa aaactagaaa ttctcgattt gcagcataac 1620
15	aacttagcac ggctctggaa acacgcaaac cctgggtggc ccatttattt cctaaagggt 1680
	ctgttccacc tccacatcct taacttggag tccaaacggct ttgacgagat cccagttgag 1740
	gtcttcaagg atttatttga actaaagatc atcgatttag gattgaataa tttaaacaca 1800
	cttccagcat ctgtttaaa taatcagggt tctctaaagt cattgaacct tcagaagaat 1860
	ctcataacat ccgttgagaa gaaggttttc gggccagctt tcaggaacct gactgagttt 1920
	gatatgcgtt ttaatccctt tgattgcacg tttgaaagta ttgcctgggt ttttaattgg 1980
20	attaaacgaga cccataccaa catcccttggaa ctgtcaagcc actacctttt caacactccaa 2040
	cctcaactatc atgggttcccc agtgagactt tttgatacat catcttgcaa agacagtgcc 2100
	ccctttgaa 2109
	<210> 4
25	<211> 703
	<212> PRT
	<213> Homo sapiens
	<400> 4
30	Met Arg Gln Thr Leu Pro Cys Ile Tyr Phe Trp Gly Gly Leu Leu Pro 1 5 10 15
	Phe Gly Met Leu Cys Ala Ser Ser Thr Thr Lys Cys Thr Val Ser His 20 25 30
	Glu Val Ala Asp Cys Ser His Leu Lys Leu Thr Gln Val Pro Asp Asp 35 40 45
	Leu Pro Thr Asn Ile Thr Val Leu Asn Leu Thr His Asn Gln Leu Arg 50 55 60
	Arg Leu Pro Ala Ala Asn Phe Thr Arg Tyr Ser Gln Leu Thr Ser Leu 65 70 75 80
40	Asp Val Gly Phe Asn Thr Ile Ser Lys Leu Glu Pro Glu Leu Cys Gln 85 90 95
	Lys Leu Pro Met Leu Lys Val Leu Asn Leu Gln His Asn Glu Leu Ser 100 105 110
	Gln Leu Ser Asp Lys Thr Phe Ala Phe Cys Thr Asn Leu Thr Glu Leu 115 120 125
	His Leu Met Ser Asn Ser Ile Gln Lys Ile Lys Asn Asn Pro Phe Val 130 135 140
	Lys Gln Lys Asn Leu Ile Thr Leu Asp Leu Ser His Asn Gly Leu Ser 145 150 155 160
50	Ser Thr Lys Leu Gly Thr Gln Val Gln Leu Glu Asn Leu Gln Glu Leu 165 170 175
	Leu Leu Ser Asn Asn Lys Ile Gln Ala Leu Lys Ser Glu Glu Leu Asp 180 185 190

1 Ile Phe Ala Asn Ser Ser Leu Lys Lys Leu Glu Leu Ser Ser Asn Gln
 195 200 205
 2 Ile Lys Glu Phe Ser Pro Gly Cys Phe His Ala Ile Gly Arg Leu Phe
 210 215 220
 5 Gly Leu Phe Leu Asn Asn Val Gln Leu Gly Pro Ser Leu Thr Glu Lys
 225 230 235 240
 6 Leu Cys Leu Glu Leu Ala Asn Thr Ser Ile Arg Asn Leu Ser Leu Ser
 245 250 255
 10 Asn Ser Gln Leu Ser Thr Thr Ser Asn Thr Thr Phe Leu Gly Leu Lys
 260 265 270
 11 Trp Thr Asn Leu Thr Met Leu Asp Leu Ser Tyr Asn Asn Leu Asn Val
 275 280 285
 15 Val Gly Asn Asp Ser Phe Ala Trp Leu Pro Gln Leu Glu Tyr Phe Phe
 290 295 300
 16 Leu Glu Tyr Asn Asn Ile Gln His Leu Phe Ser His Ser Leu His Gly
 305 310 315 320
 17 Leu Phe Asn Val Arg Tyr Leu Asn Leu Lys Arg Ser Phe Thr Lys Gln
 325 330 335
 20 Ser Ile Ser Leu Ala Ser Leu Pro Lys Ile Asp Asp Phe Ser Phe Gln
 340 345 350
 21 Trp Leu Lys Cys Leu Glu His Leu Asn Met Glu Asp Asn Asp Ile Pro
 355 360 365
 25 Gly Ile Lys Ser Asn Met Phe Thr Gly Leu Ile Asn Leu Lys Tyr Leu
 370 375 380
 26 Ser Leu Ser Asn Ser Phe Thr Ser Leu Arg Thr Leu Thr Asn Glu Thr
 385 390 395 400
 27 Phe Val Ser Leu Ala His Ser Pro Leu His Ile Leu Asn Leu Thr Lys
 405 410 415
 30 Asn Lys Ile Ser Lys Ile Glu Ser Asp Ala Phe Ser Trp Leu Gly His
 420 425 430
 31 Leu Glu Val Leu Asp Leu Gly Leu Asn Glu Ile Gly Gln Glu Leu Thr
 435 440 445
 35 Gly Gln Glu Trp Arg Gly Leu Glu Asn Ile Phe Glu Ile Tyr Leu Ser
 450 455 460
 36 Tyr Asn Lys Tyr Leu Gln Leu Thr Arg Asn Ser Phe Ala Leu Val Pro
 465 470 475 480
 37 Ser Leu Gln Arg Leu Met Leu Arg Arg Val Ala Leu Lys Asn Val Asp
 485 490 495
 40 Ser Ser Pro Ser Pro Phe Gln Pro Leu Arg Asn Leu Thr Ile Leu Asp
 500 505 510
 41 Leu Ser Asn Asn Ile Ala Asn Ile Asn Asp Asp Met Leu Glu Gly
 515 520 525
 45 Leu Glu Lys Leu Glu Ile Leu Asp Leu Gln His Asn Asn Leu Ala Arg
 530 535 540
 46 Leu Trp Lys His Ala Asn Pro Gly Gly Pro Ile Tyr Phe Leu Lys Gly
 545 550 555 560
 47 Leu Ser His Leu His Ile Leu Asn Leu Glu Ser Asn Gly Phe Asp Glu
 565 570 575
 50 Ile Pro Val Glu Val Phe Lys Asp Leu Phe Glu Leu Lys Ile Ile Asp
 580 585 590
 51 Leu Gly Leu Asn Asn Leu Asn Thr Leu Pro Ala Ser Val Phe Asn Asn
 595 600 605
 55 Gln Val Ser Leu Lys Ser Leu Asn Leu Gln Lys Asn Leu Ile Thr Ser
 610 615 620

Val	Glu	Lys	Lys	Val	Phe	Gly	Pro	Ala	Phe	Arg	Asn	Leu	Thr	Glu	Leu	
625				630					635				640			
Asp	Met	Arg	Phe	Asn	Pro	Phe	Asp	Cys	Thr	Cys	Glu	Ser	Ile	Ala	Trp	
					645				650				655			
5	Phe	Val	Asn	Trp	Ile	Asn	Glu	Thr	His	Thr	Asn	Ile	Pro	Glu	Leu	Ser
					660				665				670			
Ser	His	Tyr	Leu	Cys	Asn	Thr	Pro	Pro	His	Tyr	His	Gly	Phe	Pro	Val	
					675				680			685				
10	Arg	Leu	Phe	Asp	Thr	Ser	Ser	Cys	Lys	Asp	Ser	Ala	Pro	Phe	Glu	
					690			695				700				

<210>	5																
<211>	399																
15	<212>	DNA															
	<213>	Mus musculus															
	<400>	5															
20	atggaatgt	a	c	t	g	g	a	t	a	c	t	t	t	t	a	t	60
	gttcagctcc	a	g	c	a	g	t	c	t	g	c	a	g	g	c	t	120
	tgcaaggctt	c	t	g	g	c	t	a	c	g	g	g	t	a	a	a	180
	ggacagggtc	t	g	a	g	g	t	g	a	t	g	g	t	a	a	t	240
	cagaagttca	a	g	g	c	a	g	g	c	a	a	t	g	a	t	a	300
25	gaactcagca	g	c	c	t	g	a	c	a	c	t	c	a	g	c	a	360
	gcttattggg	g	c	c	a	g	g	g	a	c	t	t	g	t	t	t	399
	<210>	6															
	<211>	133															
	<212>	PRT															
30	<213>	Mus musculus															
	<400>	6															
35	Met	Glu	Cys	Asn	Trp	Ile	Leu	Pro	Phe	Ile	Leu	Ser	Val	Ile	Ser	Gly	
	1					5				10				15			
	Val	Tyr	Ser	Glu	Val	Gln	Leu	Gln	Gln	Ser	Gly	Thr	Val	Leu	Ala	Arg	
						20				25				30			
	Pro	Gly	Ala	Ser	Val	Lys	Met	Ser	Cys	Lys	Ala	Ser	Gly	Tyr	Arg	Phe	
						35			40				45				
40	Ser	Ser	Tyr	Gly	Met	His	Trp	Val	Lys	Gln	Arg	Pro	Gly	Gln	Gly	Leu	
						50			55			60					
	Glu	Trp	Ile	Gly	Ala	Ile	Tyr	Pro	Gly	Asn	Asn	Asp	Ile	Thr	Tyr	Thr	
						65			70			75			80		
	Gln	Lys	Phe	Lys	Gly	Lys	Ala	Lys	Leu	Thr	Ala	Val	Thr	Ser	Ala	Ser	
						85			90			95					
45	Thr	Thr	Tyr	Met	Glu	Leu	Ser	Ser	Leu	Thr	Asn	Glu	Asp	Ser	Ala	Val	
						100			105			110					
	Tyr	Tyr	Cys	Ser	Thr	Leu	Met	Phe	Ala	Tyr	Trp	Gly	Gln	Gly	Thr	Leu	
						115			120			125					
50	Val	Thr	Val	Thr	Ala												
					130												

<210> 7
<211> 19

<212> PRT

<213> Mus musculus

<400> 7

5 Met Glu Cys Asn Trp Ile Leu Pro Phe Ile Leu Ser Val Ile Ser Gly
1 5 10 15
Val Tyr Ser

10

<210> 8

<211> 25

<212> PRT

<213> Mus musculus

15

<400> 8

Glu Val Gln Leu Gln Gln Ser Gly Thr Val Leu Ala Arg Pro Gly Ala
1 5 10 15
Ser Val Lys Met Ser Cys Lys Ala Ser
20 20 25

20

<210> 9

<211> 10

25

<212> PRT

<213> Mus musculus

<400> 9

Gly Tyr Arg Phe Ser Ser Tyr Gly Met His
30 1 5 10

<210> 10

<211> 14

35

<212> PRT

<213> Mus musculus

<400> 10

Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile Gly
40 1 5 10

<210> 11

<211> 17

45

<212> PRT

<213> Mus musculus

<400> 11

Ala Ile Tyr Pro Gly Asn Asn Asp Ile Thr Tyr Thr Gln Lys Phe Lys
50 1 5 10 15
Gly

5 <210> 12
<211> 32
<212> PRT
<213> Mus musculus

10 <400> 12
Lys Ala Lys Leu Thr Ala Val Thr Ser Ala Ser Thr Thr Tyr Met Glu
1 5 10 15
Leu Ser Ser Leu Thr Asn Glu Asp Ser Ala Val Tyr Tyr Cys Ser Thr
20 25 30

15 <210> 13
<211> 5
<212> PRT
<213> Mus musculus

20 <400> 13
Leu Met Phe Ala Tyr
1 5

25 <210> 14
<211> 11
<212> PRT
<213> Mus musculus

30 <400> 14
Trp Gly Gln Gly Thr Leu Val Thr Val Thr Ala
1 5 10

35 <210> 15
<211> 387
<212> DNA
<213> Mus musculus

40 <400> 15
atggacatga gggttcctgc tcacgtttt ggcttcttgt tgctctggtt tccaggtacc 60
agatgtgaca tccagatgac ccagtctcca tcttccttat ctgcctctct gggagaaaga 120
gtcagtctca cttgtcgggc aagtcaaggaa attagtgtatc acttaagttg gtttcagcag 180
aaatcggttg gaactattaa acgcctggtc tatgccgcat ccactttaga ttctgggtgc 240
ccaaaaaggt tcagtggcag taggtctggg tcagactttt ctctcaccat cagcagcctt 300
gagtctgaag attttgcaga ctattactgt ctacgatatg ataattatcc gtggacgttc 360
45 ggtgcaggca ccaggctgga aatcaga 387

50 <210> 16
<211> 129
<212> PRT
<213> Mus musculus

55 <400> 16
Met Asp Met Arg Val Pro Ala His Val Phe Gly Phe Leu Leu Leu Trp
1 5 10 15

Phe Pro Gly Thr Arg Cys Asp Ile Gln Met Thr Gln Ser Pro Ser Ser
 20 25 30
 Leu Ser Ala Ser Leu Gly Glu Arg Val Ser Leu Thr Cys Arg Ala Ser
 35 40 45
 5 Gln Glu Ile Ser Asp His Leu Ser Trp Leu Gln Gln Lys Ser Gly Gly
 50 55 60
 Thr Ile Lys Arg Leu Val Tyr Ala Ala Ser Thr Leu Asp Ser Gly Val
 65 70 75 80
 Pro Lys Arg Phe Ser Gly Ser Arg Ser Gly Ser Asp Phe Ser Leu Thr
 10 85 90 95
 Ile Ser Ser Leu Glu Ser Glu Asp Phe Ala Asp Tyr Tyr Cys Leu Arg
 100 105 110
 Tyr Asp Asn Tyr Pro Trp Thr Phe Gly Ala Gly Thr Arg Leu Glu Ile
 115 120 125
 15 Arg

20 <210> 17
 <211> 22
 <212> PRT
 <213> Mus musculus

 25 <400> 17
 Met Asp Met Arg Val Pro Ala His Val Phe Gly Phe Leu Leu Leu Trp
 1 5 10 15
 Phe Pro Gly Thr Arg Cys
 20

30 <210> 18
 <211> 23
 <212> PRT
 <213> Mus musculus
 35 <400> 18
 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Leu Gly
 1 5 10 15
 Glu Arg Val Ser Leu Thr Cys
 40 20

45 <210> 19
 <211> 11
 <212> PRT
 <213> Mus musculus

 <400> 19
 Arg Ala Ser Gln Glu Ile Ser Asp His Leu Ser
 50 1 5 10

<210> 20
 <211> 15

<212> PRT

<213> Mus musculus

<400> 20

5 Trp Leu Gln Gln Lys Ser Gly Gly Thr Ile Lys Arg Leu Val Tyr
1 5 10 15

<210> 21

10 <211> 7

<212> PRT

<213> Mus musculus

<400> 21

15 Ala Ala Ser Thr Leu Asp Ser
1 5

<210> 22

20 <211> 32

<212> PRT

<213> Mus musculus

<400> 22

25 Gly Val Pro Lys Arg Phe Ser Gly Ser Arg Ser Gly Ser Asp Phe Ser
1 5 10 15
Leu Thr Ile Ser Ser Leu Glu Ser Glu Asp Phe Ala Asp Tyr Tyr Cys
20 25 30

30

<210> 23

<211> 9

<212> PRT

<213> Mus musculus

35

<400> 23

Leu Arg Tyr Asp Asn Tyr Pro Trp Thr
1 5

40

<210> 24

<211> 10

<212> PRT

<213> Mus musculus

45

<400> 24

Phe Gly Ala Gly Thr Arg Leu Glu Ile Arg
1 5 10

50