A device for aligning a syringe (29) with a vessel having a variable internal volume and containing an injectable solution. The device includes one section (22) for removably retaining a vessel, one section (20) for allowing insertion and extraction of a syringe (29), and another section (26) adjoining the two aforementioned sections for accurately aligning the needle of the syringe (29) with the opening of the vessel. The alignment device further includes a clip (32) for both releasably retaining the vessel in the device and for enabling the device to be clipped to a shirt pocket.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AL</td>
<td>Albania</td>
<td>ES</td>
<td>Spain</td>
<td>LS</td>
<td>Lesotho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
<td>LT</td>
<td>Lithuania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
<td>LU</td>
<td>Luxembourg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>LV</td>
<td>Latvia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MC</td>
<td>Monaco</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
<td>MD</td>
<td>Republic of Moldova</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
<td>MG</td>
<td>Madagascar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
<td>MK</td>
<td>The former Yugoslav Republic of Macedonia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
<td>ML</td>
<td>Mali</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>MN</td>
<td>Mongolia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
<td>MR</td>
<td>Mauritania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
<td>MW</td>
<td>Malawi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
<td>MX</td>
<td>Mexico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
<td>NE</td>
<td>Niger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
<td>NL</td>
<td>Netherlands</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KE</td>
<td>Kenya</td>
<td>NO</td>
<td>Norway</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
<td>NZ</td>
<td>New Zealand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI</td>
<td>Côte d’Ivoire</td>
<td>KP</td>
<td>Democratic People’s Republic of Korea</td>
<td>PL</td>
<td>Poland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>PT</td>
<td>Portugal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kazakhstan</td>
<td>RO</td>
<td>Romania</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LC</td>
<td>Saint Lucia</td>
<td>RU</td>
<td>Russian Federation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SD</td>
<td>Sudan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SE</td>
<td>Sweden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LR</td>
<td>Liberia</td>
<td>SG</td>
<td>Singapore</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td></td>
<td></td>
<td>SI</td>
<td>Slovenia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK</td>
<td>Slovakia</td>
<td>SN</td>
<td>Senegal</td>
<td>SZ</td>
<td>Swaziland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TD</td>
<td>Chad</td>
<td>TG</td>
<td>Togo</td>
<td>TJ</td>
<td>Tajikistan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM</td>
<td>Turkmenistan</td>
<td>TR</td>
<td>Turkey</td>
<td>TT</td>
<td>Trinidad and Tobago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
<td>UG</td>
<td>Uganda</td>
<td>US</td>
<td>United States of America</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UZ</td>
<td>Uzbekistan</td>
<td>VN</td>
<td>Viet Nam</td>
<td>YU</td>
<td>Yugoslavia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZW</td>
<td>Zimbabwe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: The codes are used for identification purposes and may not correspond to the official ISO codes for countries.
SYRINGE ALIGNMENT DEVICE

1. Field of the invention.
The present invention generally relates to devices for
securely aligning a syringe with a vessel containing an
injectable medication.

2. Description of the related art.
The treatment of conditions requiring frequent
injections of medications, such as insulin for the treatment
of diabetes, has traditionally demanded that a user purchase
from the vial using a syringe, and store the remaining
medication in a refrigerated environment until a subsequent
injection is needed.

Alternatively, a user can purchase a variable volume
cartridge, typically 1.5-3.0 ml in volume, as disclosed in
U.S. Patent No. 5,334,162, assigned to the assignee of the
present invention. Such cartridges typically contain only a
few dosages, and are sold pre-enclosed in an injector pen
which is disposed of after the medication is dispensed.

In certain locations throughout the world, both of the
aforementioned alternatives present difficulties. In
locations where access to refrigeration is scarce or simply
unavailable, a 10 ml vial is not a viable option because
medication remaining in the vial cannot be properly
maintained. Moreover, the purchase of the larger, 10 ml
vial, itself, is often beyond the economic means of the
potential user.

Given the expense of vials, as well as the
unavailability of adequate refrigeration in many locations,
the less expensive and smaller variable volume cartridge is especially desirable. However, since such cartridges are typically sold encased in a disposable injector pen, the cost of the unit as a whole is often too great for many potential users.

Not only are vials relatively expensive and difficult to maintain, but vials also require a user to hold the vial in one hand and insert the needle of a syringe into the vial with the other hand during the dosing process. This procedure, while adequate for some, is subject to mistakes such as needle pricks or inaccurate dosages and is particularly a problem for patients having unsteady hands, persons who are visually impaired, or for children.

The prior art has attempted to address this problem by providing a tool which guides the syringe needle directly into the opening of the vial. For example, U.S. Patent No. 5,240,047, issued to Hedges, discloses a one-piece needle guide and bottle holding device in which one channel of the device is adapted to receive a portion of the bottle or vial such that the opening of the vial is exposed to the needle guide channel.

While a device such as Hedges is alleged to be adequate for aligning a syringe with a vial, variable volume cartridges are much smaller and differently shaped than vials, and therefore the Hedges design will not function with variable volume cartridges. U.S. Patent No. 5,292,318, issued to Haber et al. discloses a device for filling a syringe from a variable volume cartridge. The syringe is
mounted in a carrier to which a piston driver is threadably connected. The amount of fluid aspirated into the syringe is controlled by controlling the number of full and partial revolutions of the carrier relative to the piston driver.

This is a rather complicated device that has several drawbacks which are overcome by the present invention.

The present invention is a syringe and variable volume vessel alignment device which solves the above-identified needs by providing an inexpensive, safe, and accurate design for aligning a syringe, such as a U100 model manufactured by Becton Dickinson, with a vessel having a variable internal volume, such as the 1.5 ml and 3.0 ml cartridges manufactured by Eli Lilly and Company.

The alignment device disclosed by the present invention includes integral cartridge, needle, and syringe sections. The cartridge section has a generally cylindrical shape, having an opening which leads to a cylindrical chamber approximately the size of the intended cartridge. The cartridge section is provided with a positive stop to maintain the cartridge in its appropriate position and a releasable clip to hold the cartridge in place until it is desired to have the cartridge extracted.

The needle section has a generally conical outer shape with a tapered inner chamber leading from the positive stop of the cartridge section to the syringe section. The larger end of the inner chamber engages the neck flange of the cartridge while the smaller end of the inner chamber, in conjunction with the syringe section, holds the head of the
syringe in place. The design of a suitable variable volume cartridge is provided in the aforementioned U.S. Patent No. 5,334,162, the disclosure of which is expressly incorporated by reference herein. The needle of the syringe is then able to accurately align with and puncture the disk seal of the cartridge.

The syringe section has a generally cylindrical outer surface with an inner cylindrical chamber approximately the diameter of the syringe to be inserted. The syringe section is provided with a positive stop which contacts a collar provided on the syringe to prevent the syringe from passing its appropriate position. The syringe section is also provided with an annular flange to protect the user from accidental needle pricks. Once the syringe is inserted into the alignment device and the needle of the syringe punctures the disk seal of the cartridge, the plunger of the syringe can be drawn away from the syringe to draw the liquid medication from within the cartridge and into the syringe. The syringe can then be extracted from the alignment device for insertion into the patient. The cartridge can be either retained in the device or can be removed from the alignment device by pressing the clip on the outside of the cartridge section to thereby free the cartridge and allow its removal.

One advantage of the present invention is that the present invention can be produced at a relatively low cost, and therefore provide an inexpensive means of aligning a syringe with a variable volume cartridge and eliminate the
need to purchase and refrigerate a large volume vial, or purchase an injector pen.

Another advantage of the present invention is that it provides a relatively easy means for aligning a syringe with a cartridge containing medication which minimizes the risk of needle pricks. This is a particular advantage for users with unstable hands, for users with poor eyesight, or for children.

Another advantage of the present invention is that the positive stops provided within the device prevent the syringe and the cartridge from being inserted to an incorrect position and thereby interfering with the movement of the cartridge piston. The entire volume of medication within the cartridge can therefore be extracted.

Another advantage of the present invention is that the cartridge is maintained in its proper position and can be easily released by pushing on the release clip.

Another advantage of the present invention is that the cartridge can be retained in the alignment device and stored for subsequent uses.

The present invention, in one form, provides a device for aligning a syringe with a vessel to enable accurate insertion of the syringe into the vessel. The syringe includes a fluid medication chamber, a plunger reciprocatingly disposed within the medication chamber, and a needle in fluid communication with the medication chamber. The vessel has a variable internal volume and contains injectable fluid. The device includes an alignment housing
having a vessel chamber coaxial with a syringe chamber wherein the vessel chamber and the syringe chamber are adapted to receive the vessel and the syringe, respectively. The housing further includes a vessel stop and a syringe stop. The vessel engages the vessel stop, the syringe engages the syringe stop, the syringe is coaxial with the vessel, and the needle penetrates the vessel a predetermined distance, when the syringe and the vessel are received in the housing.

The present invention, in another form thereof, provides an injection preparation system comprising a syringe, a cartridge, and an alignment housing. The syringe includes a chamber for containing fluid medication, a plunger reciprocatingly disposed within the medication chamber, and a needle in fluid communication with the medication chamber. The cartridge includes an elastomeric piston slidably disposed within the cartridge, an exit having a penetrable membrane, and an injectable fluid contained between the exit and the elastomeric piston. Finally, the alignment housing includes a cartridge chamber coaxial with a syringe chamber wherein the cartridge chamber and the syringe chamber are adapted to receive the cartridge and the syringe, respectively. The housing further includes a cartridge stopping means and a syringe stopping means. The cartridge engages the cartridge stopping means, the syringe engages the syringe stopping means, the syringe is coaxial with the cartridge, and the needle punctures the membrane and penetrates the cartridge a predetermined distance short of
the piston, when the syringe and the cartridge are received in the housing.

The present invention, in yet another form thereof, provides a syringe alignment device for releasably retaining a vessel having a variable internal volume and containing an injectable fluid. A vessel chamber including an insertion opening is disposed within the device and is adapted to receive the vessel. A syringe chamber is also disposed within the device and is adapted to receive the syringe. The syringe chamber further includes an insertion opening through which a syringe needle passes to penetrate the insertion opening of the vessel chamber and the vessel itself. The device further includes an elastically deformable clip attached to the alignment housing which includes a cleat inwardly extending into the vessel chamber. The cleat engages and releasably retains the vessel when the vessel is received into the vessel chamber.

The present invention, in yet another form thereof, provides a method for aligning a syringe with a vessel and setting a dosage within the syringe. The vessel has a variable internal volume and contains an injectable fluid, and the syringe includes a chamber for containing fluid medication, a plunger reciprocating disposed within the medication chamber, and a needle in fluid communication with the medication chamber. The method comprises the steps of telescopingly inserting the vessel into a vessel chamber of an alignment housing, telescopingly inserting the syringe into a syringe chamber of the alignment housing, and
withdrawing a plunger disposed within the syringe to thereby draw injectable fluid into the syringe. When the vessel and the syringe are inserted into the housing, the vessel is coaxial with the syringe and a needle of the syringe penetrates the vessel.

The above-mentioned and other features and objects of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description taken in conjunction with the accompanying drawings, wherein:

Fig. 1 is a perspective view of the present invention with a syringe inserted therein for extraction of medical solution from a cartridge also contained within the present invention;

Fig. 2 is a side elevation view of the embodiment shown in Fig. 1;

Fig. 3 is an exploded view of the embodiment shown in Fig. 1; and

Fig. 4 is a sectional view of the present invention taken along the line 4-4 of Fig. 2.

Corresponding reference characters indicate corresponding parts throughout the several views. The exemplification set out herein illustrates one embodiment of the invention and such exemplification is not to be construed as limiting the scope of the invention in any manner.

The embodiment disclosed below is not intended to be exhaustive or limit the invention to the precise form disclosed in the following detailed description.
Referring now to Fig. 1, alignment device 20 is shown having housing 22 which includes integral cartridge section 24, needle section 26, and syringe section 28. In the exemplary embodiment, housing 22 is manufactured from transparent polystyrene plastic, although other materials are certainly possible. Syringe 29 is shown inserted into alignment device 20. Polystyrene not only provides a clear material from which to manufacture housing 22, but also, in conjunction with the cylindrical shape of housing 22, provides a magnifying effect to the dosage graduations (not shown) printed on syringe 29 to assist the user in setting a dose.

As best shown in Figs. 1 and 4, cartridge section 24 has a generally cylindrical outer surface 30 with a resilient plastic clip 32 integrally attached via attaching arm 33. Cartridge section 24 also includes inner cylindrical chamber 34 having a diameter roughly equivalent to the diameter of cartridge 35 as best shown in Fig. 4. Cartridge 35, as disclosed in U.S. Pat. No. 5,334,162, is comprised of a tubular portion 36 defining an inner chamber 38 containing medication solution 40. A cartridge piston 42 is axially movable within cartridge 35 and is shown in Fig. 4 positioned adjacent dispensing end 44 of cartridge 35. Dispensing end 44 of cartridge 35 includes inwardly sloping shoulder 46, reduced diameter neck 48, and exit 50 having circumferential flange 52. The diameter of neck flange 52 is greater than the diameter of neck 48. In other embodiments of the present invention, a collapsible tube, or other vessels having a
variable internal volume, may be used in lieu of cartridge 35.

Cartridge 35 is manually pushed into cartridge section 24 until cartridge shoulder 46 comes into contact with cartridge stop 37 of section 24. As cartridge 35 is inserted, retaining portion 54 of clip 32 is forced outward and actuating portion 56 of clip 32 is thereby forced inward and against the cylindrical outer surface 30 of cartridge section 24. Once cartridge 35 is fully inserted into cartridge section 24, retaining cleat 58, which is provided on the end of retaining portion 54, is no longer held outward by cartridge 35 and therefore snaps inward and retains cartridge 35 within alignment device 20. Clip 32 is also designed to be used as a convenient means for retaining alignment device 20 within a shirt or jacket pocket, for example. To allow for the inward and outward motion of retaining cleat 58, and to allow for a user to withdraw cartridge 35 from alignment device 20, cartridge section 24 is provided with window 60 having, in the exemplary embodiment, a generally rectangular shape as best shown in Fig. 2.

Needle section 26 is shown having a generally conical outer surface 62 which tapers from the generally cylindrical outer surface 30 of cartridge section 24 to the generally cylindrical outer surface 64 of syringe section 28. As best shown in Fig. 4, the inner area of needle section 26 is provided with tapered chamber 66. Tapered chamber 66 narrows from large diameter end 68 to small diameter end 70. As best
shown in Fig. 4, wall 27 of needle section 26 decreases in thickness from cartridge stop 37 to syringe stop 82.

Syringe section 28 is comprised of a generally cylindrical outer surface 64 and a cylindrical inner surface 78 having a diameter roughly equivalent to the outer diameter of syringe body 74. Therefore, as shown in Fig. 4, when syringe 29 is inserted into alignment device 20, syringe body 74 occupies syringe section 28 and contacts inner surface 78. Since syringe head 72 has a smaller diameter than syringe body 74, syringe 29 can be inserted into alignment device 20 until shoulder 80 of syringe 29 contacts syringe stop 82 of syringe section 28. In doing so, needle 84 is able to penetrate disk seal 86 of cartridge 35 and thereby access medication solution 40 within tubular portion 36 of cartridge 35. Once syringe plunger 88 is drawn back within syringe body 74, solution 40 enters syringe 29 through needle 84 and the vacuum thereby created pulls cartridge piston 42 toward needle 84.

Syringe section 28 is also provided with an annular flange 92 about the outer circumference of syringe opening 90. Annular flange 92 is provided as a protective shield to prevent needle 84 from puncturing the user's hand, and as a needle guide which funnels needle 84 into syringe opening 90.

In operation, cartridge 35 is inserted into alignment device 20 through cartridge opening 89 of cartridge section 24 as best shown in Fig. 3. This motion forces retaining cleat 58 outward to allow passage of cartridge 35 until cartridge shoulder 46 comes into contact with cartridge stop
37, which in turn enables retaining cleat 58 to snap inward through clip window 60 and thereby hold cartridge 35 within alignment device 20.

Syringe 29 can then be inserted into syringe opening 90 of alignment device 20 until syringe shoulder 80 comes into contact with syringe stop 82. In so doing, needle 84 will accurately penetrate cartridge disk seal 86 and access medical solution 40. Since cartridge section 24 is coaxial with syringe section 28, and the diameters of cartridge 35 and syringe 29 are roughly equivalent to the respective inner diameters of cartridge section 24 and syringe section 28, syringe 29 will be aligned with cartridge 35. Moreover, syringe 29 is appropriately positioned to allow needle 84 to penetrate disk seal 86, but not penetrate cartridge 35 to a point where needle 84 will interfere with the movement of piston 42.

When the user wishes to extract medication solution 40, syringe plunger 88 is pulled away from syringe body 74 to draw solution 40 into syringe 29. As plunger 88 is pulled away from syringe 29, piston 42 moves toward syringe 29 as a result of the vacuum thereby created. This is beneficial in that ambient air therefore cannot enter cartridge 35 to potentially contaminate medication 40 remaining in cartridge 35. Given the magnifying effect produced by transparent polystyrene housing 22, a user can easily identify the dosage being set within syringe 29.

Syringe 29 can then be extracted from alignment device 20 for injection of medication 40. Cartridge 35 can be
removed from alignment device 20 by pushing actuating portion 56 of clip 32 inward against cartridge section 24 to thereby force retaining cleat 58 outward to allow cartridge 35 to be removed from alignment device 20. The user can grasp cartridge 35 through clip window 60 during extraction.

While this invention has been described as having a particular design, the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
WHAT IS CLAIMED IS:

1. A device for aligning a syringe with a vessel, the syringe including a chamber for containing fluid medication therein, a plunger reciprocatingly disposed within the medication chamber, and a needle in fluid communication with the medication chamber, the vessel having an open end, a cylindrical envelope, and an opposite capped end, the opposite capped end comprising a restricted diameter end sealed by a pierceable material to receive the needle therethrough and a piston sized to be received and to seal the open end and to be telescopically movable within the cartridge and containing injectable fluid, said device comprising:

 an alignment housing including a vessel chamber coaxial with a syringe chamber, said vessel chamber adapted to receive the vessel, said syringe chamber adapted to receive the syringe, said housing further including a vessel stop for limiting axial movement of the vessel when the vessel is received in said vessel chamber, and a syringe stop for limiting axial movement of the syringe when the syringe is received in said syringe chamber, the vessel being coaxial with the syringe, the syringe engaging said syringe stop, the vessel engaging said vessel stop, and the needle penetrating the vessel a predetermined distance into the restricted diameter end and not into the cylindrical envelope, when the syringe and the vessel are received in said housing.
2. The device of Claim 1, wherein said syringe stop includes a first annular shoulder disposed within said housing which limits linear movement of the syringe as the syringe is inserted into said device, and said vessel stop includes a second annular shoulder disposed within said housing which limits linear movement of the vessel as the vessel is inserted into said device.

3. The device of Claim 1, wherein said syringe stop and said vessel stop are formed by a reduced diameter tunnel connecting said vessel chamber and said syringe chamber.

4. The device of Claim 1, wherein the vessel is a variable volume cartridge having an elastomeric piston slidably disposed therein, an exit, an injectable fluid therebetween, and a maximum volume of 5 milliliters.

5. The device of Claim 1, wherein the vessel is a collapsible tube.

6. A device for aligning a syringe with a vessel, the syringe including a chamber for containing fluid medication therein, a plunger reciprocatingly disposed within the medication chamber, and a needle in fluid communication with the medication chamber, the vessel having a variable internal volume and containing injectable fluid, said device comprising,

 an alignment housing including a vessel chamber coaxial with a syringe chamber, said vessel chamber adapted
to receive the vessel, said syringe chamber adapted to receive the syringe, said housing further including a vessel stop for limiting axial movement of the vessel when the vessel is received in said vessel chamber, and a syringe stop for limiting axial movement of the syringe when the syringe is received in said syringe chamber, the vessel being coaxial with the syringe, the syringe engaging said syringe stop, the vessel engaging said vessel stop, and the needle penetrating the vessel a predetermined distance, when the syringe and the vessel are received in said housing, wherein said housing further includes an elastically deformable tab which flexes away from said housing to allow the vessel to be inserted and removed, and wherein said tab is biased toward said housing to retain the vessel in said housing.

7. The device of Claim 6, wherein said tab is a clip attached to said housing which also provides a convenient means for storing said device in a shirt pocket.

8. The device of Claim 6, wherein said vessel chamber includes a window through which said elastically deformable clip extends to engage and releasably lock the vessel within said said housing.

9. The device of Claim 1, wherein said housing includes a syringe end and a vessel end, the vessel being telescopingly received into said vessel end and the syringe being telescopingly received into said syringe end.
10. The device of Claim 9, wherein said syringe end further includes an annular flange to protect a user of said device from being inadvertently stuck with the syringe during insertion of the syringe into said housing.

11. The device of Claim 1, wherein said housing is manufactured from transparent polystyrene, said housing is cylindrical, and the syringe is provided with dosage graduations on an outer surface of the syringe, said graduations being visible and magnified when the syringe is inserted into said housing.

12. An injection preparation system, comprising:
 a syringe having a chamber for containing fluid medication therein, a plunger reciprocatingly disposed within said medication chamber, and a needle in fluid communication with said medication chamber;
 a cartridge having an elastomeric piston slidably disposed therein, an exit, and an injectable fluid contained therebetween, said exit further including a penetrable membrane; and
 an alignment housing including a cartridge chamber coaxial with a syringe chamber, said cartridge chamber adapted to receive said cartridge, said syringe chamber adapted to receive said syringe, said housing further including means for stopping said cartridge when said cartridge is received in said cartridge chamber, and means for stopping said syringe when said syringe is received in
said syringe chamber, said cartridge being coaxial with said syringe, said syringe engaging said syringe stopping means, said cartridge engaging said cartridge stopping means, and said needle puncturing said membrane and penetrating said cartridge a predetermined distance short of said piston, when said syringe and said cartridge are received in said housing.

13. The system of Claim 12, wherein said syringe stopping means includes a first annular shoulder disposed within said housing which limits linear movement of said syringe as said syringe is inserted into said syringe chamber, and said cartridge stopping means includes a second annular shoulder disposed within said housing which limits linear movement of said cartridge as said cartridge is inserted into said cartridge chamber.

14. The system of Claim 12, wherein said syringe stopping means and said cartridge stopping means are formed by a reduced diameter tunnel connecting said cartridge chamber and said syringe chamber, said tunnel being dimensioned to allow said needle to puncture said cartridge membrane and prevent said needle from contacting said cartridge piston when said piston is disposed adjacent said cartridge exit.

15. The system of Claim 12, wherein said variable volume cartridge has a maximum volume of 5 milliliters.
16. An injection preparation system, comprising:

 a syringe having a chamber for containing fluid medication therein, a plunger reciprocatingly disposed within said medication chamber, and a needle in fluid communication with said medication chamber;

 a cartridge having an elastomeric piston slidably disposed therein, an exit, and an injectable fluid contained therebetween, said exit further including a penetrable membrane; and

 an alignment housing including a cartridge chamber coaxial with a syringe chamber, said cartridge chamber adapted to receive said cartridge, said syringe chamber adapted to receive said syringe, said housing further including means for stopping said cartridge when said cartridge is received in said cartridge chamber, and means for stopping said syringe when said syringe is received in said syringe chamber, said cartridge being coaxial with said syringe, said syringe engaging said syringe stopping means, said cartridge engaging said cartridge stopping means, and said needle puncturing said membrane and penetrating said cartridge a predetermined distance short of said piston, when said syringe and said cartridge are received in said housing, wherein said housing further includes an elastically deformable tab which flexes away from said housing to allow said cartridge to be inserted and removed, and wherein said tab is biased toward said housing to retain said cartridge in said housing.
17. The system of Claim 16, wherein said tab is a clip attached to said housing which also provides a convenient means for storing said device in a shirt pocket.

18. The system of Claim 16, wherein said cartridge chamber includes a window through which said elastically deformable clip extends to engage and releasably lock said cartridge within said housing.

19. The system of Claim 12, wherein said housing includes a syringe end and a cartridge end, said cartridge being telescopingly received into said cartridge end and said syringe being telescopingly received into said syringe end.

20. The system of Claim 19, wherein said syringe end further includes an annular flange to protect a user of said system from being inadvertently stuck with said syringe during insertion of said syringe into said housing.

21. An injection preparation system, comprising:

- a syringe having a chamber for containing fluid medication therein, a plunger reciprocatingly disposed within said medication chamber, and a needle in fluid communication with said medication chamber;
- a cartridge having an elastomeric piston slidably disposed therein, an exit, and an injectable fluid contained therebetween, said exit further including a penetrable membrane; and
an alignment housing including a cartridge chamber
coaxial with a syringe chamber, said cartridge chamber
adapted to receive said cartridge, said syringe chamber
adapted to receive said syringe, said housing further
including means for stopping said cartridge when said
cartridge is received in said cartridge chamber, and means
for stopping said syringe when said syringe is received in
said syringe chamber, said cartridge being coaxial with said
syringe, said syringe engaging said syringe stopping means,
said cartridge engaging said cartridge stopping means, and
said needle puncturing said membrane and penetrating said
cartridge a predetermined distance short of said piston, when
said syringe and said cartridge are received in said housing,
wherein said housing is manufactured from transparent
polystyrene, said housing is cylindrical, and said syringe is
provided with dosage graduations on an outer surface of said
syringe, said graduations being visible and magnified when
said syringe is inserted into said housing.

22. A syringe alignment device for releasably retaining
a vessel having a variable internal volume and containing an
injectable fluid, said device comprising:

a vessel chamber disposed within said device and having
an insertion opening, said vessel chamber adapted to receive
the vessel;

a syringe chamber disposed within said device and
coaxial with said vessel chamber, said vessel adapted to
receive the syringe, said syringe chamber including an
insertion opening through which a syringe needle passes to
penetrate said vessel chamber insertion opening and the vessel;

an elastically deformable clip attached to the alignment
housing, said clip having a cleat inwardly extending into
said vessel chamber, said cleat engaging and releasably
retaining the vessel when the vessel is received into said
vessel chamber.

23. The device of Claim 22, wherein said clip further
includes an actuating portion, said clip being attached to
the alignment housing via an attaching arm disposed between
said cleat and said actuating portion, said cleat being
forced away from said vessel chamber and releasing the vessel
when said actuating portion is depressed toward said device,
said attaching arm acting as a fulcrum between said cleat and
said actuating portion.

24. The device of Claim 22 wherein said device further
includes a window through which said cleat extends to engage
and releasably retain the vessel.

25. The device of Claim 22, wherein said clip also
provides a convenient means for storing said device in a
shirt pocket.

26. The device of Claim 22, wherein said device further
includes a interior shoulder which limits linear movement of
the vessel as the vessel is inserted into said vessel chamber, the vessel being releasably retained between said cleat and said interior shoulder when inserted into said vessel chamber.

27. The device of Claim 22, wherein the vessel is variable volume cartridge having an elastomeric piston slidably disposed therein, an exit, an injectable fluid therebetween, and a maximum volume of 5 milliliters.

28. A method for aligning a syringe with a vessel and setting a dosage within the syringe, the syringe having a chamber for containing fluid medication, a plunger reciprocatingly disposed within said medication chamber, and a needle in fluid communication with said medication chamber, the vessel having a variable internal volume and containing fluid medication, the method comprising the steps of:

 telescopingly inserting the vessel into a vessel chamber of an alignment housing;

 telescopingly inserting the syringe into a syringe chamber of the alignment housing, the vessel being coaxial with the syringe and the needle penetrating the vessel; and manually withdrawing the plunger from the syringe medication chamber thereby causing the injectable fluid to be drawn into the medication chamber.

29. The method of Claim 28 wherein the alignment housing further includes an elastically deformable clip and a
vessel stop, said clip biased toward said housing, said method further comprising the step of:

releasably locking the vessel into the vessel chamber by telescopingly inserting the vessel into the vessel chamber until the vessel is held between the vessel stop and clip, the vessel being prevented from axially moving when the syringe is inserted into the syringe chamber and penetrates the vessel.

30. The method of Claim 29 wherein the alignment housing further includes a syringe stop, said method further including the step of:

tele scopingly inserting the syringe into the syringe chamber until the syringe engages the syringe stop, the syringe being prevented from further axial movement and penetrating the vessel a predetermined distance.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

| IPC(6) | :B65B 1/04,3/04 |
| US CL. | :141/25, 604/414 |

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

| U.S. | 141/25,26,27,329,383,386; 604/414,905,407 |

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

none

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

none

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X Y</td>
<td>US 5,292,318 A (Haber et al.) 8 March 1994, see entire document.</td>
<td>1-5, 9, 10, 12-14, 19, 20 and 28 -------------------------- 15</td>
</tr>
<tr>
<td>X Y</td>
<td>US 5,247,972 A (Tetreault) 28 September 1993, see entire document.</td>
<td>1, 4, 5, 9 and 10 -- 11</td>
</tr>
</tbody>
</table>

□ Further documents are listed in the continuation of Box C. □ See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"Z" member of the same patent family

Date of the actual completion of the international search 29 APRIL 1997

Date of mailing of the international search report 02 JUN 1997

Name and mailing address of the ISA/US Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Authorized officer
STEVEN O. DOUGLAS

Telephone No. (703) 308-089

Form PCT/ISA/210 (second sheet) (July 1992)