特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機構
(43) 国際公開日
2014年4月3日(03.04.2014)

WO 2014/050578 A1

(12) 特許協力条約に基づいて公開された国際出願
(10) 国際公開番号
WO 2014/050578

(30) 優先権データ:
特願2013-156802 2013年7月29日 (29.07.2013) JP

(74) 風呂:
Kimiatsu)

(52) 国際分類:
C09B 57/10

(54) 発明名稱:
光電変換素子、色素増感太陽電池、金属錯体色素および金属錯体色素を溶解してなる色素溶液

(57) 抽象:
A photoelectric conversion element is provided with a conductive support body, a photosensitive layer comprising an electrolyte, a charge transfer layer comprising an electrolyte, and a counter electrode. The photosensitive layer comprises semiconductor particles that are loaded with a metal complex dye represented by formula (1). Also provided is a dye-sensitized solar cell that includes the photoelectric conversion element. Also provided is a dye solution that is made by dissolving the metal complex dye represented by formula (1). Formula (1): M(LD)(LA)(X)m.
光電変換素子は、導電性支持体、電解質を含む感光体層、電解質を含む電荷移動体層及び対極を有する光電変換素子であり、感光体層が、下記式 (1) で表される金属錯体色素が担持された半導体微粒子を有する。色素増感太陽電池は、上記光電変換素子を含む。色素溶液は、下記式 (1) で表される金属錯体色素を溶解する。$M(LD)(LA)(X)m\cdot CI\cdots$ 式 (1) 式中、M は Ru^{2+}、Fe^{2+} 又は Os^{2+} を表す。LD はアリール基又は複素環基を含む 2 座又は 3 座の配位子であって、該当配位子はアニオンとなって M に配位する原子を 1 ～ 3 個有する。LA は特定の式で表される 3 座の配位子、X は単座の配位子、CI は電荷を中和させるのに対イオンが必要な場合の対イオン、m は 0 又は 1 を、それぞれ表す。
発明の名称：
光電変換素子、色素増感太陽電池、金属錯体色素および金属錯体色素を溶解してなる色素溶液

技術分野

[0001] 本発明は、光電変換素子、色素増感太陽電池、金属錯体色素および金属錯体色素を溶解してなる色素溶液に関する。

背景技術

[0002] 光電変換素子は各種の光センサー、複写機、太陽電池等に用いられている。この光電変換素子には金属を用いた光電変換素子、半導体を用いた光電変換素子、有機顔料や色素を用いた光電変換素子、あるいはこれらを組み合わせた光電変換素子など、様々な方式の光電変換素子が実用化されている。特に、非枯渇性の太陽エネルギーセを利用するものとして、その本格的な実用化が大いに期待されている。その中でも、シリコン系太陽電池は古くから研究開発が進められ、各国の政策的な配慮もあって普及が進んでいる。しかし、シリコンは無機材料であり、スループットおよびコスト等の改良には自ずと限界がある。

[0003] そこで色素増感太陽電池の研究が精力的に行われている。特にその契機となったのは、スイス・ローザンヌ工科大学のGraetzel等の研究成果である。彼らは、ポララス酸化チタン薄膜の表面にルテニウム錯体からなる増感色素を固定した構造を採用し、アモルファスシリコン並の光電変換効率を実現した。これにより、高価な真空装置を使用しなくても製造できる色素増感太陽電池が一躍世界の研究者から注目を集めるようになった。

[0004] 現在までに、光電変換素子に使用される金属錯体色素として一般的にN3、N719、Z907、J2と呼ばれる色素等が開発されている。しかしながら、従来の色素増感太陽電池は、一般に光電変換効率が低く、耐久性が悪
い場合が多かった。
最近になって、450 ~ 550 nmの波長範囲の吸光係数、光電変換効率
および安定性に優れるとして、ターピリジンと3 - トリフルオロメチル - 5
[4 - (p - 置換フエニルエテニル) - 2 - ピリジル] ピラゾールを配位
子として有するルテニウム金属錯体色素が開発された (非特許文献1参照)
。
また、特許文献1~3および非特許文献2には、ターピリジン以外の3座
の配位子を有する金属錯体色素も開示されている。
先行技術文献
特許文献
[0005] 特許文献1 :米国特許公開第2004/0225122号明細書
特許文献2 :米国特許公開第2008/0114174号明細書
特許文献3 :韓国特許公開第102012035696号公報
非特許文献
[0006] 非特許文献1 : Chemical Communications, 2009
, 5844 ~ 5846頁
非特許文献2 : Organometallics, 2010, 29, 1569
～ 1579頁
発明の概要
発明が解決しようとする課題
[0007] 太陽電池は原子力発電に代わるエネルギー源としてその注目と期待が益々
高まってきており、色素増感太陽電池においてもさらなる性能の改良が求め
られている。上記特許文献1~3、および、非特許文献1~2に記載の金属
錯体色素を用いた光電変換素子では、依然として光電変換効率および耐久性
は不十分であった。
本発明は、色素増感太陽電池の光電変換効率（力）及び耐久性のさらなる
向上に寄与する光電変換素子、並びに当該光電変換素子を用いた色素増感太
陽電池の提供を課題とする。また、本発明は、上記光電変換素子に用いるのに好適な金属錯体色素の提供を課題とする。

課題を解決するための手段

本発明者等は上記課題に鑑み鋭意検討を行った結果、半導体微粒子表面に対する吸着性基を有する特定構造の3座の配位子と、アリール基または複素環基を含む2座または3座の特定の配位子を含む金属錯体色素において、前記のアリール基または複素環基を含む2座または3座の配位子における配位原子の少なくとも1つをアニオン性の原子とすることで、当該金属錯体色素を用いた光電変換素子の光電変換効率（力）及び耐久性が向上すること、並びにこの光電変換素子が色素増感太陽電池用として好適であることを見出した。本発明はこれらの知見に基づき完成させたものである。

すなわち、本発明の課題は、以下の手段によって達成された。

導電性支持体と、電解質を含む感光体層と、電解質を含む電荷移動体層と、対極を有する光電変換素子であって、感光体層が、下記式（1）で表される金属錯体色素が担持された半導体微粒子を有する光電変換素子。

\[M (L D) (L A) (X) m \cdot C l \] ・・・式（1）

式（1）中、MはRu\(^{2+}\). Fe\(^{2+}\)またはOs\(^{2+}\)を表す。L Dはアリール基または複素環基を含む2座または3座の配位子であって、この配位子はアニオンとされてMに配位する原子を1～3個有する。L Aは下記式（2）で表される3座の配位子を表す。Xは単座の配位子を表す。C Iは電荷を中和させるのに対イオンが必要な場合の対イオンを表す。mは0または1を表す。

[化1]

\[\text{式(2)} \]
式（2）中、Z a ～ Z c は各々独立に芳香族炭化水素基または複素環基を形成するのに必要な原子群を表す。式（2）に示された 3 つの環構造の少なくとも 1 つはベンゼン環、ピロール環、イミダゾール環、ピラソール環、ピラジン環、ピリミジン環、ピリダジン環、トリアゾール環、オキサソール環、トリアジン環、チアソール環、イソチアゾール環、オキサソール環、ピラジン環、モルホリン環、ピベラジン環、テトラヒドロフラン環、テトラヒドロビラン環、4 H—ピラン環、1,4—ジヒドロピリジン環、テトラテヒドロモルホリン環およびこれらのベンゾリーグ絡合体から選ばれ、残りの環構造はピリジン環である。Q1～Q3 は各々独立に単立分子対を有する窒素原子、アニオン性の窒素原子またはアニオン性の炭素原子を表す。D i ～ D 4 は各々独立に炭素原子または窒素原子を表す。ここで、Z a ～ Z c の各原子群は置換基を有してもよいが、少なくとも 1 つの環構成原子は吸着性基を有する基を有する。式（2）で表される 3 座の配位子が下記式（2—1）～（2—5）のいずれかで表される [1] に記載の光電変換素子。
式 (2 — 1) — (2 — 5) 中、D1 - D4 および Q1 - Q3 は、式 (2) における D1 - D4 および Q1 - Q3 と同義である。A d は吸着性基を有する基を表す。m1 は 0 ~ 4 の整数を表す。m2 は 0 ~ 3 の整数を表す。R は置換基を表す。n1 は 0 ~ 3 の整数を表す。n2 は 0 ~ 2 の整数を表す。Z d は 0 ~ 3 および D4 と共に、Z e は Q2、D2 および D3 と共に、Z f は Q1 および D1 と共に、それぞれペンゼン環、ピロール環、イミダゾール環、ピラゾール環、ピラジン環、ピリミジン環、ピリダジン環、トリアゾール環、オキサゾール環、トリアジン環、チアゾール環、イソチアゾール環、オキサゾール環、イソオキサゾール環、フラン環、チオフェン環、ピロリジン環、ピベリジン環、モルホリン環、ピベラジン環、テトラヒドロフラン環、テトラヒドロピリリン環、4 H—ビラン環、1, 4—ジヒドロピリジン環、テトラデヒドロモルホリン環およびこれらのベンゾール環合体から選ばれる環構造を形成するのに必要な原子群を表す。Z d ~ Z f は少なくとも 1 つの吸着性基を有する基を有し、さらに該基以外の置換基を有していてもよい。ただし、式 (2 — 1) — (2 — 5) の各式で表される配位子は少なくとも 1 つの吸着性基を有する基を有する。

[0017] [化3]
式 (2L - 1) ~ (2L - 4) 中、"" は M への配位位置を示す。Ai1、Ai 21、Ai 131
および Ai 4 は窒素原子または炭素原子からなるアニオン性の配位原子を表す。
環 D は芳香族炭化水素環または複素環を表す。Rii ～ Ri 14、R 12i ～ R 23i、R 13i ～ R 133iおよび R 141 ～ R 142i は各々独立に水素原子または置換基を表す。

[5] 式 (1) におけるしきが、下記式 (3L - 1) ~ (3L - 6) のいずれかで表される 3 座の配位子である [1] ~ [3] のいずれかに記載の光亜変換子。

式 (3L-1) ～ (3L-6)

式 (3L-1) ～ (3L-6) 中、R は置換基を表す。a 2 および a 3 は各々独立に 0 以上の整数を表し、a 4 は 0 ～ 4 の整数を表す。a 5 は 0 ～ 3 の整数を表す。a 6 は 0 ～ 2 の整数を表す。

環 A は、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、炭素原子で M に配位するピリジン環、炭素原子で M に配位するチオフェン環、炭素原子で M に配位するフラン環、イミダジール環、オキサジール環、チアソール環、オキサジアソール環、チニアジール環、イゾオキサジール環、イソチアソール環、トリアジール環、ピラジール環、ピロール環およびベンゼン環から選ばれる構造を作る。環 A' は、炭素原子で M に配位するピリミジン環、炭素原子で M に配位するピリジン環、炭素原子で M に配位するピリ
ダジン環、炭素原子でMに配位するピリジン環、炭素原子でMに配位するチオフェン環、炭素原子でMに配位するフラン環、イミダゾール環、炭素原子でMに配位するオキサゾール環、炭素原子でMに配位するチアゾール環、炭素原子でMに配位するオキサジャゾール環、炭素原子でMに配位するチアジアゾール環、炭素原子でMに配位するイソオキサゾール環、炭素原子でMに配位するオキサジャゾール環、炭素原子でMに配位するチアゾール環、ビラゾール環およびベンゼン環から選ばれる環構造を表す。環A' 'は、ピラゾール環を表す。

環Bは、ピリミジン環、トリアジン環、イミダゾール環、オキサゾール環、チアゾール環、オキサジャゾール環、チアジアゾール環、トリアゾール環、ビラゾール環、ビロール環およびベンゼン環から選ばれる環構造を表す。環B'は、炭素原子でMに配位するピリミジン環、イミダゾール環、炭素原子でMに配位するチアゾール環、炭素原子でMに配位するオキサゾール環、炭素原子でMに配位するチアジアゾール環、トリアゾール環、ビラゾール環、ビロール環およびベンゼン環から選ばれる環構造を表す。

環D'は、芳香族炭化水素環または複素環を表す。AxおよびAyは各々独立に、窒素原子、酸素原子または硫黄原子を表す。ただし、AxとAyの少なくとも一方はアニオンである。

ここで、式(3 L — 1)に存在する2つの環Aは互いに同一であっても異なってもよく、式(3 L — 6)に存在する2つの環D'は互いに同一であっても異なってもよい。

【6】半導体微粒子に、吸着性基を有する基を少なくとも1つ有する共吸着剤が担持されている【1】～【5】のいずれかに記載の光電変換素子。

【7】共吸着剤が、下記式(CA)で表される【6】に記載の光電変換素子。
【0022】式（C A）中、R Invalidate character in text. is R
text for 1
は吸着性基を有する基を表す。R
は置換基を表す。

n A は 0 以上の整数を表す。

【0023】M (LD) (LA) (X) m : C I

【0024】式（1）中、M は Ru²⁺、Fe²⁺または 0 s²⁺を表す。L D はアリール基または複素環基を含む 2 座または 3 座の配位子であって、この配位子はアミオンとなって M に配位する原子を 1 〜 3 個有する。L A は下記式（2）で表される 3 座の配位子を表す。X は单座の配位子を表す。C I は電荷を中和させるのに対イオンが必要な場合の対イオンを表す。m は 0 または 1 を表す。

【0025】式（6）

【0026】式（2）中、Za ~ Zc は各々独立に芳香族炭化水素基または複素環基を形成するのに必要な原子群を表す。式（2）に示された 3 つの環構造の少なくとも 1 つはベンゼン環、ビロール環、イミダゾール環、ピラゾール環、ピラジン環、ピリミジン環、ピリジン環、トリアゾール環、オキサゾール環、トリアゾール環、チアゾール環、イソチアゾール環、オキサゾール環、イソオキサゾール環、フラン環、チオフェン環、ピロリジン環、ピベリジン環、モルホリン環、ピベラジン環、テトラヒドロフラン環、テトラヒドロピラン
環、4 H—ピラン環、1,4—ジヒドロピリジン環、テトラデヒドロモルホリン環およびこれらのベンゾローグ縮合体から選ばれ、残りの環構造はピリジン環である。Q^1～Q^3は各々独立に孤立電子対を有する窒素原子、アニオン性の窒素原子またはアニオン性の炭素原子を表す。D_i～D_4は各々独立に炭素原子または窒素原子を表す。ここで、Z_a～Z_cの各原子群は置換基を有してもよいが、少なくとも1つの環構成原子は吸着性基を有する基を有する。

[10] 式(2)で表される3座の配位子が、下記式(2-1)～(2-5)のいずれかで表される[9]に記載の金属錯体色素。

[0027] [化7]

式(2-1)

式(2-2)

式(2-3)

式(2-4)

式(2-5)

[0028] 式(2-1)～(2-5)中、D_1～D_4およびQ_1～Q_3は、式(2)におけるD_i～D_4およびQ_i～Q_3と同義である。A_dは吸着性基を有する基を表す。m_1は一の整数を表す。m_2は0～3の整数を表す。Rは置換基を表す。n_1は0～3の整数を表す。n_2は0～2の整数を表す。Z_dは0_3およびD_4と共に、Z_eはQ_2、D_2およびD_3と共に、Z_fはQ_1およびD_1と共に、それぞれベンゼン環、ピロール環、イミダゾール環、ピラゾール環、ピラジ
ン環、ピリミジン環、ピリダジン環、トリアゾール環、オキサソール環、トリアジン環、チアゾール環、イソチアゾール環、オキサソール環、イソオキサソール環、フラン環、フロフェン環、ピリジン環、ピレジン環、モルホリン環、ビラジン環とテトラヒドロフラン環、テトラヒドロピラジン環、4H－ビラジン環、1,4－ジヒドロピリジン環、テトラヒドロモルホリン環およびこれらのペンソローグ縮合体から選ばれる環構造を形成するのに必要な原子群を表す。Zd～Zfは少なくとも1つの吸着性基を有する基を有し、さらにこの基以外の置換基を有していてもよい。ただし、式 (2—1)～(2—5) の各式で表される3座の配位子は少なくとも1つの吸着性基を有する基を有するとする。

[112] 式 (1) におけるしさりが、下記式 (2L-1)～(2L-4) のいずれかで表される2座の配位子である [9]～[111] のいずれかに記載の金属錯体色素。

[0029] [化8]

式(2L-1) 式(2L-2) 式(2L-3) 式(2L-4)

[0030] 式 (2L-1)～(2L-4) 中、* はMへの配位位置を示す。八111、A121、A131
およびAi4は窒素原子または炭素原子からなるアニオン性の配位原子を表す。環Dは芳香族炭化水素環または有素環を表す。Riii～Rii4、R121～R123、R131～R133およびR141～R142は各々独立に水素原子または置換基
を表す。

[0031] [化9]

式(3L-1) 式(3L-2) 式(3L-3)

式(3L-4) 式(3L-5) 式(3L-6)

[0032] 式 (3 L - 1) ~ (3 L - 6) 中、R は置換基を表す。a 2 および a 3 は各々独立に 0 以上の整数を表し、a 4 は 0 ~ 4 の整数を表す。a 5 は 0 ~ 3 の整数を表す。a 6 は 0 ~ 2 の整数を表す。

環 A は、ビリジン環、ビラジン環、ビリダジン環、トリアジン環、炭素原子で M に配位するビリジン環、炭素原子で M に配位するチオフェン環、炭素原子で M に配位するフラン環、イミダゾール環、オキサゾール環、チアゾール環、オキサジアゾール環、チアジアゾール環、イソチアゾール環、トリアジオール環、ピラゾール環、ピロール環およびベンゼン環から選ばれる環構造を表す。

環 A' は、炭素原子で M に配位するビリジン環、炭素原子で M に配位するビラジン環、炭素原子で M に配位するビリダジン環、炭素原子で M に配位するビリジン環、炭素原子で M に配位するフラン環、イミダソール環、炭素原子で M に配位するオキサゾール環、炭素原子で M に配位するオキサジアゾール環、炭素原子で M に配位するオキサジアゾール環、炭素原子で M に配位するチアゾール環、炭素原子で M に配位するチアジアゾール環、炭素原子で M に配位するチアジアゾール環、炭素原子で M に配位するチアジアゾール環、炭素原子で M に配位するチアジアゾール環、炭素原子で M に配位するチアジアゾール環。
位するイソオキサゾール環、炭素原子でMに配位するイソチアゾール環、トリアゾール環、ピラゾール環、ピロール環およびベンゼン環から選ばれる環構造を表す。

環A'は、ピラゾール環を表す。

環Bは、ピリミジン環、トリアソール環、イミダゾール環、オキサゾール環、チアソール環、オキサジアソール環、チアジアソール環、トリアソール環、ピラゾール環、ピロール環およびベンゼン環から選ばれる環構造を表す。

環B'は、炭素原子でMに配位するピリミジン環、イミダゾール環、炭素原子でMに配位するオキサソール環、炭素原子でMに配位するチアソール環、炭素原子でMに配位するオキサジアソール環、炭素原子でMに配位するチアジアソール環、トリアソール環、ピラゾール環、ピロール環およびベンゼン環から選ばれる環構造を表す。

環D'は、芳香族炭化水素環または複素環を表す。A xおよびA yは、各々独立に、窒素原子、酸素原子または硫黄原子を表す。ただし、A xとA yの少なくとも一方はアニオンである。

ここで、式（3L−1）に存在する2つの環Aは互いに同一であっても異なってもよく、式（3L−6）に存在する2つの環D'は互いに同一であっても異なってもよい。

[14] [9]～[13]のいずれかに記載の金属錯体色素を溶解してなる色素溶液。

[15] 金属錯体色素が有機溶媒に溶解しており、金属錯体色素の含有量が0.001～0.1質量％であり、水分含有量が0.1質量％以下である[14]に記載の色素溶液。

[17] 共吸着剤が、下記式（CA）で表される[16]に記載の色素溶液。

[0033]
化10

式 (C A) 中、RA1は吸着性基を有する基を表す。RA2は置換基を表す。
n A は 0 以上の整数を表す。

本明細書において、特に断りがない限り、炭素—炭素二重結合法については、分子内にE型及びZ型が存在する場合、そのいずれであっても、またこれらの混合物であってもよい。

本明細書において、特定の符号で表示された置換基、連結基、配位子、環構造等（以下、置換基等という）が複数あるとき、あるいは複数の置換基等を同時もしくは挾一的に規定するときには、特段の断りがない限り、それぞれの置換基等は互いに同一でも異なっていてもよい。このことは、置換基等の数の規定についても同様である。また、複数の置換基等が近接するとき（特に、隣接するとき）には特段の断りがない限り、それらが互いに連続して環を形成してもよい。また、環、例えば脂環、芳香環、ヘテロ環、はさらに縮環して総合環を形成していてもよい。本明細書において「環」の用語は、縮環を含む意味に用いる。さらに本明細書において「吸着性基を有する基」は後記のA d について説明したもののが挙げられる。

本明細書においては、各置換基は、特に断らない限り、さらに置換基を有してもよい。

発明の効果

本発明の光電変換素子および色素増感太陽電池は、光電変換効率（力）および耐久性に優れる。本発明の金属錯体色素は、これを半導体微粒子表面に担持させて光電変換素子の感光体層として用いれば、当該光電変換素子ないしこれを用いた色素増感太陽電池の光電変換効率（77）、耐久性をより向上させることができる。
本発明の色素溶液は、本発明の光電変換素子ないしこれを利用した色素増感太陽電池の感光体層の形成に好適に用いることができる。

図面の簡単な説明

発明を実施するための形態

本発明の光電変換素子および色素増感太陽電池
有しており、この電子が色素2から半導体微粒子22の伝導帯に渡され、さらに拡散によって導電性支持体に到達する。このとき金属錯体色素は酸化体となっているが、電極上の電子が外部回路6で仕事をしながら、対極4を経由して、色素（金属錯体色素）21の酸化体および電解質が存在する感光体層2に戻ることで太陽電池として働く。

図1は本発明の実施形態の説明のために模式的に示したものであり、本発明における色素の吸着形態や各層の構成（単層・複層）などが図1の構成によって限定して解釈されるものではない。

[0040] 本発明において光電変換色素および色素増感太陽電池に用いられる材料および各部材の作成方法については、金属錯体色素の構成を除き、光電変換色素もしくは色素増感太陽電池に関する通常の材料および各部材の作成方法を採用すればよく、例えば米国特許第4,927,721号明細書、米国特許第4,684,537号明細書、米国特許第5,084,365号明細書、米国特許第5,350,644号明細書、米国特許第5,463,057号明細書、米国特許第5,525,440号明細書、特開平7-249790号公報、特開2004-220974号公報、特開2008-135197号公報を参照することができる。

以下、主たる部材について概略を説明する。

[0041] <感光体層>

感光体層は後述する電解質を含み、さらに、後述する本発明の金属錯体色素を含む増感色素が担持された半導体微粒子を含む層である。

[0042] （金属錯体色素）

本発明において、増感色素は半導体微粒子に担持（吸着）され、半導体微粒子の光感受性を増感するために用いられる。本発明においては、増感色素として少なくとも下記式（1）で表される金属錯体色素を用いる。

[0043] \[M \left(\text{L}_D \right) \left(\text{L}_A \right) \left(\text{X} \right) m \cdot \text{C} \text{I} \cdots \cdots \text{式（1）} \]

[0044] 上記式（1）において、Mは中心金属であり、Ru²⁺、Fe²⁺またはOs²⁺を表す。Mは好ましくはRu²⁺である。なお、光電変換色素中に組み込まれ
た状態においては、前記Mの価数は、周囲の材料との酸化還元反応により変化することがある。

[0045] 上記式（1）において、L Dはアリール基または複素環基を含む2座または3座の配位子である。該配位子は、アニオンとなって中心金属Mに配位する原子を1個〜3個、好ましくは1または2個有する。

[0046] L Dが2座の配位子である場合、下記式（2 L - 1）〜（2 L - 4）のいずれかで表される配位子が好ましい。

[0047] [化11]

上記式（2 L - 1）〜（2 L - 4）において、* は中心金属Mへの配位位置を示す。

上記式（2 L - 1）〜（2 L - 4）中、A i11、A i2 i、八 i13 iおよび八 i14 1は中心金属Mへの配位原子であり、窒素原子および炭素原子から選ばれるが、いずれもアニオン性である。つまり、該配位原子となる窒素原子および炭素原子はマイナス（-）にチャージしている。八 i11 i、A i2 i、A i3 1およびA i4 iはアニオン性の窒素原子であることが好ましい。

なお、八 i11 i、A i2 i、A i3 1およびA i4 1は、環Dの環構成原子である。

[0049] 上記式（2 L - 1）〜（2 L - 4）において、環Dは、芳香族炭化水素環または複素環を表す。該複素環は芳香族複素環が好ましい。

芳香族炭化水素環は、6員環が好ましく、縮環していてもよく、例えば、ベンゼン環、ナフタレン環が挙げられる。

複素環は、5員環または6員環が好ましく、環構成ヘテロ原子が、窒素原子以外に、酸素原子、硫黄原子を含んでもよく、ベンゼン環やヘテロ環が縮環していてもよい。
環Dの具体例としては、ピロール環、イミダソール環、ピラゾール環、トリアゾール環、ベンゼン環、フラン環、チオフェン環、オキサゾール環、チアゾール環等およびこれらのベンゾローグ（ベンゼン縮環体）が挙げられ、ピロール環、イミダソール環、ピラゾール環、トリアゾール環、ベンゼン環が好ましく、イミダソール環、ピラゾール環、ベンゼン環が特に好ましい。これらの環は置換基を有していてもよく、該置換基として後述する置換基群Tから選ばれる置換基が挙げられ、中でもアルキル基が好ましく、メチル基、トリフルオロメチル基がより好ましい。

式(G)において、Gは下記式(G-1)で表される基を表す。\(n_{G} \)は0または1を表す。
式 (G−1) において、X^G は酸素原子、硫黄原子、N (R_g1) 、C (R_g1g2) または Si (R_g1) (R_g2) を表す。ここで、R_g1 および R_g2 は各々独立に、水素原子、アルキル基またはアリール基を表す。R_g1、R_g2 および R_g3 は各々独立に、水素原子または置換基を表す。R_g1 と R_g2、R_g2 と R_g3 が互いに結合して環を形成してもよい。n_g は 1 が好ましい。X^G は、酸素原子、硫黄原子、N (R_g1) 、C (R_g1) (R_g2) が好ましく、酸素原子、硫黄原子、C (R_g1) (R_g2) がさらに好ましく、硫黄原子が特に好ましい。上記GのLog P値は、3.0～20.0が好ましい。

log P は、分配係数 P (Partition Coefficient) の常用対数を意味し、ある化学物質が油（一般的に 1—オクタノール）と水の 2 相系の平衡でどのように分配されるかを定量的な数値として表す物性値であり、次式で表される。

\[\text{Log } P = \text{Log } \left(\frac{C_{oil}}{C_{water}} \right) \]

上記式において、C_{oil} は油相中のモル濃度を表し、C_{water} は水相中のモル濃度を表す。Log Pの値が 0 をはさんでプラスに大きくなると油溶性が増し、マイナスで絶対値が大きくなると水溶性が増す。Log P は化学物質の水溶性と負の相関があり、親水性および疎水性を観積するパラメータとして広く利用されている。その定義から考えて分配実験で実測するのが原则であるが、実験自体がかなり面倒なため、構造式からの推算は有効な手段である。
このため、計算によるL o g Pの推算値のL o g Pが多用されている。本発明では、L o g P値は、Cambridge Soft社製ChemDraw 12.0により計算された値である。L o g P値は、3.5～15.0が好ましく、4.0～14.0があまり好ましく、4.2～12.0がさらに好ましく、4.3～10.0が特に好ましく、4.4～9.0が最も好ましい。

G（式（G_1）で表される基）は、光電変換効率および耐久性の観点から、以下の態様A〜態様Cのいずれかであることが好ましく、態様Aまたは態様Bであることがより好ましく、態様Aであることがさらに好ましい。

<態様A>
R G_1およびR G_2が水素原子、アルキル基、アミノ基、アルキルチオ基、アリールチオ基、アルケニル基、アルキニル基のいずれかであり、かつ、R G_3が水素原子、アルキル基、アルキルアミノ基、アリールアミノ基、アルコキシ基、アリールオキシ基、アリールチオ基、アリールチオ基、アルケニル基、アルケニル基、ヘテロアリール基、アルケニル基、アルキニル基、アルヘテロアリール基、アルケニル基、アルキニル基、アルヘテロアリール基のいずれかである。但し、アルコヒル、かつ、R G_1およびR G_2がともに水素原子のとき、R G_3は水素原子、アルキルアミノ基、アリールアミノ基、アルコキシ基、アリールオキシ基、アリールチオ基、アルケニル基、アルケニル基、ヘテロアリール基、アルケニル基、アルキニル基、アルヘテロアリール基、アルケニル基、アルキニル基、アルヘテロアリール基のいずれかである。

<態様D>
R G_1およびR G_2は、水素原子、アルキル基、アルキルチオ基、アリールチオ基、アルケニル基、アルキニル基、アルキニル基であることが好ましく、水素原子、アルキル基、アルキルチオ基、アリールチオ基であることがより好ましく、水素原子、アルキル基、アルキルチオ基であることがさらに好ましい。

<態様E>
R G_3は水素原子、アルキル基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アルケニル基、ヘテロアリール基であることが好ましく、水素原子、アルキル基、アルキルチオ基、アリールチオ基、アルケニル基、ヘテロアリール基であることがより好ましく、水素原子、アルキル基、アルキルチオ基、アリールチオ基、ヘテロアリール基であることがさ
らに好ましく、水素原子、アルキル基、アルキルチオ基、ヘテロアリール基であることが特に好ましい。R^1Gが置換基である場合、R^2Gは水素原子であることが好ましく、R^3Gは水素原子、アルコキシ基、アルキルチオ基、アルキルチオ基またはヘテロアリール基であることが好ましく、水素原子またはヘテロアリール基であることがより好ましい。R^2Gが置換基である場合、R^1G、R^3Gは水素原子であることがある好ましい。

[0067] 態様AにおけるGの具体例とともに、$-(CH=CH)_nG$の具体例を以下に示す。ただし、本発明の範囲がこれにより限定されるものではない。

なお、Gの具体例中の*の位置で、環Dで置換された式（1）におけるLDのピリジン環、ピリミジン環、ピラジン環またはトリアジン環に結合する。
<table>
<thead>
<tr>
<th>No.</th>
<th>G</th>
<th>GのLogP値</th>
<th>nε</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-1A</td>
<td></td>
<td>6.82</td>
<td>1</td>
</tr>
<tr>
<td>G-2A</td>
<td></td>
<td>6.49</td>
<td>1</td>
</tr>
<tr>
<td>G-3A</td>
<td></td>
<td>4.10</td>
<td>1</td>
</tr>
<tr>
<td>G-4A</td>
<td></td>
<td>4.66</td>
<td>1</td>
</tr>
<tr>
<td>G-5A</td>
<td></td>
<td>6.33</td>
<td>1</td>
</tr>
<tr>
<td>G-6A</td>
<td></td>
<td>7.17</td>
<td>1</td>
</tr>
<tr>
<td>G-7A</td>
<td></td>
<td>4.59</td>
<td>1</td>
</tr>
<tr>
<td>G-8A</td>
<td></td>
<td>4.69</td>
<td>1</td>
</tr>
<tr>
<td>G-9A</td>
<td></td>
<td>4.53</td>
<td>1</td>
</tr>
<tr>
<td>G-10A</td>
<td></td>
<td>7.04</td>
<td>1</td>
</tr>
<tr>
<td>G-11A</td>
<td></td>
<td>3.17</td>
<td>1</td>
</tr>
<tr>
<td>G-12A</td>
<td></td>
<td>5.44</td>
<td>1</td>
</tr>
<tr>
<td>G-13A</td>
<td></td>
<td>3.19</td>
<td>1</td>
</tr>
<tr>
<td>G-14A</td>
<td></td>
<td>6.19</td>
<td>1</td>
</tr>
<tr>
<td>G-15A</td>
<td></td>
<td>8.52</td>
<td>1</td>
</tr>
<tr>
<td>G-16A</td>
<td></td>
<td>5.15</td>
<td>1</td>
</tr>
<tr>
<td>G-17A</td>
<td></td>
<td>6.33</td>
<td>1</td>
</tr>
<tr>
<td>G-18A</td>
<td></td>
<td>6.33</td>
<td>0</td>
</tr>
<tr>
<td>G-19A</td>
<td></td>
<td>5.93</td>
<td>1</td>
</tr>
<tr>
<td>G-20A</td>
<td></td>
<td>5.32</td>
<td>1</td>
</tr>
<tr>
<td>G-21A</td>
<td></td>
<td>8.79</td>
<td>1</td>
</tr>
<tr>
<td>G-22A</td>
<td></td>
<td>9.0</td>
<td>1</td>
</tr>
<tr>
<td>G-23A</td>
<td></td>
<td>5.19</td>
<td>1</td>
</tr>
<tr>
<td>G-24A</td>
<td></td>
<td>4.48</td>
<td>1</td>
</tr>
</tbody>
</table>

[0069]
【化15】

<table>
<thead>
<tr>
<th>No.</th>
<th>G</th>
<th>GόLogP值</th>
<th>nг</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-25A</td>
<td></td>
<td>5.09</td>
<td>1</td>
</tr>
<tr>
<td>G-26A</td>
<td></td>
<td>7.12</td>
<td>1</td>
</tr>
<tr>
<td>G-27A</td>
<td></td>
<td>7.18</td>
<td>1</td>
</tr>
<tr>
<td>G-28A</td>
<td></td>
<td>6.37</td>
<td>1</td>
</tr>
<tr>
<td>G-29A</td>
<td></td>
<td>5.34</td>
<td>1</td>
</tr>
<tr>
<td>G-30A</td>
<td></td>
<td>8.74</td>
<td>1</td>
</tr>
<tr>
<td>G-31A</td>
<td></td>
<td>8.74</td>
<td>0</td>
</tr>
<tr>
<td>G-32A</td>
<td></td>
<td>6.16</td>
<td>1</td>
</tr>
<tr>
<td>G-38A</td>
<td></td>
<td>6.16</td>
<td>0</td>
</tr>
<tr>
<td>G-34A</td>
<td></td>
<td>4.25</td>
<td>0</td>
</tr>
<tr>
<td>G-35A</td>
<td></td>
<td>6.11</td>
<td>1</td>
</tr>
<tr>
<td>G-36A</td>
<td></td>
<td>6.11</td>
<td>0</td>
</tr>
<tr>
<td>G-37A</td>
<td></td>
<td>4.38</td>
<td>1</td>
</tr>
<tr>
<td>G-38A</td>
<td></td>
<td>4.39</td>
<td>0</td>
</tr>
<tr>
<td>G-39A</td>
<td></td>
<td>4.63</td>
<td>1</td>
</tr>
<tr>
<td>G-40A</td>
<td></td>
<td>4.63</td>
<td>0</td>
</tr>
<tr>
<td>G-41A</td>
<td></td>
<td>5.84</td>
<td>1</td>
</tr>
<tr>
<td>G-42A</td>
<td></td>
<td>6.41</td>
<td>1</td>
</tr>
</tbody>
</table>

様 B

R^G1およびR^G2が水素原子、アルキル基、アミノ基、アルキルチオ基、アリールチオ基のいずれかであり、かつ、R^G3がアリール基である。R^G1およびR^G2が水素原子、アルキル基、アルキルチオ基、アリールチオ基のいずれかであり、かつ、R^G3がアリール基であることが好ましく、R^G1およびR^G2が水素原子、アルキル基のいずれかであり、かつ、R^G3がアリール基であることがより好ましい。
態様 B における G の具体例とともに、

\[- \text{(CH} = \text{CH})_n \text{g}_- \text{G} \]

の具体例を以下に示す。ただし、本発明の範囲がこれにより限定されるものではない。

[0072]
<table>
<thead>
<tr>
<th>No.</th>
<th>G</th>
<th>Gの長さ</th>
<th>9K</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.85</td>
<td>8.42</td>
<td>8.42</td>
<td>7.97</td>
<td>7.50</td>
<td>5.16</td>
<td>7.73</td>
<td>7.73</td>
<td>4.67</td>
<td>4.01</td>
<td>3.85</td>
<td>3.85</td>
<td>4.61</td>
<td>4.61</td>
<td>5.53</td>
<td>6.42</td>
</tr>
</tbody>
</table>

【図16】
<table>
<thead>
<tr>
<th>No.</th>
<th>G</th>
<th>GのLogP</th>
<th>ng</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-1B</td>
<td></td>
<td>5.85</td>
<td>1</td>
</tr>
<tr>
<td>G-2B</td>
<td></td>
<td>8.42</td>
<td>1</td>
</tr>
<tr>
<td>G-3B</td>
<td></td>
<td>8.42</td>
<td>1</td>
</tr>
<tr>
<td>G-4B</td>
<td></td>
<td>5.73</td>
<td>1</td>
</tr>
<tr>
<td>G-5B</td>
<td></td>
<td>7.97</td>
<td>1</td>
</tr>
<tr>
<td>G-6B</td>
<td></td>
<td>7.50</td>
<td>1</td>
</tr>
<tr>
<td>G-7B</td>
<td></td>
<td>5.15</td>
<td>1</td>
</tr>
<tr>
<td>G-8B</td>
<td></td>
<td>5.15</td>
<td>1</td>
</tr>
<tr>
<td>G-9B</td>
<td></td>
<td>7.73</td>
<td>1</td>
</tr>
<tr>
<td>G-10B</td>
<td></td>
<td>4.67</td>
<td>1</td>
</tr>
<tr>
<td>G-11B</td>
<td></td>
<td>4.01</td>
<td>1</td>
</tr>
<tr>
<td>G-12B</td>
<td></td>
<td>3.85</td>
<td>1</td>
</tr>
<tr>
<td>G-13B</td>
<td></td>
<td>3.85</td>
<td>1</td>
</tr>
<tr>
<td>G-14B</td>
<td></td>
<td>3.85</td>
<td>1</td>
</tr>
<tr>
<td>G-15B</td>
<td></td>
<td>4.61</td>
<td>1</td>
</tr>
<tr>
<td>G-16B</td>
<td></td>
<td>4.61</td>
<td>1</td>
</tr>
<tr>
<td>G-17B</td>
<td></td>
<td>4.61</td>
<td>1</td>
</tr>
<tr>
<td>G-18B</td>
<td></td>
<td>5.53</td>
<td>1</td>
</tr>
<tr>
<td>G-19B</td>
<td></td>
<td>6.42</td>
<td>1</td>
</tr>
<tr>
<td>G-20B</td>
<td></td>
<td>6.42</td>
<td>1</td>
</tr>
<tr>
<td>G-21B</td>
<td></td>
<td>6.42</td>
<td>1</td>
</tr>
<tr>
<td>G-22B</td>
<td></td>
<td>6.58</td>
<td>1</td>
</tr>
<tr>
<td>G-23B</td>
<td></td>
<td>7.52</td>
<td>1</td>
</tr>
<tr>
<td>G-24B</td>
<td></td>
<td>7.19</td>
<td>1</td>
</tr>
</tbody>
</table>
<態様C>

G_1およびG_2が鎖状のアルコキシ基またはアリールオキシ基であり、かつ、G_3が水素原子、アルキル基、アルキルアミノ基、アリールアミノ基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、アリール基、ヘテロアリール基のいずれかである。G_1およびG_2における鎖状のアルコキシ基またはアリールオキシ基としては、置換もしくは無置換の炭素数6〜30の直鎖または分岐アルキル基、置換もしくは無置換の炭素数6〜30のアリール基であることが好ましく、置換もしくは無置換の炭素数6〜20の直鎖または分岐アルキル基、置換もしくは無置換の炭素数6〜20のアリール基であることがより好ましく、置換もしくは無置換の炭素数6〜15の直鎖または分岐アルキル基、置換もしくは無置換の炭素数6〜15のアリール基であることが更に好ましい。

態様CにおけるGの具体例とともに、–（CH=CH）ₙ–Gの具体例を以下に示す。ただし、本発明の範囲がこれにより限定されるものではない。

<table>
<thead>
<tr>
<th>No.</th>
<th>G</th>
<th>GのLogP値</th>
<th>ng</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-25B</td>
<td></td>
<td>7.52</td>
<td>1</td>
</tr>
<tr>
<td>G-26B</td>
<td></td>
<td>8.11</td>
<td>1</td>
</tr>
<tr>
<td>G-27B</td>
<td></td>
<td>6.22</td>
<td>1</td>
</tr>
<tr>
<td>G-28B</td>
<td></td>
<td>12.07</td>
<td>1</td>
</tr>
<tr>
<td>G-29B</td>
<td></td>
<td>11.89</td>
<td>1</td>
</tr>
<tr>
<td>G-30B</td>
<td></td>
<td>9.92</td>
<td>1</td>
</tr>
</tbody>
</table>
化18]

<table>
<thead>
<tr>
<th>No.</th>
<th>G</th>
<th>GのLogP値</th>
<th>ng</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-1C</td>
<td>C₄H₁₀</td>
<td>3.49</td>
<td>1</td>
</tr>
<tr>
<td>G-2C</td>
<td>C₆H₁₂O₆</td>
<td>5.58</td>
<td>1</td>
</tr>
<tr>
<td>G-3C</td>
<td>C₆H₁₂O₆</td>
<td>6.32</td>
<td>1</td>
</tr>
<tr>
<td>G-4C</td>
<td>C₈H₁₈</td>
<td>8.02</td>
<td>1</td>
</tr>
<tr>
<td>G-5C</td>
<td>C₈H₁₈</td>
<td>8.02</td>
<td>1</td>
</tr>
<tr>
<td>G-6C</td>
<td>C₈H₁₈</td>
<td>5.21</td>
<td>1</td>
</tr>
<tr>
<td>G-7C</td>
<td>C₈H₁₈</td>
<td>6.20</td>
<td>1</td>
</tr>
<tr>
<td>G-8C</td>
<td>C₈H₁₈</td>
<td>6.39</td>
<td>1</td>
</tr>
<tr>
<td>G-9C</td>
<td>C₈H₁₈</td>
<td>7.38</td>
<td>1</td>
</tr>
<tr>
<td>G-10C</td>
<td>C₈H₁₈</td>
<td>6.93</td>
<td>1</td>
</tr>
<tr>
<td>G-11C</td>
<td>C₈H₁₈</td>
<td>5.38</td>
<td>1</td>
</tr>
<tr>
<td>G-12C</td>
<td>C₈H₁₈</td>
<td>5.38</td>
<td>1</td>
</tr>
<tr>
<td>G-13C</td>
<td>C₈H₁₈</td>
<td>5.38</td>
<td>1</td>
</tr>
<tr>
<td>G-14C</td>
<td>C₈H₁₈</td>
<td>5.88</td>
<td>1</td>
</tr>
<tr>
<td>G-15C</td>
<td>C₈H₁₈</td>
<td>6.14</td>
<td>1</td>
</tr>
<tr>
<td>G-16C</td>
<td>C₈H₁₈</td>
<td>6.14</td>
<td>1</td>
</tr>
<tr>
<td>G-17C</td>
<td>C₈H₁₈</td>
<td>6.14</td>
<td>1</td>
</tr>
<tr>
<td>G-18C</td>
<td>C₈H₁₈</td>
<td>7.07</td>
<td>1</td>
</tr>
<tr>
<td>G-19C</td>
<td>C₈H₁₈</td>
<td>7.70</td>
<td>1</td>
</tr>
<tr>
<td>G-20C</td>
<td>C₈H₁₈</td>
<td>5.65</td>
<td>1</td>
</tr>
</tbody>
</table>

[0077] 上記式 (2 L - 1) 〜 (2 L - 4) で表される配位子のうち、式 (2 L - 1) または (2 L - 2) で表される配位子が好ましい。

[0078] L Dが2座の配位子である場合、上記式 (2 L - 1) 〜 (2 L - 4) 以外
に、下記式（2 L —5）または（2 L —6）で表される配位子もまた好ましい。

[0079] [化 19]

式（2 L—5） 式（2 L—6）

[0080] 式（2 L —5）、（2 L —6）において、* は M への結合位置を表す。
環 D 2 は芳香族炭化水素環またはヘテロ芳香族環を表す。
A 1 および A 2 は、各々独立に、N - R L 、O - または S - を表す。
A 1 ～ A 4 は、各々独立に、C (R LD) または N を表し、A 1 ～ A 4 のうち少なくとも１つは N を表す。

L LD は、- C (= 0) - 、- C (= S) - 、- C (= N R L) - 、- C (R L) 2 および C (= C (R L) 2) - からなる群より選ばれる 2 個の連絡基を表す。
R 1 および R LD は、各々独立に水素原子または置換基を表す。

[0081] 環 D 2 は、芳香族炭化水素環または複素環を表し、前記式（2 L — 1）～（2 L — 4）における環 D と同義であり、好ましい範囲も同じである。
R 1 および R LD における置換基は、後述の置換基 T が挙げられる。

[0082] 以下に、L D が 2 座の配位子の具体例を示すが、本発明はこれらに限定されるものではない。
なお、M e はメチル、t _ B リは t _ ブチル、p h はフェニルである。

[0083] < 2 座の配位子の例 >

[0084]
<table>
<thead>
<tr>
<th>LD No</th>
<th>R<sup>601</sup></th>
<th>R<sup>602</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>LD-6-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-6-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-6-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-6-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-6-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-6-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-6-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-6-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-6-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-6-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-6-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-6-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-6-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-6-14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-6-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-6-16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-6-17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
[0086] [化22]

L2ex1-1

L2ex1-2

L2ex1-3

L2ex1-4

L2ex1-6

L2ex1-7

[0087]
[0089]
[0090]
<table>
<thead>
<tr>
<th>LD-4-1</th>
<th>(-nC_8H_{17})</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD-4-2</td>
<td>(-iC_3H_7)</td>
</tr>
<tr>
<td>LD-4-3</td>
<td>(-tC_4H_9)</td>
</tr>
<tr>
<td>LD-4-4</td>
<td>(\text{Ph})</td>
</tr>
<tr>
<td>LD-4-5</td>
<td>(\text{Ph}-nC_8H_{13})</td>
</tr>
<tr>
<td>LD-4-6</td>
<td>(C_6H_{11}O)</td>
</tr>
<tr>
<td></td>
<td>(C_8H_{17}O)</td>
</tr>
<tr>
<td>LD-4-7</td>
<td>(\text{Ph})</td>
</tr>
<tr>
<td>LD-4-8</td>
<td>(\text{Ph}-NM_2)</td>
</tr>
<tr>
<td>LD-4-9</td>
<td>(\text{Ph}-nC_8H_{13})</td>
</tr>
<tr>
<td>LD-4-10</td>
<td>(\text{Ph}-tC_4H_9)</td>
</tr>
<tr>
<td>LD-4-11</td>
<td>(\text{Ph}-(nC_8H_{13})_2)</td>
</tr>
<tr>
<td>LD-4-12</td>
<td>(\text{Ph}-(nC_8H_{13})_3)</td>
</tr>
<tr>
<td>LD-4-13</td>
<td>(\text{Ph}-(nC_8H_{13})_4)</td>
</tr>
<tr>
<td>LD-4-14</td>
<td>(\text{Ph}-(nC_8H_{13})_5)</td>
</tr>
<tr>
<td>LD-4-15</td>
<td>(\text{Ph}-(nC_8H_{13})_6)</td>
</tr>
</tbody>
</table>

[0091]
[0092]
[0093]
[0094]
[化30]

LD-9-1

LD-9-2

LD-9-3

LD-9-4

LD-9-5

[0095]
LD-10-1
- R^{LO1}: H
- R^{LC02}: H
- R^{LC03}: H

LD-10-2
- R^{LO1}: CH₃
- R^{LC02}: H
- R^{LC03}: H

LD-10-3
- R^{LO1}: n-C₉H₁₇
- R^{LC02}: H
- R^{LC03}: H

LD-10-4
- R^{LO1}: n-C₉H₁₇
- R^{LC02}: H
- R^{LC03}: H

LD-10-5
- R^{LO1}: S
- R^{LC02}: n-C₉H₁₇
- R^{LC03}: H

LD-10-6
- R^{LO1}: F
- R^{LC02}: S
- R^{LC03}: n-C₉H₁₇

LD-10-7
- R^{LO1}: NO₂
- R^{LC02}: S
- R^{LC03}: n-C₉H₁₇

LD-10-8
- R^{LO1}: S
- R^{LC02}: S
- R^{LC03}: n-C₉H₁₇

LD-10-9
- R^{LO1}: H
- R^{LC02}: S
- R^{LC03}: n-C₉H₁₇

LD-10-10
- R^{LO1}: S
- R^{LC02}: H
- R^{LC03}: n-C₉H₁₇

LD-10-11
- R^{LO1}: H
- R^{LC02}: S
- R^{LC03}: n-C₉H₁₇

LD-10-12
- R^{LO1}: S
- R^{LC02}: CH₃
- R^{LC03}: H

LD-10-13
- R^{LO1}: S
- R^{LC02}: S
- R^{LC03}: n-C₉H₁₇

LD-10-14
- R^{LO1}: S
- R^{LC02}: S
- R^{LC03}: n-C₉H₁₇

LD-10-15
- R^{LO1}: S
- R^{LC02}: S
- R^{LC03}: n-C₉H₁₇

LD-10-16
- R^{LO1}: S
- R^{LC02}: S
- R^{LC03}: n-C₉H₁₇
[化32]

LD-10-17

LD-10-18

LD-10-19

LD-10-20

LD-10-21

LD-10-22

LD-10-23

LD-10-24

[0097]
Table 3.1

<table>
<thead>
<tr>
<th>LD-11-1</th>
<th>LD-11-2</th>
<th>LD-11-3</th>
<th>LD-11-4</th>
<th>LD-11-5</th>
<th>LD-11-6</th>
<th>LD-11-7</th>
<th>LD-11-8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LD-12-1</th>
<th>LD-12-2</th>
<th>LD-12-3</th>
<th>LD-12-4</th>
<th>LD-12-5</th>
<th>LD-12-6</th>
<th>LD-12-7</th>
<th>LD-12-8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0098]
Table [化 34]

LD-13-1	O−	C−	H−	N	CH
LD-13-2	O−	C−	CH3	N	CH
LD-13-3	O−	C−	Cyclic moiety	N	CH
LD-13-4	S−	C−	Cyclic moiety	N	CH
LD-13-5	S−	C−	Cyclic moiety	N	CH
LD-13-6	S−	C−	Cyclic moiety	N	CH
LD-13-7	NH+	C−	Cyclic moiety	N	CH
LD-13-8	NH+	S−	Cyclic moiety	N	CH
LD-13-9	O−	C−	H−	Cyclic moiety	N
LD-13-10	O−	S−	H−	Cyclic moiety	N
LD-13-11	S−	C−	H−	Cyclic moiety	N
LD-13-12	O−	C−	H−	Cyclic moiety	N
LD-13-13	O−	C−	H−	Cyclic moiety	N

[0099]
[化35]

LDが3座配位子である場合、下記式（3L－1）～（3L－6）のいずれかで表される配位子が好ましい。

[0100]
上記式(3L-1)～(3L-6)において、R^Bは置換基を表す。該置換基としては後述の置換基群Tから選ばれる置換基が挙げられ、好ましくはアルキル基、アリール基、ヘテロ環基、アルキルオキシ基、アリールオキシ基、アリールチオ基、アルキルチオ基、ハロゲン原子およびアミノ基から選ばれる置換基であり、より好ましくはアルキル基、アリール基、ヘテロ環基、アルキルオキシ基、アリールオキシ基およびハロゲン原子から選ばれる置換基であり、さらに好ましくはアルキル基、アリール基、ヘテロ環基およびハロゲン原子から選ばれる置換基である。該置換基の炭素数は0～30の整数が好ましく、0～25の整数がより好ましく、0～20の整数がさらに好ましく、0～10の整数が特に好ましい。

a₂およびa₃は各々独立に0以上の整数を表し、0～4の整数が好ましく、より好ましくは0～3の整数である。a₄は0～4の整数を表す。a₅は0～3の整数を表す。a₆は0～2の整数を表す。

1つの環が複数のR^Bを有するとき、複数のR^Bは互いに結合して環を形成してもよい。

環Aは、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、炭素原子でMに配位するピリジン環、炭素原子でMに配位するチオフェン環、炭素原子でMに配位するフラン環、イミダゾール環、オキサゾール環、チアゾール環、オキサジアゾール環、チアジアゾール環、イソオキサゾール環、イ
ソチアゾ一ル環、トリアゾール環、ピラゾール環、ビロール環およびベンゼン環のいずれかを表す。環Aは、イミダゾール環、トリアゾール環、ピラゾール環、ビロール環および炭素原子でMに配位するピリジン環、炭素原子でMに配位するチオフェン環が好ましく、ピラゾール環、ビロール環、炭素原子でMに配位するピリジン環および炭素原子でMに配位するチオフェン環より好ましい。

[01 05] ここで、式 (3 L — 1) に存在する2つの環Aは互いに同一であっても異なってもよい。

[01 06] 上記環Aの例を以下に示すが、本発明はこれらに限定されるものではない。下記環Aの具体例中、*は環Bへの結合位置を示す。p r — 1 ~ p r — 6、p ε — 1 — p ε — 6、i m — 1 — i m — 3、i z — 1 — i z — 3は、プロトンが解離した窒素原子を介してMに配位する。ただし、i z _ 1 ~ i z _ 3は、互変異性の形で他の窒素原子を介してMに配位してもよい。h c _ 1 ~ h c _ 0は炭素原子を介してMに配位する。

[01 07]
環A'は、炭素原子でMに配位するピリミジン環、炭素原子でMに配位するピラジン環、炭素原子でMに配位するピリダジン環、炭素原子でMに配位するピラジン環、炭素原子でMに配位するピロール環とベンゼン環から選ばれる環構造を表す。
あるチオフェン環が好ましく、ピラゾール環、ピロール環、イミダゾール環、トリアゾール環がより好ましい。

[01 09] 環 A ' の例としては、環 A の説明で例示したもののが挙げられる。

[01 10] 環 A ' ' はピラゾール環を表す。

[01 11] 環 B はピリミジン環、トリアジン環、イミダゾール環、オキサゾール環、チアゾール環、オキサジアゾール環、チアジアゾール環、トリアゾール環、ピラゾール環、ピロール環、およびベンゼン環から選ばれる環構造を表す。

環 B はピリミジン環、トリアジン環、チアゾール環、オキサゾール環、イミダゾール環、ピロール環、ベンゼン環およびトリアゾール環が好ましく、ピロール環、ベンゼン環、イミダゾール環およびトリアゾール環がより好ましい。

[01 12] 環 B ' は、炭素原子で M に配位するピリミジン環、イミダゾール環、炭素原子で M に配位するオキサゾール環、炭素原子で M に配位するチアゾール環、炭素原子で M に配位するオキサジアゾール環、炭素原子で M に配位するチアジアゾール環、トリアゾール環、ピラゾール環、ピロール環およびベンゼン環から選ばれる環構造を表す。

環 B ' は窒素原子で M に配位するトリアゾール環、イミダゾール環、ピロール環、炭素原子で M に配位するベンゼン環が好ましい。

[01 13] 環 B および環 B ' の例を以下に示すが、本発明はこれらに限定されるものではない。下記例示中の* は、環 A またはピリミジン環への結合位置を示す。

5 N_6, 5 N_8, 5 N-10 は、プロトンが解離した窒素原子が M に結合する。5 N-7 は炭素原子（カルペン）で M に結合する。p m_7 は炭素アニオンで M に結合する。

なお、環 B の例は、p m-1, p m-7, m a-1, m a-6, 5 N-1, 5 N-10 であり、環 B ' の例は、p m-7, 5 N-6, 5 N-8, S N-10 である。

ここで、E t はエチルを表す。

[01 14]
環 D' は、芳香族炭化水素環または複素環を表し、前記式 (2 L - 1) ~ (2 L - 4) における環 D と同義であり、好ましい範囲も同じである。そこで、式 (3 L - 6) に存在する 2 つの環 D' は互いに同一でも異なってもよい。

A x および A y は各々独立に、窒素原子、酸素原子または硫黄原子を表す。ただし、A x と A y の少なくとも一方はアミオンである。

A x および A y は芳香族炭素環および含窒素ヘテロ芳香環における官能基のうち（置換）アミノ基、水酸基またはチオール基からの活性水素を除去した残基である場合が特に好ましい。

本発明において、配位子 L D は、耐光性の観点からは上記式 (3 L - 4) および (3 L - 5) のいずれかで表されるものがより好ましく、耐熱性の観点からは上記式 (3 L - 1) で表されるものがより好ましく、ヒートサイクル耐性の観点からは上記式 (3 L - 3) で表されるものがより好ましく、初期特性の観点からは上記式 (2 L - 1) ~ (2 L - 4) のいずれかで表されるものがより好ましい。

以下に、上記式 (1) における L D の具体例を示すが、本発明はこれらに
限定されるものではない。下記具体例中、Me はメチル、Et はエチルを示す。

[01 19] < 環構成原子に配位原子を有する環構造を 3 つ有する 3 座の配位子であって、ピリジン環構造を 2 つ有し、ピリジン環構造が隣接して存在している例>

[01 20] [化 39]

![化合物の構造式]

[01 21] < 環構成原子に配位原子を有する環構造を 3 つ有する 3 座の配位子であって、ピリジン環構造を 1 つ有し、ピリジン環構造が 3 つの環構造の中央に位置する例>

[01 22]
<環構成原子に配位原子を有する環構造を3つ有する3座の配位子であって、含へテロ原子5員環構造またはベンゼン環構造が3つの環構造の中央に位置する例>
<table>
<thead>
<tr>
<th>LD No</th>
<th>R_{301}^{01}</th>
<th>R_{302}^{01}</th>
<th>R_{303}^{01}</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD-3-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-3-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-3-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-3-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-3-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-3-6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-3-7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
化43

<table>
<thead>
<tr>
<th>LD No</th>
<th>R<sup>301</sup></th>
<th>R<sup>302</sup></th>
<th>R<sup>303</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>LD-3-33</td>
<td>C<sub>6</sub>H<sub>11</sub></td>
<td></td>
<td>N-N=C= CF<sub>3</sub></td>
</tr>
<tr>
<td>LD-3-34</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-3-35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-3-36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-3-37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-3-38</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[01 27] 式 (3 L - 6) で表される配位子の例

[01 28]
<table>
<thead>
<tr>
<th>LD No.</th>
<th>R<sup>401</sup></th>
<th>R<sup>402</sup></th>
<th>R<sup>403</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>LD-4-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-4-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-4-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-4-4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-4-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-4-6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-4-7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-4-8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-4-9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-4-10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
上記式 (1) において、L A は下記式 (2) で表される 3 座の配位子を示す。

<table>
<thead>
<tr>
<th>LD No.</th>
<th>(R^{401})</th>
<th>(R^{402})</th>
<th>(R^{403})</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD-4-11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-4-12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-4-13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LD-4-14</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

上記式（2）において、\(Z_a \) は \(D^1 \) および \(Q^1 \) と共 に、\(Z_b \) は \(D^2 \)、\(D^3 \) およ び \(Q^2 \) と共 に、\(Z_c \) は \(D^4 \) および \(Q^3 \) と共 に、それぞれ芳香族炭化水素基または 複素環基を形成するのに必要な原子群を表す。式（2）中、3 つの環構造の
少なくとも1つはベンゼン環、ビロール環、イミダゾール環、ピラゾール環、ピラジン環、ピリジン環、ピリミジン環、ピラゾール環、ピラジン環、ピリミジン環、ピリダジン環、イソキサゾール環、フラン環、テトラヒドロフラン環、テトラヒドロピラン環、イソキサゾール環、フラン環、テトラヒドロフラン環、テトラヒドロピラン環、4H-ピラン環、4H-ピリジン環、テトラヒドロピラン環およびこれらのベンゾローグ総合体から選ばれ、残りの環構造はピリジン環である。該「環構造」は、式(2)中に示された各環において、結合手を水素原子に置き換えた構造を意味する。また、該「環構造」は置換基を有してもよく、該置換基として後述する置換基群Tから選ばれるものが挙げられる。

ここで、ベンゾローグ総合体は、単環式芳香族化合物すなわちベンゼン環が縮環した環のことである。

式(2)中、3つの環構造のうち1つ、または2つの環構造がピリジン環であることが好ましい。また、ピリジン環以外の環構造は芳香環が好ましい。

Za～Zcの各原子群において、少なくとも1つの環構成原子は、半導体微粒子に吸着性を示す吸着性基を有する置換基を有する。該吸着性基を有する置換基として後述するAdが挙げられる。

Q1～Q3は孤立電子対を有する窒素原子、アニオン性の窒素原子またはアニオン性の炭素原子を表す。

Di～D4は炭素原子または窒素原子を表す。

上記式(2)で表される3座の配位子は、下記式(2-1)～(2-5)のいずれかで表される配位子が好ましい。
上記式 (2 _ 1) ~ (2 - 5) において、D 1 ～D 4 および Q i ～Q 3 は上記式 (2) における D i ～D 4 および Q i ～Q 3 と同義であり、好ましい範囲も同じである。

上記式 (2 _ 1) ～ (2 - 5) において、A d は半導体微粒子表面に吸着するための吸着性基を有する基を表す。A d は好ましくは—R A_ C O O H 、—R A—S O 3 H 、—R A—P O 3 H 2 、—R A—O H および—R A—S H （R A は単結合、アルキレン基を示し、単結合が特に好ましい。）で表される基またはその塩であり、より好ましくは—R A_ C O O H またはその塩である。

A d がピリジル基上に存在する場合において、m 1 は 0 ～ 4 の整数を表し、0 ～ 2 の整数が好ましく、0 または 1 が特に好ましい。A d がピリジル基上に存在する場合において、m 2 は 0 ～ 3 の整数を表し、0 ～ 2 の整数が好ましく、0 または 1 が特に好ましい。式 (2 _ 1) において、全ての m 1 と m 2 の和が 0 になることはなく、この和が 2 または 3 が好ましく、2 が特に好ましい。

上記式 (2 _ 1) ～ (2 - 5) の各式で表される配位子は、半導体微粒子
表面に吸着するための吸着性基 \((A_d) \) を少なくとも 1 つ有する。好ましくは式 \((2 - 1) \sim (2 - 5) \) において隣接する 2 つの環上に吸着性基を有する基 \((A_d) \) を 1 つずつ有する。

上記式 \((2 - 1) \sim (2 - 5) \) において、\(R \) は置換基を表す。該置換基としては後述する置換基群 \(T \) から選ばれるものが挙げられる。

\(R \) がビリジレン基上に存在する場合において、\(n_1 \) は 0 ～ 3 の整数を表す。\(R \) がビリジレン基上に存在する場合において、\(n_2 \) は 0 ～ 2 の整数を表す。

\[0140 \] \[0141 \] \[0142 \] \[0143 \]
<table>
<thead>
<tr>
<th>LA No</th>
<th>O\textsubscript{2}</th>
<th>O\textsubscript{1}</th>
<th>O\textsubscript{3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA-1-1</td>
<td>HOOC- <dximage> </dximage></td>
<td><dximage> </dximage></td>
<td><dximage> </dximage></td>
</tr>
<tr>
<td>LA-1-2</td>
<td>HOOC- <dximage> </dximage></td>
<td><dximage> </dximage></td>
<td><dximage> </dximage></td>
</tr>
<tr>
<td>LA-1-3</td>
<td>HOOC- <dximage> </dximage></td>
<td><dximage> </dximage></td>
<td><dximage> </dximage></td>
</tr>
<tr>
<td>LA-1-4</td>
<td>HOOC- <dximage> </dximage></td>
<td><dximage> </dximage></td>
<td><dximage> </dximage></td>
</tr>
<tr>
<td>LA-1-5</td>
<td>HOOC- <dximage> </dximage></td>
<td><dximage> </dximage></td>
<td><dximage> </dximage></td>
</tr>
<tr>
<td>LA-1-6</td>
<td>HOOC- <dximage> </dximage></td>
<td><dximage> </dximage></td>
<td><dximage> </dximage></td>
</tr>
<tr>
<td>LA-1-7</td>
<td>HOOC- <dximage> </dximage></td>
<td><dximage> </dximage></td>
<td><dximage> </dximage></td>
</tr>
<tr>
<td>LA-1-8</td>
<td>HOOC- <dximage> </dximage></td>
<td><dximage> </dximage></td>
<td><dximage> </dximage></td>
</tr>
<tr>
<td>LA-1-9</td>
<td>HOOC- <dximage> </dximage></td>
<td><dximage> </dximage></td>
<td><dximage> </dximage></td>
</tr>
<tr>
<td>LA-1-10</td>
<td>HOOC- <dximage> </dximage></td>
<td><dximage> </dximage></td>
<td><dximage> </dximage></td>
</tr>
<tr>
<td>LA-1-11</td>
<td>HOOC- <dximage> </dximage></td>
<td><dximage> </dximage></td>
<td><dximage> </dximage></td>
</tr>
<tr>
<td>LA-1-12</td>
<td>HOOC- <dximage> </dximage></td>
<td><dximage> </dximage></td>
<td><dximage> </dximage></td>
</tr>
<tr>
<td>LA-1-13</td>
<td>(HO)\textsubscript{2}OP- <dximage> </dximage></td>
<td><dximage> </dximage></td>
<td><dximage> </dximage></td>
</tr>
<tr>
<td>LA-1-14</td>
<td>(HO)\textsubscript{2}OP- <dximage> </dximage></td>
<td><dximage> </dximage></td>
<td><dximage> </dximage></td>
</tr>
<tr>
<td>LA No</td>
<td>Cy101</td>
<td>Cy102</td>
<td>Cy103</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>LA-2-1</td>
<td>HOOC-</td>
<td>N</td>
<td>COOH</td>
</tr>
<tr>
<td>LA-2-2</td>
<td>HOOC-</td>
<td>N-N</td>
<td>COOH</td>
</tr>
<tr>
<td>LA-2-3</td>
<td>HOOC-</td>
<td>N</td>
<td>COOH</td>
</tr>
<tr>
<td>LA-2-4</td>
<td>HOOC-</td>
<td>N</td>
<td>COOH</td>
</tr>
<tr>
<td>LA-2-5</td>
<td>HOOC-</td>
<td>N</td>
<td>COOH</td>
</tr>
<tr>
<td>LA-2-6</td>
<td>HOOC-</td>
<td>N</td>
<td>COOH</td>
</tr>
<tr>
<td>LA No</td>
<td>C3-1</td>
<td>C3-2</td>
<td>C3-3</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>LA-3-1</td>
<td>HOOC</td>
<td>CY</td>
<td>CY</td>
</tr>
<tr>
<td>LA-3-2</td>
<td>HOOC</td>
<td>CY</td>
<td>CY</td>
</tr>
<tr>
<td>LA-3-3</td>
<td>HOOC</td>
<td>CY</td>
<td>CY</td>
</tr>
<tr>
<td>LA-3-4</td>
<td>HOOC</td>
<td>CY</td>
<td>CY</td>
</tr>
<tr>
<td>LA-3-5</td>
<td>HOOC</td>
<td>CY</td>
<td>CY</td>
</tr>
<tr>
<td>LA-3-6</td>
<td>HOOC</td>
<td>CY</td>
<td>CY</td>
</tr>
<tr>
<td>LA-3-7</td>
<td>HOOC</td>
<td>CY</td>
<td>CY</td>
</tr>
<tr>
<td>LA-3-8</td>
<td>HOOC</td>
<td>CY</td>
<td>CY</td>
</tr>
<tr>
<td>LA-3-9</td>
<td>HOOC</td>
<td>CY</td>
<td>CY</td>
</tr>
<tr>
<td>LA-3-10</td>
<td>HOOC</td>
<td>CY</td>
<td>CY</td>
</tr>
<tr>
<td>LA-3-11</td>
<td>HOOC</td>
<td>CY</td>
<td>CY</td>
</tr>
<tr>
<td>LA-3-12</td>
<td>HOOC</td>
<td>CY</td>
<td>CY</td>
</tr>
<tr>
<td>LA-3-13</td>
<td>HOOC</td>
<td>CY</td>
<td>CY</td>
</tr>
<tr>
<td>LA-3-14</td>
<td>HOOC</td>
<td>CY</td>
<td>CY</td>
</tr>
<tr>
<td>LA No.</td>
<td>O^1</td>
<td>O^2</td>
<td>O^3</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>LA-4-1</td>
<td>N,N</td>
<td>COOH</td>
<td>N,N</td>
</tr>
<tr>
<td>LA-4-2</td>
<td>N,N</td>
<td>COOH</td>
<td>N,N</td>
</tr>
<tr>
<td>LA-4-3</td>
<td>N,N</td>
<td>COOH</td>
<td>N,N</td>
</tr>
<tr>
<td>LA-4-4</td>
<td>N,N</td>
<td>COOH</td>
<td>N,N</td>
</tr>
<tr>
<td>LA-4-5</td>
<td>N,N</td>
<td>COOH</td>
<td>N,N</td>
</tr>
<tr>
<td>LA-4-6</td>
<td>N,N</td>
<td>COOH</td>
<td>N,N</td>
</tr>
<tr>
<td>LA-4-7</td>
<td>S,N</td>
<td>COOH</td>
<td>S,N</td>
</tr>
<tr>
<td>LA-4-8</td>
<td>O,N</td>
<td>COOH</td>
<td>O,N</td>
</tr>
<tr>
<td>LA-4-9</td>
<td></td>
<td>COOH</td>
<td></td>
</tr>
<tr>
<td>LA-4-10</td>
<td>N,N</td>
<td>COOH</td>
<td>N,N</td>
</tr>
<tr>
<td>LA-4-11</td>
<td></td>
<td>COOH</td>
<td></td>
</tr>
<tr>
<td>LA-4-12</td>
<td></td>
<td>COON+(n-Bu)$_2$</td>
<td></td>
</tr>
<tr>
<td>LA-4-13</td>
<td></td>
<td>PO(OH)$_2$</td>
<td></td>
</tr>
<tr>
<td>LA-4-14</td>
<td></td>
<td>PO(OH)$_2$</td>
<td>(O^N)(n-Bu)$_2$</td>
</tr>
</tbody>
</table>
Lの例として、上記具体例の他、これらのトリエチルアミン塩、テトラプチルアンモニウム塩も挙げることができる。

上記式 (1) 中、X は、単座の配位子を表し、アシルオキシアニオン、アシルチオアニオン、チオアシルオキシアニオン、チオアシルチオアニオン、
アシルアミノキシアニオン、チオカルバメートアニオン、ジチオカルバメートアニオン、トリチオカルバメートアニオン、アシルアミオ、チオカルボネートアニオン、イソチオカルボネートアニオン、アルキルチオアミオン、アリルチオアミオン、アソアミノ、アルコキシアニオンおよびアリールオキシアニオンからなる群から選択されるアニオンもしくはこれらの基で配位する単座の配位子、またはハロゲン原子、シアン、カルボニル、カルボンアミド、チオカルボンアミド及びチオ尿素からなるアニオン、原子もしくは化合物（アニオンに水素原子が置換された化合物を含む）の群より選ばれる単座の配位子を表す。なお、配位子Xがアルキル基、アルケニル基、アルキニル基、アルキレン基等を含む場合、それらは直鎖状でも分岐状でもよく、置換されていても無置換でもよい。またアリール基、ヘテロ環基、シクロアルキル基等を含む場合、それらは置換されていても無置換でもよく、単環でも環状していてもよい。

[01 50] 本発明においては、Xはシアネートアニオン、イソシアネートアニオン、チオシアネートアニオン、イソチオシアネートアニオン、セレンシアネートアニオン、イソセレンシアネートアニオンが好ましく、イソシアネートアニオン、イソチオシアネートアニオン、イソセレンシアネートアニオンがより好ましく、イソチオシアネートアニオンが特に好ましい。

[01 51] 上記式（1）中、mは0または1を表す。

[01 52] 上記式（1）中、CIは電荷を中和させるものに対イオンが必要な場合の該対イオンを表す。一般に、色素が陽イオンまたは陰イオンであるか、あるいは正味のイオン電荷を有するかどうかは、金属錯体色素中の金属、配位子および置換基に依存する。

置換基が解離性基を有することなどにより、上記式（1）で表される金属錯体色素は解離して負電荷を持つものもよい。この場合、上記式（1）で表される金属錯体色素全体の電荷はCIにより電気的に中性とされる。
対イオンC₁が正の対イオンの場合、例えば、対イオンC₁は、無機または有機のアンモニウムイオン（例えばテトラアルキルアンモニウムイオン、ビリジニウムイオン等）、ホスホニウムイオン（例えばテトラアルキルホスホニウムイオン、アルキルトリフェニルホスホニウムイオン等）、アルカリ金属イオンまたはプロトンである。

対イオンC₁が負の対イオンの場合、対イオンC₁は、無機陰イオンでも有機陰イオンでもよい。例えば、ハロゲン陰イオン（例えば、フッ化物イオン、塩化物イオン、臭化物イオン、ヨウ化物イオン等）、置換アリールスルホン酸イオン（例えばp-トルエンスルホン酸イオン、p-クロロベンゼンスルホン酸イオン等）、アリールジスルホン酸イオン（例えば1、3-ベンセンジスルホン酸イオン、1、5-ナフタレンジスルホン酸イオン、2、6-ナフタレンジスルホン酸イオン等）、アルキル硫酸イオン（例えばメチル硫酸イオン等）、硫酸イオン、チオシア酸イオン、過塩素酸イオン、テトラフルオロホウ酸イオン、ヘキサフルオロホスフェートイオン、ビクリン酸イオン、酢酸イオン、トリフルオロメタンスルホン酸イオン等が挙げられる。

さらに電荷均衡対イオンとして、イオン性ポリマーあるいは色素と逆電荷を有する他の色素を用いてもよく、金属錯イオン（例えばピスベンゼン-1、2-ジチオラトニッケル（Ⅲ）等）も使用可能である。

本発明において、C₁は無機又は有機のアンモニウムイオン、特にテトラアルキルアンモニウムイオン、ナトリウムイオン、プロトンが好ましい。

続いて、本発明に用いる金属錯体色素の具体例を説明するが、具体例を示す前に、その標記方法について説明する。

LDが3座の配置子であって中心金属がRu⁺⁺⁺の場合、本発明に用いる金属錯体色素の構造はRu⁺⁺⁺（LA）（LD）で表すことができる。例えば、LAg上記LAg—1—1であり、LDがLAg—2—1であるものは、Ru⁺⁺⁺（LAg—1—1）（LAg—2—1）と表記する。Ru⁺⁺⁺（LAg—1—1）（LAg—2—1）の構造を以下に示す。
LDである3座の配位子が1価のアニオンの場合は錯体全体がカチオンとなるため、対アニオンを追加して表記する。例えば、L六が上記L六1_1であり、LDが上記LD_1_1であるものは、[Ru^{1+}(LA—1_1)(LD—1_1)] CIと表記する。ここでCIは塩素イオンを示す。[Ru^{1+}(LA—1_1)(LD—1_1)] CIの構造を以下に示す。

LDが2座の配位子であって中心金属がRu^{1+}の場合、本発明に用いる金属錯体色素の構造は、Ru''(LA)(LD)(X)で表すことができる。例えば、LAが上記LA—1_1であり、LDが上記LD—6_1であり、Xがイソチオシアネートであるものは、Ru^{1+}(LA—1_1)(LD—6_1)(NCS)と表記する。この場合の構造を以下に示す。
[化55]

本発明に用いる金属錯体色素の具体例を、上記で説明した表記方法に沿って以下に記載する。ここで、下記具体例中のBuはプチルを示す。

[0163]Ru′′′(LA−1−1)(LD−1−1)Cl
Ru′′′(LA−1−1)(LD−2−1)
Ru′′′(LA−1−1)(LD−2−3)
Ru′′′(LA−1−1)(LD−2−5)
Ru′′′(LA−1−3)(LD−2−1)
Ru′′′(LA−1−7)(LD−2−1)
Ru′′′(LA−1−9)(LD−2−1)
Ru′′′(LA−1−12)(LD−2−1)
Ru′′′(LA−2−3)(LD−2−1)(n−Bu)4N+
Ru′′′(LA−2−6)(LD−2−1)(n−Bu)4N+
Ru′′′(LA−3−6)(LD−2−1)(n−Bu)4N+
Ru′′′(LA−3−12)(LD−2−1)(n−Bu)4N+
Ru′′′(LA−3−14)(LD−2−1)(n−Bu)4N+

[0164]Ru′′′(LA−4−1)(LD−2−1)
Ru′′′(LA−4−7)(LD−2−1)
Ru′′′(LA−4−9)(LD−2−1)
Ru′′′(LA−5−1)(LD−2−1)(n−Bu)4N+
Ru′′′(LA−5−8)(LD−2−1)(n−Bu)4N+
Ru11 (L A – 5 – 9) (L D – 2 – 1) (n - B u)\textsubscript{4} N+

Ru11 (L A – 1 – 1) (L D – 3 – 1) C I

Ru11 (L A – 1 – 7) (L D – 3 – 2) C I

Ru11 (L A – 1 – 12) (L D – 3 – 15) (n - B u)\textsubscript{4} N+

Ru11 (L A – 1 – 1) (L D – 6 – 1) (N C S)

[0165]

Ru11 (L A – 1 – 1) (L D – 3 – 15) (n - B u)\textsubscript{4} N+

Ru11 (L A – 1 – 9) (L D – 6 – 10) (N C S)

Ru11 (L A – 1 – 12) (L D – 6 – 13) (N C S)

Ru11 (L A – 1 – 1) (L D – 3 – 5) C I

Ru11 (L A – 1 – 3) (L D – 3 – 8)

Ru11 (L A – 1 – 7) (L D – 3 – 10)

Ru11 (L A – 1 – 11) (L D – 3 – 2)

Ru11 (L A – 4 – 3) (L D – 3 – 13) (n - B u)\textsubscript{4} N+Ru11 (L A

– 4 – 5) (L D – 3 – 17)

Ru11 (L A – 5 – 3) (L D – 3 – 19) (n - B u)\textsubscript{4} N+

Ru11 (L A – 5 – 7) (L D – 3 – 23) (n - B u)\textsubscript{4} N+

Ru11 (L A – 5 – 11) (L D – 3 – 27) (n - B u)\textsubscript{4} N+

Ru11 (L A – 1 – 4) (L D – 3 – 28) C I

Ru11 (L A – 2 – 4) (L D – 3 – 35)

Ru11 (L A – 1 – 1) (L D – 4 – 1)

[0166] 本発明においては、本発明の金属錯体色素と他の色素を併用してもよい。

併用する色素としては、特表平 7 _5 0 0 6 3 0号公報に記載のRu錯体色素（特に第5頁下欄5行目〜第7頁下欄7行目に例1〜例19で合成された色素）、特表2002—512729号公報に記載のRu錯体色素（特に第20頁の下から3行目〜第29頁23行目に例1〜例16で合成された色素）、特開2001_59062号公報に記載のRu錯体色素（特に、段落番号00087〜0104に記載の色素）、特開2001_6760号公報に記載のRu錯体色素（特に、段落番号0093〜0102に記載の色素

併用する色素として好ましくは、Ru錯体色素、スクアリリウムシアニン色素、または有機色素が挙げられる。

[0167] 本発明の金属錯体色素と他の色素を併用する場合、本発明の金属錯体色素
の質量/他の色素の質量の比は、95/5〜10/90が好ましく、95/5〜50/50がより好ましく、95/5〜60/40がさらに好ましく、95/5〜65/35が特に好ましく、95/5〜70/30が最も好ましい。

[0168]（半導体微粒子）

半導体微粒子は、好ましくは金属のカルコゲニド（例えば酸化物、硫化物、セレン化物等）またはベロブスカイトの微粒子である。金属のカルコゲニドとしては、好ましくはチタン、スズ、亜鉛、タンゲステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ラントン、バナジウム、ニオブ、もしくはタングタルの酸化物、硫化カドミウム、セレン化カドミウム等が挙げられる。ベロブスカイトとしては、好ましくはチタン酸ストロンチウム、チタン酸カルシウム等が挙げられる。これらのうち酸化チタン（チタニア）、酸化亜鉛、酸化スズ、酸化タンゲステンが特に好ましい。

[0169]チタニアの結晶構造としては、アナターゼ型、プルッカイト型、または、ルチル型があげられ、アナターゼ型、プルッカイト型が好ましい。チタニアナノチューブ、ナノワイヤー・ナノロッドをチタニア微粒子に混合するか、または半導体電極として用いてもよい。

[0170]半導体微粒子の粒径は、投影面積を円に換算したときの直径を用いた平均粒径で1次粒子として0.001〜1μm、分散物の平均粒径として0.01〜100μmであることが好ましい。半導体微粒子を導電性支持体上に塗設する方法として、湿式法の他、乾式法、その他の方法が挙げられる。

[0171]透明導電膜と半導体層（感光体層）の間には、電解質と電極が直接接触することによる逆電流を防止するため、短絡防止層を形成することが好ましい。また、光散乱層を設けてもよい。光電極と対極の接触を防ぐために、スペーサーセパレータを用いることが好ましい。半導体微粒子は多くの増感色素を吸着することができるように表面積の大きいものが好ましい。例えば半導体微粒子を支持体上に塗設した状態で、その表面積が投影面積に対して1
0倍以上であることが好ましく、100倍以上であることがより好ましい。この上限には特に制限はないが、通常5000倍程度である。一般に、半導体微粒子の層の厚みが大きいほど単位面積当たりに担持できる色素の量が増えるため光の吸収効率が高くなるが、発生した電子の拡散距離が増すため電荷再結合によるロスも大きくなる。半導体微粒子層（半導体層）である感光体層の厚みは粒子の用途によって異なるが、典型的には0.1〜1.0 μmである。色素増感太陽電池として用いる場合は1〜5μmであることが好ましく、3〜30μmであることがより好ましい。半導体微粒子は、支持体に塗布した後に粒子同士を密着させるために、焼成処理に付すことか好ましい。当該焼成条件は、例えば100〜800℃で10分〜10時間とすることができる。半導体微粒子層の成膜温度に特に制限はないが、例えば導電性支持体がガラスであれば、60〜400℃で成膜することが好ましい。

なお、半導体微粒子の支持体1m²当たりの塗布量は0.5〜500g、さらに5〜100gが好ましい。色素の使用量は、全体で、支持体1m²当たり0.01〜100ミリモルが好ましく、より好ましくは0.1〜50ミリモル、特に好ましくは0.1〜10ミリモルである。この場合、本発明の金属錯体色素の使用量は、色素全体に対して5モル％以上とすることが好ましく、60〜100モル％とすることが好ましく、85〜100モル％とすることが好ましい。本発明の金属錯体色素以外の色素は単独で色素増感太陽電池の感度色素として機能するものが好ましい。また、色素の半導体微粒子に対する吸着量は半導体微粒子1gに対して0.001〜1ミリモルが好ましく、より好ましくは0.1〜0.5ミリモルである。このような色素量とすることによって、半導体微粒子における増感効果が十分に得られる。

前記色素が塩である場合、前記特定の金属錯体色素の対イオンは特に限定されず、例えばアルカリ金属イオン又は4級アンモニウムイオン等が挙げられる。
本発明において、半導体微粒子への色素の吸着は、後述するように、色素を含有する色素溶液を用いて行うことが好ましい。例えば、支持体上に半導体微粒子層（感光体層）を形成させた半導体電極を、色素を溶解してなる色素溶液に浸漬するなどして行うことができる。

色素を吸着した後に、アミン類を用いて半導体微粒子の表面を処理してもよい。好ましいアミン類としてビリジン類（例えばtert-プチルビリジン、ポリビニルピリジン）等が挙げられる。これらは液体の場合はそのまま用いてもよいし有機溶媒に溶解して用いてもよい。

（共吸着剤）

本発明の光電変換素子においては、本発明の金属錯体色素または必要により併用する色素とともに共吸着剤を使用することが好ましい。このような共吸着剤としては酸性基（好ましくは、カルボキシル基もしくはその塩の基）を1つ以上有する共吸着剤が好ましく、脂肪酸やステロイド骨格を有する化合物が挙げられる。脂肪酸は、飽和脂肪酸でも不飽和脂肪酸でもよく、例えばブタン酸、ヘキサン酸、オクタン酸、デカン酸、ヘキサデカン酸、ドデカン酸、γ-オルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸等が挙げられる。

ステロイド骨格を有する化合物として、コール酸、グリコール酸、ケノテオキシコール酸、ヒオコール酸、テオキシコール酸、リトコール酸、ウルソテオキシコール酸等が挙げられる。好ましくはコール酸、テオキシコール酸、ケノテオキシコール酸であり、さらに好ましくはケノテオキシコール酸である。

好ましい共吸着剤は、下記式（C A）で表される化合物である。

![式（CA）](image)
式中、R^A_1は該吸着性基を有する置換基（すなわち、吸着性基又は吸着性基を有する置換基）を表す。R^A_2は置換基を表す。n_Aは0以上の整数を表す。

吸着性基は、先に示したものと同義であり、好ましい範囲も同じである。

n_Aは2～4が好ましい。

R^A_1は、これらの中でも、カルボキシル基またはスルホ基もしくはそれらの塩が置換したアルキル基が好ましく、$-\text{CH} (\text{CH}_3) \text{CH}_2 \text{CH}_2 \text{CO}_2 \text{H}$、$-\text{CH} (\text{CH}_3) \text{CH}_2 \text{CH}_2 \text{CONHCH}_2 \text{CH}_2 \text{SO}_3 \text{H}$がさらに好ましい。

R^A_2は、後述の置換基Tが挙げられるが、中でもアルキル基、ヒドロキシ基、アセルオキシ基、アルキルアミノカルボニルオキシ基、アリールアミノカルボニルオキシ基が好ましく、アルキル基、ヒドロキシ基、アセルオキシ基がより好ましい。

これらの具体的化合物は、上述のステロイド骨格を有する化合物として例示した化合物が挙げられる。

本発明の共吸着剤は、半導体微粒子に吸着させることにより、色素の非効率な会合を抑制する効果及び半導体微粒子表面から電解質中のレドックス系への逆電子移動を防止する効果がある。共吸着剤の使用量は特に限定されないが、上記色素1モルに対して、好ましくは1～200モル、さらに好ましくは10～150モル、特に好ましくは20～50モルであることが上記の作用を効果的に発現させられる観点から好ましい。

<導電性支持体>

導電性支持体は、金属のように支持体そのものに導電性があるものか、または表面に導電膜を有するガラスもしくはプラスチックの支持体であるのが好ましい。プラスチックの支持体としては、例えば、特開2001-291534号公報の段落番号0153に記載の透明ポリマーフィルムが挙げられる。支持体としては、ガラス及びプラスチックの他、セラミック（特開2005-135902号公報）、導電性樹脂（特開2001-160425
号公報）を用いてもよい。導電性支持体上には、表面に光マネジメント機能を施してもよく、例えば、特開2003－123859号公報に記載の高屈折膜及び低屈折率の酸化物膜を交互に積層した反射防止膜を有してもよく、特開2002－260746号公報に記載のライトガイド機能を有してもよい。

[0183] 導電膜層の厚さは0.01～30μmであることが好ましく、0.03～25μmであることが更に好ましく、特に好ましくは0.05～20μmである。

[0184] 導電性支持体は実質的に透明であることが好ましい。実質的に透明であるとは光の透過率が10%以上であることを意味し、50%以上であることが好ましく、80%以上が特に好ましい。透明導電性支持体としては、ガラスもしくはプラスチックに導電性の金属酸化物を塗設したもののが好ましい。金属酸化物としてはスズ酸化物が好ましく、インジウム－スズ酸化物、フッ素ドープ酸化物が特に好ましい。このときの導電性の金属酸化物の塗布量は、ガラスもしくはプラスチックの支持体1m²当たりの0.1～100gが好ましい。透明導電性支持体を用いる場合、光は支持体側から入射させることが好ましい。

[0185] <電荷移動体層>

本発明の光電変換素子に用いられる電荷移動体層は、色素の酸化体に電子を補充する機能を有する層であり、受光電極と対極（対向電極）との間に設けられる。電荷移動体層は電解質を有する。電解質の例としては、酸化還元対を有機溶媒に溶解した液体電解質、酸化還元対を有機溶媒に溶解した液体をポリマー－マトリックスに含浸したいわゆるゲル電解質、酸化還元対を含有する溶融塩などが挙げられる。光電変換効率を高めるためには液体電解質が好ましい。液体電解質の溶媒はニトリル化合物、エーテル化合物、エステル化合物等が用いられるが、ニトリル化合物が好ましく、アセトニトリル、メトキシプロピオニトリルが特に好ましい。

酸化還元対として、例えばヨウ素とヨウ化物（ヨウ化物塩、ヨウ化イオン
性液体が好ましく、ヨウ化リチウム、ヨウ化テトラプロピルアンモニウム、ヨウ化メチルプロピルイミダゾリウムが好ましいとの組み合わせ、アルキルビオロゲン（例えばメチルビオロゲン、ヘキシルビオロゲンプロミド、ペンジルビオロゲンテトラフルオロポレート）とその還元体との組み合わせ、ポリヒドロキシベンゼン類（例えばハイドロキノン、ナフタリンヒドロキノン等）とその酸化体との組み合わせ、2価と3価の鉄錯体の組み合わせ（例えば赤血塩と黄血塩の組み合わせ）、2価と3価のコバルト錯体の組み合わせ等が挙げられる。これらのうちヨウ素とヨウ化物との組み合わせ、2価と3価のコバルト錯体の組み合わせが好ましい。

[0186] 前記コバルト錯体は、なかでも下記式（CC）で表されるものが好ましい。

[0187] Co (L L) m a (X) m b · Cl 式（CC）

[0188] 式（CC）において、L L は2座または3座の配位子を表す。X は単座の配位子を表す。ma は0～3の整数を表す。mb は0～6の整数を表す。Cl は電荷を中和させるのに対イオンが必要な場合の対イオンを表す。

[0189] Cl は前記式（1）におけるCl と同義であり、好ましい範囲も同じである。

L L は下記式（LC）で表される配位子が好ましい。

[0190] [化57]

\[\text{式(LC)} \]

[0191] 式（LC）において、X\(^{LC1}\)およびX\(^{LC3}\)は各々独立に炭素原子または窒素原子を表す。ここで、X\(^{LC1}\)が炭素原子の場合、X\(^{LC1}\)とN原子の結合は二重結合（X\(^{LC1}=\text{N}\)）を表し、X\(^{LC3}\)が炭素原子の場合、X\(^{LC3}\)とN原子の結合は二重結合（X\(^{LC3}=\text{N}\)）を表し、X\(^{LC1}\)が窒素原子の場合、X\(^{LC1}\)とN原子の結合は単結合（X\(^{LC1} \text{N}\)）を表し、X\(^{LC3}\)が窒素原子の場合、X\(^{LC3}\)とN
原子の結合は単結合（X L C 3 _ N）を表す。
Z L C 1 、 Z L C 2 および Z L C 3 は各々独立に、5 員環または6 員環を形成する
のに必要な非金属原子群を表す。Z L C 1 、 Z L C 2 および Z L C 3 は置換基を有し
していてもよく、置換基を介して隣接する環と間接していてもよい。q は0 ま
たは1 を表す。該置換基としては、後述の置換基①が挙げられる。なお、q
が0 の場合、X L C 3 が Z L C 2 で形成される5 員環または6 員環に結合する位置
の炭素原子は、水素原子、または Z L C 3 で形成されるヘテロ環基以外の置換基
が結合する。

[0192] X はハロゲンイオンが好ましい。

[0193] 上記式（L C）で表される配位子は、下記式（L C － 1）～（L C － 4）
で表される配位子がより好ましい。

[0194] [化58]

式（LC－1）

式（LC－2）

式（LC－3）

式（ししめ）

[0195] R L C 1 － R L C 1 ＋ は各々独立に置換基を表す。q 1 、 q 2 、 q 6 および q 7
は各々独立に、0 - 4 の整数を表す。q 3 、 q 5 、 q 1 0 および q 1 1 は各
々独立に、0 - 3 の整数を表す。q 4 は0 - 2 の整数を表す。

[0196] 式（L C － 1）～（L C － 4）において、R L C 1 － R L C 1 1 の置換基として
は例えば、脂肪族基、芳香族基、複素環基等が挙げられる。置換基の具体的
な例としては、アルキル基、アルコキシ基、アルキルチオ基、アリル基、
アリールチオ基、アリールオキシ基、ヘテロ環等を挙げることができる。好
ましい例としては、アルキル基（例えばメチル、エチル、n - プチル、n -
ヘキシル、イソプロチル、s e c — プチル、t — プチル、n — ドデシル、シクロヘキシル、ベンジル等）、アリール基（例えばフニル、トリル、ナフチル等）、アルコキシ基（例えば、メトキシ、エトキシ、イソプロピオキシ、ブトキシ等）、アルキルチオ基（例えば、メチルチオ、n — プチルチオ、n — ヘキシルチオ、2 _ エチルヘキシルチオ等）、アリールオキシ基（例えば、フエニルオキシ、ナフチルオキシ等）、アリールチオ基（例えば、フニルチオ、ナフチルチオ、2 _ チェニルチオ等）、ヘテロ環基（例えば、2 _ チェニル、2 _ フリル等）を挙げることができる。

[01 97] 式 (L C) で表される配位子を有するコバルト錯体の具体例としては、例えば以下の化合物が挙げられる。

[01 98] [化 59]

[01 99] 電解質として、ヨウ素とヨウ化合物との組み合わせを用いる場合、5 員環または6 員環の含窒素芳香族カチオンのヨウ素塩をさらに併用するのが好ましい。特に、式 (1) で表される化合物がヨウ素塩でない場合は、再公表 W 0 9 5 / 1 8 4 5 6 号公報、特開平 8 — 2 5 9 5 4 3 号公報、電気化学, 第 6 5
巻, 11号, 923頁 (1997年) 等に記載されているピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩等のヨウ素塩を併用するのが好ましい。

[0200] 酸化還元対を溶かす有機溶媒としては、非プロトン性の極性溶媒（例えばアセトニトリル、炭酸プロピレン、炭酸エチレン、ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、1,3-ジメチルイミダゾリノン、3-メチルオキサゾリジノン等）が好ましい。ゲル電解質のマトリックスに使用されるポリマーとしては、例えばポリアクリロニトリル、ポリビニリデンフュロリド等が挙げられる。溶融塩としては、例えばヨウ化リチウムと他の少なくとも1種類のリチウム塩（例えば酢酸リチウム、過塩素酸リチウム等）にポリエチレンオキシドを混合することにより、室温での流動性を付与したもの等が挙げられる。この場合のポリマーの添加量は1〜50質量％である。また、アーバチロラクトンを電解液に含んでいてもよく、これによりヨウ化物イオンの拡散係数が高くなり変換効率が向上する。

[0201] 電解質への添加物として、前述の4-チオルピリジンのほか、アミノピリジン系化合物、ベンジイミダゾール系化合物、アミノトリアゾール系化合物及びアミノチアゾール系化合物、イミダゾール系化合物、アミノトリアゾール系化合物、尿素誘導体、アミド化合物、ピリミジン系化合物及び窒素を含まない複素環を加えることができる。

[0202] また、光電変換効率を向上する為に、電解液の水分を制御する方法をとつてもよい。水分を制御する好ましい方法としては、湿度を制御する方法や脱水剤を共存させる方法を挙げることができる。ヨウ素の毒性軽減のために、ヨウ素とシクロテキストリオンの包摂化合物の使用をしてもよく、水分を常時補給する方法を用いてもよい。また環状アミジンを用いてもよく、酸化防止剤、加水分解防止剤、分解防止剤、ヨウ化亜鉛を加えてもよい。

[0203] 電解質として溶融塩を用いてもよく、好ましい溶融塩としては、イミダゾリウム又はトリアゾリウム型陽イオンを含むイオン性液体、オキサゾリウム系、ピリジニウム系、グアニジウム系およびこれらの組み合わせが挙げられ
る。これらカチオン系に対して特定のアニオンと組み合わせてもよい。これら
の溶融塩に対しては添加物を加えてもよい。液晶性の置換基を持っていて
もよい。また、四級アンモニウム塩系の溶融塩を用いてもよい。

これら以外の溶融塩としては、例えば、ヨウ化 リチウムと他の少なくとも
1種類の リチウム塩 （例えば酢酸 リチウム、過塩素酸 リチウム等）にポリエ
チレンオキシドを混合することにより、室温での流動性を付与したもの等が
挙げられる。

電解質と溶媒からなる電解液にゲル化剤を添加してゲル化させることによ
り、電解質を凝固化してもよい。ゲル化剤としては、分子量 1000 以下の
有機化合物、分子量 500 ～ 5000 の範囲の Si 含有化合物、特定の酸
性化合物と塩基性化合物から出来る有機塩、ソルビトール誘導体、ポリビニ
ルビリジンが挙げられる。

また、マトリックス高分子、架橋型高分子化合物又はモノマー、架橋剤、
電解質及び溶媒を高分子中に混じ込める方法を用いても良い。
マトリックス高分子として好ましくは、含窒素複素環を主鎖あるいは側鎖の
繰り返し単位中に含む高分子及びこれらを求電子化合物と反応させた架橋
体、トリアジン構造を持つ高分子、ウレート構造をもつ高分子、液晶性化合
物を含むもの、エーテル結合を有する高分子、ポリフッ化ビニリデン系、メ
タクリレート・アクリレート系、熱硬化性樹脂、架橋ポリシロキサン、PV
A、ポリアルキレングリコールとテキストロンなどの包摂化合物、含酸素ま
たは含硫黄高分子を添加した系、天然高分子などが挙げられる。これらにア
ルカリ膨潤型高分子、一つの高分子内にカチオン部位とヨウ素との電荷移動
錯体を形成できる化合物を持った高分子などを添加しても良い。

マトリックスポリマーとして 2 官能以上のイソシアネートを一方の成分と
して、ヒドロキシル基、アミノ基、カルボキシル基などの官能基と反応させ
た架橋ポリマーを含む系を用いても良い。また、ヒドロシリル基と二重結合
性化合物による架橋高分子、ポリスルホン酸又はポリカルボン酸などを 2 倍
以上の金属イオン化合物と反応させる架橋方法なども用いても良い。
[0208] 上記擬固体の電解質との組み合わせで好ましく用いることが出来る溶媒としては、特定のリン酸エステル、エチレンカーボネートを含む混合溶媒、特定の比誘電率を持つ溶媒などが挙げられる。固体電解質膜あるいは細孔に液体電解質溶液を保持させてもよく、その方法として好ましくは、導電性高分子膜、繊維状固体、フィルタなどの布状固体が挙げられる。

[0209] 以上の液体電解質および擬固体電解質の代わりにp型半導体あるいはホール輸送材料などの固体電荷輸送層、例えば、Cu-metal、CuNESなどを使ることが出来る。また、Nature, vol. 486, p. 487 (2012)等に記載の電解質を用いてもよい。固体電荷輸送層として有機ホール輸送材料を用いてもよい。ホール輸送層として好ましくは、ポリチオフェン、ポリアニリン、ポリビロールおよびポリシランなどの導電性高分子、及び2個の環がC、Siなど四面体構造をとる中心元素を共有するスピロ化合物、トリアリールアミンなどの芳香族アミン誘導体、トリフエニレン誘導体、含窒素複素環誘導体、液晶性シアン誘導体が挙げられる。

[0210] 酸化還元対は、電子のキャリアになるため、濃度は合計で0.01mol/L以上が好ましく、0.1mol/L以上がより好ましく、0.3mol/L以上が特に好ましい。酸化還元対の合計の濃度の上限は特に制限はなく、通常5mol/L程度である。

[0211] <対極>

対極（対向電極）は、色素増感太陽電池（光電気化学電池）の正極として働くものである。対向電極は、通常前述の導電性支持体と同義であるが、強度が十分に保たれるような構成では支持体は必ずしも必要でない。対極の構造としては、集電効果が高い構造が好ましい。感光体層に光が到達するためには、前述の導電性支持体と対極との少なくとも一方は実質的に透明でなければならない。本発明の色素増感太陽電池においては、導電性支持体が透明であって太陽光を支持体側から入射させることが好ましい。この場合、対極は光を反射する性質を有することがさらに好ましい。色素増感太陽電池の対向電極としては、金属もしくは導電性の酸化物を蒸着したガラス、またはプラ
スチックが好ましく、白金を蒸着したガラスが特に好ましい。

本発明の光電変換素子及び色素増感太陽電池では、構成物の蒸散を防止するために、電池の側面をポリマー等で接着剤等で密封することが好ましい。

<色素溶液、それぞれを用いた半導体電極の製造方法>

本発明においては、本発明の金属錯体色素を含有する色素溶液を使用して受光電極（光電極、色素吸着半導体電極）を製造することが好ましい。

このような色素溶液には、本発明の金属錯体色素が溶媒に溶解されており、必要により共吸着剤や他の成分を含んでもよい。

このような溶媒としては、特開2001-291534号公報に記載の溶媒が挙げられるが特に限定されない。本発明においては有機溶媒が好ましく、さらにアルコール類、アミド類、ニトリル類、炭化水素類、および、これららの2種以上の混合溶媒が好ましい。混合溶媒としては、アルコール類と、
アミド類、ニトリル類または炭化水素類から選択される溶媒との混合溶媒が好ましい。さらに好ましくはアルコール類とアミド類、アルコール類と炭化水素類の混合溶媒、特に好ましくはアルコール類とアミド類の混合溶媒である。具体的にはメタノール、エタノール、プロパノール、ブタノール、ジメチルホルムアミド、ジメチルアセトアミドが好ましい。

[021 5] 色素溶液は共吸着剤を含有することが好ましく、共吸着剤としては、前述の共吸着剤が好ましく、なかでも前記式（C A）で表される化合物が好ましい。

ここで、本発明の色素溶液は、光電変換素子や色素増感太陽電池を作成する際、この溶液をこのまま使用できるように、金属錯体色素や共吸着剤が濃度調整されているものを好ましい。本発明においては、本発明の金属錯体色素を色素溶液の総質量に対して 0. 0 0 1～0. 1 質量％含有することが好ましい。

[021 6] 色素溶液は、水分含有量を調整することが好ましく、従って、本発明においては水の含有量（含有率）を色素溶液の総質量に対して 0～0. 1 質量％に調整することが好ましい。

同様に、光電変換素子や色素増感太陽電池における電解質の水分含有量の調整も、本発明の効果を効果的に奏するために好ましく、このため、この電解液の水分含有量（含有率）を 0～0. 1 質量％に調整することが好ましい。この電解質の調整は、色素溶液で行なうのが特に好ましい。

[021 7] （置換基群 T）

本明細書において化合物（錯体、色素を含む）の表示については、当該化合物そのもののほか、その塩、錯体、そのイオンを含む意味に用いる。また、所望の効果を奏する範囲で、所定の一部を変化させた誘導体を含む意味である。また、本明細書において置換・無置換を明記していない置換基（連結基及び配位子についても同様）については、その基に任意の置換基を有していてもよい意味である。これは置換・無置換を明記していない化合物についても同義である。好ましい置換基としては、下記置換基群 T が挙げられる。
また、本明細書において、単に置換基としてしか記載されていないものは、この置換基群 τ を参照するものであり、また、各々の基、例えば、アルキル基、が記載されているのみの時は、この置換基群 τ の対応する基における好ましい範囲、具体例が適用される。

[0218] 置換基群 T としては、下記の置換基が挙げられる。

アルキル基 (好ましくは炭素数 1 ～ 20 で、例えばメチル、エチル、イソプロピル、t—ブチル、ベンチル、ヘプチル、1—エチルベンチル、ベンジル、2—エトキシエチル、1_カルボキシメチル、トリフルオロメチル等)、アルケニル基 (好ましくは炭素数 2 ～ 20 で、例えば、ビニル、アリル、オレイル等)、アルキニル基 (好ましくは炭素数 2 ～ 20 で、例えば、エチル、ブタジニル、フエニルエチニル等)、シクロアルキル基 (好ましくは炭素数 3 ～ 20 で、例えば、シクロプロピル、シクロペンチル、シクロヘキシル、4—メチルシクロヘキシル等)、シクロアルケニル基 (好ましくは炭素数 5 ～ 20 での、例えば、シクロペンテニル、シクロヘキセニル等)、アリール基 (好ましくは炭素数 6 ～ 26 で、例えば、フエニル、1_ナフチル、4—メトキシフエニル、2_クロロフエニル、3_メチルフエニル等)、ヘテロ環基 (好ましくは炭素数 2 ～ 20 で、環構成原子に少なくとも 1 つの酸素原子、硫黄原子、窒素原子を有する 5 員環または 6 員環のヘテロ環基がより好ましく、例えば、2_ビリジル、4_ビリジル、2_イミダゾリル、2_ベンゾイミダゾリル、2_チアゾリル、2—オキサゾリル等)、アルコキシ基 (好ましくは炭素数 1 ～ 20 で、例えば、メトキシ、エトキシ、イソプロピルオキシ、ベンジルオキシ等)、アルケニルオキシ基 (好ましくは炭素数 2 ～ 20 で、例えば、ビニルオキシ、アリルオキシ等)、アルキニルオキシ基 (好ましくは炭素数 2 ～ 20 で、例えば、2_プロピニルオキシ、4_プロチニルオキシ等)、シクロアルキルオキシ基 (好ましくは炭素数 3 ～ 20 で、例えば、シクロプロピルオキシ、シクロペンチルオキシ、シクロヘキシルオキシ、4—メチルシクロヘキシルオキシ等)、アリールオキシ基 (好ましくは炭素数 6 ～ 26 で、例えば、フエノキシ、1—ナフチルオキシ、3
アルコキシカルボニル基（好ましくは炭素数2〜20のもので、例えば、エチルヘキシルオキシカルボニルなど）、シクロアルコキシカルボニル基（好ましくは炭素数4〜20のもので、例えば、シクロプロピルオキシカルボニル、シクロヘキシルオキシカルボニル、シクロヘキシルオキシカルボニルなど）、アリールオキシカルボニル基（好ましくは炭素数6〜20で、例えば、ベンゼニルオキシカルボニル、ナフチルオキシカルボニルなど）、アミノ基（好ましくは炭素数0〜20で、アルキルアミノ基、アルケニルアミノ基、アルキニルアミノ基、シクロアルキルアミノ基、シクロアルケニルアミノ基、アリールアミノ基、ヘテロ環アミノ基を含み、例えば、アミノ、N、N—ジメチルアミノ、N、N—ジェチルアミノ、N—エチルアミノ、N—アリルアミノ、N—（2—プロピル）アミノ、N—シクロヘキシルアミノ、N—シクロヘキシルアミノ、N—シクロヘキシルアミノ、アミノ、ヘリシルアミノ、イミダゾリルアミノ、ベンゾイミダゾリルアミノ、チアゾリルアミノ、ベンゾチアゾリルアミノ、トリアジニルアミノなど）、スルファモイル基（好ましくは炭素数0〜20で、アルキル、シクロアルキルもしくはアリールのスルファモイル基が好ましく、例えば、N、N—ジメチルスルファモイル、N—シクロヘキシルスルファモイル、N—フェニルスルファモイルなど）、アシル基（好ましくは炭素数1〜20で、例えば、アセチル、シクロヘキシルカルバモイル、ベンゾイルなど）、アシルオキシ基（好ましくは炭素数1〜20で、例えば、アセチルオキシ、シクロヘキシルカルバモイルオキシ、ベンゾイルオキシなど）、カルバモイル基（好ましくは炭素数1〜20で、アルキル、シクロアルキルもしくはアリールのカルバモイル基が好ましく、例えば、N、N—ジェチルカルバモイル、N—シクロヘキシルカルバモイル、N—フェニルカルバモイルなど）、
アシルアミノ基（好ましくは炭素数1〜20のアシルアミノ基、例えば、ア
セチルアミノ、シクロヘキシルカルボニルアミノ、ペンゾイルアミノ等）、スルホンアミド基（好ましくは炭素数0～20で、アルキル、シクロアルキルもしくはアリールのスルホンアミド基が好ましく、例えば、メタンスルホンアミド、ペンゼンスルホンアミド、N-メチルメタンスルホンアミド、N-シクロヘキシルスルホンアミド、N-エチルペンゼンスルホンアミド等）、アルキルオキソ基（好ましくは炭素数1～20で、例えば、メチルオキソ、エチルオキソ、イソプロピルオキソ、ベンジルオキソ等）、シクロアルキルオキソ基（好ましくは炭素数3～20で、例えば、シクロプロピルオキソ、シクロペンチルオキソ、シクロヘキシルオキソ、4-メチルシクロヘキシルオキソ等）、アリールオキソ基（好ましくは炭素数6～26で、例えば、フェニルオキソ、1-ナフチルオキソ、3-メチルフエニルオキソ、4-メトキシフエニルオキソ等）、アルキル、シクロアルキルもしくはアリールスルホニル基（好ましくは炭素数1～20で、例えば、メチルスルホニル、エチルスルホニル、シクロヘキシルスルホニル、ペンゼンスルホニル等）。

シリル基（好ましくは炭素数1～20で、アルキル、アリール、アルコキシおよびアリールオキシが置換したシリル基が好ましく、例えば、トリエチルシリル、トリフェニルシリル、ジェチルベンジルシリル、ジメチルフエニルシリル等）、シリルオキシ基（好ましくは炭素数1～20で、アルキル、アリール、アルコキシおよびアリールオキシが置換したシリルオキシ基が好ましく、例えば、トリエチルシリルオキシ、トリフェニルシリルオキシ、ジェチルベンジルシリルオキシ、ジメチルフエニルシリルオキシ等）、ヒドロキシル基、シアノ基、ニトロ基、ハロゲン原子（例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等）、カルボキシル基、スルホキシル基、ホスホニル基、ホスホキシル基、ホウ酸基である。

化合物ないし置換基等がアルキル基、アルケニル基等を含むとき、これらは直鎖状でも分岐状でもよく、置換されていても無置換でもよい。またアリール基、ヘテロ環基等を含むとき、それらは単環でも縮環でもよく、置換されていても無置換でもよい。
実施例

[0223] 以下に実施例に基づき本発明について更に詳細に説明するが、本発明がこれに限定して解釈されるものではない。

[0224] < 合成例>
（スズ化反応）
ハロゲンで置換された基質約5 g に対し、1.2倍モルのピストリプチルスズ、0.0 5倍モルのテトラキストリフニルフォスフィンパラジウムをトルエン1 0 0 m l 中で窒素雰囲気下、還流した。薄層クロマトグラフィーで反応が終了したことを確認し、室温冷却後、反応液を濾過、濃縮した。得られた粗生成物を分取カラムクロマトグラフィー装置（山善社製A I - 5 8 0 ）および溶離液としてnへキサン、酢酸エチル、メタノールの混合溶媒を用いて濃度勾配を制御しながら分離精製した。目的のフラクションを濾縮することでスズ化体を得た。

[0225] （スティルカップリング）
ハロゲンで置換された基質約2 g とスズ化体1.3倍モル、0.0 5倍モルの塩化パラジウム（II）、0.1倍モルのヨウ化銅（I）、2 倍モルのフッ化セシウム、0.1倍モルのトリプチルホスフィンをN、N—ジメチルアセトアミド1 0 0 m l 中で窒素雰囲気下、8 0 ℃で加熱した。薄層クロマトグラフィーで反応が終了したことを確認した後、反応液を濾過し、室温まで冷却後、濃縮した。得られた粗生成物を、上記分取カラムクロマトグラフィー装置および同様の溶離液を用いて分離精製した。目的のフラクションを濾縮することで目的物を得た。

[0226] —配位子LA_1_1のジメチルエステル体（LA_1_1-1 Me）の合成—
2 . ブロモペンピンジン5 g に上記スズ化反応を適用し、スズ化体LA —1 —1 Aを得た。ジメチル6—ブロモー2, 2' —ビビリジン—4 , 4 ' -ジカルボキシレート2 g と上記スズ化体LA —1 - 1 Aを用いて上記スティルカップリングを適用し、LA —1_1のジメチルエステル体であるLA —1 _ 1 Meを得た。
—配位子LA—1_3のジメチルエステル体（LA—1_3Me）の合成—

LA—1_3Meの合成において、2—プロモピリミジン5gを等モルの
2プロモピラジンに代えた以外はLA—1_1Meの合成と同様にしてLA
—1_3のジメチルエステル体であるLA—1_3Meを得た。

—配位子LA—1_7のジメチルエステル体（LA—1_7Me）の合成—

LA—1_7Meの合成において、2—プロモピリミジン5gを等モルの
2プロモペンゾチアソールに代えた以外はLA—1_1Meの合成と同様
にしてLA—1_7のジメチルエステル体であるLA—1_7Meを得た。

—配位子LA—1_9のジメチルエステル体（LA—1_9Me）の合成—

LA—1_9Meの合成において、2—プロモピリミジン5gを等モルの
2ペンソイミダゾールに代えた以外はLA—1_1Meの合成と同様にし
てLA—1_9のジメチルエステル体であるLA—1_9Meを得た。

—配位子LA—2_3のジメチルエステル体（LA—2_3Me）の合成—

3, 5_ビス(4—メトキシカルボニルピリジン—2_イル)_ [1, 2, 4] トリアゾール_4_イミン2gと1.2倍モルの塩酸メタノール
をメタノール50mLに投入し、0℃に冷却した。1.1倍モルの硝酸ナトリウム
可溶性水溶液を滴下後、30分攪拌し、硫酸マグネシウムを加えた後1
時間加熱還流した。冷却後、亜化メチレンで希釈、水洗、濃縮し、残渣を上
記と同様に分取カラムクロマトグラフィー装置を用いて精製し、LA—2_3
のジメチルエステル体であるLA—2_3Meを得た。

—配位子LA—2_6のトリメチルエステル体（LA—2_6Me）の合成—

2プロモ—4—メトキシカルボニルピリジンを上記スズ化反応によって
スズ化体とし、これと3, 5_ジプロモ安息香酸メチルエステルを上記ステ
ィルカップリングによって反応させ、LA—2_6のトリメチルエステル体
であるLA—2_6Meを得た。

—配位子LA—4_1のメチルエステル体（LA—4_1Me）の合成—

LA—1_1Meの合成において、6—プロモ—2, 2’—ピリジン—
４，４'－ジカルボキシレートを１/２モルの２，６－ジプロモ－４－メトキシカルボニルピリジンに代えた外その他はL A－１－１Meの合成と同様にしてL A－４－１のメチルエステル体であるL A－４－１Meを得た。

[0233] 配位子L A－４－７のメチルエステル体（L A－４－７Me）の合成—
L A－４－１Meの合成において，２－プロモピリミジンを２－プロモベンゾチアゾールに代えた外その他はL A－４－１Meの合成と同様にしてL A－４－７のメチルエステル体であるL A－４－７Meを得た。

[0234] 配位子L A－４－９のメチルエステル体（L A－４－９Me）の合成—
L A－４－１Meの合成において，２－プロモピリミジンを２－プロモベンゾイミダゾールに代えた外その他はL A－４－１Meの合成と同様にしてL A－４－９のメチルエステル体であるL A－４－９Meを得た。

[0235] L A－２－６の合成において，２－プロモ－４－メトキシカルボニルピリジンを２－プロモピリミジンに代えた外その他はL A－２－６の合成と同様にしてL A－５－１のメチルエステル体であるL A－５－１Meを得た。

[0236] 配位子L A－５－８のメチルエステル体（L A－５－８Me）の合成—
L A－２－６の合成において，２－プロモ－４－メトキシカルボニルピリジンを２－プロモペンゾイキサゾールに代えた外その他はL A－２－６の合成と同様にしてL A－５－８のメチルエステル体であるL A－５－８Meを得た。

[0237] 配位子L A－５－９のメチルエステル体（L A－５－９Me）の合成—
L A－２－６の合成において，２－プロモ－４－メトキシカルボニルピリジンを２－プロモ－３－メチルベンゾイミダゾールに代えた外その他はL A－２－６の合成と同様にしてL A－５－９のメチルエステル体であるL A－５－９Meを得た。

[0238] 配位子L D－１－１の合成—
６－アセチル－２，２'－ピリジン5 gと1．２倍モルのトリフルオロ酢酸エチルエステルをテトラヒドロフラン50 mLに溶解し，０℃に冷却した。ここに，1. 0倍モルのナトリウムメトキシドメタノール溶液を0℃で
滴下し、12時間、加熱還流した。得られた反応溶液にトルエン50mIを加え、水洗、濃縮後に、上記分取カラムクロマトグラフィー装置および溶離液を用いて分離精製を行った。目的のフラクションを濃縮することでL-D-1'1中の間体であるL-D-1'1Aを得た。得られたL-D-1'1Aに対し、1.1倍モルのヒドラジン水溶液およびエタノール50mIを加え12時間加熱還流した。反応液を冷却後、加水し、塩化メチレンで抽出、濃縮し、上記と同様に分取カラムクロマトグラフィー装置を用いて精製し、配位子L-D-1'1を得た。

—配位子L-D-2'1の合成—
L-D-1'1の合成において、6-アセチル-2',2'-ビビリジン5gを0.5倍モルの2,6-ジアセチルビリジンに代えた以外はL-D-1'1の合成と同様にして配位子L-D-2'1を得た。

—配位子L-D-2'3の合成—
4-クロロ-2',6-ビリジンジカルボン酸メチルエステル5gとt-ブトキシカリウム2.1倍モルをトリフルオロ酢酸エチルエステル50mIに投入し、5時間加熱還流した。さらに希塩酸50mIを加え、5時間加熱還流し、室温まで冷却後、水洗、濃縮した。得られた粗成生物を、上記分取カラムクロマトグラフィー装置および溶離液を用いて分離精製した。目的のフラクションを濃縮することでL-D-2'3の中間体であるL-D-2'3Aを得た。得られたL-D-2'3Aに対し、1.1倍モルのヒドラジン水溶液およびエタノール50mIを加え12時間加熱還流した。反応液を冷却後、加水し、塩化メチレンで抽出、濃縮した。得られた組成生物を、上記と同様に分取カラムクロマトグラフィー装置を用いて精製し、中間体L-D-2'3Bを得た。2gの得られたL-D-2'3Bに対し、上記スズ化反応を適用することでスズ化体を得た。得られたスズ化体1gと、2'プロモ-5'nヘキシルチオフェン1.3倍モルに上記スティルカップリングを適用することでL-D-2'3を得た。

—配位子L-D-2'5の合成—
上記 L D - 2 _ 3 の合成において、2 _ プロモー5 _ n —ヘキシルチオフェンを等モルの 1 —プロモ_ 4 _ n —ヘキシルオキシベンゼンに代えた以外はL D _ 2 _ 3 の合成と同様にして配位子L D _ 2 _ 5 を得た。

—配位子L D _ 3 _ 1 の合成—

1 _ 4 —ジ (2 _ ピリジル) プタン—1 _ 4 —ジオン1 _ 5 g と酢酸アンモニウム5 g を窒素下で125℃2 時間加熱攪拌し、室温冷却後塩化メチレンで希釈、水洗、濃縮し、残渣を上記と同様に分取カラムクロマトグラフィー用装置を用いて精製し、配位子L D — 1 _ 1 を得た。

—配位子L D _ 3 —2 の合成—

3 _ 5 —ジピリジン_ 2 —イイジオン [1 _ 2 _ 4] トリアゾール—4 —イルアミン2 g と 1 _ 2 倍モルの硝酸を水50m l に投入し、0℃に冷却した。

1 _ 1 倍モルの硝酸ナトリウム溶液を滴下後、30 分攪拌し、その後 1 時間加熱還流した。冷却後、塩化メチレンで希釈、水洗、濃縮し、残渣を上記と同様に分取カラムクロマトグラフィー装置を用いて精製し、配位子L D — 3 — 2 を得た。

—配位子L D _ 3 —1 5 の合成—

1 _ 3 —ジアセチルベンゼン5 g と t —プロトキシカリウム2 _ 1 倍モルをトリフルオロ酢酸エチルエステル5O m l に投入し、5 時間加熱還流した。さらに希塩酸5O m l を加え、5 時間加熱還流し、室温まで冷却後、水洗、濃縮後、上記分取カラムクロマトグラフィー装置および溶媒液を用いて分離精製を行った。目的のフライクションを濃縮することでL D — 3 _ 1 5 の中間体であるL D — 3 _ 1 5 A を得た。ここから得られたL D — 3 _ 1 5 A に対し、1 _ 1 倍モルのヒドラジン水溶液およびエタノール5O m l を加え12 時間加熱還流した。反応液を冷却後、上記と同様に分取カラムクロマトグラフィー装置を用いて精製し、配位子L D — 3 _ 1 5 を得た。

—配位子L D _ 6 _ 1 の合成—

配位子L D — 1 _ 1 の合成において、6 _ アセチル_ 2 _ 2' —リピリジン5 g を等モルの 2 _ アセチルピリジンに代えた以外はL D — 1 _ 1 の合成
と同様にして配位子L D _ 6 - 1 を得た。

配位子L D - 6 - 1 0 の合成—

配位子L D - 2 - 3 の合成において、4 クロン 2 , 6 ビリジンジカルボン酸メチルエステル 5 g を 2 倍モルの 4 プロモー - 2 - ビリジンカルボン酸メチルエステルに代えた以外は L D _ 2 _ 3 の合成と同様にして配位子 L D _ 6 _ 1 0 を得た。

配位子L D - 6 - 1 3 の合成—

配位子L D - 2 - 3 の合成において、4 クロン_2 , 6 ビリジンジカルボン酸メチルエステル 5 g を 2 倍モルの 4 プロモー - 2 - ビリジンカルボン酸メチルエステルに代え、2 - プロモー - 5 - n - キシルチオフェンを等モルの 1 - プロモー 4 _ n - オクチルオキシベンゼンに代えた以外は L D _ 2 _ 3 の合成と同様にして配位子 L D _ 6 _ 1 3 を得た。

（錯体の精製および同定）

以下で合成した錯体の精製は、分取カラムクロマトグラフィー装置（山善社製 A I _ 5 8 0 ）および溶離液としてテトラヒドロフラン、メタノール、水の混合溶媒を用いて濃度勾配を制御しながら行った。目的のフラクションを濃縮することで精製された錯体が得られる。得られた錯体は _ 1 H — N M R スペクトルおよび質量分析スペクトルで分子量に相当するピークを観測することで同定した。

- Ru 11 (L A _ 1 _ 1) (L D _ 1 _ 1) CI の合成—

塩化ルテニウム (I I I) 0 _ 5 g および N , N _ ジメチルアセトアミドに上記配位子 L A _ 1 _ 1 M e 1 倍モルを加え、窒素下、遮光して 8 0 ℃で 3 時間加熱攪拌した。次いで等モルの配位子 L D _ 1 _ 1 および 10 倍モルのトリプチルアミンを加え窒素下、遮光して 1 4 0 ℃で 8 時間加熱攪拌した。反応液を塩化メチルで希釈し、純水で洗浄、濃縮後、残渣をメタノール 2 0 ml に分散し、1 規定水酸化ナトリウム溶液 10 倍モル量を加え室温で一晩攪拌した。この溶液に 1% 塩酸水溶液を晶析物が得られるまで滴下し、得られた固体を精製した後、上記方法で精製することで Ru 11 (L A _
1 — 1）(L D - 1 - 1) C I を得た。

[0250] - Ru"(L A - 1 - 1) (L D - 2 - 1) の合成—
塩化ルテニウム（II）0.5 g および N，N —ジメチルアセトアミド
に上記配位子 L A —1 —1 Me 1 倍モルを加え、窒素下、遮光して 80 ℃
で 3 時間加熱攪拌した。次いで等モルの配位子 L D —2 —1 および 10 倍モル
の トリプチルアミンを加え窒素下、遮光して 140 ℃で 8 時間加熱攪拌し
た。反応液を塩化メチレンで希釈し、純水で洗浄、濃縮後、残渣をメタノー
ル 20 ml に分散し、1 優定水酸化ナトリウム溶液 10 倍モル量を加え室
温で一晩攪拌した。この溶液に 1 % トリフルオロ酢酸水溶液を晶析物が得ら
れるまで滴下し、得られた固体を濁別した後、上記方法で精製することで R
u"(L A - 1 - 1) (L D - 2 - 1) を得た。

[0251] - Ru"(L A —1 —3) (L D - 2 - 1) の合成—
Ru"(L A - 1 - 1) (L D - 2 - 1) の合成において、L A —1 —1
Me を L A —1 —3 Me に代えた以外は R u"(L A —1 —1) (L D - 2
—1) の合成と同様にして R u"(L A —1 —3) (L D - 2 - 1) を得た
。

[0252] - Ru"(L A - 1 - 1) (L D - 2 - 3) の合成—
Ru"(L A - 1 - 1) (L D - 2 - 1) の合成において、L D —2 —1
を L D —2 —3 に代えた以外は R u"(L A —1 —1) (L D - 2 —1) の
合成と同様にして Ru"(L A —1 —1) (L D - 2 - 3) を得た。

[0253] - Ru"(L A - 1 - 1) (L D - 2 - 5) の合成—
Ru"(L A - 1 - 1) (L D - 2 - 1) の合成において、L D —2 —1
を L D —2 —5 に代えた以外は R u"(L A —1 —1) (L D - 2 —1) の
合成と同様にして Ru"(L A —1 —1) (L D - 2 - 5) を得た。

[0254] - Ru"(L A - 2 - 3) (L D - 2 - 1) の合成—
Ru"(L A - 1 - 1) (L D - 2 - 1) の合成において、L A —1 —1
Me を L A —2 —3 Me に代えた以外は R u"(L A —1 —1) (L D - 2
—1) の合成と同様にして Ru"(L A - 2 - 3) (L D - 2 - 1) を得た
- R u ′ (L A - 2 - 6) (L D - 2 - 1) の合成—
 R u ′ (L A - 1 - 1) (L D - 2 - 1) の合成において、L A —1—1
 M e を L A —2—6 Me に代えた以外は R u ′′ (L A —1—1) (L D - 2
 - 1) の合成と同様にして R u ′′ (L A - 2 - 6) (L D - 2 - 1) を得た
。

- R u ′ (L A —4 —1) (L D - 2 - 1) の合成—
 R u ′ (L A - 1 - 1) (L D - 2 - 1) の合成において、L A —1—1
 M e を L A —4 —1 Me に代えた以外は R u ′′ (L A —1—1) (L D - 2
 - 1) の合成と同様にして R u ′′ (L A —4 —1) (L D - 2 - 1) を得た
。

- R u ′ (L A - 4 - 7) (L D - 2 - 1) の合成—
 R u ′ (L A - 1 - 1) (L D - 2 - 1) の合成において、L A —1—1
 M e を L A —4 —7 Me に代えた以外は R u ′′ (L A —1—1) (L D - 2
 - 1) の合成と同様にして R u ′′ (L A - 4 - 7) (L D - 2 - 1) を得た
。

- R u ′ (L A - 4 - 9) (L D - 2 - 1) の合成—
 R u ′ (L A - 1 - 1) (L D - 2 - 1) の合成において、L A —1—1
 M e を L A —4 —9 Me に代え、反応中に少量の リチウムジソプロピアルア
 ミンを添加した以外は R u ′′ (L A _ 1 _ 1) (L D - 2 - 1) の合成と同
 様にして R u ′′ (L A —4 —9) (L D - 2 - 1) を得た。

- R u ′ (L A - 5 - 1) (L D - 2 - 1) の合成—
 R u ′ (L A - 1 - 1) (L D - 2 - 1) の合成において、L A —1—1
 M e を L A —5 —1 Me に代え、反応中に少量の リチウムジソプロピアルア
 ミンを添加した以外は R u ′′ (L A _ 1 _ 1) (L D - 2 - 1) の合成と同
 様にして R u ′′ (L A —5 —1) (L D - 2 - 1) を得た。

- R u ′ (L A - 5 - 8) (L D - 2 - 1) の合成—
 R u ′ (L A - 1 - 1) (L D - 2 - 1) の合成において、L A —1—1
MeをLA₅₈Meに代え、反応中に少量のリチウムジソプロピルアミンを添加した以外はRu''(LA₅₋₈)(LD₋₂₋₁)の合成と同様にしてRu'i(LA₋₅₋₈)(LD₋₂₋₁)を得た。

[0261] - Ru¹¹(LA₋₅₋₉)(LD₋₂₋₁)の合成

Ru¹¹(LA₋₁₋₁)(LD₋₂₋₁)の合成において、LA₋₁₋₁MeをLA₋₅₋₉Meに代え、反応中に少量のリチウムジソプロピルアミンを添加した以外はRu¹¹(LA₋₁₋₁)(LD₋₁₋₁)の合成と同様にしてRu¹¹(LA₋₅₋₉)(LD₋₂₋₁)を得た。

[0262] - Ru¹¹(LA₋₁₋₁)(LD₋₃₋₁)CIの合成

Ru¹¹(LA₋₁₋₁)(LD₋₁₋₁)CIの合成において、LD₋₁₋₁をLD₋₃₋₁に代え、反応中に少量のリチウムジイソプロピルアミンを添加した以外はRu¹¹(LA₋₁₋₁)(LD₋₁₋₁)の合成と同様にしてRu¹¹(LA₋₁₋₁)(LD₋₃₋₁)CIを得た。

[0263] - Ru¹¹(LA₋₁₋₇)(LD₋₃₋₂)CIの合成

Ru¹¹(LA₋₁₋₁)(LD₋₁₋₁)CIの合成において、LA₋₁₋₁MeをLA₋₁₋₇Meに代え、さらにLD₋₁₋₁をLD₋₃₋₂に代え、反応中に少量のリチウムジイソプロピルアミンを添加した以外はRu¹¹(LA₋₁₋₁)(LD₋₁₋₁)の合成と同様にしてRu¹¹(LA₋₁₋₇)(LD₋₃₋₂)CIを得た。

[0264] - Ru¹¹(LA₋₁₋₁)(LD₋₃₋₁₅)(n-Bu)₄N⁺の合成

塩化ルテニウム（III）0.5 gおよびN、N-ジメチルアセトアミドに上記配位子LA₋₁₋₁Meを1倍モルを加え、窒素下、遮光して80℃で3時間加熱攪拌した。次いで等モルの配位子LD₋₃₋₁₅および10倍モルのトリプチルアミンを加え窒素下、遮光して140℃で8時間加熱攪拌を反応中に少量のリチウムジイソプロピルアミンを添加した。反応液を塩化メチレンで希釈し、純水で洗浄、濃縮後、残渣をメタノール20 mlに分散し、1%規定水酸化ナトリウム溶液10倍モル量を加え室温で1晩攪拌した。この溶液に1%トリフルオロ酢酸水溶液を晶析物が得られるまで滴下
し、得られた固体を濾別した後、メタノール20mIに分散し、10％テトラプチルアンモニウムヒドロキシドメタノール溶液10倍モル量を加え室温で一晩攪拌した。この溶液を濃縮し、得られた固体を濾別した後、上記方法で精製することでRu^{11} (LA—1—1) (LD—3—15) (n—Bu)_4 N+ を得た。

[0265] - Ru^{11} (LA—1—1) (LD—6—1) (NCS) の合成

塩化ルテニウム (I I I) 0.5 g および N、N—ジメチルアセトアミドに上記配位子 LA—1—1 Me 1 倍モルを加え、窒素下、遮光して 80℃で4 時間加熱攪拌した。次いで等モルの配位子 LD—6—1 および 10 倍モルのトリプチルアミンを加え窒素下、遮光して 140℃で一晩加熱攪拌した。さらにチオシアン酸カリウム 50 倍モルを添加し、115℃で 8 時間加熱攪拌した。室温まで冷却後、反応液を塩化メチレンで希釈し、純水で洗浄、濃縮後、残渣をメタノール20mIに分散し、1 規定水酸化ナトリウム水溶液 10 倍モル量を加え室温で一晩攪拌した。この溶液に希硝酸を晶析物が得られるまで滴下し、得られた固体を濾別した後、上記方法で精製することでRu^{11} (LA—1—1) (LD—6—1) (NCS) を得た。

[0266] - Ru^{11} (LA—1—9) (LD—6—10) (NCS) の合成

Ru^{11} (LA—1—1) (LD—6—1) (NCS) の合成において、LA—1—1 Me を LA—1—9 Me に代え、LD—6—1 を LD—6—10 に代えた以外はRu^{11} (LA—1—1) (LD—6—1) の合成と同様にして Ru^{11} (LA—1—9) (LD—6—10) (NCS) を得た。

[0267] - Ru^{11} (LA—1—12) (LD—6—13) (NCS) の合成

Ru^{11} (LA—1—1) (LD—6—1) (NCS) の合成において、LD—6—1 を LD—6—13 に代えて合成し、得られた固体をメタノール 2 0 mI に分散し、10％テトラプチルアンモニウムヒドロキシドメタノール溶液 10 倍モル量を加え室温で一晩攪拌した。この溶液を濃縮し、得られた固体を濾別した後、上記方法で精製することでRu'' (LA—1—12) (LD—6—13) (NCS) を得た。
得られた例示の金属錯体色素の構造はMS（マススペクトル）測定により確認した。

マススペクトル（MS）の測定結果を下記表1に示す。

表1

<table>
<thead>
<tr>
<th>金属錯体色素</th>
<th>MSスペクトル（M⁺）</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru(LA-1-1)(LD-1-1)Cl</td>
<td>748.01</td>
</tr>
<tr>
<td>Ru(LA-1-1)(LD-2-1)</td>
<td>769.02</td>
</tr>
<tr>
<td>Ru(LA-1-3)(LD-2-1)</td>
<td>769.02</td>
</tr>
<tr>
<td>Ru(LA-1-1)(LD-2-3)</td>
<td>535.10</td>
</tr>
<tr>
<td>Ru(LA-1-1)(LD-2-5)</td>
<td>573.17</td>
</tr>
<tr>
<td>Ru(LA-1-1)(LD-3-1)Cl</td>
<td>679.03</td>
</tr>
<tr>
<td>Ru(LA-1-7)(LD-3-2)Cl</td>
<td>736.00</td>
</tr>
<tr>
<td>Ru(LA-1-1)(LD-3-15)n-Bu₃N⁺</td>
<td>1009.30</td>
</tr>
<tr>
<td>Ru(LA-1-1)(LD-6-1)(NCS)</td>
<td>693.99</td>
</tr>
<tr>
<td>Ru(LA-1-9)(LD-6-10)(NCS)</td>
<td>588.09</td>
</tr>
<tr>
<td>Ru(LA-1-12)(LD-6-13)(NCS)</td>
<td>1139.42</td>
</tr>
</tbody>
</table>

実施例1

光電極を構成する半導体電極の半導体層または光散乱層を形成するための種々のペーストを調製し、このペーストを用いて、色素増感太陽電池を作製した。

（ベーストの調製）

—ベーストA—

球状のTiO₂粒子（アナターゼ、平均粒径：25 nm、以下、球形TiO₂粒子Aという）を硝酸溶液に入れて撹拌することにより、チタニアスラリーを調製した。次に、このチタニアスラリーに増粘剤としてセルロース系バインダーを加え、混練してベーストAを調製した。

—ベースト1—

球状TiO₂粒子Aと、球状のTiO₂粒子（アナターゼ、平均粒径：200 nm、以下、球形TiO₂粒子Bという）を硝酸溶液に入れて撹拌することにより、チタニアスラリーを調製した。次に、このチタニアスラリーに増粘剤としてセルロース系バインダーを加え、混練してベースト1（TiO₂粒子Aの質量：TiO₂粒子Bの質量＝30：70）を調製した。
ベースト2
ベーストAに、棒状TiO₂粒子（アナターゼ、直径：100nm、アスペクト比：5、以下、棒状TiO₂粒子Cという）を混合し、[棒状TiO₂粒子Cの質量]：[ベーストAの質量] = 3.0：7.0となるベースト2を調製した。

色素感温太陽電池の作製
以下に示す手順により、特開2002-289274号公報に記載の図5に示されている光電極12と同様の構成を有する光電極を作製した。更に、この光電極を用いて、光電極以外は同公報の図3の色素感温型太陽電池20と同様の構成を有する10mm×10mmのスケールの色素感温太陽電池1を作製した。具体的な構成は図2に示した。図2では、41が透明電極、42が半導体電極、43が透明導電膜、44が基板、45が半導体層、46が光散乱層、40が光電極、20が色素感温太陽電池、CENが対極、Eが電解質、Sがスペーサーである。

ガラス基板上にフッ素ドープされたSnO₂導電膜（膜厚：500nm）を形成した透明電極を準備した。そして、このSnO₂導電膜上に、上述のベースト1をスクリーン印刷し、次いで乾燥させた。その後、空気中、450℃の条件のもとで焼成した。更に、ベースト1を用いてこのスクリーン印刷と焼成とを2回繰り返し、ベースト2を用いてこのスクリーン印刷と焼成とを繰り返すことにより、SnO₂導電膜上に図2に示す半導体電極42と同様の構成の半導体電極（受光面の面積：10mm×10mm、層厚：10從m、半導体層（ベースト1由来）の層厚：7μm、光散乱層（ベースト2由来）の層厚：4μm、光散乱層に含有される棒状TiO₂粒子Cの含有率：30質量％）を形成した。

次に、上記半導体電極に本発明の金属錯体色素を以下のようにして吸着させた。マグネシウムオレイン酸で脱水した無水t-ブタノールとジメチルホルムアミドの1：1（体積比）の混合物を溶媒として、下記表2に記載の金属錯体色素を3×10⁻⁴モル/火花となるように溶解した。さらにそこへ共吸
着剤として、ケノデオキシホル酸とコール酸の等モル混合物を金属錯体色
素 1 モルに対して 20 モル加え、各色素溶液を調製した。この色素溶液につ
いてフィッシャー滴定により水分量を測定したところ、含水量は 0
0.01 質量%未満であった。次に、各色素溶液に半導体電極を、30℃、1
0 時間の条件で浸漬し、引き上げ後 50℃で乾燥させることにより、半導体
電極に色素が約 2 × 10⁻⁷モル/ c m²の割合で吸着した光電極 40 を完成させ
た。

次に、対極として上記の光電極と同様の形状と大きさを有する白金電極（
Pt 薄膜の厚さ : 100 nm）、電解質として、ヨウ素を 0.1 M、ヨウ化
リチウムを 0.05 M、4 _ t —プチルビリジンを 0.25 M含有するヨウ
素系レドックスプロピオニトリル溶液を調製した。更に、半導体電極の大き
さに合わせた形状を有するデュポン社製のスペーサー S （商品名：サーリ
ン）を準備し、光電極 40 と対極 C E とスペーサー S を介して対向、熱压
着させ、内部に上記の電解質を充填した。電解質注入口はナガセケムテック
製レジン X N R — 5 5 1 6 を用いて薄板ガラスをカツトしたもので封止した。
電池の外周も上記レジンを用いて封止、硬化して色素増感太陽電池（試料
番号 1 0 1 ～ 1 1 1 、及び c 1 1 ～ c 1 5 ）を完成させた。

< 試験例 >

上記で作製した色素増感太陽電池を下記試験に付し、性能評価を行った。

(評価 1) 初期の光電変換効率（初期特性）の評価

各色素増感太陽電池について、短絡電流密度（J sc 、単位 : mA/ c m²
）、開路電圧（V oc 、単位 : V ）、フィルファクター（FF）を求め、電
池出力を入射エネルギーで除することにより光電変換効率（力（%））を測
定した。この試験には、ソーラーシミュレーター（商品名：PEC——L 1
2 、ベクセル・テクノロジーズ社製）を用いた。電流—電圧特性は I — V 特
性計測装置（商品名：PEC K2 4 0 0 —N）を用いて評価した。

- 初期の光電変換効率の評価基準 -

A : 光電変換効率が c 1 1 の光電変換効率の 1.3 倍以上
B: 光電変換効率が c の光電変換効率の 1.1 倍以上 1.3 倍未満
C: 光電変換効率が c の光電変換効率の 1.1 倍未満

[0281] 評価 2) 耐久試験 - 1 (耐光試験)
作製した色素増感太陽電池をメリー・ゴールドン型耐光試験機（イーグルエンジニアリング社製、セルテスト機I I I 型、Schott 製WG320フィルタ付）に入れて耐光試験を行った。耐光試験前の色素増感太陽電池および耐光試験 84 時間後の色素増感太陽電池について電流を評価した。耐光試験後の電流値の減少分を耐光試験前の電流値で割った値を劣化率として評価した。

[0282] - 評価基準 -
A: 劣化率が c の劣化率の 0.85 倍未満
B: 劣化率が c の劣化率の 0.85 倍以上 0.95 倍未満
C: 劣化率が c の劣化率の 0.95 倍以上

[0283] 評価 3) 耐久試験 - 2 (耐熱試験)
作製した色素増感太陽電池を 60℃の恒温槽に入れて耐熱試験を行った。耐熱試験前の色素増感太陽電池および耐熱試験 8 時間後の色素増感太陽電池について電流を評価した。耐熱試験後の電流値の減少分を耐熱試験前の電流値で割った値を劣化率とした。

[0284] - 評価基準 -
A: 劣化率が c の劣化率の 0.90 倍未満
B: 劣化率が c の劣化率の 0.90 倍以上 0.95 倍未満
C: 劣化率が c の劣化率の 0.95 倍以上

[0285] 評価 4) 耐久試験 - 3 (ヒートサイクル試験)
作製した色素増感太陽電池を -20℃の冷凍庫と 40℃の恒温槽へ 2 時間交替に交互に入れ冷凍と加温を繰り返し、ヒートサイクル試験を行った。ヒートサイクル試験前の色素増感太陽電池およびヒートサイクル試験 24 時間後の色素増感太陽電池について、電流を評価した。試験後の電流値の減少分をヒートサイクル試験前の電流値で割った値を劣化率とした。
－評価基準－

A : 劣化率がcの劣化率の0.80倍未満
B : 劣化率がcの劣化率の0.80倍以上0.90倍未満
C : 劣化率がcの劣化率の0.90倍以上

上記評価1～4について、評価結果を下記表2に示す。

<table>
<thead>
<tr>
<th>試料</th>
<th>金属錯体色素</th>
<th>耐久試験-1</th>
<th>耐久試験-2</th>
<th>耐久試験-3</th>
<th>初期特性</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Ru(LA-1-1)(LD-1-1)Cl</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>本発明</td>
</tr>
<tr>
<td>102</td>
<td>Ru(LA-1-1)(LD-2-1)</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>本発明</td>
</tr>
<tr>
<td>103</td>
<td>Ru(LA-1-3)(LD-2-1)</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>本発明</td>
</tr>
<tr>
<td>104</td>
<td>Ru(LA-1-1)(LD-2-3)</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>本発明</td>
</tr>
<tr>
<td>105</td>
<td>Ru(LA-1-1)(LD-2-5)</td>
<td>A</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>本発明</td>
</tr>
<tr>
<td>106</td>
<td>Ru(LA-1-1)(LD-3-1)Cl</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>本発明</td>
</tr>
<tr>
<td>107</td>
<td>Ru(LA-1-1)(LD-3-2)Cl</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>B</td>
<td>本発明</td>
</tr>
<tr>
<td>109</td>
<td>Ru(LA-1-1)(LD-6-1)NCS</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>本発明</td>
</tr>
<tr>
<td>110</td>
<td>Ru(LA-1-9)(LD-6-10)NCS</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>本発明</td>
</tr>
<tr>
<td>111</td>
<td>Ru(LA-1-12)(LD-6-13)NCS</td>
<td>B</td>
<td>B</td>
<td>B</td>
<td>A</td>
<td>本発明</td>
</tr>
<tr>
<td>c11</td>
<td>比較化合物(1)</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>比較例</td>
</tr>
<tr>
<td>c12</td>
<td>比較化合物(2)</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>比較例</td>
</tr>
<tr>
<td>c13</td>
<td>比較化合物(3)</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>比較例</td>
</tr>
<tr>
<td>c14</td>
<td>比較化合物(4)</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>比較例</td>
</tr>
<tr>
<td>c15</td>
<td>比較化合物(5)</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>比較例</td>
</tr>
</tbody>
</table>
[化60]

比較化合物(1) 比較化合物(2) 比較化合物(3)
比較化合物(4) 比較化合物(5)

[0290] 上記表2に示されるように、本発明の光電変換素子もしくは色素増感太陽電池は、光電変換効率に優れると同時に、各種耐久性にも優れるものであった。

符号の説明

[0291] 1 導電性支持体
2 感光体層
 2.1 色素
 2.2 半導体微粒子
3 電荷移動体層
4 対極（対向電極）
5 受光電極（光電極）
6 回路
10 光電変換素子
100 色素増感太陽電池を利用したシステム

MT 電動モーター (扇風機)

[0292] 20 色素増感太陽電池

40 光電極

41 透明電極

42 半導体電極

43 透明導電膜

44 基板

45 半導体層 (光散乱層) 46 光散乱層

CE 対極

E 電解質

S スペーサー
請求の範囲

【請求項1】導電性支持体と、電解質を含む感光体層と、電解質を含む電荷移動体層と、対極とを有する光電変換素子であって、該感光体層が、下記式（1）で表される金属錯体色素が担持された半導体微粒子を有する光電変換素子。

\[M(\text{LD})(\text{LA})(\times)m\cdot\text{CI} \quad \cdots \quad \text{式（1）} \]

式（1）中、\(M \)は\(Ru^{2+} \)、\(Fe^{2+} \)または\(Os^{2+} \)を表す。\(\text{LD} \)はアリール基または複素環基を含む2座または3座の配位子であって、該配位子はアニオンとなって\(M \)に配位する原子を1~3個有する。\(\text{LA} \)は下記式（2）で表される3座の配位子を表す。\(\times \)は単座の配位子を表す。\(\text{CI} \)は電荷を中和させるのに対イオンが必要な場合の該対イオンを表す。\(m \)は0または1を表す。

【図1】

式（2）中、\(Z_a \sim Z_c \)は各々独立に芳香族炭化水素基または複素環基を形成するのに必要な原子群を表す。式（2）に示された3つの環構造の少なくとも1つはベンゼン環、ピロール環、イミダゾール環、ピラゾール環、ピラジン環、ピリミジン環、ビリダジン環、トリラゾール環、オキサゾール環、トリジン環、チアゾール環、イソチアゾール環、オキサゾール環、イソオキサゾール環、フラン環、チオフェン環、ピロリジン環、ビペリジン環、モルホリン環、ビペラジン環、テトラヒドロフラン環、テトラヒドロビジン環、4H−ビジン環、1,4−ジヒドロビジン環、テトラヒドロビジン環およびこれらのベンゾローグ総合体から選ばれ、残りの環構造はビジン環で
ある。Q¹~Q³は各々独立に孤立電子対を有する窒素原子、アニオン性の窒素原子またはアニオン性の炭素原子を表す。D₁~D₄は各々独立に炭素原子または窒素原子を表す。ここで、Z_a~Z_cの各原子群は置換基を有してもよいが、少なくとも1つの環構成原子は吸着基を有する基を有する。

[請求項2] 前記式(2)で表される3座の配位子が下記式(2-1)~(2-5)のいずれかで表される請求項1に記載の光電変換素子。

[図2]
キサゾール環、フラン環、チオフェン環、ピロリジン環、ピペリン環、モルホリン環、ピラジン環、テトラヒドロフラン環、テトラヒドロピラン環、4H—ピラン環、1,4—ジヒドロピリジン環、テトラヒドロピラン環およびこれらのベンゾローグ縮合体から選ばれる環構造を形成するのに必要な原子群を表す。Zd～ZFは少なくとも1つの吸着性基を有する基を有し、さらに該基以外の置換基を有していてもよい。ただし、式（2－1）～（2－5）の各式で表される配位子は少なくとも1つの吸着性基を有する基を有する。

[請求項3]
前記吸着性基を有する基が、−RA−COOH、−RA−SO3H、
−RA−PO3H2、−RA−OHおよび−RA−SHで表される基、またはその塩である請求項1または2に記載の光電変換素子。RAは単結合、またはアルキレン基を表す。

[請求項4]
前記式（1）におけるしきが、下記式（2L－1）～（2L－4）のいずれかで表される2座の配位子である請求項1～3のいずれか1項に記載の光電変換素子。

[化3]

式（2L－1）～（2L－4）中、*はMへの配位位置を示す。A
111、A 121、A 131
およびA 441は窒素原子または炭素原子からなるアニオン性の配位原子を表す。環Dは芳香族炭素水素環または複素環を表す。R 111～R
114、R 121～R 123、R 131～R 133およびR 141～R 142は各々独立に水素原子または置換基を表す。

[請求項5]
前記式（1）におけるしきが、下記式（3L－1）～（3L－6）のいずれかで表される3座の配位子である請求項1～3のいずれか1
項に記載の光電変換素子。

[化4]

式(3L-1)～式(3L-6)中、Rは置換基を表す。a2およびa3は各々独立に0以上の整数を表し、a4は0～4の整数を表す。

環Aは、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、炭素原子でMに配位するピリジン環、炭素原子でMに配位するチオフェン環、炭素原子でMに配位するフラン環、イミダソール環、オキサソール環、チアソール環、オキサジアソール環、チアジアソール環、イソオキサソール環、イソチアソール環、トリアソール環、ピラゾール環、ビロール環およびベンゼン環から選ばれる環構造を表す。

環A'は、炭素原子でMに配位するピリミジン環、炭素原子でMに配位するピラジン環、炭素原子でMに配位するピリダジン環、炭素原子でMに配位するピリジン環、炭素原子でMに配位するフラン環、イミダソール環、炭素原子でMに配位するオキサソール環、炭素原子でMに配位するチアソール環、炭素原子でMに配位するオキサジアソール環、炭素原子でMに配位するイソオキサソール環、炭素原子でMに配位するイソチアソール環、トリアソール環、ピラゾール環、ビロール環およびベンゼン環から選ばれる環構造を表す。

環A''は、ピラゾール環を表す。
環 B は、ピリミジン環、トリアジン環、イミダゾール環、オキサゾール環、チアゾール環、オキサジアゾール環、トリアゾール環、ピラゾール環、ピロール環およびベンゼン環から選ばれる環構造を表す。

環 B' は、炭素原子で M に配位するピリミジン環、イミダゾール環、炭素原子で M に配位するトリアジン環、炭素原子で M に配位するオキサジアゾール環、炭素原子で M に配位するトリアゾール環、ピラゾール環、ピロール環およびベンゼン環から選ばれる環構造を表す。

環 D' は、芳香族炭化水素環または複素環を表す。A x および A y は各々独立に、窒素原子、酸素原子または硫黄原子を表す。ただし、A x と A y の少なくとも一方はアニオンである。

ここで、式 (3 L — 1) に存在する 2 つの環 A は互いに同一であっても異なってもよく、式 (3 L — 6) に存在する 2 つの環 D' は互いに同一でも異なってもよい。

[請求項6] 前記半導体微粒子に、吸着性基を有する基を少なくとも 1 つ有する共吸着剤が担持されている請求項 1～5 のいずれか 1 項に記載の光電変換素子。

[請求項7] 前記共吸着剤が、下記式 (CA) で表される請求項 6 に記載の光電変換素子。

[化5]

式 (CA) 中、R A1 は吸着性基を有する基を表す。R A2 は置換基を表す。n A は 0 以上の整数を表す。

[請求項8] 請求項 1～7 のいずれか 1 項に記載の光電変換素子を用いた色素増
感太陽電池。

[請求項9] 下記式 (1) で表される金属錯体色素。

\[M(\text{L} \text{D})(\text{L} \text{A})(\text{X}) \text{m} \cdot \text{C} \text{I} \] ...

式 (1) 中、M は Ru\(^{2+}\)、Fe\(^{2+}\) または Os\(^{2+}\) または アニオン性の炭素原子を表す。D は炭素原子または窒素原子を表す。L は各原子群を含む 2 座または 3 座の配位子であって、該配位子はアニオンとなって M に配位する原子を 1 〜 3 個有する。L A は下記式 (2) で表される 3 座の配位子を表す。X は単座の配位子を表す。C I は電荷を中和させるものに対イオンが必要な場合の該対イオンを表す。m は 0 または 1 を表す。

[化6]

式 (2) 中、Z a 〜 Z c は各々独立に芳香族炭化水素基または炭素環基を形成するのに必要な原子群を表す。式 (2) に示された 3 つの環構造の少なくとも 1 つはベンゼン環、ビロール環、イミダソール環、ピラゾール環、ピラジン環、ピリミジン環、ピリダジン環、トリアゾール環、オキサゾール環、トリアジン環、チアゾール環、イソチアゾール環、オキサゾール環、イソオキサゾール環、フラン環、チオフラン環、ピロリジン環、ピベリジン環、モルホリン環、ピベリジン環、テトラヒドロフラン環、テトラヒドロビラン環、4 H 〜 ビラジン環、トリメチルヒドロビリジン環、テトラヒドロビリジン環およびこれらベンゾロゲン縮合体から選ばれ、残りの環構造はビリジン環である。Q 1 〜 Q 3 は各々独立に拡大電子対を有する窒素原子、アニオン性の窒素原子またはアニオン性の炭素原子を表す。D i 〜 D 4 は各々独立に炭素原子または窒素原子を表す。ここで、Z a 〜 Z c の各原子群は置換基を有してもよいが、少なくとも 1 つの環構成原子は吸着
[請求項10] 前記式（2）で表される3座の配位子が、下記式（2-1）〜（2-5）のいずれかで表される請求項9に記載の金属錯体色素。

式（2-1）〜（2-5）中、D1〜D4およびQ1〜Q3は、前記式（2）におけるDi〜D4およびQi〜Q3と同義である。Adは吸着性基を有する基を表す。m1は0〜4の整数を表す。m2は0〜3の整数を表す。Rは置換基を表す。n1は0〜3の整数を表す。n2は0〜2の整数を表す。ZdはQ3およびD4と共に、乙6は0〜2、D2およびD3と共に、ZfはQ1およびD1と共に、それぞれベンゼン環、ピロール環、イミダゾール環、ピラゾール環、ピリミジン環、ピリダジン環、トリアゾール環、オキサゾール環、トリアジン環、チアゾール環、イソチアゾール環、オキサゾール環、イソオキサゾール環、フラン環、チオフェン環、ピロリン環、ピペリジン環、モルホリン環、ピペラジン環、テトラヒドロフラン環、テトラヒドロピラン環、4H〜ピラン環、1,4〜ジピロピリジン環、テトラデヒドロモルホリン環およびこれらのベンゾローグ縮合体から選ば
 rar え る 環 構 造 を 形 成 す る の よ い に 必 要 な 原 子 群 を 表 す。 Z d 〜 Z f は 少 な く も 1 つ の 吸 着 性 基 を 有 す る 基 を 有 し、 さ ら に さ ら の 置 換 基 を 有 し て も よ い。 ただ し、 式 (2 - 1) 〜 (2 - 5) の 各 式 で 表 さ れ る 3 座 の 配 位 子 は 少 な く も 1 つ の 吸 着 性 基 を 有 す る 基 を 有 す る。

[請 求 項 11] 前 記 吸 着 性 基 を 有 す る 基 が、 _ R ^ A_ C O O H、 _ R A_ S O_3 H、 _ R A_ P O_3 H_2、 _ R A_ O H および _ R A_ S H で 表 さ れ る 基 ま た は そ の 塩 で あ る 請 求 項 9 ま た は 1 0 に 記 載 の 金 属 錯 体 色 素。 R ^ A は 単 結 合、 ま た は ア ル キ レ ン 基 を 表 す。

[請 求 項 12] 前 記 式 (1) にお け る し り が、 下 記 式 (2 L - 1) 〜 (2 L - 4) の い ず れ か で 表 さ れ る 2 座 の 配 位 子 で あ る 請 求 項 9 〜 1 1 の い ず れ か 1 項 に 記 載 の 金 属 錯 体 色 素。

[化 8]

式 (2 L - 1) 〜 (2 L - 4) 中、 * は M へ の 配 位 位 置 を 表 す。 A i l l 、 A 12 1、 A 13 1 お よ び A i 4 は 窓 素 原 子 ま た は 炭 素 原 子 か ら な る ア ニ オ ン 性 の 配 位 原 子 を 表 す。 環 D は 芳 香 素 錯 化 水 素 環 ま た は 植 素 環 を 表 す。 R i i i 〜 R 114、 R 12 1〜 R 12 3、 の 3 1〜 的 3 3 お よ び R 14 1〜 R 14 2 は 各 々 独 立 に 水 素 原 子 ま た は 置 換 基 を 表 す。

[請 求 項 13] 前 記 式 (1) にお け る し り が、 下 記 式 (3 L - 1) 〜 (3 L - 6) の い ず れ か で 表 さ れ る 3 座 の 配 位 子 で あ る 請 求 項 9 〜 1 1 の い ず れ か 1 項 に 記 載 の 金 属 錯 体 色 素。
式 (3 L — 1) ~ (3 L - 6) 中、 R B は置換基を表す。 a 2 および a 3 は各々独立に 0 以上の整数を表し、 a 4 は 0 ~ 4 の整数を表す。 a 5 は 0 ~ 3 の整数を表す。 a 6 は 0 ~ 2 の整数を表す。

環 A は、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環、炭素原子で M に配位するピリジン環、炭素原子で M に配位するチオフェン環、炭素原子で M に配位するフラン環、イミダゾール環、オキサゾール環、チアソール環、オキサジアゾール環、チアジアゾール環、イソオキサゾール環、イソチアゾール環、トリアソール環、ピラゾール環、ピロール環およびベンゼン環から選ばれる環構造を表す。環 A’ は、炭素原子で M に配位するピリミジン環、炭素原子で M に配位するピラジン環、炭素原子で M に配位するピリダジン環、炭素原子で M に配位するピリジン環、炭素原子で M に配位するチオフェン環、炭素原子で M に配位するフラン環、イミダゾール環、炭素原子で M に配位するオキサゾール環、炭素原子で M に配位するチアソール環、炭素原子で M に配位するオキサジアゾール環、炭素原子で M に配位するチアソール環、炭素原子で M に配位するイソオキサゾール環、炭素原子で M に配位するイソチアゾール環、トリアソール環、ピラゾール環、ピロール環およびベンゼン環から選ばれる環構造を表す。環 A’' は、ピラゾール環を表す。

環 B は、ピリミジン環、トリアジン環、イミダゾール環、オキサゾ
―ル環、チアソール環、オキサジアゾール環、チアジアゾール環、トリアゾール環、ピラゾール環、ピロール環およびベンゼン環から選ばれる環構造を表す。環 B' は、炭素原子で M に配位するピリミジン環、イミダゾール環、炭素原子で M に配位するオキサゾール環、炭素原子で M に配位するオキサジアゾール環、炭素原子で M に配位するチアゾール環、トリアゾール環、ピラゾール環、ピロール環およびベンゼン環から選ばれる環構造を表す。

環 D' は、芳香族炭化水素環または複素環を表す。A x および A y は各々独立に、窒素原子、酸素原子または硫黄原子を表す。ただし、A x と A y の少なくとも一方はアニオンである。

ここで、式 (3 L — 1) に存在する 2 つの環 A は互いに同一であっても異なってもよく、式 (3 L — 6) に存在する 2 つの環 D' は互いに同一でも異なってもよい。

[請求項 14] 請求項 9 — 13 のいずれか 1 項に記載の金属錯体色素を溶解してなる色素溶液。

[請求項 15] 前記金属錯体色素が有機溶媒に溶解しており、前記金属錯体色素の含有量が 0.001 — 0.1 質量％であり、水分含有量が 0.1 質量％以下である請求項 14 に記載の色素溶液。

[請求項 16] 共吸着剤を含有する請求項 14 または 15 に記載の色素溶液。

[請求項 17] 前記共吸着剤が、下記式 (C A) で表される請求項 16 に記載の色素溶液。

[化 10]

式 (C A) 中、R A1 は吸着性基を有する基を表す。R A2 は置換基
を表す。nA は 0 以上の整数を表す。
FIG. 1
INTERNATIONAL SEARCH REPORT

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

H01M4/04(2006.01) i.
C09B57/10(2006.01) i.
C09B67/44(2006.01) i.
H01L31/04

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H01M 4/00, C09B 57/10, C09B 67/44, H01L 31/04

Documentary searched other than minimum documentation to the extent that such documents are included in the fields searched

Jitsuyo Shinan Koho 1922-1996
Jitsuyo Shinan Toroku Koho 1996-2013
Kokai Jitsuyo Shinan Koho 1994-2013

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

Scopus

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2012-53983 A (FujiFilm Mil Corp.)</td>
<td>1-4, 6-12, 14-17</td>
</tr>
<tr>
<td></td>
<td>15 March 2012 (15.03.2012).</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>Siike H. Wadman et al., Cyclometalated</td>
<td>1-4, 8-12, 14</td>
</tr>
<tr>
<td></td>
<td>Organo ruthenium Complexes for Application in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dye-Sensitized Solar Cells, Or organometallics.</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>2010, Volume 29, 1569-1579</td>
<td>5-13</td>
</tr>
<tr>
<td>X</td>
<td>Jen-Fu Yin et al., Structure optimization of ruthenium photo-sensitized</td>
<td>1-4, 8-12, 14</td>
</tr>
<tr>
<td></td>
<td>Cyclometalated</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>"bright future", Coordination study, Chemical study</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Reviews, 2012.07.13, 256, 3008-3035, Availabe online 13 July 2012</td>
<td></td>
</tr>
</tbody>
</table>

* Further documents are listed in the continuation of Box C. ** See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

** later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
27 September 2013 (27.09.13)

Date of mailing of the international search report
08 October 2013 (08.10.13)

Name and mailing address of the ISA/Authorized officer
Japanese Patent Office

Facsimile No. Telephone No.
<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Anders Hagfeldt et al., Dye-Sensitized Solar Cells, Chemi cal reviews, 2010, Volume 110, 6595-6663</td>
<td>1-3, 8-11, 14, 15</td>
</tr>
<tr>
<td>A</td>
<td>Ali Sephr fard et al., Effects of ligand LUMO levels, anchoring groups and spacers in Ru(II)-based terpyridine and dipyra zinylypyridine complexe s on ads orpt ion and photo convers ion efficiency i n DSSCs, Electro chimica Acta, 2012, 09.17, Volume 87, 236-244, Avai lable onl ine 17 September 2012</td>
<td>1,2, 8-10, 14, 15</td>
</tr>
<tr>
<td>A</td>
<td>Keichi Terada et al., Electric conduct ion prop erties of self-as sem bled mono layer films of Ru complexe s with di sul fide /pho sp honate anchors in a Au- (molecu lar ensemble)- (Au nanopart icle) junc tion, Chemi stry Letters, 2009, Volume 38 No.5, 416-417</td>
<td>9-11, 14, 15</td>
</tr>
<tr>
<td>P,X</td>
<td>WO 2013/088898 Al (Fuji film Corp.), 20 June 2013 (20.06.2013), claims ; paragraphs [0131], [0174] to [0195], [0212] to [0276], [0285] to [0294]; example s (Fami ly : none)</td>
<td>1-17</td>
</tr>
<tr>
<td>E,X</td>
<td>WO 2013/137221 Al (Fuji film Corp.), 19 September 2013 (19.09.2013), claims ; paragraphs [0060] to [0065], [0076] to [0109], [0133] to [0137], [0155]; example s (Fami ly : none)</td>
<td>1-17</td>
</tr>
</tbody>
</table>
A. 発明の属する分野の分類（国際特許分類（IPC））

Int.Cl. H01M14/00 (2006. 01) i, C09B57/10 (2006. 01) i, C09B67/44 (2006. 01) i, H01L3 1/04 (2006. 01) i

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

Int.Cl. H01M14/00, C09B57/10, C09B67/44, H01L31/04

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報 1922ー 1
日本国公開実用新案公報 1971ー 1
日本国実用新案登録公報 1996ー 1
日本国登録実用新案公報 1994ー 2

C. 関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献名及び一覧の箇所</th>
<th>関連する文献の表示</th>
<th>関連する箇所の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP 2012-53983 A</td>
<td>JP 2012-53983 A</td>
<td>1-4, 6-12, 14-17</td>
</tr>
<tr>
<td>Organicometallics,</td>
<td></td>
<td>6, 7, 16, 17</td>
</tr>
<tr>
<td>Complexes</td>
<td></td>
<td>5, 13</td>
</tr>
<tr>
<td>Organoruthenium</td>
<td></td>
<td>14, 15</td>
</tr>
<tr>
<td>Solar Cells, Organometallics</td>
<td></td>
<td>6, 7, 16, 17</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>5, 13</td>
</tr>
</tbody>
</table>

C 欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

国際調査を完了した日
27. 09. 2013

国際調査報告の発送日
08. 10. 2013
<table>
<thead>
<tr>
<th>関連すると認められた文献</th>
<th>引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Jen-Fu Yin et al., Structure optimization of ruthenium photosensitizers for efficient dye-sensitized solar cells - A goal toward a “bright” future, Coordination Chemistry Reviews, 2012. 07. 13, 256, 3008-3035, Available online 13 July 2012</td>
<td>1-4, 8-12, 14, 15</td>
</tr>
<tr>
<td>Y</td>
<td>Anders Hagfeldt et al., Dye-Sensitized Solar Cells, Chemical reviews, 2010, Volume 110, 6595-6663</td>
<td>6, 7, 16, 17</td>
</tr>
<tr>
<td>A</td>
<td>Ail Sepehrifard et al., Effects of ligand LUMO levels, anchoring groups and spacers in Ru(II)-based terpyridine and dipyrazinylpyridine complexes on adsorption and photoconversion efficiency in DSSCs, Electrochimica Acta, 2012. 09. 17, Volume 87, 236-244, Available online 17 September 2012</td>
<td>6, 7, 16, 17</td>
</tr>
<tr>
<td>X</td>
<td>Kenchi Terada et al., Electric conduction properties of self-assembled monolayer films of Ru complexes with disulfide/phosphonate anchors in a Au- (molecular ensemble) - (Au nanoparticle) junction, Chemistry Letters, 2009, Volume 38 No. 5, 416-417</td>
<td>1, 2, 8-10, 14, 15</td>
</tr>
<tr>
<td>P, X</td>
<td>wo 2013/088898 Al (富士フィルム株式会社) 2013. 06. 20, 請求の範囲, [1 3 1], [0 1 7 4] - [0 1 9 5], [0 2 1 2] - [0 2 7 6], [0 2 8 5] - [0 2 9 4], 実施例 (ファミリーなし)</td>
<td>1-17</td>
</tr>
<tr>
<td>E, X</td>
<td>wo 2013/137221 A1 (富士フィルム株式会社) 2013. 09. 19, 請求の範囲, [0 6 0] - [0 0 6 5], [0 0 7 6] - [0 1 0 9], [0 1 3 3] - [0 1 3 7], [0 1 5 5], 実施例 (ファミリーなし)</td>
<td>1-17</td>
</tr>
</tbody>
</table>