3/027866 Al

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

3 April 2003 (03.04.2003) PCT WO 03/027866 Al
(51) International Patent Classification’: GOO6F 13/00 (74) Agent: WILLIAM, J., Harmon, III; Vierra Magen Mar-
cus Harmon & DeNiro, LLP, 685, Market Street, Suite 540,
(21) International Application Number: PCT/US02/30970 San Francisco, CA 94105 (US).
(81) Designated States (national): AE, AG, AL, AM, AT, AU,

(22) International Filing Date:
27 September 2002 (27.09.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/325,704
10/051,164

UsS
UsS

28 September 2001 (28.09.2001)
18 January 2002 (18.01.2002)

(71) Applicant: MARANTI NETWORKS, INC. [US/US];
3061-B Zanker Road, San Jose, CA 95134-2127 (US).

(72) Inventors: LOLAYEKAR, Santosh, C.; 655 S. Fair Oaks
Avenue, #G-208, Sunnyvale, CA 94086 (US). CHENG,
Yu-Ping; 1170 Garrett Court, San Jose, CA 95120 (US).

(84)

AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, H, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SL, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK,
TR), OAPI patent (BE, BJ, CE CG, CL, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

[Continued on next page]

(54) Title: SERVERLESS STORAGE SERVICES

FC switch

Servers

ethernet

appliance [~ 14 appliance

mgmt

stations
116 storage

devices

Ethernset
SAN

(57) Abstract: A storage switch in accordance with an embodiment of the invention is a highly scalable switch that allows the cre-
ation of a SAN that is easy to deploy and that can be centrally managed. Moreover, such a storage switch also allows the deployment
of a global infrastructure, allowing the resources of the SAN, such as storage devices (116), to essentially be positioned anywhere
on the globe. Further, such a storage switch allows a multi-protocol SAN, that includes both iSCSI or Fibre Channel, and processes
data packets at "wire speed". The switch has "intelligence" distributed to each of its linecards to classify packets into data and control
portions and to perform virtualization and protocol translation functions. The switch performs serverless storage services such as

mirroring snapshot, and replication.

w0 03/027866 A1 NI 00V 00 NS D

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

SERVERLESS STORAGE SERVICES

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to Provisional Application Serial No.
60/325,704, entitled STORAGE SWITCH FOR STORAGE AREA NETWORK,
and filed September 28, 2001, and incorporated by reference herein.

[0002] This application is also related to the following applications, all filed

concurrently herewith and all incorporated herein by reference:

STORAGE SWITCH FOR STORAGE AREA NETWORK,
Serial No. 10/051,321;

PROTOCOL TRANSLATION IN A STORAGE SYSTEM,
Serial No. 10/051,415;

PACKET CLASSIFICATION IN A STORAGE SYSTEM,
Serial No. 10/051,093;

VIRTUALIZATION IN A STORAGE SYSTEM,
Serial No. 10/051,396;

ENFORCING QUALITY OF SERVICE IN A STORAGE NETWORK,
Serial No. 10/051,339;

POOLING AND PROVISIONING STORAGE RESOURCES IN A STORAGE
NETWORK,
Serial No. 10/050,974; and

LOAD BALANCING IN A STORAGE NETWORK,
Serial No. 10/051,053.

10

15

20

25

-

FIELD OF INVENTION
[0003] The present invention relates to storage area networks (SANs).
BACKGROUND
[0004] Therapid growth in data intensive applications continues to fuel the

demand for raw data storage capacity. As companies rely more and more on e-
commerce, online transaction processing, and databases, the amount of information that
needs to be managed and stored can be massive. Asaresult, the ongoingneed to add
more storage, service more users and back-up more datahas become a daunting task.
[0005] Tomeet this growing demand for data, the concept of the Storage Area
Network (SAN) has been gaining popularity. A SAN is defined by the Storage
Networking Industry Association (SNIA) as anetwork whose primary purpose is the
transfer of data between computer systems and storage elements and among storage
elements. Unlike connecting a storage device directly to a server, e.g., with a SCSI
connection, and unlike adding a storage device to a LAN with a traditional interface such
as Ethernet (e.g., aNAS system), the SAN forms essentially an independent network
that does not tend to have the same bandwidth limitations as its direct-connect SCSIand
NAS counterparts.

[0006] More specifically, in a SAN environment, storage devices (e.g., tape
drives and RAID arrays) and servers are generally interconnected via various switches
and appliances. The connections to the switches and appliances are usually Fibre
Channel. This structure generally allows for any server on the SAN to communicate with
any storage device and vice versa. It also provides alternative paths from server to
storage device. Inother words, ifaparticular server is slow or completely unavailable,
another server on the SAN can provide access to the storage device. A SAN also
makes it possible to mirror data, making multiple copies available and thus creating more

reliability in the availability of data. When more storage is needed, additional storage

devices can be added to the SAN without the need to be connected to a specific server;

10

15

20

25

-3 -

rather, the new devices can simply be added to the storage network and can be
accessed from any point.

[0007] An example of a SAN is shown in the system 100 illustrated in the
functional block diagram of Fig. 1. As shown, there are one or more servers 102.
Three servers 102 are shown for exemplary purposes only. Servers 102 Aare connected
through an Ethernet connection to a LAN 106 and/or to a router 108 and then to a
WAN 110, such as the Internet. In addition, each server 102 is connected through a
Fibre Channel connection to each of a plurality of Fibre Channel switches 112
sometimes referred to as the “fabric” of the SAN. Two switches 112 are shown for
exemplary purposes only. Each switch 112 is in turn connected to each of aplurality of
SAN appliances 114. Two appliances 114 are shown for exemplary purposes only.
Each appliance is also coupled to each of a plurality of storage devices 116, such as tape
drives, optical drives, or RAID arrays. In addition, each switch 112 and appliance 114
is coupled to a gateway 118, which in turnis coupled to router 108, which ultimately \
connects to a Wide Area Network (WAN) 118, such as the Internet. Fig. 1 showsone
example of a possible configuration of a SAN 119, which includes switches 112,
appliances 114, storage devices 116, and gateways 118. Still other configurations are
possible. Forinstance, one appliance may be connected to fewer than all the switches.
[0008] Appliances 114 perform the storage management of the SAN. When
the appliance 114 receives data, it stores the data in amemory in the appliance. Then,
with a processor (also in the appliance), analyzes and operates on the data in order to
forward the data to the correct storage device(s). This store-and-forward process
typically slows down data access.

[0009] While the appliances do perform some switching, because there may be
alarge number of servers (many more than three), and because each appliance has few
ports (usually only two or four), switches 112 are needed to connect the many servers
to the few appliances. Nevertheless, switches 112 have little built-in intelligence and

merely forward data to a selected appliance 114.

10

15

20

25

-4-

[0010] One limitation of appliances is the fact that an appliance typically has
very few ports, e.g., only two ports. Asaresult, the bandwidth available through the
appliance can be limited. Addingportsto an appliance, although possible, is typically
very expensive. Every one or two ports are supported by an expensive CPU or server
card. So generallyto add ports, entire file cards (which perform virtualization and store-
and-forward functions) must be added td the device, which is usually very costly. Inthe

alternative, appliances are simply added to the SAN, but again, this tends to be very

© costly.

[0011] In addition, SANs, usually in the appliances 114, generally perform a
function known as “virtualization.” Virtualization occurs when space on one ormore
physical storage devices is allocated to a particular user, but the physical location of that

space remains unknown to the user. For instance, a user may access its company’s

" “engineering storage space,” ENG:, accessing and “seeing” the virtual space ENG: as

- heor she would access or “see” an attached disk drive. Nonetheless, the ENG: space

may be divided over several physical storage devices or even fragmented on a single
storage device. Thus, when a server requests a virtual device (e.g., ENG:) and block
number, the appliance must determine the device(s) that physically correlate to the virtual

device requested and direct the data accordingly.

© [0012] In general, SANSs are formed using a single protocol to interconnect the

devices. Although Fibre Channel is the most commonly used, Ethernet connections have

. also been used. Nonetheless, if both protocols are desired to be used, some kind of

transition between the two protocols must occur. In such instances, a Fibre Channel
SAN 119istypically coupled to an Ethernet SAN 122 viaabridge 121. To transition
from one protocol to the other, a packet is received by the bridge and stored in memory.

Once the packet is stored in amemory, a processor operates on the packet to remove

- the headers of one protocol and build the headers of the other protocol, thereby

constructing an entirely new packet. More specifically, referring to Fig. 2, when a
request (which may be comprised of one or more packets) is received by bridge 121,

itisreceived, for example, by a Host Bus Adapter (HBA) 202 over a Fibre Channel

10

15

20

25

-5-

connection 204. The entire request is stored in memory 206 until a processor 208 is
ready to analyze and operate on it, i.e., to rebuild the request in accordance with the
outgoing protocol. Once the request has been operated on by the processor 208, the
request is sent to the Network Interface Card (NIC) 210 and then out over the ethernet
connection212. Ofcourse, the same i)rocess could occur vice versa (ethernet to fibre
channel). Hence, the transition between protocols requires significant memory and
processor resources, which not only cause delays in transmitting data but also increase
the cost of the system in both money and real estate. Nonetheless, the only alternative
currently available is to keep the protocols isolated on distinct networks.

[0013] Gateways 118 (Fig. 1),in addition to connectinga SAN to a WAN, are
often used to connect two ormore SANs together. Gateways usually do not transition
the various protocols, but rather encapsulate the data in IP packets, as is known in the
art. Nonetheless, when multiple SANs are connected, there must be a unique address
for each connected device. However, although the IP protocol contains 32 bits for
addressing, the Fibre Channel protocol only contains 24 bits. Hence, because most
SANSs use Fibre Channel, scalability can be a problem despite the use of a gateway,
limiting use of SANs over the Internet.

[0014] Although SANs were introduced several years ago, interoperability
problems, lack of available skills, and high implementation costs remain major obstacles
to widespread use. For instance, SANs as they currently exist have high deployment
costs and high management costs. Referring again to Fig. 1, each switch, appliance, and
gateway typically come from different vendors, creating a lack of management standards
that has resulted in the proliferation of vendor-specific management tools. Asaresult,
to deploya SAN, equipment must be purchased from multiple vendors. And, as shown
inFig. 1, each switch, appliance, gateway, storage device, éerver, and router will have
its own management, shown as management stations 120. Although independent
physical management stations are shown, it is to be understood that independent
management is frequently in the form of independent, vendor-specific software ona

single computer but which software does not communicate with one another. Asa

10

15

20

25

-6-

result, there is no centralized management of the SAN and its management costs are high
given that there are usually multiple management stations that frequently require many

people to manage.

SUMMARY
[0015] A storage switch in accordance with an embodiment of the invention is
ahighly scalable switch that allows the creation of a SAN that is easy to deploy and that
can be centrallymanaged. Moreover, such a storage switch also allows the deployment
ofa global infrastructure, allowing the resources of the SAN, such as storage devices,
to essentially be positioned anywhere on the globe. Further, a storage switch in
accordance with the invention allows a multi-protocol SAN, e.g., one that includes both
1SCSI (arecently introduced protocol carried over an Ethernet connection) or Fibre
Channel, and to process any data packets at “wire speed” —that is, without introducing
anymore latency that would be introduced by a switch that merely performed switching
or routing functions — and thus a switch in accordance with the invention has a high
bandwidth. Typically to process data at wire speed, a storage switch in accordance with
an embodiment of the invention will not buffer packets, unlike that done conventionally.
Thus, compared to conventional practices, an architecture in accordance with an
embodiment of the invention allows the required time to process a packet to be minimal.
[0016] More specifically, a switch in accordance with the invention offers
virtualization and translation services at wire speed. To perform such wire-speed
processing, “intelligence” is distributed at every port of the switch linecard. Each
linecard is further able to classify a packet and thus separate data packets from control
packets. Because of the distributed intelligence, each linecard also performs
virtualization (converting a virtual address to a physical one) and protocol translation
(converting an incoming packet of a first protocol to an outgoing packet of a second
protocol) when necessary on the data packets and can do so without a user or a server
having to be aware of or involved in the necessity for the virtualization or translation.

Having distributed intelligence allows many linecards to be made that are less expensive

10

15

20

25

-7 -

than traditional CPU or server cards, allowing for further ease of scalability of the
storage switch, e.g., to accommodate more ports.

[0017] In addition, each switch is able to offer serverless storage services such
as mirroring, mirroring over a slow link, snapshot, virtual target cloning (replication), third
party copy, periodic snapshot and backup, and restore. Once the switch receives a
request for such services, it is able to perform those services without the assistance of

any other device, such as a server or management station.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] The present invention is described with respect to particular exemplary
embodiments thereof and reference is accordingly made to the drawings in which:
[0019] Fig. 1 is a generalized function block diagram of a SAN in accordance
with a conventional system;

[0020] Fig. 2 is a generalized function block diagram of a device used for
interfacing between protocols in accordance with conventional methodologies;
[0021] Fig. 3 is a generalized function block diagram of a SAN system using a
storage switch in accordance with an embodiment of the invention;

[0022] Fig. 4is a generalized function block diagram of another embodiment
of asystem using a storage switch in accordance with an embodiment of the invention;
[0023] Fig. 5 is a generalized function block diagram of yet another embodiment
of asystem using a storage switch in accordance with an embodiment of the invention;
[0024] Fig. 6 is a generalized function block diagram of a storage switch in
accordance with an embodiment of the invention;

[0025] Fig. 7 is a generalized function block diagram of a linecard used in a
storage switch in accordance with an embodiment of the invention;

[0026] Fig. 7ais a generalized block diagram of a Virtual Target Descriptor

used in a storage switch in accordance with an embodiment of the invention;

10

15

20

25

-8-

[0027] Figs. 8a-8e are generalized block diagrams of various iISCSIPDUs, as
are known in the art;

[0028] Figs. 81-8i are generalized block diagrams of Fibre Channel Protocol
(FCP) frames and payloads, as are known in the art;

[0029] Figs. 9ais a flow diagram illustrating a classification process ofiSCSI
packets in the ingress direction as the process occurs in the PACE, in accordance with
an embodiment of the invention;

[0030] Figs. 9bis a flow diagram illustrating a classification process ofiISCSI
packets in the egress direction as the process occurs in the PACE, in accordance with
an embodiment of the invention;

[0031] Figs. 10a and 10b illustrate block diagrams of TCP packets as they
enter a storage switch in accordance with the invention and how the packets are
modified for use within the storage switch;

[0032] Fig. 11 is a generalized block diagram of a Local Header used in a
storage switch in accordance with an embodiment of the invention;

[0033] Figs. 12ais aflow diagram illustrating a classification process of FCP
frames in the ingress direction as the process occurs in the PACE, in accordance with
an embodiment of the invention;

[0034] Figs. 12bis a flow diagram illustrating a classification process of FCP
frames as in the egress direction as the process occurs in the PACE, in accordance with
an embodiment of the invention;

[0035] Figs. 13ais a flow diagram illustrating a classification process in the
ingress direction as the process occurs in the PPU, in accordance with an embodiment
of the invention;

[0036] Figs. 13bis a flow diagram illustrating a classification process in the
egress direction as the process occurs in the PPU, in accordance with an embodiment

of the invention;

10

15

20

25

-9-

[0037] Fig. 14is a flow diagram illustrating a virtualization process in the ingress
direction for command packets or frames, in accordance with an embodiment of the
invention;

[0038] Fig. 15 is a flow diagram illustrating a virtualization process in the egress
direction for command packets or frames, in accordance with an embodiment ofthe
invention;

[0039] Figs. 14aand 15aillustrate block diagrams of the local header and task
control blocks (ITCB and ETCB) during a virtualization process, where Fig. 14a shows
the header and ITCB for acommand packet in the ingress direction (from the initiator
server/port) and where Fig. 15a shows a header and ETCB for a command packet in
the egress direction (from the fabric/traffic manager);

[0040] Fig. 16is a flow diagram illustrating a virtualization process in the ingress
direction for R2T/XFR_RDY packets or frames, in accordance with an embodiment of
the invention;

[0041] Fig. 171s a flow diagram illustrating a virtualization process in the egress
direction forR2T/XFR_RDY packets or frames, in accordance with an embodiment of
the invention;

[0042] Figs. 16aand 17aillustrate block diagrams of the local header and task
control blocks (ITCB and ETCB) during a virtualization process, where Fig. 16ashows
theheader and ETCB foraR2T/ XF R_RDY packet in the ingress direction (from the
target storage device/port) and where Fig. 17a shows a header and ITCB for a
R2T/XFR_RDY packet in the egress direction (from the fabric/traffic manager);

[0043] Fig. 18 is a flow diagram illustrating a virtualization process in the ingress
direction for write data packets or frames, in accordance with an embodiment of the
invention;

[0044] Fig. 19is a flow diagram illustrating a virtualization process in the egress
direction for write data packets or frames, in accordance with an embodiment of the

invention;

10

15

20

25

-10 -

[0045] Figs. 18aand 19aillustrate block diagrams of the local header and task
control blocks (ITCB and ETCB) during a virtualization process, where Fig. 18a shows
the header and ITCB for a write data packet in the ingress direction (from the intiator
server/port) and where Fig. 15a shows aheader and ETCB for a write data packet in
the egress direction (from the fabric/traffic manager);

[0046] Fig. 20is a flow diagram illustrating a virtualization process in the ingress
direction for read data packets or frames, in accordance with an embodiment of the
invention;

[0047] Fig. 21 is a flow diagram illustrating a virtualization process in the egress
direction for read data packets or frames, in accordance with an embodiment of the
invention;

[0048] Figs. 20a and 21aillustrate block diagrams of the local header and task
control blocks (ITCB and ETCB) during a virtualization process, where Fig. 20a shows
the header and ETCB for aread data packet in the ingress direction (from the target
storage device/port) and where Fig. 21a shows a header and ITCB for a read data
packet in the egress direction (from the fabric/traffic manager);

[0049] Fig. 22 is a flow diagram illustrating a virtualization process in the ingress
direction for response packets or frames, in accordance with an embodiment of the
mvention;

[0050] Fig. 23 is a flow diagram illustrating a virtualization process in the egress
direction for response packets or frames, vin accordance with an embodiment of the
invention;

[0051] Figs. 22aand 23a illustrate block diagrams of the local header and task
control blocks (ITCB and ETCB) during a virtualization process, where Fig. 22a shows
the header and ETCB for a response packet in the ingress direction (from the target
storage device/port) and where Fig. 23a shows a header and ITCB for a response
packet in the egress direction (from the fabric/traffic manager);

[0052] Fig. 24 is a flow diagram illustrating the general steps taken to perform

storage services in accordance with an embodiment of the invention;

10

15

20

25

211 -

[0053] Fig. 25 is a flow diagram illustrating the steps taken for the storage
service of mirroring over a slow link in accordance with an embodiment of the invention;
[0054] Fig. 26 is a flow diagram illustrating the steps taken for the storage
service of snapshot in accordance with an embodiment of the invention;

[0055] Fig. 27 is a flow diagram illustrating the steps taken for the storage
service of cloning in accordance with an embodiment of the invention; and
[0056] Fig. 28 is a flow diagram illustrating the steps taken for the storage

service of third party copy in accordance with an embodiment of the invention.

DETAILED DESCRIPTION
[0057] A system 300 that includes a storage switch in accordance with the
inventionisillustrated in Fig. 3. As shown, such a system is greatly simplified over
existing systems. In one embodiment, system 300 includes a plurality of servers 302.
For purposes of illustration only, three servers 302 are shown, although more or fewer
servers could be used in other embodiments. Although not shown, the servers could
alsobe coupled toaLAN. Asshown, each server 302 is connected to astorage switch
304. In other embodiments, however, each server 302 may be connected to fewer than
all of the storage switches 304 present. The connections formed between the servers
and switches can utilize any protocol, although in one embodiment the connections are
either Fibre Channel or Gigabit Ethernet (carrying packets in accordance with the iSCSI
protocol). Other embodiments may use the Infiniband protocol, defined by Intel Inc.,
or other protocols or connections. In the embodiment illustrated, each switch is in turn
connected to each of a plurality of storage devices or subsystems 306. Nonetheless, in
other embodiments, each switch may be connected to fewer than all of the storage
devices or subsystems 306. The connections formed between the storage switches and
storage devices can utilize any protocol, although in one embodiment the connections are
either Fibre Channel or Gigabit Ethernet. In some embodiments, one or more switches

304 are each coupled to a Metropolitan Area Network (MAN) or Wide Area Network

10

15

20

25

-12 -

(WAN), such as the Internet 308. The connection formed between a storage switch and
a WAN will generally use the Internet Protocol (IP) in most embodiments. Although
shown as directly connected to MAN/WAN 308, other embodiments may utilize a
router (not shown) as an intermediary between switch 304 and MAN/WAN 308. In
addition, respective management stations 310 are connected to each storage switch 304,
to each server 302, and to each storage device 306. Although management stations are
illustrated as distinct computers, it is to be understood that the sofiware to manage each
type of device could collectively be on a single computer.

[0058] Fig. 4 shows an alternative embodiment of a system in accordance with
theinvention. In such anembodiment, two SANs 402, 404 are formed, each using one
or more storage switches 304 in accordance with an embodiment of the invention. The
SANs 402 and 404 are coupled through a WAN 308, such as the Internet, by way of
switches 304. Connections 308 can be any standard or protocol, but in one
embodiment will be Packet over SONET (PoS) or 10 Gigabit Ethernet.

[0059] Fig. 5 shows still another embodiment of a system in accordance with
the invention wherein switches 304 are coupled directly to one another. In any of the
embodiments shown in Figs. 3 or 4, if more than one switch is used, those switches
could be coupled as illustrated in Fig. 5.

[0060] A storage switch in accordance with the invention enables a centralized
management of globally distributed storage devices, which can be used as shared storage
pools, instead of having a huge number of management stations distributed globally and
an army of skilled management personnel. Such a storage switch is an “intelligent”
switch, and, as can be seen by comparing Fig. 3 to Fig. 1, the functions of switch,
appliance, and gateway have effectively been united in a storage switch 304 in
accordance with an embodiment of the invention. Such a storage switch 304, in addition
to its switching function, provides the virtualization and storage services (e.g., mirroring)
that would typically be provided by appliances in conventional architectures, and it also
provides protocol translation. A storage switch in accordance with some embodiments

of the invention also performs additional functions (for instance, data security through a

10

15

20

25

-13 -

Virtual Private Network). Such additional functions include fmctions that are performed
by other devices in conventional systems, such as load balancing, which is traditionally
performed by the servers, as well as other functions not previously available in
conventional systems.

[0061] The intelligence of a storage switch in accordance with an embodiment
of the invention is distributed to every switch port. This distributed intelligence allows
for system scalability and availability.

[0062] Further, the distributed intelligence allows a switch in accordance with
an embodiment of the invention to process data at “wire speed,” meaning that a storage
switch 304 introduces no more latency to a data packet than would be introduced by
a typical network switch (such as switch 112 in Fig. 1). Thus, “wire speed” for the
switch is measured by the connection to the particular port. Accordingly, in one
embodiment having OC-48 connections, the storage switch can keep up with an OC-48
speed (2.5 bits perns). A two Kilobyte packet (with 10 bits per byte) moving at OC-
48 speed takes as little as eight microseconds coming into the switch. A oneKilobyte
packet takes as little as four microseconds. A minimum packet of 100 bytes only
elapses merely 400 ns. Nonetheless, when the term “wire-speed” processing is used
herein, it does not mean that such processing needs as few as 400 ns to process a 100-
byte packet. However, it does mean that the storage switch can handle the maximum
Ethernet packet of 1500 bytes (with ten-bit encoding, so that a byte is ten bits) at OC-
48 speed, i.e., in about 6 pus (4 psper Kilobyte or 2.5 bits per ns), in one embodiment.
In embodiments with a 1 Gb Ethernet port, where processing is generally defined as one
bit per nanosecond, “wire-speed” data for that port will be 10 us per Kilobyte,
indicating that the switch hasup to 10 psto process aKilobyte. In embodiments with
a 2 Gb Fibre Channel port, “wire speed” will be 5 pus per Kilobyte. Still other
embodiments may process data at ten Gigabit Ethernet or OC-192 speeds or faster.

[0063] Asused herein, “virtualization” essentially means the mapping of a virtual
target space subscribed to by a user to a space on one or more physical storage target

devices. The terms “virtual” and “virtual target” come from the fact that storage space

10

15

20

25

-14 -

allocated per subscription can be anywhere on one or more physical storage target
devices connecting to a storage switch 304. The physical space can be provisioned as
a “virtual target” which may include one ormore “logical units” (LUs). Each virtual
target consists of one or more LUs identified with one or more LU numbers (LUNS),
which are frequently used in the iISCSI and FC protocols. Each logical unit, and hence
each virtual target, is generally comprised of one or more extents—a contiguous slice of
storage space on a physical device. Thus, a virtual target may occupy awhole storage
device (one extent), a part of a single storage device (one or more extents), or parts of
multiple storage devices (multiple extents). The physical devices, the LUSs, the number
of extents, and their exact locations are immaterial and invisible to a subscriber user.
[0064] While the storage space may come from a number of different physical
devices, each virtual target belongs to one or more domains. Only users of the same
domain are allowed to share the virtual targets in their domain. A domain-set eases the
management of users of multiple domains. The members of a domain set can be
members of other domains as well. But a virtual target can only be in one domain in an
embodiment of the invention.

[0065] Fig. 6 illustrates a function block diagram of a storage switch 304 in
accordance with an embodiment of the invention. In one embodiment, the storage switch
304 includes a plurality of linecards 602, 604, and 606, a plurality of fabric cards 608,
and two system control cards 610, each of which will be described in further detail

below.

[0066] System Control Cards. Each ofthe two System Control Cards (SCCs)
610 connectsto every line card 602, 604, 606. In one embodiment, such connections
are formed by I?C signals, which are well known in the art, and through an Ethernet
connection with the SCC. The SCC controls power up and monitors individual
linecards, as well as the fabric cards, with the I?C connections. Using inter-card
communication over the ethernet connections, the SCC also initiates various storage

services, e.g., snapshot and replicate, to be discussed further later.

10

15

20

25

-15 -

[0067] In addition the SCC maintains a database 612 that tracks configuration
information for the storage switch as well as all virtual targets and physical devices
attached to the switch, e.g., servers and storage devices. In addition, the database
keeps information regarding usage, error and access data as well as information
regarding different domains and domain sets of virtual targets and users. Therecords
of the database are referred to herein as “objects.” Each initiator (e.g., aserver) and
target (e.g., a storage device) has a World Wide Unique Identifier (W WUI), which are
knownin the art. The database is maintained in amemory device within the SCC, which
in one embodiment is formed from flash memory, although other memory devices will
also be satisfactory.

[0068] The storage switch 304 can be reached by amanagement station (310)
through the SCC 610 using an ethernet connection. Accordingly, the SCC also includes
an additional Ethernet port for connection to amanagement station. An administrator
atthe management station can discover the addition or removal of storage devices or
virtual targets, as well as query and update virtually any object stored in the SCC
database 612.

[0069] Ofthetwo SCCs 610, one is the main operating SCC while the other
is abackup, remaining synchronized to the actions in the storage switch, but not directly
controlling them. The SCCs operate in ahigh availabilitymode wherein if one SCC fails,
the other becomes the primary controller.

[0070] Fabric Cards. In one embodiment of switch 304, there are three fabric
cards 608, although other embodiments could have more or fewer fabric cards. Each
fabric card 608 is coupled to each of the linecards 602, 604, 606 in one embodiment
and serves to connect all of the linecards together. In one embodiment, the fabric cards
608 can each handle maximum traffic when all linecards are populated. Such traffic
loads handled by each linecard are up to 160 Gbps in one embodiment although other
embodiments could handle higher or lower maximum traffic volumes. Ifone fabric card
608 fails, the two surviving cards still have enough bandwidth for the maximum possible

switch traffic: in one embodiment, each linecard generates 20 Gbps oftraffic, 10 Gbps

10

15

20

25

-16 -

ingress and 10 Gbps egress. However, under normal circumstances, all three fabric
cards are active at the same time. From each linecard, the data traffic is sent to any one
of the three fabric cards that can accommodate the data. |

[0071] Linecards. The linecards form connections to servers and to storage
devices. In one embodiment, storage switch 304 supports up to sixteen linecards
although other embodiments could support a different number. Further, in one
embodiment, three different types of linecards are utilized: Gigabit Ethernet (GigE) cards
602, Fibre Channel (FC) cards 604, and WAN cards 606. Other embodiments may
include more or fewer types of linecards. The GigE cards 602 are for Ethernet
connections, connecting in one embodiment to either iSCSI servers or iSCSI storage
devices (or other Ethernet based devices). The FC cards 604 are for Fibre Channel
connections, connecting to either Fibre Channel Protocol (FCP) servers or FCP storage
devices. The WAN cards 606 are for connecting to a MAN or WAN.

[0072] Fig. 7 illustrates a functional block diagram of a generic line card 700
used in one embodiment of a storage switch 304 in accordance with the invention. The
illustration shows those components that are common among all types of linecards, e.g.,
GigE 602, FC 604, or WAN 606. In other embodiments other types of linecards can
be utilized to connect to devices using other protocols, such as Infiniband. The
differences in the linecards are discussed subsequently.

[0073] Ports. Each line card 700 includes a plurality of ports 702. The
ports form the linecard’s connections to either servers or storage devices. Eight ports
are shown in the embodiment illustrated, but more or fewer could be used in other
embodiments. For example, in one embodiment each GigE card can support up to eight
1Gb Ethernet ports, each FC card can support up to either eight 1Gb FC ports or four
2Gb FC ports, and each WAN card can support up to four OC-48 ports or two OC-
192 ports. Thus, in one embodiment, the maximum possible connections are 128 ports
perswitch 304. The ports of each linecard are full duplex and connect to either aserver

or other client, or to a storage device or subsystem.

10

15

20

25

-17 -

[0074] In addition each port 702 has an associated memory 703. Although only
onememory device is shown connected to one port, it is to be understood that each port
may have its own memory device or the ports may all be coupled to a single memory
device. Only one memory device is shown here coupled to one port for clarity of
illustration.

[0075] Storage Processor Unit. In one embodiment, each port is

associated with a Storage Processor Unit (SPU) 701. The SPU rapidly processes the
datatraffic allowing for wire-speed operations. In one embodiment, the SPU includes
several elements: a Packet Aggregation and Classification Engine (PACE) 704, a Packet
Processing Unit (PPU) 706, an SRAM 705, and a CAM 707. Still other embodiments
may use more or fewer elements or could combine elements to obtain the same
functionality.

[0076] PACE. Eachportis coupled to aPacket Aggregation
and Classification Engine (PACE) 704. Asillustrated, the PACE 704 aggregates two
ports into a single data channel having twice the bandwidth. Forinstance, the PACE
704 aggregates two 1Gb ports into a single 2Gb data channel. The PACE classifies
eachreceived packet into a control packet or a data packet, as will be discussed further
below. Control packets are sent to the CPU 714 for processing, viabridge 716. Data
packets are sent to a Packet Processing Unit (PPU) 706, discussed below, with alocal
header added. In one embodiment the local header is sixteen bytes resulting in adata
“cell” or “local packet” of 64 bytes (16 bytes of header and 48 bytes of payload). The
local header is used to carry information and used internally by switch 204. The local
header is removed before the packet leaves the switch. Accordingly, as used herein a
“cell” or a “local packet™ is a transport unit that is used locally in the switch that includes
a local header and the original packet (in some embodiments, the original TCP/IP
headers are also stripped from the original packet). Nonetheless, not all embodiments
of the invention will create alocal header or have “local packets™ (cells) that differ from
external packets. Accordingly, the term “packet” as used herein can refer to eithér

“local” or “external” packets.

10

15

20

25

-18 -

[0077] The classification function helps to enable a switch to perform storage
virtualization and protocol translation functions at wire speed without using a store-and-
forward model of conventional systems. Each PACE has a dedicated path to aPPU
706 while all four PACEs inthe illustrated embodiment share a path to the CPU 714,
which in one embodiment is a 104MHz/32 (3.2 Gbps) bit data path.

[0078] Packet Processing Unit (PPU). The PPU 706 performs

virtualization and protocol translation on-the-fly, meaning, the cells (local packets) are
not buffered for such processing. It also implements switch-based storage service
functions, described later. The PPU is capable, in one embodiment, of moving cells at
OC-48 speed or 2.5 Gbps for both the ingress and egress directions, while in other
embodiments it can move cells at OC-192 speeds or 10 Gbps. The PPU in one
embodiment includes an ingress PPU 706, and an egress PPU 706,, which both run
concurrently. The ingress PPU 706, receives incoming data from PACE 704 and sends
datato the Traffic Manager 708 while the egress PPU 706, receives data from Traffic
Manager 708 and sends data to a PACE 704.

[0079] A large number of storage connections (e.g., server to virtual target) can
be established concurrently at each port. Nonetheless, each connection is unique to a
virtual target and can be uniquely identified by a TCP Control Block Index (in the case
ofiSCSI connections) and aport number. When a connection is established, the CPU
714 of the linecard 700 informs the PPU 706 of an active virtual target by sending it a
Virtual Target Descriptor (VTD) for the connection. The VID includes all relevant
information regarding the connection and virtual target that the PPU will need to properly
operate on the data, e.g., perform virtualization, translation, and various storage services.
The VTD is derived from an object in the SCC database and usually contains a subset
of information that is stored in the associated object in the SCC database. Anexample
of the fields in a VTD in one embodiment of the invention are shown in Fig. 7a.
Nonetheless, other embodiments of the invention may have a VID with more, fewer, or

different fields.

10

15

20

25

-19 -

[0080] To store the VTDs and have quick access to them, in one embodiment
the PPUs 706 are connected to an SRAM 705 and CAM 707. SRAM 705 stores a
VTD database. A listingof VID identifiers (VTD IDs), or addresses, is also maintained
in the PPU CAM 707 for quick accessing of the VIDs. The VID IDs are indexed
(mapped) using a TCP Control Block Index and a LUN. In addition, for IP routing
services, the CAM 707 contains a route table, which is updated by the CPU when
routes are added or removed.

[0081] Note that although only one CAM and an SRAM are illustrated as
connected to one PPU, this is to maintain clarity of the illustration. In various
embodiments, each PPU will be connected with its own CAM and SRAM device, or
the PPUs will all be connected to a single CAM and/or SRAM.

[0082] For each outstanding request to the PPU (e.g., reads or writes), atask
control block is established in the PPU SRAM 707 to track the status of the request.
There are ingress task control blocks (ITCBs) tracking the status of requests received
by the storage switch on the ingress PPU and egress task control blocks (ETCBs)
tracking the status of requests sent out by the storage switch on the egress PPU. For
each virtual target connection, there can be a large number of concurrent requests, and
thus many task control blocks. Task control blocks are allocated as arequest begins
and freed as the request completes.

[0083] Traffic Manager. There are two traffic managers (TMs) 708 on
each linecard 700: one TM for ingress traffic and one TM for egress traffic. The ingress
TM receives packets from all four SPUs, in the form of multiple 64-byte data cells, in
one embodiment. In such an embodiment, each data cell has 16 bytes oflocal header
and 48 bytes of payload. The header contains a FlowID that tells the TM the destination
port of the cell. In some embodiments, the SPU may also attach a TM header to the cell
prior to forwarding the cell to the TM. Either the TM or the SPU can also subdivide the

cell into smaller cells for transmission through the fabric cards in some embodiments.

10

15

20

25

-20 -

[0084] The ingress TM sends data cells to the fabric cards via a 128-bit 104
Mhz interface 710 in one embodiment. The egress TM receives the data cells from the
fabric cards and delivers them to the four SPUs.

[0085] Both ingress and egress TMs have a large buffer 712 to queue cells
(local packets) for delivery. Both buffers 712 for the ingress and egress TMs are
64MB, which can queue a large number of packets. The SPUs can normally send cells
to the ingress TM quickly as the outgoing flow of the fabric cards is as fast as the
incoming flow. Hence, the cells are moving to the egress TM quickly. On the other
hand, an egress TM may be backed up because the outgoing port isjammed or being
fed by multiple ingress linecards. In such a case, a flag is set in the header of the
outgoing cells to inform the egress SPU to take actions quickly. The egress TM sends
arequest to the ingress SPU to activate a flow control function. Itis worth noting that,
unlike communications traffic over the Internet, for storage traffic dropping a packet is
unacceptable. Therefore, as soon as the amount of cells in the buffer exceeds a specified
threshold, the SPU must activate its flow control function to slow down the incoming
traffic to avoid buffer overflow.

[0086] Fabric Connection. The fabric connection 710 converts the

256-bit parallel signals of the TM (128 bits ingress and 128 bits egress, respectively),
into a 16-bit serial interface (8-bit ingress and 8-bit egress) to the backplane at 160
Gbps. Thus the backplane is running at one sixteenth of the pins but sixteen times faster
inspeed. This conversion enables the construction of ahigh availability backplane at
areasonable cost without thousands of connecting pins and wires. Further, because
there are three fabric cards in one embodiment, there are three high-speed connectors
on each linecard in one embodiment, wherein the connectors each respectively connect
the 8-bit signals to a respective one of the three fabric cards. Of course, other
embodiments may not require three fabric connections 710.

[0087] CPU. Onevery linecard there is a processor (CPU) 714, which
in one embodiment is a PowerPC 750 Cxe. In one embodiment, CPU 714 connects

to each PACE with a 3.2 Gb bus, via a bus controller 715 and a bridge 716. In

10

15

20

25

221 -

addition, CPU 714 also connects to each PPU, CAM and TM, however, in some
embodiments this connection is slower at 40 Mbps. Both the 3.2 Gb and 40 Mb paths
allow the CPU to communicate with most devices in the linecard as well astoread and
write the internal registers of every device on the linecard, download microcode, and
send and receive control packets.

[0088] The CPU on each linecard is responsible to initialize every chip at power
up and to download microcode to the SPUs and each port wherever the microcode is
needed. Once the linecard is in running state, the CPU processes the control traffic. For
information needed to establish a virtual target connection, the CPU requests the
information from the SCC, which in turn gets the information from an appropriate object
in the SCC database.

[0089] Distinction in Linecards - Ports. The ports in each type of linecard, e.g.,

GigE, FC, or WAN are distinct as each linecard only supports one type of port in one
embodiment. Each type of port for one embodiment is described below. Of course
other linecard ports could be designed to support other protocols, such as Infiniband in
other embodiments.

[0090] GigE Port. A gigabit Ethernet port connects to iSCSI servers and
storage devices. While the GigE port carries all kinds of Ethemnet traffic, the only
network traffic generally to be processed by a storage switch 304 at wire speed in
accordance with one embodiment of the invention is an iSCSI Packet Data Unit (PDU)
inside a TCP/IP packet. Nonetheless, in other embodiments packets in accordance with
other protocols (like Network File System (NFS)) carried over Ethernet connections
may be received at the GigE Port and processed by the SPU and/or CPU.

[0091] The GigE port receives and transmits TCP/IP segments for virtual targets
oriSCSIdevices. To establish a TCP connection for a virtual target, both the linecard
CPU 714 and the SCC 610 are involved. When a TCP packet is received, and after
initial handshaking is performed, a TCP control block is created and stored in the GigE
portmemory 703. A VID must also be retrieved from an object of the SCC database
and stored in the CPU SDRAM 705 for the purpose of authenticating the connection

10

15

20

25

-22-

and understanding the configuration of the virtual target. The TCP Control Block
identifies a particular TCP session or iSCSI connection to which the packet belongs, and
contains in one embodiment, TCP segment numbers, states, window size, and potentially
othet information about the connection. In addition, the TCP Control Block isidentified
by an index, referred to herein as the “TCP Control Block Index.” A VTD for the
connection must be created and stored in the SPU SRAM 705. The CPU creates the
VTD by retrieving the VTD information stored in its SDRAM and originally obtained
from the SCC database. A VTD ID is established in a list of VID IDs in the SPU
CAM 707 for quick reference to the VID. The VTD ID is affiliated with and indexed
by the TCP Control Block Index.

[0092] When the port receives iSCSI PDUs, it serves essentially as a
termination point for the connection, but then the switch initiates anew connection with
thetarget. Afterreceiving apacketon the ingress side, the port delivers the iSCSIPDU
to the PACE with a TCP Control Block Index, identifying a specific TCP connection.
For a non-TCP packet or a TCP packet not containing an iSCSI PDU, the port
receives and transmits the packet without acting as a termination point for the
connection. Typically, the port 702 communicates with the PACE 704 that an iSCSI
packetis received or sent by using a TCP Control Block Index. When the TCP Control
Block Index of a packet is —1, it identifies a non-iSCSI packet.

[0093] FCPort. An FC port connects to servers and FC storage devices. The
FC port appears as a fibre channel storage subsystem to the connecting servers,
meaning, it presents a large pool of virtual target devices that allow the initiators (e.g.,
servers) to perform a Process Login (PLOGI or PRLI), as are understood in the art, to
establish a connection. The FC portaccepts the GID extended link services (ELSs) and
returns a list of target devices available for access by that initiator (e.g., server).
[0094] ‘When connecting to fibre channel storage devices, the port appears as
a fibre channel F-port, meaning, it accepts aFabric Login, as is known in the art, from
the storage devices and provides name service functions by accepting and processing

the GID requests.

10

15

20

25

-23 -

[0095] Attheport initialization, the linecard CPU must go through both sending
Fabric Logins, Process Logins, and GIDs as well as receive the same. The SCC
supports an application to convert FC ELS’s to iSNS requests and responses. As a
result, the same database in the SCC keeps track both the FC initiators (e.g., servers)
and targets (e.g., storage devices) as if they were iSCSI initiators and targets.
[0096] When establishing an FC connection, unlike for a GigE port, an FC port
does not need to create TCP control blocks or their equivalent; all the necessary
information is available from the FC header. But,a VTD (indexedbyaD ID)will still
need to be established in a manner similar to that described for the GigE port.
[0097] An FC port can be configured for 1Gb or 2Gb. As a 1Gb port, two
ports are connected to a single PACE as illustrated in Fig. 7; but in an embodiment
where it is configured as a 2Gb port, port traffic and traffic that can be accommodated
by the SPU should match to avoid congestion at the SPU. The port connects to the
PACE with a POS/PHY interface in one embodiment. Each port can be configured
separately, i.e. one PACE may have two 1 Gb ports and another PACE has asingle 2
Gb port.

[0098] WAN Ports. Inembodiments that include a WAN linecard, the WAN
linecard supports OC-48 and OC-192 connections in one embodiment. Accordingly,
there are two types of WAN ports: OC-48 and OC-192. For OC-48, there is one port
for each SPU. Thereisno aggregation function in the PACE, although there still is the
classification function. A WAN port connects to SONET and works like a GigE port
as it transmits and receives network packets such as ICMP, RIP, BPG, IP and TCP.
Unlike the GigE port, a WAN port in one embodiment supports network security with
VPN and IPSec that requires additional hardware components.

[0099] Since OC-192 results in a faster wire speed, a faster SPU will be
required in embodiments that support OC-192.

10

15

20

25

-4 -

Switch-Based Storage Operations

[0100] A storage switch in accordance with an embodiment of the invention
performs various switch-based storage operations, including classification of packets,
virtualization, and translation. These services are generally performed by the SPU. In
one embodiment, every port has an SPU, enabling the processing of data traffic as fast
as possible while passing control traffic to the CPU, which has the resources to handle
the control traffic. AsshowninFig. 7, four SPUs share a single CPU supporting eight
ports. Thus, minimum resources and overhead are used for data traffic, allowing a large
number of low cost ports each with the intelligence to process storage traffic at wire
speed. The SPU functions will be described in detail below.

[0101] Before discussing the SPU functions, however, a brief overview of
iSCSI PDU’s (Packet Data Units) and FC IUs (Information Units) will be useful.
Nonetheless, a general knowledge of the iISCSI and FC protocols is assumed. For
more information oniSCSIrefer to “draft-ietf-ips-iISCSI-07.txt,” an Internet Draft and
work in progress by the Internet Engineering Task Force (IETF), July 20, 2001,
incorporated by reference herein. For more information about Fibre Channel (FC) refer
to “Information Systems - dpANS Fibre Channel Protocol for SCSL” Rev. 012,
December 4, 1995 (draft proposed American National Standard), incorporated by
reference herein.

[0102] A brief description of relevant PDUs and IUs follows below.

[0103] iSCSI Command PDU. AniSCSICommand PDU is shown in Fig. 8a.
As shown itincludes 48 bytes having the following fields. In the first byte (Byte 0), the
X bitis used as a Retry/Restart indicator for PDUs from initiator to target. The Ibit is
used as an immediate delivery marker. The Opcode 0x01 indicates that the type of
iSCSIPDU is a command. Byte 1 has a number of flags, F (final), R (read), and W
(write). Byte 1 also has a task attribute field ATTR, which is usually 3 bits. CRN in Byte
3 isaSCSIcommand reference number. Total AHSLength represents the total length

of any additional optional header segments (not shown) in 4-byte words.

10

15

20

25

-25-

DataSegmentLength indicates the length of the payload. LUN specifies a logical unit
number. The Initiator Task Tag identifies a task tag assigned by the initiator (e.g., a
server) to identify the task. Expected Data Transfer Length states the number of bytes
of data to be transferred to or from the initiator for the operation. CmdSN is a command
sequence number. ExpStatSN is an expected status sequence number and ExpDataSN
is an expected data sequence number. The Command Descriptor block (CDB) is

generally 16 bytes and embodies the SCSI command itself.

[0104] iSCSIR2T PDU. AniSCSIR2T PDU is shown in Fig. 8b. In byte 0,

0x31 identifies the packet as an R2T packet. The Initiator Task Tag is the same as for
the Command PDU. The Target Transfer Tagis assigned by the target (e.g., a storage
device) and enables identification of data packets. The StatSN field contains a status
sequence number. ExpCmdSN identifies the next expected CmdSN from the initiator
and MaxCmdSN identifies the maximum CmdSN acceptable from the initiator. R2ZTSN
identifies the R2T PDU number. Desired Data Transfer Length specifies how manybytes
the target wants the initiator to send (the target may request the data in several chunks).
Thetarget, therefore, also specifies a Buffer Offset that indicates the point at which the

data transfer should begin.

[0105] iSCSI Write and Read Data PDUs. An iSCSI Write Data PDU is
shown in Fig. 8c. AniSCSIRead Data PDU is shown in Fig. 8d. In byte 0, 0x05

identifies the packet as a write packet and 0x25 identifies the packet as aread packet.
Most of the fields in these PDUSs are the same as for those PDUs described above. In
addition, the DataSN identifies a data sequence number and Residual Count identifies
how many bytes were not transferred out of those expected to be transferred, for

instance if the initiator's Expected Data Transfer Length was too small.

[0106] iSCSTResponse PDU. AniSCSIResponse PDUis shown in Fig. 8e.

In Byte 0, 0x21 identifies the packet as a response packet. The Status field is used to

10

15

20

25

-26 -

report the SCSI status of the command. The response field contains aniSCSIservice
response code that identifies that the command is completed or that there has been an
error or failure. Basic Residual Count identifies how many bytes were not transferred out
ofthose expected to be transferred, for instance if the initiator's Expected Data Transfer
Length was too small. Bidi_Read Residual Count indicates how many bytes were not
transferred to the initiator out of those expected to be transferred. Other fields are the

same as those discussed previously for other PDUs.

[0107] FCP Frame Header. Each FCP Information Unit (IU) uses the Frame

Header shown in Fig. 8f and which will be followed by a payload, described below.
The R_CTL field identifies the frame as part of an FC operation and identifies the
information category. D_ID identifies the destination of the frame. S_ID identifies the
source of the frame. TYPE is generally set to 0x08 for all frames of SCSI FCP
sequences. F_CTL manages the beginning and normal or abnormal termination of
sequences and exchanges. SEQ _ID identifies each sequence between a particular
exchange originator and exchange responder with a unique value. DF_CTL indicates any
optional headers that may be present. SEQ_CNT indicates the frame order within the
sequence. The OX_ID field is the originator (initiator) identification of the exchange. The
RX ID field is the responder (target) identification of the exchange. The RLTV_OFF
field indicates the relative displacement of the first byte of each frame's payload with

reference to the base address of the information category.

[0108] FCP_CMND Payload. The payload for aFCP command IU is shown
in Fig. 8g. FCP_LUN is a logical unit number. FCP_CNTL is a control field that

contains a number of control flags and bits. FCP_CDB contains the actual SCSICDB
to be interpreted by the addressed logical unit. FCP_DL contains a count of the greatest

number of data bytes expected to be transferred to or from the target.

10

15

20

25

-27 -

[0109] FCP XFR RDY Payload. The payload for an FCP XFR_RDY IUis
showninFig. 8h. The DATA RO field indicates the contents of the RLTV_OFF field
for the first data byte of thenext FCP_ DATATU. The BURST LEN field indicates the

amount of buffer space prepared for the next FCP_ DATA IU and requests the transfer
of an IU of that exact length.

[0110] FCPDATAIU. Thepayload for a data IU is the actual data transferred.

[0111] FCP_RSP_IU. The payload for an FCP response IU is shown in Fig.
8i. TheFCP_STATUS fieldis set to O upon the successful completion of a command
task. Otherwise it indicates various status conditions. The FCP_RESID field contains
a count of the number of residual data bytes which were not transferred in the
FCP_DATAIU for this SCSIcommand. FCP SNS_LEN specifies the number of bytes
inthe FCP_SNS_INFO field. FCP_RSP_LEN specifies the number of bytes in the

'FCP_RSP_INFO field. The FCP_RSP_INFO field contains mformation describing any

protocol failures detected. The FCP_SNS_INFO field contains any sense data present.
[0112] The details of each iISCSI PDU and FC IU have been only generally
described. Further details regarding iSCSIPDUs, FC IUs, and their respective fields

can be found in the iSCSI and FC documents referenced above.

Classification for Storage Switch

[0113] Aspackets or frames (generically referred to herein as “packets”) arrive
at the storage switch they are separated at each port into data and control traffic. Data
traffic is routed to the PPU for wire-speed virtualization and translation, while control
traffic such as connection requests or storage management requests are routed to the
CPU. This separation is referred to herein as “packet classification” or just
“classification” and is generallyinitiated in the PACE of the SPU. Accordingly, unlike
the existing art, which forwards all packets to the CPU for processing, a system in

accordance with the invention recognizes the packet contents, so that data traffic canbe

10

15

20

25

-28 -

processed separately and faster, aiding in enabling wire-speed processing. GigE packets
and FC frames are handled slightly differently, as described below.

[0114] For packets arriving at a GigE port in the ingress direction (packets
arriving at the switch), the following steps will be described with reference to Fig. 9a.
A GigE port will receive a packet, which in one embodiment is either an IP packet or
an 1SCSI packet, step 902. Once the packet is received, the PACE determines if a
virtual target access is recognized by whether it receives from the port a valid TCP
Control Block Index with the packet (e.g., an index thatisnot -1), step 904. Ifthere
is avalid TCP Control Block Index, the PACE next checks the flags of the packet’s
TCP header, step 906. Ifthe SYN, FIN, and RST flags ofthe TCP header are set, the
packet is forwarded to the CPU, step 916, as the CPU would be responsible to
establish and terminate a TCP session. Once aniSCSITCP session is established, for
managing the TCP session, the GigE port will receive a valid TCP control block from
the CPU. Butifthe flags are not set, then in one embodiment the PACE will remove the
TCP, IP, and MAC headers, step 908, leaving the iSCSIheader, and then add alocal
header, step 910. Other embodiments, however, may leave the TCP, IP and MAC
headers, and simply add alocal header. Oncethe local header is added, the packet is
sent to the PPU, step 912.

[0115] Referring additionally to Fig. 10a, if step 910 is performed, the received
TCP packet 1002 would be converted to a local packet 1004, having the IP, TCP, and
MAC headers 1006, 1008, 1009 removed (in one embodiment) and a local header
1010 added. In some cases, however, the payload for an iSCSI packet may be split
over two TCP/IP packets. Thus, referring to Fig. 10b, sometimes a received TCP
packet 1012 includes a second portion 1014 of a payload, where the first part of the
payload was sent in aprevious packet. The packet containing the second portion ofthe
payload may additionally contain a new independent payload 1016. The received
packet 1012 would be divided into two local packets, 1018 and 1020. Local packet
1018 includes alocal header 1022 and the second portion of the payload 1024 from a

10

15

20

25

-29 -

previous packet, butnot aniSCSI header. Local packet 1020 includes the local header
1026, the iSCSI header 1028, and the new payload 1030.

[0116] An example local header 1100 used in one embodiment is shown in Fig.
11. Thelocal header 1100 includes the following fields in one embodiment. AVTDID
field is used to identify a VTD for a particular connection. A FlowID specifies the
destination port for a packet. A TCP Control Block Index specifies a TCP control
block for aparticular connection (ifa TCP connection). The Type field specifies the
packet classification, e.g., data or control. The Size field indicates the packet size. The
Task Index is used to track and direct the packet within the switch as well as to locate
stored information related to the packet for the particular task. Thelocal header further
includes some hardware identifiers such as source identifiers (e.g., identifying a source
port, PACE, linecard, and/or CPU) and destination identifiers (e.g., identifying a
distinction Port, PACE linecard, and/or CPU).

[0117] The local header is used by various devices (e.g., PACE, PPU)
throughout the switch. Accordingly, in some instances not all fields of the local header
will be fully populated and in some instances the field contents may be changed or
updated.

[0118] Referring again to Fig: 9a, in the event that there is no valid TCP Control
Block Index, step 904, then it is determined if the packet is an IP packet, step 914..If
the packet is not an IP packet, it is forwarded to the CPU, step 916. Ifthe packet is
an IP packet, then the PACE checks the destination IP address, step 918. If the IP
address matches that of the port of the storage switch, the packet is sent to the CPU,
step 916, for processing. Ifthe IP address does not match that of the port of the storage
switch, then it is routing traffic and is forwarded to the PPU, step 912.

[0119] Referring to Fig. 9b, when a packet destined for a GigE portisreceived
in the egress direction by the PACE from an PPU or CPU, step 950, the PACE
removes the local header, step 952. Ifthe packet is for a TCP session, step 954, the
PACE sets a control flag inits interface with the port to so inform the GigE port, step
956. If the packet is for a TCP session, the PACE passes the packet and the TCP

10

15

20

25

-30 -

Control Block Index to the port using interface control signals, step 958. Ifthereisno
TCP session, the packet is simply passed to the port, step 960.

[0120] Fig. 12a illustrates the steps that occur at the PACE in classifying
packets that arrive from an FC port. Unlike for a GigE port, the PACE for an FC port
does not have to deal with a TCP Control Block Index. Instead, upon receiving a
packet at an FC port, step 1202, the S_ID field of the FCP frame header can be
consulted to determine if the frame belongs to an open FC connection, however, this
step is performed after the packet is passed to the PPU. Thus, the PACE only need
determine if the frame is an FCP frame, step 1204, which can be determined by
consultingtheR CTL and TYPE fields of the frame header. A localheader 1100 (Fig.
11)is added, step 1206, although the FCP frame header is not removed at this point as
the data in the header will be useful to the PPU later. The local packet is then passed
to the PPU, step 1208. If the frame is not an FCP frame, it is passed to the CPU, step
1210.

[0121] Referring to Fig. 12b, when a packet destined for an FC portisreceived
in the egress direction by the PACE from an PPU or CPU, step 1250, the PACE simply
removes the local header, step 1252, before passing the frame to the FC port, step
1254. The local header will indicate to the PACE which port (of the two ports the
PACE is connected to) the packet is destined for.

[0122] For packets received at either a GigE or FC port and that are passed
to the PPU, the PPU further separates control traffic in one embodiment. Referring to
Fig. 13a, when the PPU receives a packet from the PACE, step 1302, the PPU
determines if it is an IP or TCP packet, step 1304. Ifthe packet is an IP packet, the
PPU searches its CAM to obtain the FlowID of the packet from its route table, step
1306. Ifthe search fails, the packet has an unknown destination IP address, and it is
passed to the CPU, step 1308, which in turn sends an ICMP packet back to the source
IP address step 1310. Ifthe searchreturns a FlowID, then the packet is forwarded to
the Traffic Manager, step 1311.

10

15

20

25

-31 -

[0123] When the packet received is a TCP packet, step 1304, the PPU
searches its CAM using the TCP Control Block Index, which identifies the TCP session,
together with the LUN from the iSCSI header, which identifies the virtual target, to get
a virtual target descriptor ID (VTD ID), step 1312. The VTID ID’s are essentially
addresses or pointers to the VI Ds stored in the PPU SRAM. The PPU usesthe VID
ID to obtain the address of the VID, step 1312, so a search of VID ID’s allows the
ability to quickly locate a VID. Ifthe VTD cannot be obtained, then the iISCSI session
has not yet been established, and the packet is sent to the CPU, step 1314. Butifthe
VTDID is obtained in step 1312, the PPU determines if the packet contains an iISCSI
PDU, step 1315. Ifthe packet does not contain an iSCSIPDU, it is forwarded to the
CPU, step 1314. Butifitdoesinclude aniSCSIPDU, the PPU determines if the PDU
is a data moving PDU (e.g., read or write command, R2T, write data, read data,
response), step 1316. Ifthe PDU isnot adata moving PDU, then the packet is passed
to the CPU, step 1314. Butifthe PDUisadatamoving PDU, then the PPU performs
further processing on the packet, step 1318, e.g., virtualization and translation, as will
be described later.

[0124] When the PPU receives an FCP frame with an FCP command IU in the
ingress direction, the PPU performs similar steps to those described in Fig. 13a, steps
1302, 1312-1318, except thatthe CAM searchinstep 1312 uses the S_ID address and
the LUN from the FCP frame to find the VTD ID.

[0125] In the egress direction, shown in Fig. 13b, after receiving a packet from
the traffic manager, step 1350, the PPU checks the Type field of the local header, step
1352. Ifthe field indicates that the packet is an IP packet or a packet destined for the
CPU, then the PPU sends the packet to the PACE, step 1354. Otherwise, the PPU
performs further processing on the packet, step 1356, e.g., virtualization and translation,
as will be described later.

[0126] As described above, the CPU will be passed packets from the SPU in

several situations. These situations include:

10

15

20

25

-32-

A non-TCP packet having the storage switch as its destination. Such
a packet could be an ICMP, IP, RIP, BGP, or ARP packet, as are
understood in the art. The CPU performs the inter-switch
communication and IP routing function. The packet may also be SLP
or iSNS requests that will be forwarded to the SCC.

An TP packet without a CAM match to a proper routing destination.
While this situation will not frequently occur, ifit does, the CPU returns
an ICMP packet to the source IP address.

A non-iSCSITCP packet. Such a packet would generally be for the
CPU to establish or terminate a TCP session for iSCSI and will
typically be packets with SYN, FIN, or RST flags set.

A non-FCP FC frame. Such frames are FLOGI, PLOGI, and other
FCP requests forname services. Similar to 1ISCSITCP session, these
frames allow the CPU to recognize and to communicate with the FC
devices. In one embodiment, the CPU needs to communicate with the
SCC to complete the services.

AniSCSIPDU thatisnot a SCSIcommand, response, or data. Such
apacket may be a ping, login, logout, or task management. Additional
iSCSI communication is generally required before a full session is
established. The CPU will need information from the SCC database to
complete the login.

An iSCSI command PDU with a SCSI command that is not
Read/Write/Verify. These commands are iISCSI control commands to
be processed by the CPU where the virtual target behavior is
implemented.

An FCP frame with a SCSI command that is not Read/Write/Verify.
These commands are FCP control commands to be processed by the

CPU where the virtual target behavior is implemented.

10

15

20

25

-33-

Virtualization

[0127] After the packet is classified, as described above, the PPU performs
wire-speed virtualization and does so without data buffering in one embodiment. For
each packet received, the PPU determines the type of packet (e.g., command,
R2T/XFR_RDY, Write Data, Read Data, Response, Task Management/Abort) and
then performs either an ingress (where the packet enters the switch) or an egress (where
the packet leaves the switch) algorithm to translate the virtual target to a physical target
or vice versa. Thus, the virtualization function is distributed amongst ingress and egress
ports. To further enable wire-speed processing, virtual descriptors are used in
conjunction witha CAM, to map the request location to the access location. In addition,
for each packet there maybe special considerations. Forinstance, the virtual targetto
which the packet is destined may be spaced over several noncontiguous extents, may
be mirrored, or both. (Mirroring is discussed in the “Storage Services” section of this
document.) The ingress and egress process for each packet type is described below.
However, generally, the ingress process for each packet validates the virtual target,
determines the egress port to send the packet to, and leaves trace tags so responsive
packets can be tracked. The egress process generally continues to maintain trace tags
and makes adjustments to the block addresses to translate from the virtual world to the
physical one.

Command Packet — Ingress

[0128] Toinitiate atransfer task to or from the virtual target, a SCSI command
is always sent by an iSCSI or FC initiator in an iSCSIPDU or FCP IU, respectively.
Referring to Fig. 14 and 14a, when such a packet is received at the PPU (after
classification), step 1402, the PPU CAM is next checked to determine ifa valid VTD
ID exists, using the TCP Control Block Index and the logical unit number (LUN), in the
case of an iSCSlinitiator, orthe S_ID and the LUN, in the case of an FC initiator, step
1404. The LUNs in each case are found in the respective iSCSIPDU or FCP IU. If
no valid VID ID is found, then a response packet is sent back to the initiator, step

1406. Ifavalid VTD is found, then a check is made for invalid parameters, step 1408.

10 -

15

20 .

25

-34 -

Such checks may include checking to determine if the number of outstanding commands
for the virtual target has exceeded a maximum allowable number or if the blocks
requested to be accessed are in an allowable range. Ifinvalid parameters exists, a
response packet is sent back to the iSCSI or FC initiator, step 1406.

[0129] Ifall parameters checked are valid, then a Task Index is allocated along

‘with an Ingress Task Control Block (ITCB), step 1410 and shown in Fig. 14a. The

Task Index points to or identifies the ITCB. The ITCB stores the FlowID (obtained
from the VID), the VID ID, CmdSN (from the iISCSI packet itself), as well as the
initiator_task tagsentin theiSCSIPDU orthe OX_ID in the FCP frame header. The l
ITCB is stored in the PPU SRAM. Of course there may be many commands in

progress atany given time, so the PPU may store anumber of ITCBs at any particular

time. Each ITCB will be referenced by its respective Task Index.

[0130] The VTD tracks the number of outstanding commands to a particular
virtual target, so when a new ITCB is established, it must increment the number of
outstanding commands, step 1412. In some embodiments, VTDs establish amaximum
number of commands that may be outstanding to any one particular virtual target. The
FlowID, the VID ID, and the Task Index are all copied into the local header, step
1414. TheFlowID tells the traffic manager the destination linecards and ports. Later,
the Task Index will be returned by the egress port to identify a particular task of a
packet. Finally, the packet is sent to the traffic manager and then the routing fabric, so
that it ultimately reaches an egress PPU, step 1416.

[0131] When a virtual target is composed of multiple extents, then there will be
multiple FlowIDs identified in the VID, one for each extent. The PPU checks the block
address for the packet and then selects the correct FlowID. For example, if a virtual
target has two 1 Gb extents, and the block address for the command is in the second
extent, then the PPU selects the FlowID for the second extent. In other words, the
FlowID determines the destination/egress port. Ifaread command crosses an extent
boundary, meaning that the command specifies a starting block address in a first extent

and an ending block address in a second extent, then after reading the appropriate data

10

15

20

25

-35-

from the first extent, the PPU repeats the command to the second extent to read the
remaining blocks. For a write command that crosses an extent boundary, the PPU
duplicates the command to both extents and manages the order of the write data. When
aread command crosses an extent boundary, there will be two read commands to two
extents. The second read command is sent only after completing the first to ensure the
data are returned sequentially to the initiator.

[0132] Note that in reference to Fig. 14a, not all fields in the local header are

necessarily illustrated.

Command Packet — Egress
[0133] Referring to Figs. 15 and 15a, after the command PDU or IU has

passed through the switch fabric, it will arrive at an PPU, destined for an egress port,
step 1502. The PPU then attempts to identify the physical device(s) that the packet is
destined for, step 1504. To do so, the VID ID from the local'header is used to search
the PPU CAM for aPTD ID (Physical Target Descriptor Identifier): The VID ID is
affiliated with and indexes a particular PTD ID associated with the particular egress
PPU. PTDs are stored in the PPU SRAM, like VTDs, and also contain information
similar to that found ina VTD. Ifthe search isunsuccessful, itis assumed that thisisa
command packet sent directly by the CPU and no additional processing is required by
the PPU, causing the PPU to pass the packet to the proper egress port based on the
FlowID in the local header. Ifthe search is successful, the PTD ID will identify the
physical target (including extent) to which the virtual target is mapped and which is in
communication with the particular egress linecard currently processing the packet.
[0134] The PPU next allocates a Task Index together with an egress task
control block (ETCB), step 1506, and shownin Fig. 15a. In an embodiment, the Task
Index used for egress is the same as that used for ingress. The Task Index also identifies
the ETCB. In addition, the ETCB also stores any other control information necessary
for the command, including CmdSN of an iISCSIPDU or an exchange sequence for an

FCP IU.

10

15

20

25

-36 -

[0135] Next, using the contents of the PTD, the PPU converts the SCSIblock
address from a virtual target to the block address of a physical device, step 1508.
Adding the block address of the virtual target to the beginning block offset of the extent
can provide this conversion. For instance, if the virtual target block sought to be
accessed is 1990 and the starting offset of the corresponding first extent is 3000, then
the block address ofthe extent to be accessed is 4990. Next the PPU generates proper
1SCSICmdSN or FCP sequence ID, step 1510 and places them in the iISCSIPDU or
FCP frame header. The PPU also constructs the FCP frame header if necessary (in
some embodiments, after the ingress PPU reads the necessary information from the FCP
header, it will remove it, although other embodiments will leave it intact and merely
update or change the necessary fields at this step) or for a packet being sent to an
iSCSI target, the TCP Control Block Index is copied into the local header from the
PTD, step 1512. In addition, the PPU provides any flags or other variablesneeded for
the iISCSI or FCP headers. The completed iISCSIPDU or FCP frame are then sent to
the PACE, step 1514, which in turn strips the local header, step 1516, and passes the
packet to appropriate port, step 1518.

[0136] For avirtual target of multiple extents, each extent has a different starting
offset. So when acommand must be split between two extents, the PPU must determine

the proper address. For instance, assume a virtual target includes two extents defined

in Table 1:
Table 1
Extent 1 . 2
Starting offset 3000 5000
Size in blocks 2000 2500
[0137] Ifitis desired to access the virtual target starting at address 1990 for 30

blocks, then the PPU for the first extent sends the command to address 4990 for 10
blocks (5120 bytes of data— in one embodiment a block is 512 bytes). The PPU for

10

15

20

25

-37-

the second extent sends the command to address 5000 for 20 blocks (10,240 bytes of
data). In other words, the PPU for the first extent must add the address to be accessed
to the starting offset of the first extent (3000 + 1990) and then subtract that address from
its total size (2000 - 1990) to determine how many blocks it can access. The PPU for
the second extent will start at its starting offset (5000) and add the remaining blocks (20)
from there (5000-5019). As a further example, ifit was desired to access virtual block
2020, the PPU for the second extent would subtract the size of the first extent (2000),

before adding the offset for the second extent (5000), to achieve the resulting address

5020.
R2T or XFR_RDY — Ingress
[0138] Referringto Fig. 16 and 16a, after acommand has been sent to atarget

storage device as described above, and the command is a write command, an R2T PDU
oran XFR_RDY IU will bereceived from a storage device when it is ready to accept
write data, step 1602. The PPU identifies the corresponding ETCB, step 1604, by
using theinitiator _task tagor OX ID insidethepacket. In some embodiments, the
initiator_task tag or OX I[D of the packet is the same as the Task Index, which
identifies the ETCB. Ifthe PPU cannot identify a valid ETCB because of an invalid
initiator_task tagor OX ID, the packetis discarded. Otherwise, once the ETCB is
1dentified, the PPU retrieves the Ingress Task Index (if different from the Egress Task
Index) and the VTD ID from the ETCB, step 1606. The PPU also retrieves the FlowID
from the PTD, which is also identified in the ETCB by the PTD ID. The FlowID
indicates to the traffic manager the linecard of the original initiator (ingress) port. The
FlowID, the VTD ID, and the Task Index are copied into the local header of the packet,
step 1608. Finally the packet is sent to the traffic manager and the switch fabric, step
1610.

10

15

20

25

-38 -

R2T or XFR_RDY — Egress
[0139] AftertheR2T or XFR_RDY packet emerges from the switch fabric, it

is received by a PPU, step 1702, on its way to be passed back to the initiator (the
device that initiated the original command for the particular task). The Task Index
identifies the ITCB to the PPU, step 1704, from which ITCB the original
initiator_task tagand the VID ID can be obtained. The R2T/XFR _RDY Desired Data
Transfer Length or BURST LEN field is stored in the ITCB, step 1706. The local
header is updated with the FCP D_ID or the TCP Control Block Index for the TCP
connection, step 1708. Note that the stored S_ID from the original packet, which is
stored in the ITCB, becomes the D_ID. If necessary an FCP frame header is
constructed or its fields are updated, step 1710. The destination port number is
specified in the local header in place of the FlowlID, step 1712, and placed along with
the initiator_task tag in the SCSIPDU or, for an FC connection, the RX ID and
OX_ID areplaced in the FCP frame. The PPU also places any other flags or variables
that need to be placed in the PDU or FCP headers. The packet is forwarded to the
PACE, step 1714, whichidentifies the outgoing port from the local header. The local
header 1s then stripped, step 1716 and forwarded to the proper port for transmission,
step 1718.

[0140] Inthe event that the command is split over two or more extents, e.g., the
command starts in one extent and ends in another, then the PPUmust hold the R2T or
XFR_RDY ofthesecond extent until the data transfer is complete to the first extent, thus
ensuring a sequential data transfer from the initiator. In addition, the data offset ofthe
R2T or XFR_RDY ofthesecond extent will need to be modified by adding the amount
of data transferred to the first extent. Referring to the example of Table 1, if the
command is to access block 1990 for 30 blocks, then the data offset for the R2T or
XFR_RDY ofthe second extent must add 10 blocks so that block 11 is the first block

to be transferred to the second extent.

10

15

20

25

-390 .

Write Data Packet — Ingress
[0141] After an initiator receives an R2T or XFR RDY packet it returns a

write-data packet. Referring to Figs. 18 and 18a when a write-dataiSCSIPDU or FC
[Uisreceived from an initiator, step 1802, the ITCB to which the packet belongs must
beidentified, step 1804. Usually, the ITCB can beidentified usingthe RX_ID orthe
target task tag, which isthe same as the Task Index in some embodiments. The SPU
furtheridentifies that received packets are in order. In some circumstances, however,
the initiator will transfer unsolicited data: data that is sent prior to receiving an R2T or
XFR_RDY. In such a case, the PPU must find the ITCB by a search through the
outstanding tasks of a particular virtual target. Butifthe ITCB isnot found, then the
packetis discarded. Ifthe ITCB is found, the total amount of data to be transferred is
updated in the ITCB, step 1806. The FlowID and Task Index are added to the local
header of the packet, step 1808. The packet is then forwarded to the traffic manager
and ultimately to the switch fabric, step 1810.

[0142] In the event that a command is split between two extents because the
command starts in one and ends in the second, the PPU must determine the extent to
which the particular data belongs and forward the data packet to the correct egress
linecard. The PPU sets the proper FlowID to the extent. After completing the data
transfer on the first extent, the PPU checks if the R2T or XFR_RDY of the second
extent was received. Until the aata transfer is completed on the first extent, the data will

not be sent to the second extent to ensure sequential transfer.

‘Write Data Packet — Egress

[0143] Referring to Figs. 19 and 19a, when a write-data packet is received
from the switch fabric (via the traffic manager), step 1902, the ETCB for the packet
needs to be identified, step 1904. Typically, the ETCB canbeidentified using the Task
Index in the local header. Once the ETCB is found, using the information inside the
ETCB, the PPU generates proper iSCSI DataSN or FCP sequence ID, step 1906,
along with any other flags and variables, e.g, data offset, for the PDU or FCP frame

10

15

20

25

- 40 -

header. The local header is updated with the TCP Control Block Index or the FCP
D _ID from the PTD, step 1908. The port number is also added to the local header.
The finished iISCSIPDU or FCP frame is sent to the PACE, step 1910, whichremoves
the local header, step 1912, and forwards the packet to the appropriate port, 1914.
[0144] In the event that the command is split between two extents, the data
offset of the packet to the second extent must be adjusted. Using the example of
Table 1, if the command is to access virtual addresses starting at 1990 for 30 blocks,
then the data offset of the write data packet to the second extent must be subtracted by

ten blocks because the block 11 from an initiator is actually the first of the second extent.

Read Data Packet — Ingress

[0145] Referring to Fig. 20 and 20a, after receiving aread command, the target
device will respond with aread-data packet, which will be received at the PPU (after
undergoing classification in the PACE), step 2002. The ETCB for the packet is then
identified, using the OX ID orinitiator_task tag, step2004. The PPU further verifies
ifthe packet was received in order using sequence numbers or verifying that data offsets
are in ascending order, step 2006. If the packet was not in order, the read command
is terminated in error. Ifthe packet is in proper order, however, the VID ID, Task
Index, and FlowID are retrieved from the ETCB and VTD and copied into the local
header, step 2008. The packet is sent to the traffic manager and ultimately the switch
fabric, step 2010.

[0146] In the event that a read-data packet crosses an extent boundary, the
data offset of the packet from the second extent must be modified. This offsetisusually
performed on the egress side, described below, as the FlowID will identify the packet
from the second extent. In addition, in order to ensure sequentially returned data, the
read command to the second extent will not be sent until completion of the read from the

first extent.

10

15

20

25

-41 -

Read Data Packet — Egress

[0147] Referring to Fig. 21 and 21a, when aread-data packet is received by
an PPU from the switch fabric, step 2102, the ITCB for the packet is identified, step
2104, usually using the Task Index in the local header: From the ITCB, the PPU
retrieves the initiator_task_tagor OX_ID, step 2106. Using the saved datain the ITCB,
the PPU generates proper iSCSIDataSN or FCP sequence IDs as well as other flags
or variables of the PDU or FCP frame header, step 2108. The local header is updated
with the TCP Control Block Index or FCP S_ID from the VTID, step 2110. Note,
however, that for apacket going back to the initiator, the S_ID from the original packet
willbeused asthe D_ID. The outgoing port number is also added to the local header.
The packet is then sent to the PACE, step 2112, which removes the local header, step
2114, and forwards the packet to the appropriate port, step 2116.

[0148] In the event that a command is split between two extents (a fact tracked
in the ITCB), the data offset of the packet from the second extent must bemodified in

a way similar to that described previously.

Response Packet — Ingress
[0149] Referring to Figs. 22 and 22a, aresponse packet will be received from

a target device, step 2202. The ETCB for the packet is then identified, step 2204,
using the initiator task tag or OX ID of the packet. In some embodiments the
initiator_task_tag or OX_ID will be the same as the Task Index. If the ETCB is not
found, the packet is discarded. However, ifthe ETCB is found, then the Task Index is
copied into the local header of the packet along with the VID ID and the FlowID, step
2206. The packet is sent to the traffic manager and ultimately to the switch fabric, step
2208. Finally, because the response packet signals the completion of a task, the ETCB
for the task is released, step 2210.

10

15

20

25

_42 -

Response Packet — Egress

[0150] Referring to Fig. 23 and 23a, after aresponse packet has been through
the switch fabric, it will be received by an egress PPU, step 2302. The ITCB for the
packet is identified, step 2304, using the Task Index from the local header. Ifthe ITCB
isnot found, the packet is discarded. Ifthe ITCB is found, the outstanding command
count for the virtual target is decremented in the VID, step 2306. The PPU generates
the LUN, iSCSI ExpStatSN or FCP sequence ID from information in the ITCB and,
ifnecessary, constructs or updates the proper FCP header, step 2308. The PPU also
constructs other flags and variables for the PDU or FC frame header. The PPUupdates
the local header with the TCP Control Block Index or FCP S_ID (which becomes the
D ID)retrieved from the VID, step 2310. The packet is forwarded to the PACE, step
2312, which removes the local header, step 2314, and forwards the packet to the
appropriate port, step 2316. The PPU frees the ITCB, step 2318.

[0151] When a write command has been sent to more than one extent, a

response packet is not sent to the initiator until completion of the write to all extents.

[0152] Note that for all Figs. 9-23, although the steps are described to occur
1n a particular order, in other embodiments, the order of some of the steps may be

changed and some may be performed simultaneously.

Task Management PDU, Abort, Abort Sequence/Exchange—Ingress
[0153] An ABORT iSCSI function or Abort Sequence/Exchange terminates the

command abnormally. The PPU finds the ITCB using the OX_ID orinitiator task tag
ofthe packet. Ifno ITCB is found, the command is assumed to have been completed
ornever received and aresponse will be generated indicating TASK-NOT-FOUND.
Ifthe ABORT isreceived from atarget device, the PPU finds the ETCB and frees it.
An ACK is returned to the target device, and the ABORT is passed to a linecard
connecting to the initiator to terminate the command. Ifthe ABORT is received from an
initiator, the ABORT is passed to the linecard connecting to the target to terminate the

command. The PPU frees the respective task control blocks, ITCB and ETCB.

10

15

20

- 43 -

Task Management PDU, Abort, Abort Sequence/Exchange—Egress
[0154] An ABORT from the ingress linecard indicates to the egress linecard to

send an ABORT to the target device. When the completion response is returned from
the target, the ETCB is freed. If the ETCB is not found, the ABORT is ignored.

Translation

[0155] As discussed previously, a storage switch in accordance with the
invention can be coupled to devices that transmit data in accordance with any of a
plurality of protocols. And as also discussed previously, in one embodiment, the
protocols utilized by servers and storage devices are iISCSI and Fibre Channel.
However, if a switch is coupled to a server that operates in accordance with one
protocol and a storage device that operates in accordance with a second protocol, or
vice versa, then the switch must perform protocol translation. Conventionally, to do such
translation, the packet must be stored in memory and then operated on by a CPU before
it can be forwarded out, if such a conventional system can perform protocol translation
at all. In contrast, a storage switch in accordance with the invention can perform
protocol translation without any buffering of the packets in the switch.

[0156] BothiSCSIPDUs and Fibre Channel IUs are designed to carry SCSI
CDBs (command descriptor blocks) in their respective packet or frame. Assuch, these
protocols have similar semantics, as recognized by the inventors of the present invention.

Table 2 below illustrates a comparison between the protocols.

10

15

20

25

- 44 -

Table 2
SCSI Phase iSCSI Protocol FC Protocol
Arbitrate and Select Sending Ethernet packet | Sending fibre channel
frame
Command Command PDU Command Frame
Disconnect Receiving a packet Receiving a frame
Reconnect for data R2T PDU XFR_RDY frame
‘transfer
| Data Data PDU in TCP Data sequences in frames
segments
Status Response PDU Response frame
Abort and reset 1SCSI task management | Fibre channel ELS
‘Queue full status MaxCmdSN window Task set Full
No session login iSCSI Login and logout | PLOGI and LOGO
[0157] Fromthe above table, it can be seen that there is a correlation between

iSCSI Command PDU and FC Command Frame, an R2T PDU and XFR RDY
Frame, a Data PDU and Data Frame, and a Response PDU and Response Frame.
Such correlations lend themselves to straightforward translation, which is performed in
the PPU by mapping the fields from one packet to another and without buffering as will
bedescribed below. Aboﬁ-and—reset, session login-and-logout, and queue-full happen
infrequently relative to the other packets and are passed to the CPU of'the linecard for
processing (except for the abort of a SCSI data movement (e.g., read/write) command
which is performed by the PPU). Note that for SCSI Arbitrate-and-select and
Disconnect, both iSCSI and FC simply send or receive a packet/frame.

[0158] Upon arrival of a packet to the PPU, as with virtualization, the PPU
identifies the VTD associated with the packet by searching the CAM to determine ifthe
incoming command belongs to a particular session (either iSCSIor FC) and a particular

virtual target. The CAM search is conducted, as previously described, using the TCP

10

15

20

25

- 45 -

Control Block Index and LUN (in the case of an iISCSI packet) or the S_ID and the
LUN (in the case of an FC frame). However, in one embodiment of the invention,
translation is performed at the egress PPU (the PPU that receives the packet afterit has
traveled through the switch fabric). The egress PPU also searches the CAM, but uses
the VTD ID that is in the local header of the packet to find the PTD.

[0159] Note that although the CAM search is described for both the
Virtualizatiqn and translation functions, it is to be understood that it, as well as other steps
described with respect to the various functions, need only be performed once by the
PPU and that the steps performed with respect to all described functions (e.g.,
classification, virtualization, and translation) can be integrated in many respects.
[0160] As alsopreviously discussed with respect to the virtualization function,
while the VTD keeps track of variables for the virtual target and physical target, the PPU
also keeps track of variables that are typically not shared between the protocols in their
ITCBs and ETCBs (one of each per SCSI command). Such variables includes task
tags, CmdSN, DataSN, and StatSN for iSCSI, and OX ID, RX ID, exchange
sequence numbers, and sequence initiation flags for Fibre Channel. Once the PPU has
the VID (or PTD), as well as the respective ETCB or ITCB, then it has all of the
information necessary to perfdrm the translation. Translation from 1ISCSIto FC or vice
versa generally entails taking the information from the field of the incoming packet (e.g,.
1SCSI) and mapping the information to a corresponding field in the outgoing packet (e.g.,
FCP).

[0161] 1SCSTI Initiator to FC Target. Translation from an iSCSI initiator

(server) to an FC target (storage device) will be described first. Translation of an iSCSI
Command PDU to an FCP_CMND IU occurs in accordance with Table 3 below.

Reference should also be made to Figs. 8a-8i.

10

15

20

25

- 46 -

Table 3
from iSCSI Command PDU to FCP_CMND IU
LUN field of iISCSI PDU FCP_LUN
ATTR (3 bits) FCP_CNTL
CDB field FCP_CDB
Expected data transfer length | FCP_DL
OX_ID, SEQ_ID, SEQ_CNT

[0162]
PDU are mapped to the FCP_LUN field of the FCP_CMND IU. The LUN for the
Physical Target is obtained from the PTD. Only the 3 bits of the 1ISCSI Task Attribute
field ATTR are mapped to the FCP_CNTL field. The contents of CDB field of the
iSCSIPDU are mapped to the FCP_CDB field. The contents ofthe data transfer size
field are mapped to the FCP_DL field. Since OX_ID is unique to the FCP frame
header, itis filled in by the PPU, typically with the Task Index from the ETCB for easy

According to the table above, the contents of LUN field of the iSCSI

identification of responsive packets from the target. Other fields in the FCP Frame
Header can be easily generated with information from the PTD or VTD.

[0163]
XFR_RDY frame, which must be translated back to the iISCSIR2T PDU:

When the FC storage device responds, it will respond with an FC

Table 4
from FCP XFR_RDY to R2T iSCSI PDU
DATA_RO Buffer Offset
BURST_LEN Data Transfer Length
Initiator Task Tag and other fields
[0164] As shown in Table 4, the Buffer Offset and Data Transfer Length fields

canbe mapped directly from the FCP XFR_RDY frame. However, other fields such

10

15

20

25

-47 -

as StatSN, ExpCmdSN, MaxCmdSN, and R2TSN must be taken from the ITCB. In
addition variables like task tags unique to the iSCSIR2T PDU are also placed in the
packet by the PPU, usually using fields from the PTD or VID.

[0165] Afterreceiving an R2T, the iSCSlI initiator will send a Write Data PDU,

which must be translated to an FCP Data IU:

Table 5
from iSCSI Write Data PDU FCP DATA IU
Buffer Offset RLTV_OFF
payload , payload
OX_ID, SEQ _CNT
[0166] AsshowninTable5,the RLTV_OFF field for the FCP data [U will be

mapped from the Buffer Offset field of the iSCSI PDU. The payload for each
packet/frame is identical. In addition, variables unique to the FCP frame are added,
such as OX_ID and SEQ_CNT, taken from the ETCB.

[0167] When the iISCSI command sent initially from the iSCSIinitiator is a read
data command, the FC target will respond with an FCP_ DATA IU, which needs tobe
translated to an iISCSI Read Data PDU:

Table 6
from FCP DATA IU to iSCSI Read Data PDU
RLTV_OFF Buffer Offset
Data Payload Data Payload
Initiator Task Tag, Residual Count

10

15

20

25

- 48 -

[0168] As shown in Table 6, the Buffer_offset field for the iSCSIPDU will be
mapped from the RLTV_OFF field of the FCP TU. All other fields are taken from the
ITCB as well as variables unique to the PDU such as task tags.

[0169] Once the task is complete (e.g., reading or writing of data is finished),
then the FCP target sends a response packet (FCP_RSP IU) that must be translated

into an 1ISCSI format:

Table 7
from FCP RESPONSE 1U to iSCSI Response PDU
FCP_STATUS Flags and status fields
FCP_SNS_LEN DataSegmentLength
FCP_RESID BasicResidualCount
FCP_SNS_INFO Sense Data
FCP_RSP_INFO error codes
Initiator Task Tag, MaxCmdSN,
ExpCmdSN
[0170] As shown in Table 7, the Status field of the FC IU is mapped to the flag

and status fields of the iSCSI PDU. ' FCP_SNS LEN, FCP_RESID, and
FCP_SNS_INFO are mapped to DataSegmentLength, BasicResidualCount and Sense
Data, respectively. The FCP_RSP_INFO field is for transport errors that must be
mapped to the ISCSI error codes. Finally, variables like the Task Tag or ExpCmdSn,
StatSN, MaxCmdSN, ExpDataSN, and ExpR2TSN that are unique to the iSCSI Status
PDU are added from the ITCB or VID.

[0171] When there are flags inthe FCP_CNTL for task management like Abort
Task Set, a separate iSCSI task management command will be sent to the iSCSI
initiator devices. Similarly, ifaniSCSItask management PDU isreceived, anNOP FC

command with proper flags in the FCP_CNTL will be sent to the target device.

10

15

20

25

-49 .

[0172] Note that not all fields that are unique to either the iSCSI PDU or FCP
frame are listed in the above-described tables. Reference can be madeto Figs. 8a- 81
for a complete listing of fields. It is to be understood that for any unlisted fields the
information can be obtained from the relevant task control block, the VID, the PTD, or

can be easily generated (e.g., the FCP Type field is always 0x08).

[0173] FC Initiator to iSCSI Target. The FCP to iSCSI translation is the

reverse of the iSCSI to FCP translation. Again, the translation is performed at the
egress PPU. The FCP initiator will first send an FCP command, which must be
translated for the iSCSI target:

Table 8
from FCP Command IU to iSCSI Command PDU
FCP_LUN LUN
FCP_CNTL ATTR
FCP_CDB CDB
FCP_DL Expected Data Transfer Length
CmdSN, task tag, ExpStatSN
[0174] Asshownin Table 8, the LUN, CNTL, CDB, and DL fields of the FC

IUmap into the LUN, ATTR, CDB, and Data Transfer Size fields of the iSCSIPDU.
In addition, variables that are unique to the iSCSIPDU are created by the PPU such as
CmdSN and a task tag, both of which can be obtained from the ETCB. Note that the
DataSegmentLength field will be zero as there will be no immediate data for FCP
frames.

[0175] After theiSCSI target has received the command (and the command is
a write command), the target will respond with an R2T PDU, which must be translated
into an FCP XFR_RDY IU:

10

15

20

25

-50-

Table 9
from iSCSI R2T PDU to FCP XFR_RDY IU
Buffer Offset DATA_RO
Data Transfer Length BURST_LEN
RX ID, SEQ_ID
[0176] As shownin Table 9, the Buffer Offset and Data Transfer Length fields

oftheiSCSI PDU map into the DATA RO and BURST LEN fields ofthe XFR_RDY
IU. Inaddition, the PPU also adds variables unique to the FCP TU such asRX_ID and
SEQ ID, available in the ITCB.

[0177] Afierthe FCinitiator receives the XFR_RDY IU, it will send write data,

which needs to be translated into an iSCSI format:

Table 10
from FCP Data IU to iSCSI Write data PDU
RLTV_OFF Buffer offset
payload payload
Data SN, ExpCmdSN, target task tag
[0178] As shown, for write data, the RLTV_OFF of the FCP IU maps into the

Buffer offset field of the iSCSI PDU, while the payload for each is the same. In
addition, other fields are taken from the ETCB, including variables like DataSN, which
is unique to the 1SCSI Data PDU.

[0179] Ifthe original initiator command was a read command, then the iISCSI

target will respond with read data that must be placed in FCP format:

10

15

20

25

-51 -

Table 11
from iSCSI Read Data PDU to FCP DATA IU
Buffer Offset RLTV_OFF
payload payload
RX ID, SEQ_ID
[0180] Asshownin Table 11, the Buffer offset field maps into theRLTV_OFF

field of the FCP IU, and the payload for both is the same. In addition, the PPU must
add variables that are unique to the FCP IU such as RX_ID and SEQ_ID, which can
be found in the ITCB.

[0181] Finally, once the task is complete, the iISCS] target will send aResponse
PDU, which must be translated to the FCP RSP IU:

Table 12
from iSCSI Response PDU to FCP RSP IU
Flags and status FCP_STATUS
DataSegmentLength FCP_SNS_LEN
BasicResidual Count FCP_RESID
Sense data FCP_SNS_INFO
transport errors FCP_RSP_INFO
OX_ID, SEQ_ID
[0182] Asshownin Table 12, the flags and status fields ofthe iSCSIPDU map

to the STATUS field of the FCP IU. The iSCSI fields DataSegmentLength,
BasicResidualCount, and Sense Data all map to FCP_SNS_LEN, FCP_RESID, and
FCP_SNS_INFO, respectively, of the FCP IU. Transport errors are mapped to the
FCP_RSP_INFO field ofthe FCP IU. In addition, variables that are unique to the FCP
IU, such as OX_ID and SEQ_ID are added by the PPU.

10

15

20

25

-52-

[0183] If an iSCSI task management packet such as Abort Task Set is
received, it will be sent to the FC device using an NOP command with the task
management flags in the FCP_CNTL field.

[0184] Note thatnot all fields that are unique to either the iISCSI PDU or FCP
frame are listed in the above-described tables. Reference can be made to Figs. 8a-8i
for a complete listing of fields. Itis to be understood that for any unlisted fields the
information can be obtained from the relevant task control block, the VTD, the PTD, or

can be easily generated (e.g., the FCP Type field is always 0x08).

Storage Services

[0185] A switch in accordance with an embodiment of the invention can provide
switch-based storage services at wire speed, again by distributing tasks on multiple
linecards, thereby maximizing throughput. Storage services that are provided in one
embodiment of the invention include local mirroring, mirroring over slow link, snapshot,
virtual target cloning (replication), third party copy, periodic snapshot and backup, and
restore. Each of these services will be described in further detail below. Other
embodiments may provide more or fewer services.

[0186] Before discussing specific services, referring to Fig. 24, in general,
storage services are initially activated by a management station (or other device) over an
ethernet connection to the storage switch, step 2402. Such ethernet communication
occurs in one embodiment with the SCC 610 (Fig. 6). The SCC through its database,
determines the linecards for the service and passes all relevant information to perform
the service to those linecards, including VID and LUN information, step 2404. All
information is passed from the SCC to the linecards using intercard communication over
the ethernet connection that the SCC has with each linecard. The linecards then perform
the actual service requested, step 2406. When the task is completed, the SCC will
initiate aresponse to be returned to the management station, step 2408, indicating that
the serviceis complete. Hence, unlike conventional systems, the management station

need not be involved in the service at all except to initiate a request for the service.

10

15

20

25

-53 -

Local Mirroring

[0187] When a virtual target is mirrored, i.e., an identical copy of the data is
stored in two separate physical locations, often referred to as “members” of the mirrored
virtual target. The FlowID in the VTD indicates that the packet is to be multicast to
multiple egress ports. In amirrored virtual target, when a write command crosses an
extent boundary, the PPU will duplicate the packet for each extent for eachmember of
the mirrored target. The PPU also provides proper FlowIDs to the traffic manager,
which in turn sends each command it receives to multiple egress ports. Whenreading
from amirrored virtual target, the PPU selects the one member of the mirrored target
that has the smallest average response time. The FlowID ofthat member directs the
read command to the selected egress port. The response time is availablein the VID.
[0188] In the event that the R2T or XFR_RDY is received from one of the
members of amirrored target after sending a write command, then the PPU waits until
every member and/or extent has returned the R2T or XFR_RDY. Once all members
have responded, then the PPU will prepare to send the initiator the R2T or XFR RDY
that specifies the smallest block available to receive data: when the data is returned, it
will be multicast to all mirrored members, but a member cannot receive more data then
ithas requested. Thus, the PPU must also track in the ITCB the amount of requested
data specifiedinthe R2T or XFR_RDY for each extent. Once the smallest amount of
dataisreceived (from the initiator) and multicast to each member of the mirrored target,
then the PPU waits for the extent that asked for the smallest amount of data to send
another R2T or XFR_RDY. In the event that two (or more) targets asked for the
smallest amount of data (i.e., they both asked for the same amount), then the PPU waits
until both (or all) targets that asked for the smallest amount to send another R2T or
XFR_RDY. Then the PPU returns another R2T or XFR_RDY of the smallest
remaining amount of all the extents. The process continues until all of the extents have

all the required data. An example is shown in Table 13 below:

10

20

25

Table 13
Extent 1 | Extent 2 To
initiator
Total Data to be written 4k 4k
Size specified in first R2T or XFR_RDY 2k 3k
PPU requests from initiator 2k
Unsatisfied R2T or XFR_RDY (after 2k Ok 1k
written)
Size specified in second R2T or 2k
XFR_RDY
PPU requests from initiator 1k
Unsatisfied R2T or XFR_RDY (after 1k 1k Ok
written)
Size specified in third R2T or XFR_RDY| 1k
PPU requests from initiator 1k
Unsatisfied R2T or XFR _RDY (after 1k 0k Ok
written)
Remote Mirroring Over Slow Link
[0189] Aspreviously discussed, mirroring occurs when two identical sets of

data are each respectively stored in separate physical locations. Most conventional
systems only support local mirroring— that is, mirroring in devices that are both on the
same SAN. However, an embodiment of the invention supports mirroring over slow link
—for instance, when one copy of data is on one SAN and a second copyis stored ata
remote location from the SAN, e.g., on a second SAN. For instance, referring to Fig.
4, alocal copy of the data may be in SAN 402 while a remote mirrored copy may be
in SAN 404. Thus, remote mirroring is made possible in a switch in accordance with
an embodiment of the invention that enables exporting (or importing) of data to a target

through a WAN such as the Internet.

10

15

20

25

-55_

[0190] One significant distinction between mirroring over slow link and local
mirroring, however, is the latency inherent in communicating with the remote target. For
instance, the average latency when communicating over a WAN with a remote target is
8 uspermile. Thus, ifaremote target is halfway around the globe, the latency is 100 ms
(200 ms round trip), which will be significantly slower than when communicating with a
local target.

[0191] In one embodiment, in mirroring two (or more) local virtual targets, as
previously described after a write command is sent, a switch in accordance with the
mvention will wait to receive an R2T or XFR_RDY from all targets before requesting
write data from the initiator (e.g., the server). Then the write data is multicast to all
targets. For mirroring over slow link, however, to avoid along network latency, the
switch does not wait to receive an R2T or XFR_RDY from the remote target. Instead,
when the switchreceives an R2T or XFR__RDY from the local target, it immediately
requests the write data from the initiator and writes to the local target. When the linecard
connecting to theremote devicereceives the R2T or XFR_RDY from theremote target;
it reads the data from the local target and then writes it to the remote target.
[0192] More specifically, referring to Fig. 25, a switch will receive a write
command from a server, step 2502. As with local mirroring, the ingress PPU will
multicast the command to the egress linecards for both the local and remote target, step
2504. However, the FlowID ofthe command destined for the remote target is a special
FlowID so that the packet will be directed to the egress linecard CPU, instead ofbeing
handled directly by the PPU as would be done in other circumstances. Still, the packet
destined for the local target is handled by the PPU. The command is then sent to each
of the targets, local and remote, by the respective egress linecards, step 2506.
[0193] Duetonetwork latency, an R2T or XFR_RDY will be received by the
switch from the local target first, step 2508. The R2T or XFR_RDY is then passed
back to the initiator (server), step 2510. The initiator will then send its write data to the

switch, and the data are then passed to the local target for writing, step 2512. When the

10

15

20

25

-56 -

write is finished at the local target, the local target will send a response packet indicating
that the task is complete, step 2514.

[0194] Eventually, anR2T or XFR_RDY isreceived from the remote target by
the linecard, step 2516. Note that because the CPU for the linecard connecting to the
remote target sent the write command, the remote R2T or XFR_RDY isreceived also
by the linecard CPU, which manages the commands to the remote target. The linecard
CPU for the remote target converts thereceived R2T or XFR_RDY to aread command
to the local target, step 2518, to read the data previously written. The read data
received from the local target is received by the PPU of the linecard for the remote
target, step 2520. The PPU then forwards the read data as write data to the remote
target, step 2522. When the write is complete, the remote target will send aResponse
packet so indicating, which packet is received by the linecard CPU for the remote target,

step 2524. The linecard CPU receives the status for both the read and write commands.

[0195] IfanR2T or XFR_RDY ofthe remote target is received before the local
write is complete, the remote linecard waits until the local write 1s complete before
proceeding to read the data from the local target, in one embodiment.

[0196] In the event there is an error from either the read or the write, the
linecard CPU reports the error to the SCC. Inthe event of an error, the remote target
will be out-of-sync with the local one and the linecard.

[0197] Thus, for the local target, the write commands are executed on the PPU
ofthe linecard of the local target. But for the remote target, the write commands are
managed by the CPU of'the linecard for the remote target except that the PPU of that

linecard forwards the read data as write data.

10

15

20

25

-57-

Snapshot

[0198] “Snapshot” is generally mirroring a virtual target up until a particular point
intime, and then breaking away the mirrored member, thereby freezing the mirrored data
in the mirrored member at the time of the break away. In other words, a seeming
“snapshot” of the data at a particular time is kept. Once a snapshotis taken, a user can
access the removed member (as another virtual target) to retrieve old information at any
time without requiring arestore. Hence, by using “snapshot,” some users of a switch in
accordance with the invention will avoid the need to perform traditional backups and
restores. Moreover, by using a switch in accordance with the invention, snapshots can
be made quickly, taking only a few milliseconds, compared to traditional backup which
may require a backup window of hours to copy a virtual target to tape media (and
usually also preventing access to the data being copied). Snapshot of a virtual target can
also take place atregular intervals. Further, each snapshot can be a different member
ofthe mirrored virtual target, allowing for the availability of multiple snapshots (e.g., a
snapshot from Tuesday, one from Wednesday, etc.).

[0199] Specifically, referring to Fig. 26, to perform snapshot services in
accordance with one embodiment of the invention, a snapshot request isreceived from
amanagement station by the switch, step 2602. The SCC informs the ingress linecard
CPU (the linecard that connects to the server) of the change to remove a mirrored
member, step 2604. The SCC also updates the virtual target object in the SCC
database. The linecard CPU updates the FlowID stored in the VTD (in the PPU
SRAM) for the virtual target so that it no longer reflects the removed member, step
2606. With this change, the incoming writes are no longer multicast to the removed
member. Oncethe VTID is updated, the CPU acknowledges the change to the SCC,
which in turn sends a response back to the management station to indicate that the
snapshot is complete, step 2608.

[0200] In addition, prior to beginning any snapshot, there should be no

outstanding requests to the virtual target. Thus, when a snapshot takes place, the server

10

15

20

25

-58-

must be notified to quiesce all outstanding requests to the virtual target, in one

embodiment. The server activity resumes after the snapshot.

Virtual Target Cloning (Replication)

[0201] A switch in accordance with the invention can support the addition of
anew member to amirrored virtual target, referred to herein as cloning (or replication),
and can do so without taking the virtual target offline. In general, a new member is
added by changing the Virtual Target Object in the SCC database, and the content of
the mirrored target is replicated onto the new member while normal access is still active

to the virtual target. Depending on the size ofthe virtual target, the replication will take

. some time to complete. Nonetheless, the replication is controlled by the switch, is

transparent to the user, and does not generally interfere with access to the virtual target
by a server.

[0202] More specifically, referring to Fig. 27, areplicate request isreceived by
the SCC, step 2702. The SCC sets a cloning-in-progress flag in the Virtual Target
Object, step 2704, and informs the CPU ofthe linecard that connects to the server of
the change, step 2706. The linecard CPU updates the VID in the PPU SRAM to
change the FlowID of'the virtual target to add the new member, step 2708. With the
FlowID changed, incoming writes are now multicast. Nonetheless, although incoming
writes are multicast, the FlowlD is set to direct writes to the egress linecard CPU for the
new member so that the CPU handles the writes instead of the PPU. The egress
linecard CPU will temporarily manage the traffic to the new member until replication is
complete as described further below.

[0203] The CPU of the linecard connecting to the new member prepares a
change descriptor specifying the contents of the virtual target to be copied to the new
member, step 2710. The descriptor sets forth an offset and block count: (offset, block
count). Forexample, to copy a 10 GB target, the change descriptor is (0, 20,000,000)
— note that in one embodiment each block is 512 bytes and a 10 GB target has 20

million blocks.

10

15

20

25

-59 -

[0204] Using the change descriptor, the linecard CPU manages the copy
function a few blocks at a time. First, the linecard CPU sends a write command to the
new member, step 2712. When an R2T or XFR_RDY is returned, step 2714, the
linecard CPU initiates aread request to the old member, but specifies a FlowID directing
the read data to the linecard CPU of the new member, step 2716. Any read or write
error aborts the copy and is reported to the SCC.

[0205] After copying a set of blocks the change descriptor is updated, step
2718. For example, after copying 50 blocks, the change descriptor for the above
example becomes (50, 19,999,950), since the first SO blocks are now in sync. The
process of copying a set of blocks continues until all of the blocks have been copied,
step 2720.

[0206] Inthe event that a virtual target is comprised of multiple extents, if each
extent is coupled to the switch through distinct linecards, then the replication process for
both extents can be run concurrently. But, if both extents are coupled to the switch
through the same linecard, then the replication process must be run sequentially, i.e., the
second extent cannot be replicated until the completion of replication for the first extent.
[0207] In the meantime, during the replicate pfocess, write requests to the
virtual target may be received from a server and must be written to the all mirrored
members, including the member that is still in the process of receiving all of the data of
the virtual target. In such an instance, when the write request is multicast, it isreceived
bythe CPU ofthe linecard for the new member, step 2722, rather than being processed
bythe PPU on therespective linecards, as it will be for the old members of the mirrored
target. The linecard CPU determines ifthe write is to any block that has not yet been
copied by checking the write location against the offset of the change descriptor, step
2724. Ifthe writeis to datablocks that have been already copied, the write command
is simply passed to the PPU, step 2726. However, if the write is to data blocks that
have not yet been copied, then the write to the new member is discarded, step 2728,
and aresponse to the initiator that the task is complete is sent. Nonetheless, the new

data will eventually be copied into the new member from the old member during the

10

15

20

25

- 60 -

continuing replication process. The process continues to perform the replication until
completed, step 2720.

[0208] In the alternative, if during the replicate process a write request to the
virtual target is received, then changes made to the virtual target can be tracked by the
linecard CPU. When replication is complete, then those changed and tracked portions
can be updated.

[0209] ‘When the replication process is complete, the linecard CPU notifies the
SCC, step 2730. The SCC updates the Virtual Target Object to remove the cloning-in-
progress flag, step 2732. On the ingress linecard connecting to the initiator, the FlowID
is updated, step 2734, so that write commands follow their normal progression to the

PPU rather than being directed to the linecard CPU of the new member.

Third Party Copy

[0210] A third party function copies an offline virtual target (one that isnot being
accessed) to or from an archiving device such as a writable CD or tape drive. The copy
is termed a “third party copy” because the server is not involved until the copy is
complete --rather the copy is executed by the switch. Inmany embodiments, such a
third party copy will be made from a snapshot of a virtual target previously taken. In
most conventional systems, to perform such a copy the target device must be a “smart”
device, e.g., a smart tape device, meaning that such a device is generally actively
involved inand at least partially controls the copy process. In contrast, the third party
copy service of the present system does not rely on any intelligence outside of the
storage switch itself.

[0211] Referring to Fig. 28, the switch will receive a copy request from a
management station, step 2802. The SCC ensures that there are no outstanding
connections for writing to the virtual target, step 2804. During the copy, the virtual target
is available for read only in one embodiment. The SCC then sets a copy-in-progress

flag in the Virtual Target Object in the SCC database, step 2806, to ensure no other

10

15

20

25

-61 -

connections to the target for writing. The SCC next instructs the CPU for the linecard
connected to the copy-destination device to execute the copy, step 2808.

[0212] Each virtual target may be comprised of several extents, each of which
may be on adistinct physical device. Thus, the CPU for the destination linecard must
obtain data from each extent. To do so, the CPU for the destination linecard sends each
linecard for each extent an extent descriptor, step 2810. The extent descriptor specifies
the extent as well as the destination linecard (for the destination copy). The CPUs of
each of the linecards for the respective extents then set up their respective PPUs (e.g.,
the VIDs and CAMs) to enable the PPUs to process the read requests, step 2812.
[0213] After getting the extent linecards set up, the destination linecard CPU
then sends a write command to the destination device, step 2814. When an R2T or
XFR_RDY isreceived by the destination linecard from the destination device, step
2816, the destination linecard sends a read command to one of the extents via the
respective extent linecard, step 2818. The Read data is sent directly to the destination
linecard and processed by the destination linecard PPU as write data, step 2820, which
is written to the destination device. The process is repeated until the entire extent is
copied. Any error condition terminates the copy. Then ifless then all of the extents have
been copied, step 2822, then the process returns to step 2814, where it is performed
for the next extent. Ifall the extents have been copied, step 2822, then the CPU for the
destination linecard reports the completion of the copy to the SCC, step 2824. On an
erroneous completion, the SCC terminates the copy. But ifthe copy is complete without
error, then the SCC resets the copy-in-progress flag on the Virtual Target Object in the
SCC database, step 2826, and reports back to the management station the completion

status, step 2828. The source virtual target is now available for writing again.

15

20

25

-62 -

Periodic Snapshot & Backup

[0214] A switch in accordance with an embodiment of the invention can provide
periodic snapshot and backups of a virtual target. Such a backup function generally
comprises three steps:

1. Snapshot the virtual target,

2. Third party copy the virtual target from the snapshot, and

3. Rejoin the member carrying the snapshot to the virtual target as a

mirrored member, and bring current all mirrored data on the member.

[0215] The third step can be performed by replication (previously described)
or by otherwise tracking updated data for the virtual target from the time the snapshot
is taken until the member is rejoined. For instance, arecord of all changes made to the
virtual target can be kept and then the mirrored member is simply updated with those
changes upon rejoining the virtual target as a mirrored member.
[0216] Ifauser has plenty of storage space, the second and third stepsmaynot
benecessary as each snapshot virtual target will be accessible to auser. Thus, itis only
amatter of allocating the snapshot targets and naming them. For example, if the virtual
target is to be backed up every workday for the current week, monthly for the last six
months, and thereafter, quarterly up to one year, then only a finite set of snapshot targets

need to be allocated that might be named as follows:

ign.com.marantinetworks.company.server.master
ign.com.marantinetworks.company.server.backup.monday
ign.com.marantinetworks.company.server.backup.tuesday
ign.com.marantinetworks.company.server.backup.wednesday
ign.com.marantinetworks.company.server.backup.thursday
ign.com.marantinetworks.company.server.backup.friday
ign.com.marantinetworks.company.server.backup.february
ign.com.marantinetworks.company.server.backup.march

ign.com.marantinetworks.company.server.backup.april

10

15

20

25

-63 -

ign.com.marantinetworks.company.server.backup.may
ign.com.marantinetworks.company.server.backup.june
ign.com.marantinetworks.company.server.backup.july
ign.com.marantinetworks.company.server.backup.2000q3
ign.com.marantinetworks.company.server.backup.2000q4
ign.com.marantinetworks.company.server.backup.2001q1

1qn.com.marantinetworks.company.server.backup.2001q2.

[0217] The switch allocates the snapshot targets and schedules the periodic
activities according to a known policy. The switch also manages the naming and
renaming of the targets. For instance, for the backup.2001q3, the switch will reuse the
target for the backup.2000q3 and rename it for the backup.2001.q93.

Restore

[0218] For various reasons, many industries need to keep backup copies of
data on archiving media (e.g., typically removable or portable media such as tapes or
CDs). The switch can use the third party copy function to move a backup or snapshot
target to an archiving media. The switch tracks the archiving media on its database.
Each time acopy to the archiving media is performed, the SCC fetches the virtual target
object to determine all destination extents and arecord is entered into a database at the
management station to track the media. Using amanagement station, a user can view
a list of archiving media, e.g., a set of tapes or CDs, and select one for restoring.

[0219] The restore operation itselfis another third party copy function to be
scheduled by the switch. The operation, however, involves user intervention, as
someone must place the media into a tape or CD drive. Nonetheless, as with other
storage services described herein, the CPU of the source target device controls the work

for the Restore operation while multiple destination SPU’s are involved one at a time.

10

15

20

25

-64 -

[0220] A switch in accordance with one embodiment of the invention supports
three different priorities of restoring: urgent, important, and normal. Anurgentrestore
is started immediately regardless of the current traffic situation on the system. An
important restore is not started when there is congestion in the system, but is started
within a few hours. A normal restore is completed within 24 hours depending on the

traffic congestion of the system.

Conclusion

[0221] Thus in accordance with an embodiment of the invention, a storage
switch has been disclosed that provides wire-speed processing of data packets,
including classifying the packets, performing virtualization functions on the packets, and
performing any necessary protocol translation of the packets. Compared to
conventional practices, the architecture disclosed allows the required time to process a
packet to be minimal. Such wire-speed processing is in part accomplished by
distributing the intelligence ofthe switch to all of the linecards and generally avoiding the
need for buffering. Such distributed intelligence allows a system that not only has ahigh
bandwidth but is also easily scalable. Further, such a switch, using its linecards can also
perform serverless storage services, that is, services where no entity outside of the switch
need be involved in the control of performance of such services.

[0222] It should be understood that the particular embodiments described
above are only illustrative of the principles of the present invention, and various
modifications could be made by those skilled in the art without departing from the scope
and spirit of the invention. Thus, the scope ofthe present invention is limited only by the

claims that follow.

10

15

20

25

-65 -

CLAIMS
‘What is claimed is:

1. A method for use by a switch in a storage network, the method comprising:
receiving, by the switch, a solicitation for a storage service from a device in the
storage network;
performing, by the switch, the storage service without further involvement from
the device, including transmitting any data required to be transmitted as a result of

performing the storage service without buffering the data.

2. The method of claim 1, wherein performing the storage service further includes

performing virtualization of the data without buffering the data.

3. The method of claim 1, wherein performing the storage service further includes
performing translation of the data from a first protocol to a second protocol without

buffering the data.

4. The method of claim 3, wherein the first protocol is iSCSI and the second protocol
is Fiber Channel.

5. The method of claim 3, wherein the first protocol is Fiber Channel and the second

protocol is iISCSI .

6. Themethod of claim 1, wherein the storage service is one of local mirroring, mirroring

over slow link, snapshot, replication, third party copy, periodic backup, and restore.

10

15

20

25

- 66 -

7. The method of claim 1, wherein:

receiving the solicitation includes receiving the solicitation by a control card in the
switch;

performing the storage service includes, determining by the control card which
one or more of a plurality of linecards in the switch is required to perform the service,
passing relevant information from the control card to the determined linecard, and

performing the storage service by and under control of the determined linecard.

8. The method of claim 1, further including:

indicating that the storage service is complete by the switch to the device.

9. The method of claim 1, wherein the device is a server.

10. The method of claim 1, wherein the device is a management station.

11. The method of claim 1, wherein:
receiving a solicitation includes receiving, by the switch, amirroring solicitation
for a virtual target from the device; and
performing the storage service includes:
setting a flowID for the virtual target that indicates a mirrored virtual
target having a first member and a second member;
receiving a data write command from an initiator to the mirrored virtual
target;
multicasting the data write command to both members in accordance
with the flowID,;
receiving aready-to-receive-data indicator from each member, wherein
each member specifies an amount of data it can receive, the first member
specifying a first amount and the second member specifying a second amount

smaller than the first amount;

10

15

20

25

-67 -

obtaining from the initiator the second amount of data, performing
virtualization on the data without buffering the data, and transmitting the data to

the first member and the second member.

12. The method of claim 11, wherein setting a flowID for the virtual target includes

updating a virtual target descriptor with the flowID.

13. The method of claim 1, wherein:
receiving a solicitation includes receiving, by the switch, amirroring solicitation
for a virtual target from the device; and
performing the storage service includes:
setting a flowID for the virtual target that indicates a mirrored virtual
target having a first member and a second member, the second member having
alink to the switch that is slow relative to a link between the first member and
the switch;
receiving a data write command from an initiator to the mirrored target;
multicasting the data write command to both members in accordance
with the flowlID;
receiving a ready-to-receive-data indicator from the first member;
obtaining from the initiator the write data and transmitting the data to the
first member;
receiving a ready-to-receive-data indicator from the second member;
reading the write data from the first member and transmitting, by the

switch, the data to the second member.

14. The method of claim 13, wherein setting a flowID for the virtual target includes

updating a virtual target descriptor with the flowID.

10

15

20

25

- 68 -

15. Themethod of claim 13, wherein the second member is remote with respect to the

switch and the first member is local with respect to the switch.

16. The method of claim 1, wherein:
receiving a solicitation includes receiving, by the switch, a snapshot solicitation
for a virtual target, including a first member and a second member, from the device; and
performing the storage service includes:
updating a flowID for the virtual target stored in the switch, wherein
prior to updating, the flowID indicates that data is to be written to the first
member and the second member, and after updating the flowID indicates that
data is to be written to the first member and not the second member so that
when a data write command is received by the switch it is sent only to the first
member in accordance with the flowID;
sending an indication to the device that the snapshot solicitation is

complete.

17. The method of claim 16, wherein updating a flowID for the virtual target includes
updating a virtual target descriptor with the flowID.

18. The method of claim 1, wherein:

receiving a solicitation includes receiving, by the switch, areplication solicitation
from the device to add amember to a virtual target, thereby forming a mirrored virtual
target having a first member and a second member; and

performing the storage service includes:

updating a flowID stored in the switch for the virtual target, wherein
prior to updating the flowID indicates that data is to be written to the first
member and not the second member, and after updating the flowID indicates

that data is to be written to the first member and the second member so that

10

15

20

25

- 69 -

when a data write command is received by the switch it is multicast to the first
member and the second member in accordance with the flowID;

reading data from the first member and transmitting that data as write
data to the second member;

notifying the device that the replication solicitation is complete.

19. The method of claim 18, wherein updating a flowID for the virtual target includes

updating a virtual target descriptor with the flowID.

20. The method of claim 1, wherein:
receiving a solicitation includes receiving, by the switch, a third-party-copy
solicitation from the device to copy data in a virtual target to a new medium; and
performing the storage service includes:
reading data from the virtual target and transmitting the read data to the

new medium as write data,

notifying the device that the third-party-copy solicitation is complete.

21. A method for use by a switch in a storage network, the method comprising:
receiving, by the switch, amirroring solicitation for a virtual target from a device
in the storage network;
setting, by the switch, a flowID for the virtual target that indicates a mirrored
virtual target having a first member and a second member;
receiving, by the switch, data to be written to the mirrored virtual target;
multicasting, by the switch, without buffering, the data to both members for

writing in accordance with the flowID.

22. Themethod of claim 21, wherein multicasting the data write command includes

adding the flowID to the data write command.

IS

10

15

20

25

-70 -

23. The method of claim 21, wherein:

the first member is a local member with respect to the switch and the second
member is a remote member with respect to the switch; and

multicasting the data includes sending the data to the first member for writing,
reading the data from the first member, and sending the read data to the remote member

for writing.

24. The method of claim 23, wherein:

the second member is in communication with the switch over a link that is slow
relative to a link between the switch and the first member; and

multicasting the data includes sending the data to the first member for writing,
reading the data from the first member, and sending the read data to the second member

for writing.

25. A method for use by a switch in a storage network, the method comprising:

receiving, by the switch, amirroring solicitation for a virtual target from a device
in the storage network;

setting, by the switch, a flowID for the virtual target that indicates amirrored
virtual target having a first member and a second member;

receiving, by the switch, a data write command from an initiator to the mirrored
virtual target;

multicasting, by the switch, the data write command to both members in
accordance with the flowID;

receiving, by the switch, aready-to-receive-data indicator from each member,
wherein each member specifies an amount of data it can receive, the first member
specifying a first amount and the second member sp ec’ifying asecond amount smaller

than the first amount;

10

15

20

25

-71 -

obtaining, by the switch, from the initiator the second amount of data,
performing virtualization of the data without buffering, and transmitting the second

amount of data as write data to the first member and the second member.

26. The method of claim 25, wherein multicasting the data write command includes

adding the flowID to the data write command.

27. A method for use by a switch in a storage network, the method compriéing:

receiving, by the switch, amirroring solicitation for a virtual target from a device
in the storage network;

setting, by the switch, a flowID for the virtual target that indicates a mirrored
virtual target having a first member and a second member, the second member remote
relative to the switch and the first member local relative to the switch;

receiving, by the switch, a data write command from an initiator to the mirrored
target;

multicasting, by the switch, the data write command to both members in
accordance with the flowiD; .

receiving, by the switch, a ready-to-receive-data indicator from the first
member;

obtaining, by the switch, from the initiator the write data, performing virtualization
on the write data without buffering, and transmitting the write data to the first member;

receiving, by the switch, aready-to-receive-data indicator from the second
member;

* reading, by the switch, the write data from the first member and transmitting, by

the switch, the read data to the second member for writing.

28. The method of claim 27, wherein:

10

15

20

25

-72 -

the step of receiving, by the switch, a data write command to the mirrored target
from an initiator includes receiving by a first linecard of the switch, the data write
command;
the step of sending, by the switch, the data write command to both members
includes:
sending the data write command to at least two egress linecards,
a first egress linecard corresponding to the first member and a second
egress linecard corresponding to the second member;
said first egress linecard processing the data write command
using a processing unit, the first egress linecard also having a CPU
distinct from the processing unit;
said second egress linecard processing the data write command
using a CPU, the second egress linecard also having a processing unit
distinct from the CPU;
the first egress linecard and the second egress linecard sending
the data write command to the respective corresponding member;
the step of receiving, by the switch, aready-to-receive-data indicator from the
first member includes receiving by the first egress linecard a ready-to-receive-data
indicator from the first member and transmitting the ready-to-receive-dataindicator to
the first linecard;
the step of obtaining, by the switch, from the initiator the write data and
transmitting the data to the first member includes:
sending the ready-to-receive-data indicator from the first
linecard to the initiator;
receiving write data from the initiator by the first linecard,
transmitting the data to the first egress linecard, and then transmitting the
data by the first egress linecard to the first member;
receiving by the egress linecard a write data complete indication

and transmitting that indication to the initiator via the first linecard;

10

15

20

25

-73 -

the step of receiving, by the switch, aready-to-receive-data indicator from the
second member includes receiving by the second egress linecard aready-to-receive-
data indicator from the second member; and

the step of reading, by the switch, the write data from the first member and
transmitting, by the switch, the read data to the second member for writing includes
reading by the second egress linecard the write data from the first member and

transmitting by the second egress linecard the data to the second member.

29. A method for use by a switch in a storage network, the method comprising:
writing data to a first member of a mirrored virtual target,
reading data from the first member;
writing the data read from the first member to a second member of amirrored

virtual target, wherein the second member has a slow link relative to the first member.

30. The method of claim 29, wherein the second member is remote and the first

member 1s local.

31. A method for use by a switch in a storage network, the method comprising:
receiving, by the switch, a snapshot solicitation from a device in a storage

network for a mirrored virtual target, including a first member and a second member;
updating, by the switch, a flowID for the virtual target stored in the switch,

wherein prior to updating the flowID indicates that data is to be written to the first

member and the second member, and after updating the flowID indicates that datais to

be written to the first member and not the second member so that when a data write

command is received by the switch it is sent only to the first member in accordance with

the flowID;

sending an indication to the device that the snapshot solicitation is complete.

10

15

20

25

-74 -

32. The method of claim 31, wherein:

the step of receiving, by the switch, a snapshot solicitation from a device includes
receiving the solicitation by a control card in the switch;

the step of updating includes includes informing, by the control card, a linecard
ofthe solicitation and updating, by the linecard, the flowID in a descriptor of the virtual
target stored on the linecard and notifying the control card that the flowID has been
updated on the linecard;

the step of sending includes sending, by the control card, the indication.

33. The method of claim 31, wherein:
the snapshot solicitation is for a periodic snapshot;

the step of updating includes scheduling the periodic snapshot.

34. The method of claim 33, further including performing a periodic snapshot, wherein
scheduling the periodic snapshot includes establishing a set number of chronological
snapshot targets, and wherein upon performing a periodic snapshot, data in the last
chronological snapshot target is replaced by data in the newest chronological snapshot

target.

35. A method for use by a switch in a storage network, the method comprising:

receiving, by the switch, areplication solicitation to add amember to a virtual
target from a device in the storage network, thereby forming a mirrored virtual target
having a first member and a second member;

updating, by the switch, a flowID in a descriptor for the virtual target stored in
the switch, wherein prior to updating the flowID indicates that data is to be written to the
first member and not the second member, and afier updating the flowID indicates that
data is to be written to the first member and the second member so that when a data
write command is received by the switch it is multicast to the first member and the

second member in accordance with the flowID;

10

15

20

25

-75 -

reading, by the switch, data from the first member and writing, by the switch, the
data to the second member without buffering the data;

notifying the device that the replication solicitation is complete.

36. The method of claim 35, wherein:
the step of receiving, by the switch, a replication solicitation from a device
includes receiving the solicitation by a control card in the switch;
the step of updating includes informing, by the control card, a linecard of the
solicitation and updating, by the linecard, the flowID in a descriptor of the virtual target
stored on the linecard;
the step of reading, by the switch, data from the first member and writing, by the
switch, that data to the second member includes:
sending, by the linecard, a write command to the second member;
receiving, by the linecard, aready-to-receive-data indicator from the
second member;
sending, by the linecard, a read command to the first member;
receiving, by the linecard, data from the first member;
sending, by the linecard, the data received from the first member to the

second member.

37. The method of claim 36, further includes updating any data that was written to the
first member during the step of reading, by the switch, data from the first member and

writing, by the switch, that data to the second member.

38. A method for use by a switch in a storage network, the method comprising:
receiving, by the switch, a third-party-copy solicitation from a device in the
storage network to copy the data in a first target to a second target;
reading, by the switch, data from the first target and writing, by the switch, the

data to the second target without buffering the data;

-76 -

notifying the device that the third-party-copy solicitation is complete.

39. The method of claim 38, wherein:
the step of receiving, by the switch, a third-party-copy solicitation includes
5 receiving the solicitation by a control card in the switch to copy the data in a virtual target
to a portable medium;
the step of reading, by the switch, data from the first target and writing, by the
switch, that data to the second target includes:
informing a linecard associated with the portable medium of the
10 solicitation;
obtaining data from the virtual target by sending aread command to
each physical device associated with the virtual target;

writing, by the linecard, the obtained data to the portable medium.

15 40. The method of claim 38, wherein:

the first target is a portable medium and the second target is a virtual target.

Ot}

A
8L
: ONL _

801

90t

Lel

J9Inol

NV

8Ll

S8oIABP

. 6Ll
L *Bid k w_‘_‘.mmm_ouw oLl suogess
wbw
abpug ,ﬂ,://t//r llllll w_
Aemayeb 0ct
m
| ¥l 1~ eoueldde 1~ eoueydde
E
_.ll 04"
T
_ /A
| ¢ yoyms o4
i
|
I

Aemaleb

Joulsyle

LSt N
\
20l — | z01]
—
[—"]
sianieg =
=

=

1/38

Joulau]

INVT

ENENE)

A% 0z
Y
olu eqy
0g |
202
~H Aowsw Jossaooud
90¢ \
~ 7

bel

80¢

o4

NYS

2/38

80¢

NVM/NVIA

¢ "Bi-

swiesAsgns
JO S82IA8D
90¢ abeio}s gge suoljels
Jwbw

mm_o YAy e
3 ou_\ Ve
Yoyms YoUMSs
obeio)s obeio)s

SISALBS

3/38

¥ "Bl

4
04 Jo 3619 — Joulsy1e
| s—
: —/
=]
m =
yoyms =
@ Al abelols M
1ehel-pin =
. ==
. \x ==
— 70€
40174
30004 NVAVNYI
1o god
— JoulByle
 —
— =%
==
@ - =
YoJMms =
abeloys nmu
_ “ Ll Jekelnn =
H B ﬂ
=]

/ D4 Jo 3b6io

TNV

NV

4/38

G "B

nl) pb

laulayle
04 10 3619 =
=
=
yoyms - ==
abelo)s M
Jakel-ynA =
) =
>
08
jeulayle
¥08n = —
¢ =
=
Youms)]
obeloys M
Jekel-ny =
F e
0440 3619

NV

NV

5/38

~
[A4%°)

,(s108[q0)
mmmnmu,mn_

uoie}s
bW

wou/ Sy |
~

019

SN -

» spieD
[0JJUOD WBISAS

9 "Bi4

sple) ouged

Q0|
O
©

Spied aull NVM

)
906 | _

spleos aul| D4

J
pdo _

=
o
®

spJeo auj| 3619

S80IA8D ebeuo)s pue
SJoAles WOlj/0}

sooinap ebelo)s pue
SIoAI8S W0JY/0}

S8JIA8 abeioys pue
SISAISS WIOU}/0}

6/38

PLLy 9L,
1

7/38

\
L b1 Ndo obpug Wvyas
(a0 snq ™54 201
llllll _ e ——— — 7
L » Ndd | »| 3OVd
lmwt:nllv _llhlllll||¢dm\|“/_/7 o
% 90/
NFN . 2-.—! |||||| | |..|l o
" > L“\1 Hod
- > | Ndd |4 | JOVd
_ p— “1_/7 0
2 R S | — Hod
804 7
> 4/l L0l
o_(—Dm O—-_ m llllll - -7 — —— - - I.II-—
woyyoy | I “ N - L wod
_ Ndd | » 3OVd | |
e ~ i —— =" yog
Ommrﬂ WL il 902 I R _20L—=
| L wod
- 5| ssaife . | .
Lwt:n <P » _ Y R —— m_owqa 4,_/7
] ! Jog
178 8L | .,/ ~_ ol _ oL
| 90Z 902 Ndd ~ Toz) ~ 2oL
_ 6g013' nds
9|qe L snoy sgoll | 400l
sdl dLld WvO || WVES sdld | v Wvdas
sl diA _] .\‘ SCLA 0 dO1 J
o0z A Vi i c0f

e/ "bi4

seouanbas usdo [ejo
NSPWOXEN

dl gal s

X8pul §00|q |ORUOS 0L
NN

alw esuodsay

SPUBLIWOD JO # XeN
spuewwoo Buipueisino Jo #
(uoneooy ‘ezis “6's) sloyduoseq usIXy
aimoi4

aldiAn

alA

8/38

Byte

16
20
24
28
32

48

Byte
0
4

16
20
24

Byte O

| Byte1 I Byte 2

Byte 3

I

X1 0x01

FRW 00 ATTR Rsvd

CRN or Rsvd

TotalAHSLength

DataSegmentlLength

(LUN)

Logical Unit Number

Initiator Task Tag

Expected Data Transfer Length

CmdSN

ExpStatSN or ExpDataSN

SCSI Command
Descriptor Block (CDB)

Byte 0

iSCSI Command PDU
Fig. 8a .

Byte 1 I Byte 2

Byte 3

111 0x31

1 Rsvd (0)

Rsvd (0)

Initiator Task Tag

Target Transfer Tag

28

StatSN

32

ExpCmdSN

MaxCmdSN

36
40

R2TSN

44

Buffer Offset

48

Desired Data Transfer Length

iISCSI R2T PDU
Fig. 8b

9/38

Byte
yJ[O

4
8

16
20
24
28
32
36
40
44
48

0 A

16
20
24
28
32
36
40
44

Byte 0 1 Bytet ! Byte 2

a0 ot thalt CIEE 1 Bl

00 0x05 |F Rsvd (0)

Rsvd (0) DataSegmentLength

LUN or Reserved (0)

Initiator Task Tag

Target Transfer Tag or Oxfffffftf

Rsvd (0)

ExpCmdSN

Rsvd (0)

DataSN

Buffer Offset

Rsvd (0)

Data

iISCSI Write Data PDU
Fig. 8¢

Byte O | Byte1 | Byte 2

Byte 3

11 0x25 |F O US| Rsvd (0)

Status or Rsvd

Rsvd (0) DataSegmentLength

Rsvd (0)

Initiator Task Tag

Rsvd (0)

StatSN or Rsvd (0)

ExpCmdSN

MaxCmdSN

DataSN

Buffer Offset

48

Residual Count

Data

iISCSI Read Data PDU
Fig. 8d

10/38

x® O

16
20
24
28
32
36
40
44
48

Byte O | Byte1 I Byte 2 | Byte 3 |

11 0x21 | 1rsvOuOu0]| Status Response
Rsvd (0) DataSegmentLength

Rsvd (0)

Initiator Task Tag

Basic Residual count

StatSN

ExpCmdSN
MaxCmdSN
ExpDataSN or Rsvd (0)

ExpR2TSN or Rsvd (0)

Bidi-Read Residual Count

Sense Data and Response Data (optional)

iISCSI Response PDU
Fig. 8e

11/38

W Huat R Mo mdt Bad® e o et Halt U P tlt

.....

Bits 31-24 23-16 15-08 07-00
Word
0 R_CTL D _ID
1 rsvd S _ID
2 TYPE F CTL
3 SEQ_ID DF_CTL SEQ_CNT
4 OX_ID RX_ID
5 RLTV_OFF
FC Frame Header
Fig. 8f
Field Name Description Size
FCP_LUN logical unit number 8 bytes
FCP_CNTL control field 4 bytes
FCP_CDB | SCSI command descriptor block {16 bytes
FCP_DL Data Length 4 bytes

FCP_CMND Payload
Fig. 8g

12/38

Field Name Description Size

DATA_RO Relative offset of first byte of | 4 bytes
FCP_DATA IU that follows

BURST_LEN length of FCP_DATA IU that follows| 4 bytes

rsvd A 4 bytes
FCP_XFR_RDY Payload
Fig. 8h
Field Name Description Size

rsvd 4 bytes
rsvd 4 bytes
FCP_STATUS | field validity and SCSI status 4 bytes
FCP_RESID residual count 4 bytes

FCP_SNS_LEN| Length of FCP_SNS_INFO field | 4 bytes

FCP_RSP_LEN Length of FCP_RSP_INFO field | 4 bytes

-CP_RSP_INFO FCP response info m bytes

FCP_SNS_INFQ FCP sense info n bytes

FCP_RSP Payload
Fig. 8i

13/38

902

Receive
Packet at
GigE Port
914
no IP y no
packet?
yes

no

remove TCP &
IP headers

908
950

add local
header X 910 Receive Packet

from PPU or CPU

(PP

912
. remove local
: FIQ 9a header
(Classification - PACE -
iISCSI - ingress)
no
Fig 9b
(Classification - PACE - .
iSCSI - egress) 960

CP ctrl blk adr
Pkt to port & pkt to port

14/38

LR T %

iSCSI
payload header TCP iP MAC [—1002
L1008 ‘1006 Y1009
1010
/‘ ~
payload header | header
Fig. 10a
1016 1014 101
0 p v
new iISCSI remaining
payload header payload TCP P MAC
1030 1028 + \ 1024 1022
new iISCSH | jocal remaining local
payload header | header payload header
\-1026
. 1018

Fig. 10b

15/38

Local Header

VIDTD

FlowlD

TCP Control Block Index

Type

Size

Task Index

Source (Port, PACE, Linecard, CPU)
Destination (Port, PACE, Linecard,
CPU)

Fig. 11

16/38

Receive packet at

add lo
heade

cal
r

Fig. 12a

(classification - PACE -
FCP - ingress)

Fig. 12b
(classification - PACE -
FCP - egress)

17/38

" st e v e e ssmus wsor e [S

Receive pkt from

no
FlowlD

1314 CPU sends
g. 13a
(CIassnf‘ catlon PPU -
ingress)
i 1354
i
(Classification - PPU - RCCSd
egress)

18/38

receive cmd pkt

1404

invalid

Find VTD ID

allocate Task Index and
ITCB

Fig. 14

1412 - (Virtualization
Ingress - cmd)

copy into local header
FlowlD, VTD ID,
Task Index

19/38

s 7wk Yhaell TR it

receive cmd pkt
from fabric/TM

1504

allocate ETCB and

Task Index 1506

generate CmdSN o
sequence ID

construct or update FCP frame

eader or copy TCP Cirl Blk Index
to local header;

provide flags/variables

to outgoing
. port ‘

Fig. 15

(Virtualization -
Egress - cmd)

1518

20/38

jeble] pod/30vd

o pr— ouged/INL
Xopuj jse :
‘al”a/xepui Miq 1130 401 Nl o4
‘adA L ‘# Wod 10 NAd ISOS!
TSEEaU o0 puwg - ssalbuj
ey| B4
?
‘bag ebueyox3y
10 NSpPWO Xapu| ysel
aidaid ‘al aLA Nt od
dl dlA ‘adAL ‘qimold 10 NAd 1SOS!
Xepujysel 18peay [200]
Xapul
8213 g MO dOL
dl Xo
/L1 lojeiul
‘bag abueyoxy
pwo - ssalbg : 40 NSPWO
B ‘Bi al diA
m —\ .& D_>>O_n_
Xapu] ysel
g0ll
ars
/Xepul %Iq M0 401 N o4
‘adA Jo Ndd ISOS!
lapeay [eoo} T

3OVdHodH0keqiu]

21/38

e w o x

1602

Receive R2T or
XFR_RDY pkt

Retrieve Task Index

1608

copy FlowlD, VTD ID,
Task Index to local header

Fig. 16
(Virtualization - Ingress -
R2T/XFR_RDY)

22/38

1702

Receive R2T or
FR_RDY from fabric
1704
get ITCB

save size of R2ZT/XFR_RDY

1706
update local header with
D _ID or TCP block ctrl index;
flags/variables 1708

construct or update 1710
FCP header

specifiy port #
1712

1716

remove local header
718

1
_own "D Fig 17

(Virtualization - Egress -
R2T/XFR_RDY)

23/38

ouqed/NL
AQY H4X/12Y - ssalbuj Xapu|
eql ‘Bi NG M0 dOL
9l bl elep 10 jwe
dl Xo
> /1L Joyeniul
NSPWO
aldlA
xmucm Mmm._. Al o4 aimold
‘Al LA ‘e ‘qimo Xapu| yse
dl alA L Qimold 10 Nad 1SOS! pu| ysel
lepeay |eao] g0ll
‘beg abueyoxg
10 NSPWo
dlald
- al ala
~ Xapujysel
g013
ars
/Xepul ¥|q 130 dO.L Nl Od
‘adA L 10 NAad I1SoS!
Japeay [e00] .

l
JOovdModnebie

J0JeRiu|/U0d/30Vd
l

ara
/X8pul 320(q 410 4O L Nl o4
‘adA L ‘# Hod 10 NAad ISOS!
lapesy [ed0]

AQY "X/ 12y - sseib3
e} "Bl

24/38

Receive write data
packet from PACE

identify ITCB

1806
update amount o

date transferred

update local header with
FlowlID, Task Index

to TM/fabric

Fig. 18

(Virtualization - Ingress -
write data packet)

25/38

Receive write data packet
from TM/fabric

identify ETCB

generate DataSN or Sequence
ID; flags/variables

update local header

Fig. 19
(Virtualization - Egress -
write data pkt)

26/38

198ie | /1od/30Vd

OHAB/NL Bleq oI - ssalbuyj
ai~a /xepul eglL ‘B4
Mg 10 g0 ‘edAL ‘# Hod o Dm_ _.n_o_w sl
Topesy [e00] T ——
Xapuj ysel
‘al alA Nl 04
'bag ebueyoxg . ‘adAL ‘gimoid Jo NAd 1SOS!
Jo NSpw) lapesy |e20]
alaid
araia Xepul
XepulseL Mg 1o 4oL
g0.13 ejep jo jue
| arxo
/L1 Jojeniul
NSPWO e
al aiLA
dimold
Xopu| ¥se.l
ao11
as
ejep ajlIm - ssaib3g JXepul 300[q 1410 401 Al 04
eglL ‘Bl4 | ‘adAL 10 NAd ISOS!
Japeay |eoo| I

IOV dAHOd/10ieniu]

27/38

Receive read data pkt from
target

copy VTD ID, Task
Index, and FlowlD to
- . local header .

Fig. 20
(Virtualization - Ingress -
Read Data pkt)

28/38

oo cevars asrs avemne 2 Ay aame e gar cumee

Receive read data pkt
from TM/fabric

2102
identify ITCB :
2104
retrieve
initator_task_tag or
2106

OX_ID

generate DataSN or Sequence
ID; variables/flags
2108

2110

update local header

remove local header

2114

2116

Fig. 21
' (Virtualization - Egress-

Read Data pkt)

29/38

Xopul
g 10 4oL
di Xo
/L1 loyenui
NSPWo
al aiAa

aimol4
Xapuj yse |

g0l

ouqed/NL
ejeq peay - ssaibu|
eQg b1
l
. Xapu| yse -
ﬁ Y Nl o4
al QLA "edAL ‘qimold 10 NAd 1S0S!
Jopeay [eo0]
‘beg abueyox3 |
40 NSpWD
arald
Xopu| jse
€013
ars
/X3pul NIq 130 dO.L Nl o4
‘adAL 10 NAd ISOS!

P Jopeay [ed0]

3ovd/Hodpebe]

Jo}eRIu|HOd/30Vd
i

ara
/Xeput 300|q 110 401 IROE!
‘odA L ‘# Hod 1o NAd ISOS!
Japeay [eo0|

eleq pesy - ssalbg
ez ‘B4

30/38

Receive response
packet from target

identify ETCB

copy Task Index, VTD ID, and

FlowlD to local header
206

release ETCB.~

Fig. 22

(Virtualization - Ingress -
response pkt)

2210

31/38

Receive response
pkt from TM/fabric

2302

identify ITCB
2304

decrement VID
command #s 2306

generate LUN, iSCSI ExpStatS
or FCP Sequence ID; proper FCP
header; flags/variables

2308

update local header

: @ 2312

remove local header
. 2314

2318 Fig. 23
release ITCB (Virtualization - Egress -
response pkt)

32/38

2310

asuodsay - ssalbuj

ez b

ouged/NL

‘v

Xapuj yseL

‘l LA ‘edAL ‘gimold

Nl Od
10 Ndd ISOS!

Jepes([ed0]

‘bag abueyoxy

Xapul
g 10 4oL
ar Xo
/L1 Joyerju
NSpWwo
ai dlA

amold
Xapu| ysel

801l

10}eRiu|440d/3oVd

l
aa
/X8pui %00{q 130 4O 1L RIROE
‘adA] ‘# Hod 10 Ndd ISOS!
Japesy [ed0]

40 NSpPWQ
aidld

al diAn
X8pu| jsel

€014

ars

‘adA

[XSpulHiq |30 401

Nl o4
40 NAd ISOS!

l
30vdmodnsbiel

Jepeay [ed0]

osuodsay - ssalbg

egg b4

33/38

Switch receives
service request from
mgmt station

2402

2404
SCC determines
linecards

— 2406

linecards
perform service

2408

SCC responds to mgmt
station that task complete

Fig.24

34/38

2502

receive write

command from server
(at local switch)

2504

multicast command to
egress linecards of local &
remote targets '

2518

2506

CPU converts R2T to a
read command from local

linecards send
ommand to target

2508

receive R2T or XFR_RDY
from local target

PPU of egress linecard for
remote target receives read
data from local target

2510-

send R2T to server

PPU forwards read data as write

2512 data to remote target

write data to local target

2514

local target

completes write PU of egress linecard for remote

target receives status for both
read and write commands

2516

receive R2T or
XFR_RDY from remote
target

Fig. 25

35/38

receive snapshot
request from server

update VID

CPU acknowledges
change to SCC

Fig. 26

36/38

2702

receive clone

request from
server

2704

Set cloning-in-
progress flag in

VT object
2706
inform ingress
linecard CPU
2708

Update FlowlID in
VTD to add new

member
2710
prepare
change
descriptor
2712

CPU sends write
cmd to new member,

2714

receive R2T or
XFR_RDY

2716~

PU initiates read
request to old member
with Flow ID to new
member

2718

update change
descriptor

2720
continue to copy

block by block until
complete

2722

CPU receives write
request

pass write to

37/38

PPU’

notify SCC that
complete

SCC removes

change FlowlD

2802

receive third party
copy request from
mgmt station

SCC verifies no
outstanding writes to
target

2806

SCC sets flag in
VT object

2808

CC instructs CPU o
linecard for copy
destination device

2810

CPU sends extent
descriptors to each extent

2812
set up PPUs

2814

destination linecard CP
sends write cmd to

dest. linecard CP

ead data send {0
destination linecard

all extents

CPU reports
completion to
SCC

destination devices

2816

receive R2T o
XFR_RDY

38/38

SCC reports
back to mgmt
station

Fig. 28

sends read cmd to first

INTERNATIONAL SEARCH REPORT International application No.
PCT/US02/30970

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) :GOGF 18/00
USCL :709/238, 213, 225
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

US. : 709/203, 218, 214, 217, 218, 228, 225, 230, 238, 245, 249, 250

Documentation searched other than minimum documentation to the extent that such documents are included in the fields
searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EAST

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 6,209,023 B1 (DIMITROFF et al) 27 March 2001, cols 3-7. 1-40
Y US 6,195,703 B1 (BLUMENAU et al) 27 February 2001, cols 4-7. | 1-40
A US 5,898,841 A (HIGGINS) 27 April 1999. 1-40

D Further documents are listed in the continuation of Box C, D See patent family annex.

* Special categories of cited documents: " later document published after the international filing date or priority
an R . date and not in conflict with the application but cited to understand
Al document defining the general state of the art which is not the principle or theory underlying the invention
considered to be of particular relevance
: . : . s X" document of particular relevance; the claimed invention cannot be
Hyt i &
E earlier document published on or after the international filing date considered novel or cannot be considered to involve an inventive step
"L document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other) . i .
special reason (as specified) "y document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
on document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art
"p" document published prior to the international filing date but later wgn document member of the same patent family
than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report

28 OCTOBER 2002 2 % DEC 2@@2

Name and mailing address of the ISA/US Authorized officer ~
Commissioner of Patents and Trademarks Q
Box PCT >\
Washington, D.C. 20231 VIET VU M

Facsimile No. (708) 805-3230 Telephone No. (703) 305-9600

Form PCT/ISA/210 (second sheet) (July 1998)*

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

