UNITED STATES PATENT OFFICE

2,051,064

TILED OR PANELED WALL

Ralph C. Worden, Buffalo, N.Y.

Application August 3, 1934, Serial No. 738,316

32 Claims. (Cl. 189—88)

This invention relates to a tile and the like and to a means of fastening said tile to studding or the like, and relates more particularly to tiles and fastening means constructed of sheet metal, and adapted to be used on walls, ceilings and roofs. The invention includes tile constructed of small size and also when formed in large sheets to form panels and in special shapes to form roof tiles and corner tiles.

The principal objects of the invention are:
1. To permit the use of a backing sheet to hold a plurality of tiles in place, and at the same time permit said tiles to be so placed apart from each other as to properly cover the particular wall or ceiling space which is being covered with tile.
2. To firmly secure each tile at a plurality of points to the backing plate so that, if said tile is warped, it will be forced to lie flat and true and in correct face alignment with the rest of the tiles.
3. To permit a plurality of backing sheets to be positively and easily placed in accurate longitudinal and transverse alignment with each other, without requiring the same to be visually aligned by the workman who is setting the tile.
4. To conceal the raw edges and thinly enameled portions of tile and panel sheets.
5. To hold two adjacent sections of a backing plate firmly in place by a single nail even though said portions are connected by a relatively weak and flexible, deformable spacing rib.

Fig. 8 is an enlarged, fragmentary elevation of one of the securing tongues used in any of the constructions of Figs. 1–7, and shown in Fig. 1.

Fig. 9 is a fragmentary perspective of still another modified form of backing plate and tile.

Fig. 10 is a perspective of one of the tiles of Fig. 9.

Fig. 11 is a fragmentary horizontal section through the wall of Fig. 9, taken on line 11—11, Fig. 9.

Fig. 12 is a fragmentary perspective of a wall equipped with still another modified form of backing sheet, tile and supporting means therefor.

Fig. 13 is a fragmentary vertical section thereof, taken on line 13—13, Fig. 12.

Fig. 14 is a fragmentary horizontal section thereof, taken on line 14—14, Fig. 13.

Fig. 15 is an enlarged fragmentary section showing a modified form of retaining prism.

Fig. 16 is a fragmentary perspective showing a means of securing the furring strip of Figs. 12–14 to a ceiling, in any desired spaced relationship relatively thereto.

Fig. 17 is a fragmentary perspective of a wall equipped with one form of furring strip and a panel secured directly to said furring strip.

Fig. 18 is a fragmentary vertical section thereof, taken on line 18—18, Fig. 17.

Figs. 19 and 20 are fragmentary perspectives of different forms of edging strips, the form shown in Fig. 20 being that used in the construction of Figs. 17 and 18.

Figs. 21 and 22 are fragmentary perspectives of different forms of panel joining strips.

Figs. 23–25 are fragmentary perspectives of 35 panels provided with various forms of securing and reinforcing bars.

Figs. 26–28 are fragmentary perspectives of different forms of dual edging strips.

Figs. 29–31 are fragmentary perspectives of 40 different forms of securing bars.

Fig. 32 is a fragmentary perspective of a wall provided with still another modified means of securing panels to studding or the like.

Fig. 33 is a fragmentary horizontal section thereof, taken on line 33—33, Fig. 32.

Fig. 34 is a fragmentary perspective showing the invention applied to roof tiles.

Similar characters of reference indicate like parts in the several figures of the drawings.

Considering first the tile wall construction of Figs. 1–5, the numeral 40 indicates the usual wooden studding. Secured to said studding is a backing plate 41 which is provided with a plurality of configurations which are disposed at right.
angles to or perpendicularly of the studding 40. As shown in Fig. 1 the studding is shown horizontal and, as a consequence, the corrugations of the backing plate are disposed vertically but it is to be understood, that if the studs are vertical, then said backing plate corrugations are arranged horizontally.

The type of corrugation with which said backing plate is provided may be termed a resilient, primary, securing rib 42, which extends continuously from one end to the other end of its companion backing plate 41. Each of these securing ribs 42 is symmetrical in cross sectional shape and has pointed, or V shaped nose 43 and constricted or reduced V shaped neck 44.

Adapted to be pressed against and held in position by said backing plate 41 are a plurality of rectangular, sheet metal tiles 45. Each of said tiles on all four of its edges is turned or bent sharply rearwardly to form the reverse end flanges 46 and the reverse-slope side flanges 47. Each of the end flanges 46 is provided with a pair of primary securing notches 48 having the same contour shape as the cross sectional shape of the securing ribs 42. Because of this shape of said notches 48 and said ribs 42, when a tile, in proper register, is manually pushed back against its backing plate 41, the inclined nose 43 of each of said ribs is resiliently pressed inwardly, and then, as the tile is pressed back to the limit of its inward movement, said noses resiliently expand and the tile is held securely in place.

Formed in each backing plate 41, intermediately of its securing ribs 42 are a plurality of expansion crimps or ribs 49 of V shaped cross section with the base of the V merged into the main body of its companion backing plate 41. Because of these expansion ribs and their necessarily resilient characteristics, the noses 43 of each securing rib 42 may be readily pushed together by the securing notches 48, without requiring the metal of the backing plate 41 to be stretched to secure this effect, and hence without undue effort on the part of the workman who is applying the tiles to the backing plate.

When each tile is in place, its securing notches 48 snugly embrace the primary securing ribs 42. The expansion ribs 49, on the contrary, are not at any time snugly embraced by the end flanges 42 of the tiles, suitable, V shaped, expansion or straddling notches 50 being formed in said end flanges, the dimensions of said notches being sufficiently larger than the cross sectional shape of the expansion ribs 49 to permit the latter to freely expand without interference and thereby to permit flexing of the securing ribs 42.

It frequently happens that tiles require being trimmed or cut off near the one or other of their side edges so as to enable them to properly fit into the particular wall space which is being tiled. Because of this fact it follows that if the opposite extremities of the end flanges 46 of each sheet metal tile 45 of the present invention were provided with securing notches similar to the primary securing notches 48, said tile would not be properly supported if one side of said notch were removed in the tile trimming process. To eliminate this difficulty, the two outermost securing notches are of special shape and have been here denominated secondary, securing notches 48a and 48b. These notches are adapted to be snapped over and to resiliently engage with companion resilient, secondary securing ribs 42a and 42b in a manner similar to that in which the notches 48 are snapped over and resiliently engaged by the securing ribs 42. The adjacent faces of each pair of these secondary securing notches 48a and 48b are flat sided, thereby providing a rectangular abutment lip 51. Thus if a tile is the only one of its side edges trimmed off so as to remove all of the outer securing notch 48a but not sufficiently to remove all of the abutment lip 51, then the inner securing notch 48b will still be able to firmly engage with its companion securing rib 42b and hold the outer, trimmed edge of the tile securely in place but firmly back against the backing plate 41. This is due to the fact that both faces of said securing rib 42b are firmly embraced.

When the tiles 45 are placed in position against the backing plate 41, the workman first fills the hollow rear portion of each tile with mortar or cement, (not deemed necessary here to be illustrated). This cement is securely held to each tile by reason of the fact that the flanges 46 and 47 are bent rearwardly and obliquely inwardly so as to form a "dovetail" bond between the tile and the cement. The bond between the cement and the backing plate 41 is also "dovetail" bond by reason of the reduced neck 44 of the primary securing ribs 42 and also by reason of the reduced neck 44 of the secondary securing ribs 42a and 42b.

It is preferred that provision be also made for firmly securing the cement to the expansion ribs 49. This is effected by punching a plurality of cement keying holes 52 in the inclined faces of said expansion ribs 49, so that, when the cement is applied, it extends through said holes 52 and forms a key or head at the rear surface of the backing sheet. If the cement should be applied so generously to the rear face of the tiles that it completely fills the expansion ribs 49 this does no particular harm as the total internal volume of these expansion ribs 49 is not very great.

After the tiles have been properly set in place and the cement which secures them to the backing plate 41 sufficiently hardened, it is customary to fill the space between the tiles with a thin cement mixture commonly termed grout. This grout is enabled to key itself to the backing plate 41 in the same manner upon the rear face of the tiles itself to said backing plate. It is preferred, however, because of the thin texture of grout, that additional means be provided for securing it to the backing plate 41. This additional securing means has been obtained by punching a longitudinal series of grout keying holes 53 in the medial portions of the expansion ribs 49. These holes are properly spaced on the backing sheet 41 so as to register with the tile joints when the tile is placed on said backing 55 in the normal fashion.

When tile is being applied to any given room it frequently happens that the area to be covered is not a simple multiple of the tile dimensions. The neatest and preferable method of taking care of such a "odd" dimension is to so space the tiles apart from each other, that an even number of tiles will be fitted into the desired space. The present invention has provision for altering the spacing between the tiles without weakening the backing sheet and without any other detrimental effects. This tile spacing is effected by providing a longitudinal row of deformable spacing ribs 54 intermediate of each pair of outer, securing ribs 42a. Each of these spacing ribs is preferably provided with a grout keying hole 52a similar to the grout keying holes 53 of the expansion ribs 49.

These tile spacing ribs 54 may, but preferably do not, extend the full length of their companion
Formed at the one or male (right) edge of each backing plate 41 are a plurality of transverse alignment tongues 59 (see Figs. 1 and 3). These tongues are adapted to be received within either the alignment openings 58 formed in the left (20) side of the spacing ribs 54 (as shown) or the alignment openings 59a formed in one (left) side of the expansion ribs 49. When all of the transverse alignment tongues 58 of any one backing plate 41 have been properly placed in the desired transverse alignment openings 58 or 59, as the case may be, the workman hammers or otherwise bends back said tongues so as to cause the two backing plates to be interlocked in the manner shown in Figs. 1 and 3.

The longitudinal alignment and proper butting relationship of adjacent backing plate 41 is taken and is of by a plurality of longitudinal alignment tongues 58' which are slipped into companion longitudinal alignment openings 59' and then hammered or otherwise bent over as shown in Fig. 1. It will be noted that these longitudinal alignment openings 59' are formed adjacent the one (lower) or female end of each backing plate 41 in the flat portions of said plate intermediate 25 of the securing and expansion ribs thereof.

In Fig. 6 is shown a modified form of tile 451 and backing plate 411. In this case the expansion 451 are arranged in their companion expansion or straddling notches 561 in a manner substantially identical with that shown in the construction of Figs. 1-5. The securing ribs 421 and the securing notches 461 are, however, of a somewhat different form from that of Figs. 1-5, having a curved or balloon shaped cross section.

In Figs. 7 illustrates another modified form of tile 452 and backing plate 412. Here again the expansion ribs 452 and straddling notches 562 are similar to the expansion ribs 49 and straddling notches 58 of Figs. 1-5. The securing ribs 422 and the securing notches 462 are in this case of double curved cross section.

In Figs. 9-11 is shown still another modified form of tile 453 and backing plate 413. In this case the male engaging members or curvilinear 453 are located on the tile while the female engaging members or curvilinear securing grooves 453' are located in the backing plate 413. Intermediately of said securing grooves 453, said backing plate 413 is provided with longitudinal, female expansion grooves 453' of truncated triangular or trapezoidal cross section. To enable the cement at the rear of the tiles 453 and the grout between said tiles to be firmly keyed to the backing plate 413, the latter is provided with a plurality of rectangular cement keying holes 633. When it is desired to space the tile away from each other so as to have a whole number of tiles fit the particular wall space being tiled, the particular expansion groove 453 which happens to be intermediate of the tiles becomes in effect a deformable spacing groove 453' which may be flattened out to any desired extent to obtain the desired amount of spacing between the tiles. In this type of backing plate the flat bottom faces 65 of the expansion grooves 453 and spacing grooves 543 are nailed to the studding 450 by suitable nails 673.

In Figs. 12-14 illustrate still another modified means of securing the tile 454 to the backing 70 plate 414 and the latter to the studs 404. In this case the tile is provided with securing notches 484 which are curvilinear in cross section and engage with the correspondingly shaped securing ribs 424. The expansion ribs 484 and which-
ever of said expansion ribs 494 function as deformable spacing ribs 544 are both of truncated-triangular or trapezoidal cross section.

In this particular form of tile, additional means are provided for securing each tile 454 to its companion backing plate 414 consisting of a pair of L-shaped, downwardly extending, retaining prongs 60 formed integrally on each side flange 414 of each tile. When each tile is pushed rearwardly in proper register on its companion backing plate 414, said prongs are adapted to pass rearwardly into companion prong openings or slots 61 formed in said backing plate 414. When the tile has been pushed back to its rearmost position, it is moved downwardly, thereby causing the outer portion of each prong 60 to move down into engagement with the rear face of the backing plate. Such a means of supporting the tiles has the advantage that each tile is independently supported and that therefore the tiles may be accurately spaced vertically apart from each other without depending upon the cement or grout for holding them in vertically spaced alignment.

Said backing plate 414 may be nailed directly to the studs 404 if the latter are disposed perpendicularly of the securing ribs 424 and expansion ribs 494 and spacing ribs 544. But if said studs 404 are parallel to said ribs, as shown in Figs. 12 and 13, then it is desirable to reinforce said backing plate 414 in a direction transverse of said ribs. This may be effected by using a rolled, sheet metal furring strip 62 which is disposed perpendicularly of said studs 404 and is secured by nails 63 or otherwise thereto.

This furring strip 62 is provided at suitable intervals with pairs of up wardly projecting, L-shaped retaining prongs 64 which are preferably formed, as shown, by being punched and bent from the sheet metal of their companion furring strip. These retaining prongs 64 are adapted to be received by the slots 61 of the backing plate 414, said slots thereby serving to connect said backing plate with said prongs 64 of the furring strip 62 and also to connect said backing plate with the prongs 60 of the tile 454.

To provide suitable transverse bending strength intermediate of the studs 404, said furring strip 62 is provided with a symmetrical pair of crimps 50 or beads 65, 66.

In Fig. 15 is shown a modified form of retaining prong 645 and backing plate 415 by which said prong and said backing plate are resiliently prevented from disengaging from each other.

This is effected by providing a resilient retaining protuberance 66 on the backing plate 415 just above each of its prong openings 615. This protuberance is adapted to be resiliently engaged by a companion retaining hollow 65 formed in each prong 645 just above its crotch. When the backing plate 415 is pushed down into its final position on the furring strip prongs 645, the beveled nose 65 of each prong resiliently presses its companion protuberance 66 inwardly and then, when said backing plate 415 arrives at its lowermost or final position, said protuberance 66 springs back to its normal shape and enters its companion hollow 67 and resiliently prevents disengagement of the backing plate 415 from the several retaining prongs 645 which support it.

Several of these prongs 645 are shown in Fig. 16. A modified furring strip 626 used to hold the backing plate of Figs. 8 and 11 or Figs. 12-15 when a ceiling is to be provided with tile, the backing plate in such case being disposed horizontally. This is effect-
with prongs 647a which are received by longitudinal prong slots 675a formed in supplemental furring strips 627a in a manner similar to that of the furring strips 627. Said reinforcing bar is preferably welded to the rear face of its companion panel sheet 687.

Fig. 19 illustrates a modified form of edge strip 788. Such a type of edging strip is adapted to secure the panel sheets to a backing plate of the type shown in Figs. 9 and 11.

Fig. 21 illustrates a joining strip 76 for concealing the unsightly edges of adjacent panel sheets and at the same time holding them in lateral alignment and providing certain additional amount of lateral stiffening.

Fig. 22 illustrates a T-shaped joining strip 789 for covering the joint between or joining two panels (or tiles) which have their edges turned obliquely rearward and inward in the manner shown in the tiles of Figs. 1-14. This joint strip 789 is so arranged as to function in co-ordination with a channel shaped reinforcing bar 79 to strengthen the panels at this joint against lateral deflection. In making this reinforced joint, the channel shaped panel sheets or tiles 645 are first placed in position along the lower flange 80 of said sheet 80 and the flanges of said sheets or tiles disposed between the inner faces of the flanges of said reinforcing bar and against the inner face of its web. Said sheets or tiles are placed some distance apart from each other. Suitable cement or grout 80 is now pressed into the space between the sheets or tiles and the T-shaped joining strip 789 then pressed into place, being held in place by the fact that its central or foot, flange 8 is of bulbous cross section so as to be firmly keyed to said cement 80. Said joining strip 789 is preferably, though not necessarily, made of sheet metal and is so constructed as to have a smooth unbroken surface on its front face. When made of sheet metal, as shown, this is effected by turning down the lower edge of said joining strip 789 and renders the appearance of the same neat and attractive.

Figs. 23-25 illustrate means for both reinforcing panel sheets and for securing the same to their companion furring strips or backing plates. In Fig. 23 is shown a securing-reinforcing bar 7110 of channel shaped cross section and preferably welded or otherwise secured to the rear face of its companion panel sheet 688. Said securing-reinforcing bar 7110 is provided with rearwardly and longitudinally projecting prongs 6410 to enable said bar to be conveniently secured to the furring strip 627 or to a suitable backing plate as the case may be.

Fig. 24 shows a form of reinforcing bar 7110 adapted to be used with a backing plate of the type shown in Fig. 6.

Fig. 25 shows a form of reinforcing bar 7112 adapted to be used with a backing plate of the type shown in Figs. 9 and 11.

Fig. 26 shows a form of dual, joining strip 7113 of substantially channel-shaped cross section and adapted to be used with the type of backing plate shown in Fig. 6 or with a furring strip of such shape.

Fig. 27 shows a form of dual, joining strip also of substantially channel shaped cross section and adapted to be used with the type of backing plate shown in Figs. 12-15 or with a furring strip of such shape.

Fig. 28 shows a T-bar form of reinforcing bar 7114 preferably welded to the rear intermediate face of a panel sheet and adapted to be used with a backing plate of the type shown in Fig. 6 or a furring strip of such shape.

Figs. 29-31 illustrate various forms of securing-reinforcing bars of the general type of those shown in Figs. 23-25 but of plain instead of channel shaped cross section and having their webs formed to provide the connecting means with the backing plate or furring strip, instead of having their edges flanges so formed as in Figs. 23-25. Each of these securing-reinforcing bars of Figs. 29-31 is bent obliquely inward at its opposite ends so as to fit snugly into the hollow, trapezoidal space at the rear face of a panel sheet or tile provided with rearwardly and inwardly bent flanges. Each of said securing-reinforcing bars of Figs. 29-31 is preferably welded or otherwise secured to the rear face of its companion panel sheet or tile.

In Fig. 29 is shown a type of securing-reinforcing bar 7116 having prongs 6816 adapted to engage with prong slots of a backing plate or furring strip of the general type shown in Figs. 12, 13, 17 and 18.

Fig. 30 illustrates a similar form of securing-reinforcing bar 7111 but having a form of securing means adapting it to hold the panel sheet or tile with which it is associated against a furring strip or backing plate of the general type shown in Fig. 6.

Fig. 31 also illustrates a similar form of securing-reinforcing bar 7116 but having a form of securing means adapting it for use with a furring strip or backing plate of the general type shown in Fig. 9.

Figs. 32 and 33 illustrate a modified form of the invention more particularly adapted for use in outer walls. In this case insulating board 88 is first nailed to the stud wall 4018 and then over said insulating board are nailed a plurality of furring strips 6218 and sealing bars 85. The panel sheets 4819 have their edges turned obliquely rearward and have to their rear faces welded or otherwise secured a suitable number of securing-reinforcing bars 7116 of the type shown in Fig. 29. The furring strips have suitable prong openings 6119 to receive the rearwardly and downwardly projecting prongs 6816 of said securing-reinforcing bars 7116. The sealing bars 85 are of channel shaped cross section and are placed behind the joints of the several panel sheets 4819. Grout is preferably introduced into the spaces or joints between adjacent panel sheets, but it occasionally happens that this grout cracks due to weaving of the building or to vibration or other causes, and it is the principal function, in such event, of the sealing bars 85 to prevent moisture from penetrating through said joints into the relatively porous insulating board behind.

Figs. 32 and 33 also illustrate how the invention is adapted to the construction of a sheet metal corner panel 4815. In this case a special dual, corner furring strip 6218a is employed, the 65 being secured to the bevelled corner stud 4018 by nails 79 and being provided with a plurality of vertical prong openings 6119a. The corner panel has its opposite longitudinal edges bent rearwardly at 86 to butt against the web 70 of the sealing bars 85 and then curled forwardly and inwardly and again rearwardly to finally form the inner flanges 81. Projecting integrally from said inner flanges 81 is a plurality of rearwardly and downwardly projecting prongs 6816.
which are received by and engage with aforesaid prong openings §118a.

Fig. 34 illustrates the invention when applied to a metal roof tile 4520. In this case sheeting § is nailed to the studding or roof beams 4020 and upon said sheeting is laid insulating board 84. Upon said insulating board are nailed a plurality of furring strips 6220 and sealing bars 6226. The tiles 4520 are constructed similarly to the corner tile 4515 of Figs. 32 and 33 having the prongs 6200 formed at the inner ends of its inner flanges 6170, the latter being received by the prong openings 6120 of the furring strips 6220.

The roof sealing bars 8520 of this roof structure are somewhat more elaborate than the sealing bars of the wall structure of Figs. 32 and 33 in that no nails for fastening said roof sealing bars 8520 in place are located between the upper turned flanges 89 of said bars. Instead the sheet metal at flanges 89 is turned back and then out to form the nailing flanges 90 which receive the nails 91 to hold the sealing bars 8520 in place. By this construction any water falling on said sealing bars is prevented from gaining access to the nailing holes of the nails 91 and thereby leaking through to the absorbent insulation board 84. Likewise, the side flanges 88 of said sealing bars prevent the water from gaining access to and leaking through the space between the lower face of the flanges 6170 of the roof tile 4520 and the upper edge of the side flanges 88 of said sealing bars 8520.

I claim as my invention:

1. A tiled wall arranged against studding or the like and comprising: a backing plate secured to said studding and having a resilient securing rib and an expansion rib; and a tile having a securing notch in engagement with said resilient securing rib.

2. A tiled wall arranged against studding or the like and comprising: a backing plate secured to said studding and having a resilient securing rib and an expansion rib; and a tile having a securing notch in engagement with said securing rib, and also having a clearance notch straddling said expansion rib.

3. A tiled wall arranged against studding or the like and comprising: a backing plate secured to said studding and having a resilient securing rib; an expansion rib arranged on said backing plate and provided with cement-keying holes; and a tile having cement spread upon its rear face and extending through said cement keying holes and having a securing notch in engagement with said resilient securing rib.

4. A tiled wall arranged against studding or the like and comprising: a backing plate secured to said studding and having a resilient securing rib; an expansion rib arranged on said backing plate and provided with a grout-keying hole; a tile having a securing notch in engagement with said resilient securing rib; and grout arranged at the edge of said tile and extending through said grout-keying hole.

5. A tiled wall arranged against studding or the like and comprising: a backing plate secured to said studding and having a deformable spacing rib; and a pair of tiles arranged on said backing plate adjacent said spacing rib, the amount of space between said tiles being dependent upon the expansion which said spacing rib is deformed.

6. A tiled wall arranged against studding or the like and comprising: a backing plate secured to said studding and having a deformable spacing rib; a securing tongue arranged on said backing plate adjacent said spacing rib; means for securing said tongue to said studding; and a pair of tiles arranged on said backing plate adjacent said spacing rib.

7. A tiled wall arranged against studding or the like and comprising: a backing plate secured to said studding and having a deformable spacing rib and a pair of securing ribs on opposite sides of said spacing rib; and a pair of tiles disposed in juxtaposition to each other on said spacing rib, each of said tiles being secured to a companion securing rib.

8. A tiled wall arranged against studding or the like and comprising: a backing plate secured to said studding and having an alignment tongue; another backing plate having an alignment opening into which said alignment tongue of the other backing plate projects; and a tile arranged on each of said backing plates in a definite position relatively thereto.

9. A tiled wall arranged against studding or the like and comprising: a backing plate secured to said studding and having an alignment locking tongue; another backing plate provided with an alignment locking opening into which said locking tongue of the other backing plate projects; a pair of said backing plates in a definite position relatively thereto.

10. A paneled wall arranged against studding or the like and comprising: a panel sheet; a backing plate secured to said studding; an edging strip covering the edge of said panel sheet; and a resilient connection between said edging strip and said backing plate.

11. A paneled wall arranged against studding or the like and comprising: a panel sheet; a backing plate secured to said studding; an edging strip having a groove which receives the edge of said panel sheet; and a connection between said edging strip and said backing plate.

12. A paneled wall arranged against studding or the like and comprising: a panel sheet; a backing plate secured to said studding; an edging strip having a groove which receives the edge of said panel sheet; and a resilient connection between said edging strip and said backing plate.

13. A paneled wall arranged against studding or the like and comprising: a backing plate secured to said studding; an edging strip having a groove which receives the edge of said panel sheet; and a resilient connection between said edging strip and said backing plate.

14. A paneled wall arranged against studding or the like and comprising: a backing plate secured to said studding; an edging strip having a groove which receives the edge of said panel sheet; and a resilient connection between said edging strip and said backing plate.

15. A paneled wall arranged against studding or the like and comprising: a backing plate secured to said studding; a retaining (L-shaped) prong projecting into said aperture and thereby engaging with said backing sheet; a panel sheet connected with said groove; and a resilient means for preventing disengagement of said prong from said backing sheet.
2,051,064

17. A tile arranged against studding or the like and comprising: a backing plate secured to said studding; a tile having its edge bent downwardly and then curled upwardly and inwardly to form a securing flange which is thereby disposed above the lowermost portion of said tile; and means for securing said securing flange to said backing plate.

18. A tiled wall arranged against studding or the like and comprising: a backing plate secured to said studding and having a securing rib; a plurality of tiles arranged against said backing plate in any desired spaced relation to each other, each tile being provided with means for securing it to said securing rib; and means for holding said tiles in their spaced relationship.

19. A tiled wall arranged against studding or the like and comprising: a backing plate secured to said studding and having a securing rib; a plurality of tiles arranged against said backing plate in any desired spaced relation to each other, each tile being provided with means for securing it to said securing rib; and plastic material disposed in the spaces between said tiles.

20. A tiled wall arranged against studding or the like and comprising: a backing plate secured to said studding and having a plurality of securing ribs; and a plurality of rows of tiles arranged against said backing plate, the tiles in each row being arranged in any desired spaced relation to each other, and each tile being provided with means for securing it to a companion securing rib; and means for holding said tiles in their spaced relationship.

21. A tiled wall arranged against studding or the like and comprising: a backing plate secured to said studding and having a securing groove; a plurality of tiles arranged against said backing plate in any desired spaced relation to each other, each tile being provided with means for securing it to said securing groove; and means for holding said tiles in their spaced relationship.

22. A tiled wall arranged against studding or the like and comprising: a backing plate secured to said studding and having a plurality of securing grooves; and a plurality of rows of tiles arranged against said backing plate, the tiles in each row being arranged in any desired spaced relation to each other, and each tile being provided with means for securing it to a companion securing groove; and means for holding said tiles in their spaced relationship.

23. A tiled wall arranged against studding or the like and comprising: a backing plate secured to said studding and having a plurality of securing ribs; and a plurality of rows of tiles arranged against said backing plate, each tile being provided with means for securing it to a companion securing rib.

24. A tiled wall arranged against studding or the like and comprising: a backing plate secured to said studding and having a plurality of securing ribs; and a plurality of rows of tiles arranged against said backing plate, each tile being provided with means for securing it to a companion securing rib.

25. A tiled wall arranged against studding or the like and comprising: a backing plate secured to said studding and having a plurality of securing ribs; and a plurality of rows of tiles arranged against said backing plate, each tile being provided with means for securing it to a companion securing rib.